幂函数与函数图像(最新课件ppt)
合集下载
幂函数课件(优质课)(共20张PPT)
1 x ④y ( ) 否 2
③y x 2 x 否
⑤y x 0 是
2 2
⑥y 1 否
2、若函数 f ( x) (a 3a 3) x 是幂函数,求a的值。 -1或4 规律
x 的系数是1
底数是单一的x 指数是常数
总结
幂函数的定义 幂函数的定义:一般地函数 y 其中x是自变量,α是常数。
上是增函数,0.5< 3 ∴ ∴ ( )2 (
3 2 3 ∴( ) ( ) 底数相同,若指数相同利用幂函数的
9 10
9 10
1.40.5 1.4 3
5
) 2∴ ( ) 2 ( ) 3 10 5 10
课堂练习 1、下列函数不是幂函数的是( c )
3 1 A y x B y x C y 2x D y x
定义域
y x2
R
(0,+∞)
O
x
值域
奇偶性
偶
单调性(-∞,0)减
(0,+∞)增
y
y x3
函数
y x3
定义域 R
O
x
值域
R
奇偶性 奇
单调性 增
y
1 x2
y
函数
y
1 x2
定义域 [0,+∞)
O
x
值域
[0,+∞)
奇偶性 非奇非偶
单调性
增
幂函数的性质
函数 定义域 值域 奇偶性
yx
yx
5
(
9 10
1 )3
9 2 (4)取中间量 ( ) ,∵函数 9 x 10 y ( ) 在R 上是增函数
③y x 2 x 否
⑤y x 0 是
2 2
⑥y 1 否
2、若函数 f ( x) (a 3a 3) x 是幂函数,求a的值。 -1或4 规律
x 的系数是1
底数是单一的x 指数是常数
总结
幂函数的定义 幂函数的定义:一般地函数 y 其中x是自变量,α是常数。
上是增函数,0.5< 3 ∴ ∴ ( )2 (
3 2 3 ∴( ) ( ) 底数相同,若指数相同利用幂函数的
9 10
9 10
1.40.5 1.4 3
5
) 2∴ ( ) 2 ( ) 3 10 5 10
课堂练习 1、下列函数不是幂函数的是( c )
3 1 A y x B y x C y 2x D y x
定义域
y x2
R
(0,+∞)
O
x
值域
奇偶性
偶
单调性(-∞,0)减
(0,+∞)增
y
y x3
函数
y x3
定义域 R
O
x
值域
R
奇偶性 奇
单调性 增
y
1 x2
y
函数
y
1 x2
定义域 [0,+∞)
O
x
值域
[0,+∞)
奇偶性 非奇非偶
单调性
增
幂函数的性质
函数 定义域 值域 奇偶性
yx
yx
5
(
9 10
1 )3
9 2 (4)取中间量 ( ) ,∵函数 9 x 10 y ( ) 在R 上是增函数
《数学幂函数》课件
《数学幂函数》PPT课件
# 数学幂函数
1. 概述
定义
幂函数是形如y = a^x的函数,其中a是常数,且 a大于0且不等于1。
性质
幂函数的图像可以是上升或下降的曲线,取决 于底数a的值。
2. 幂函数图像Biblioteka 一次幂函数一次幂函数的图像是一条直线,表达了线性关系。
平方函数
平方函数的图像是一个开口向上或向下的抛物线。
2 幂函数的不足
幂函数在某些情况下可能不适用,例如在自然现象的极端情况下或函数定义域的限制。
3 幂函数的发展历程
幂函数的研究历程涵盖了数学、物理、工程等多个领域,由早期的简单应用逐渐发展到 深入理论的探索。
立方函数
立方函数的图像是一个类似于字母"S"的曲线。
高次幂函数
高次幂函数的图像可能会出现多个极值点和变点。
3. 幂函数图像特征
1 斜率
2 凸凹性
幂函数的斜率与底数a有关,a大于1时斜率增 大,a小于1时斜率减小。
幂函数的凸凹性取决于底数a的奇偶性,a为 偶数时凹,为奇数时凸。
3 零点
幂函数的零点可能有多个,取决于方程 a^x=0的解个数。
幂函数在数学和物理领域的理论研究中起到重要作用,如熵函数和波函数等。
5. 习题解析
基础习题
1. 求解方程a^x = 1的解。 2. 画出y = a^x的图像,并分析其特征。
拓展习题
• 证明幂函数的导数与底数a的关系。 • 研究幂函数的渐近线与底数a的关系。
6. 总结
1 幂函数的优点
幂函数能够很好地描述非线性关系,对于一些复杂的现象具有较高的拟合度。
4 渐近线
幂函数的渐近线有两条,y轴为一条垂直渐近 线,x轴为一条水平渐近线。
# 数学幂函数
1. 概述
定义
幂函数是形如y = a^x的函数,其中a是常数,且 a大于0且不等于1。
性质
幂函数的图像可以是上升或下降的曲线,取决 于底数a的值。
2. 幂函数图像Biblioteka 一次幂函数一次幂函数的图像是一条直线,表达了线性关系。
平方函数
平方函数的图像是一个开口向上或向下的抛物线。
2 幂函数的不足
幂函数在某些情况下可能不适用,例如在自然现象的极端情况下或函数定义域的限制。
3 幂函数的发展历程
幂函数的研究历程涵盖了数学、物理、工程等多个领域,由早期的简单应用逐渐发展到 深入理论的探索。
立方函数
立方函数的图像是一个类似于字母"S"的曲线。
高次幂函数
高次幂函数的图像可能会出现多个极值点和变点。
3. 幂函数图像特征
1 斜率
2 凸凹性
幂函数的斜率与底数a有关,a大于1时斜率增 大,a小于1时斜率减小。
幂函数的凸凹性取决于底数a的奇偶性,a为 偶数时凹,为奇数时凸。
3 零点
幂函数的零点可能有多个,取决于方程 a^x=0的解个数。
幂函数在数学和物理领域的理论研究中起到重要作用,如熵函数和波函数等。
5. 习题解析
基础习题
1. 求解方程a^x = 1的解。 2. 画出y = a^x的图像,并分析其特征。
拓展习题
• 证明幂函数的导数与底数a的关系。 • 研究幂函数的渐近线与底数a的关系。
6. 总结
1 幂函数的优点
幂函数能够很好地描述非线性关系,对于一些复杂的现象具有较高的拟合度。
4 渐近线
幂函数的渐近线有两条,y轴为一条垂直渐近 线,x轴为一条水平渐近线。
3.3 幂函数 课件(共48张PPT)高一数学必修第一册(人教A版2019)
1
(3) 在区间(0, )上,函数y x, y x2 , y x3 , y x 2单调递增, 函数y x1单调递减;
(4) 在第一象限内, 函数y x1的图象向上与y轴无限接近,向右与x轴 无限接近.
学习新知 例 证明函数f ( x) x是增函数.
证明:函数的定义域是[0, ). x1, x2 [0, ), 且x1 x2 ,
[0,+∞)递增
(-∞,0)和(0,+∞) 递减
图象
公共点
(1,1) ( R) (0,0) ( 0时)
①为偶数, y x是偶函 数. ②为—奇—数, y x是奇函 数.
3.3 幂函数
02 幂函数的图象 与性质
应用新知 1 幂函数的概念
一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.
本节我们利用这些知识研究一类新的函数.
学习新知
先看几个实例: (1)如果卢老师以1元/kg的价格购买了某种蔬菜t千克,那么他需要支付
的钱数P=t元,这里P是t的函数;
(2)如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数;
(3)如果立方体的棱长为b,那么立方体的体积V=b3,这里V是b的函数;
或
m=0.
当
m=2
时,f(x)=
x
1 2
,图象过点(4,2);
当
m=0
时,f(x)=
x
3 2
,图象不过点(4,2),舍去.
综上,f(x)=
x
1 2
.
能力提升 题型三:利用幂函数的单调性比较大小
【练习
3】已知幂函数
f(x)=m2
2m
1
m 3
x2
的图象过点(4,2).
(3) 在区间(0, )上,函数y x, y x2 , y x3 , y x 2单调递增, 函数y x1单调递减;
(4) 在第一象限内, 函数y x1的图象向上与y轴无限接近,向右与x轴 无限接近.
学习新知 例 证明函数f ( x) x是增函数.
证明:函数的定义域是[0, ). x1, x2 [0, ), 且x1 x2 ,
[0,+∞)递增
(-∞,0)和(0,+∞) 递减
图象
公共点
(1,1) ( R) (0,0) ( 0时)
①为偶数, y x是偶函 数. ②为—奇—数, y x是奇函 数.
3.3 幂函数
02 幂函数的图象 与性质
应用新知 1 幂函数的概念
一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.
本节我们利用这些知识研究一类新的函数.
学习新知
先看几个实例: (1)如果卢老师以1元/kg的价格购买了某种蔬菜t千克,那么他需要支付
的钱数P=t元,这里P是t的函数;
(2)如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数;
(3)如果立方体的棱长为b,那么立方体的体积V=b3,这里V是b的函数;
或
m=0.
当
m=2
时,f(x)=
x
1 2
,图象过点(4,2);
当
m=0
时,f(x)=
x
3 2
,图象不过点(4,2),舍去.
综上,f(x)=
x
1 2
.
能力提升 题型三:利用幂函数的单调性比较大小
【练习
3】已知幂函数
f(x)=m2
2m
1
m 3
x2
的图象过点(4,2).
幂函数(共2课时)课件(共35张PPT)
3.3 幂函数
00 前情回顾
在初中,我们学过“指数幂”,谁能回顾一下它的定义:
指数
求n个相同因数的积的运算,叫做 乘方,乘方的结果叫做幂。
幂
底数
读作“a的n次方”或“a的n次幂”
1 幂函数的概念
目
2 幂函数的图象与性质
录
3 题型-幂函数的应用
1 幂函数的概念
目 录
01 新知探究
探究1 根据下列情境,写出对应关系式,并分析是否为函数?
例2 若函数f(x)是幂函数,且满足f(4)=16,则f(-4)=_1_6__.
解:设f(x)=xα,∵f(4)=16,∴4α=16,解得α=2, ∴f(x)=x2,所以f(-4)=(-4)2=16.
03 题型2- 幂函数的图象与性质
例3 若幂函数y=xm与y=xn在第一象限内的图象如图所示,则( B )
性质:
都过定点(1,1);
练一练
A
练一练
练一练
例3 已知幂函数f(x)=(m2-5m+7)xm-1为偶函数,求f(x)的解析式?
解:由m2-5m+7=1可得m=2或m=3, 又f(x)为偶函数,则m=3,所以f(x)=x2.
练一练
目
录
3 题型-幂函数的应用
03 题型1- 幂函数的概念
03 题型1- 幂函数的概念
-1
0
1
2
3
4
5
-3
-2
-1
0
1
2
3
4
5
9
4
1
0
1
4
9
16
25
-27
-8
-1
0
1
8
27
00 前情回顾
在初中,我们学过“指数幂”,谁能回顾一下它的定义:
指数
求n个相同因数的积的运算,叫做 乘方,乘方的结果叫做幂。
幂
底数
读作“a的n次方”或“a的n次幂”
1 幂函数的概念
目
2 幂函数的图象与性质
录
3 题型-幂函数的应用
1 幂函数的概念
目 录
01 新知探究
探究1 根据下列情境,写出对应关系式,并分析是否为函数?
例2 若函数f(x)是幂函数,且满足f(4)=16,则f(-4)=_1_6__.
解:设f(x)=xα,∵f(4)=16,∴4α=16,解得α=2, ∴f(x)=x2,所以f(-4)=(-4)2=16.
03 题型2- 幂函数的图象与性质
例3 若幂函数y=xm与y=xn在第一象限内的图象如图所示,则( B )
性质:
都过定点(1,1);
练一练
A
练一练
练一练
例3 已知幂函数f(x)=(m2-5m+7)xm-1为偶函数,求f(x)的解析式?
解:由m2-5m+7=1可得m=2或m=3, 又f(x)为偶函数,则m=3,所以f(x)=x2.
练一练
目
录
3 题型-幂函数的应用
03 题型1- 幂函数的概念
03 题型1- 幂函数的概念
-1
0
1
2
3
4
5
-3
-2
-1
0
1
2
3
4
5
9
4
1
0
1
4
9
16
25
-27
-8
-1
0
1
8
27
3.3幂函数(共43张PPT)
解决幂函数图象问题应把握的原则 (1)依据图象高低判断幂指数大小,相关结论为:①在(0,1)上,指数越大, 幂函数图象越靠近 x 轴(简记为指大图低);②在(1,+∞)上,指数越大,幂 函数图象越远离 x 轴(简记为指大图高). (2)依据图象确定幂指数 α 与 0,1 的大小关系,即根据幂函数在第一象限内 的图象(类似于 y=x-1 或 y=x12或 y=x3)来判断.
()
解析:选 D.由题意设 f(x)=xn, 因为函数 f(x)的图象经过点(3, 3), 所以 3=3n,解得 n=12, 即 f(x)= x, 所以 f(x)既不是奇函数,也不是偶函数, 且在(0,+∞)上是增函数,故选 D.
4.函数 y=x-3 在区间[-4,-2]上的最小值是_____________. 解析:因为函数 y=x-3=x13在(-∞,0)上单调递减, 所以当 x=-2 时,ymin=(-2)-3=(-12)3=-18. 答案:-18
B.-3 D.3
()
【解析】 (1)②⑦中自变量 x 在指数的位置,③中系数不是 1,④中解析式 为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数.
(2)因为函数 y=(m2+2m-2)xm 为幂函数且在第一象限为增函数,所以 m2+2m-2=1, m>0, 所以 m=1.
【答案】 (1)B (2)A
所以( 2)-32>( 3)-32.
6
6
6
6
(3)因为 y=x5为 R 上的偶函数,所以(-0.31)5=0.315.又函数 y=x5为[0,
+∞)上的增函数,且 0.31<0.35,
6
6
6
6
所以 0.315<0.355,即(-0.31)5<0.355.
幂函数(优秀课件)
(2)考察幂函数 在区间(0, +∞)上是单调减函数. 因为 所以
3
2
3
2
5
.
1
5
.
1
2
,
)
2
)(
2
(
;
,
)
1
)(
1
(
-
-
+
+
a2
a
a
例2
证明幂函数 在[0,+∞)上是增函数.
用定义证明函数的单调性的步骤:
问题引入
(1) 如果张红购买了每千克1元的蔬菜w千克,那么她需要支付p=w元,这里p是w的函数; (2) 如果正方形的边长为a,那么正方形的面积 这里S是a的函数; (3) 如果立方体的边长为a,那么立方体的体积 , 这里V是a函数; (4)如果一个正方形场地的面积为S,那么这个正方形的边长 这里a是S的函数; (5)如果某人ts内骑车行进了1km,那么他骑车的平均速度 这里v是t的函数.
正确
不正确
不正确
不正确
正确
例1: 比较下列各题中两数值的大小
① 1.73,1.83 ② 0.8-1 ,0.9-1
②∵幂函数y= x-1在(0,+∞)上是单调减函数.
解:① ∵幂函数y=x3 在R上是单调增函数。
又∵1.7<1.8
∴1.73<1.83
(5) 图像不过第四象限.
(6)第一象限内, 当x>1时, 越大图象越高
(3) 当 为奇数时,幂函数为奇函数; 当 为偶数时,幂函数为偶函数.
随堂练习
下列哪些说法是正确的?
1 . 幂函数均过定点(1,1); 2 . 幂函数 在(-∞,0)上单调递减,在(0,+ ∞ )上也单调递减,因此幂函数 在定义域内单调递减; 3 . 幂函数的图象均在两个象限出现; 4 . 幂函数在第四象限可以有图象; 5 . 当 >0时,幂函数在第一象限均为增函数;
3
2
3
2
5
.
1
5
.
1
2
,
)
2
)(
2
(
;
,
)
1
)(
1
(
-
-
+
+
a2
a
a
例2
证明幂函数 在[0,+∞)上是增函数.
用定义证明函数的单调性的步骤:
问题引入
(1) 如果张红购买了每千克1元的蔬菜w千克,那么她需要支付p=w元,这里p是w的函数; (2) 如果正方形的边长为a,那么正方形的面积 这里S是a的函数; (3) 如果立方体的边长为a,那么立方体的体积 , 这里V是a函数; (4)如果一个正方形场地的面积为S,那么这个正方形的边长 这里a是S的函数; (5)如果某人ts内骑车行进了1km,那么他骑车的平均速度 这里v是t的函数.
正确
不正确
不正确
不正确
正确
例1: 比较下列各题中两数值的大小
① 1.73,1.83 ② 0.8-1 ,0.9-1
②∵幂函数y= x-1在(0,+∞)上是单调减函数.
解:① ∵幂函数y=x3 在R上是单调增函数。
又∵1.7<1.8
∴1.73<1.83
(5) 图像不过第四象限.
(6)第一象限内, 当x>1时, 越大图象越高
(3) 当 为奇数时,幂函数为奇函数; 当 为偶数时,幂函数为偶函数.
随堂练习
下列哪些说法是正确的?
1 . 幂函数均过定点(1,1); 2 . 幂函数 在(-∞,0)上单调递减,在(0,+ ∞ )上也单调递减,因此幂函数 在定义域内单调递减; 3 . 幂函数的图象均在两个象限出现; 4 . 幂函数在第四象限可以有图象; 5 . 当 >0时,幂函数在第一象限均为增函数;
第三章3.3幂函数PPT课件(人教版)
1.幂函数的概念 一般地,函数 y=xα 叫做幂函数,其中x是自变量,α是常数. 2.幂函数的图象和性质
拓展:对于幂函数y=xα(α为实数)有以下结论: (1)当α>0时,y=xα在(0,+∞)上单调递增;(2)当α<0时,y=xα在(0,+∞)上单 调递减;(3)幂函数在第一象限内指数的变化规律:在直线x=1的右侧,图象从 上到下,相应的幂指数由大变小.
已知 n 取±2,±12四个值,则相应于 C1,C2,C3,C4 的 n 依次为(
)
A.-2,-12,12,2
B.2,12,-12,-2
C.-12,-2,2,12
D.2,12,-2,-12
解析 根据幂函数 y=xn 的性质,在第一象限内的图象当 n>0 时,n 越大,y=xn
递增速度越快,故 C1 的 n=2,C2 的 n=12;当 n<0 时,|n|越大,曲线越陡峭,所
奇偶性 _奇___
_偶___
_奇___ __非__奇__非__偶__
__奇__
x∈[0,+∞), 单调性 _增___ __增__
x∈(-∞,0], __减__
_增___
__增__
x∈(0,+∞),_减___ x∈(-∞,0),_减___
公共点
都经过点(__1_,__1_)___
教材拓展补遗
[微判断] 1.函数y=-x2是幂函数.( × )
【训练1】 若函数f(x)是幂函数,且满足f(4)=16,则f(-4)的值等于________. 解析 设f(x)=xα,因为f(4)=16,∴4α=16,解得α=2,∴f(-4)=(-4)2=16. 答案 16
题型二 幂函数的图象及其应用 关键取决于α>0,α<0
《幂函数及其图象》课件
《幂函数及其图象》PPT 课件
欢迎来到《幂函数及其图象》PPT课件!本课程将深入探讨幂函数的定义、 图象特点和应用,并提供丰富的例题练习。让我们一起探索这个有趣而强大 的数学概念吧!
什么是幂函数?
幂函数是一类特殊的函数,其定义为f(x) = x^a,其中a为实数常数。幂函数的 通式可以表示为f(x) = kx^a,其中k为比例常数。
根据幂函数的特征值,包括定义域、值域等,求解给定幂函数的相关数值。
3 求解幂函数的方程
通过解方程的方法,求出满足特定条件的幂函数的自变量或因变量的值。
总结
幂函数及其图象的基本概念 幂函数的特点及应用
学习了幂函数的定义和通式,以 及幂函数的图象特点和变化规律。
了解了幂函数在不同领域的实际 应用,如通信、工程和光学等。
幂函数的图象特点
基本性质
幂函数的定义域为实数集,且在定义域上是连 续和可导的。
变化规律
当a>1时,幂函数图象向上开口;当0
图象特点
幂函数的图象随着a的值的不同而呈现出不同的 曲线形状。
对称性
当a为整数时,幂函数图象存在关于y轴和原点 的对称性。
幂函数的应用
幅度调制中的幂函数
幂函数在无线电通信中的幅度 调制中起着重要作用,用于调 整信号的幅度以传输信息。
幂函数在实际生活中的应 用案例
发现了幂函数在日常生活中的实 际应用案例,增加了对数学的实 用性的认识。
压缩机和发电机的特 性曲线
幂函数被广泛用于描述压缩机 和发电机的特性曲线,帮助工 程师优化其性能。
激光功率与时间之间 的关系
幂函数用于描述激光器输出功 率随时间变化的关系,用于控 制激光器的稳定性。
练习题
1 画出幂函数图象
欢迎来到《幂函数及其图象》PPT课件!本课程将深入探讨幂函数的定义、 图象特点和应用,并提供丰富的例题练习。让我们一起探索这个有趣而强大 的数学概念吧!
什么是幂函数?
幂函数是一类特殊的函数,其定义为f(x) = x^a,其中a为实数常数。幂函数的 通式可以表示为f(x) = kx^a,其中k为比例常数。
根据幂函数的特征值,包括定义域、值域等,求解给定幂函数的相关数值。
3 求解幂函数的方程
通过解方程的方法,求出满足特定条件的幂函数的自变量或因变量的值。
总结
幂函数及其图象的基本概念 幂函数的特点及应用
学习了幂函数的定义和通式,以 及幂函数的图象特点和变化规律。
了解了幂函数在不同领域的实际 应用,如通信、工程和光学等。
幂函数的图象特点
基本性质
幂函数的定义域为实数集,且在定义域上是连 续和可导的。
变化规律
当a>1时,幂函数图象向上开口;当0
图象特点
幂函数的图象随着a的值的不同而呈现出不同的 曲线形状。
对称性
当a为整数时,幂函数图象存在关于y轴和原点 的对称性。
幂函数的应用
幅度调制中的幂函数
幂函数在无线电通信中的幅度 调制中起着重要作用,用于调 整信号的幅度以传输信息。
幂函数在实际生活中的应 用案例
发现了幂函数在日常生活中的实 际应用案例,增加了对数学的实 用性的认识。
压缩机和发电机的特 性曲线
幂函数被广泛用于描述压缩机 和发电机的特性曲线,帮助工 程师优化其性能。
激光功率与时间之间 的关系
幂函数用于描述激光器输出功 率随时间变化的关系,用于控 制激光器的稳定性。
练习题
1 画出幂函数图象
幂函数与函数图像-课件
│ 知识梳理
3.函数图象的应用 (1)利用函数图象,研究函数的几何性质,如单调性、 周期性、奇偶性、最值、零点、值域及定义域、对称性 等; (2)利用函数图象、数形结合的思想方法解题,将代 数问题转化为平面解析几何问题处理.
│ 要点探究
要点探究
► 探究点1 幂函数的图象与性质 例1 已知幂函数 f(x)=xm2-2m-3(m∈N*)的图 象关于 y 轴对称,且在(0,+∞)上是减函数,求满足(a +1)m3 <(3-2a)m3 的 a 的取值范围.
A.a>b>c
B.a>c>b
C.b>a>c
D.c>a>b
图10-5
│ 要点探究
[思路] 从图象在坐标轴上的特殊点入手, 由于 f(x)=axx2++cb是奇函数,所以只研究 x>0 时的变化情况.
│ 要点探究
B [解析] f(0)=bc=0,∴b=0.f(1)=1, ∴1+a c=1,∴a=c+1. 由图象看出 x>0 时,f(x)>0,即 x>0 时,有x2a+x c>0, ∴a>0. 又 f(x)=x+a xc,当 x>0 时,要使 f(x)在 x=1 时取最大值 1, 需 x+xc≥2 c,当且仅当 x= c=1 时成立,∴c=1.此时应有 f(x) =a2=1,∴a=2.∴a>c>的图像
│ 知识梳理
知识梳理
1.幂函数 (1) 幂 函 数 定 义 : 一 般 地 , 形 如 _y_=___x_α (α∈R)的函数称为幂函数,其中 α 为常数. 几种常见幂函数的图象: ①y=x;②y=x12;③y=x2;④y= x-1;⑤y=x3.
│ 知识梳理
│ 要点探究
方法四:函数 y=ex 的图象向左平移 1 个单位得 y =ex+1 的图象,然后关于 y 轴对称得函数 y=e-x+1 的图 象,最后横坐标缩短为原来的一半,纵坐标不变得函数 y=e-2x+1.
幂函数(课件)
04
利用导数研究幂函数的极值 和拐点
01 03
详细描述
02
幂函数与其他初等函数的复 合函数性质
THANKS
感谢观看
幂函数在物理中的应用
力学
在力学中,幂函数可以描 述物体的运动规律,例如 加速度与时间的关系。
热力学
在热力学中,幂函数可以 描述气体分子的速度分布 规律。
电磁学
在电磁学中,幂函数可以 描述电流与电压的关系。
幂函数在其他领域的应用
经济学
计算机科学
在经济学中,幂函数可以用于描述商 品的需求量与价格的关系、消费者的 购买决策等。
02
幂函数的运算规则
幂的乘法规则
总结词
同底数幂相乘,指数相加
详细描述
幂函数是数学中一种重要的函数,其形式为 (a^x)(其中 (a) 是底数,(x) 是指 数)。当两个幂函数相乘时,如果它们的底数相同,则它们的指数相加。即, (a^x times a^y = a^{x+y})。
幂的除法规则
总结词
幂函数(优秀课件)
目 录
• 幂函数的基本概念 • 幂函数的运算规则 • 幂函数的应用 • 幂函数的扩展知识 • 幂函数的习题与解析
01
幂函数的基本概念
幂函数的定义
总结词
幂函数是一种数学函数,其一般形式 为$y=x^n$,其中$n$是一个实数。
详细描述
幂函数是函数的一种,其一般形式为$y=x^n$ ,其中$x$是自变量,$y$是因变量,$n$是一 个实数。当$n>0$时,幂函数在$(0, +infty)$ 区间内单调递增;当$n<0$时,幂函数在$(0, +infty)$区间内单调递减;当$n=0$时,幂函 数值为1。
利用导数研究幂函数的极值 和拐点
01 03
详细描述
02
幂函数与其他初等函数的复 合函数性质
THANKS
感谢观看
幂函数在物理中的应用
力学
在力学中,幂函数可以描 述物体的运动规律,例如 加速度与时间的关系。
热力学
在热力学中,幂函数可以 描述气体分子的速度分布 规律。
电磁学
在电磁学中,幂函数可以 描述电流与电压的关系。
幂函数在其他领域的应用
经济学
计算机科学
在经济学中,幂函数可以用于描述商 品的需求量与价格的关系、消费者的 购买决策等。
02
幂函数的运算规则
幂的乘法规则
总结词
同底数幂相乘,指数相加
详细描述
幂函数是数学中一种重要的函数,其形式为 (a^x)(其中 (a) 是底数,(x) 是指 数)。当两个幂函数相乘时,如果它们的底数相同,则它们的指数相加。即, (a^x times a^y = a^{x+y})。
幂的除法规则
总结词
幂函数(优秀课件)
目 录
• 幂函数的基本概念 • 幂函数的运算规则 • 幂函数的应用 • 幂函数的扩展知识 • 幂函数的习题与解析
01
幂函数的基本概念
幂函数的定义
总结词
幂函数是一种数学函数,其一般形式 为$y=x^n$,其中$n$是一个实数。
详细描述
幂函数是函数的一种,其一般形式为$y=x^n$ ,其中$x$是自变量,$y$是因变量,$n$是一 个实数。当$n>0$时,幂函数在$(0, +infty)$ 区间内单调递增;当$n<0$时,幂函数在$(0, +infty)$区间内单调递减;当$n=0$时,幂函 数值为1。
高一数学《幂函数》PPT课件
函数的性质不同
指数函数的底数是一个大于0且 不等于1的常数,而幂函数的底 数可以是任意实数。此外,指 数函数的值域为正实数集,而 幂函数的值域为非负实数集。
图像的形状不同
指数函数的图像是一条经过点 (0,1)的曲线,而幂函数的图像 是一条经过原点的曲线。
02
常见幂函数类型及其特点
一次幂函数
表达式
幂的乘方法则
幂的乘方
底数不变,指数相乘。公式: (a^m)^n = a^(m×n)
举例
(2^3)^4 = 2^(3×4) = 2^12; (x^2)^5 = x^(2×5) = x^10
积的乘方法则
积的乘方
把积的每一个因式分别乘方,再把所得的幂相乘。公式: (ab)^n = a^n × b^n
举例
在幂函数中,指数a可以取任意实数,但不同的a值会导致函数性质的不
同。学生需要注意区分不同a值对应的函数性质。
02 03
函数定义域
幂函数的定义域与指数a的取值有关。例如,当a≤0时,函数定义域为 非零实数集;当a>0且a为整数时,函数定义域为全体实数集。学生需 要注意根据指数a的取值来确定函数的定义域。
幂函数性质
幂函数的性质包括定义域、值域、奇偶性、单调性等。例如,当a>0时,幂函数在定义域内 单调递增;当a<0时,幂函数在定义域内单调递减。
幂函数图像
幂函数的图像根据a的不同取值而呈现出不同的形态,如直线、抛物线、双曲线等。通过图像 可以直观地了解幂函数的性质。
易错难点剖y = x^n(n为实数)
图像
02
一条直线(n=1时)或射线(n≠1时)
性质
03
当n>0时,函数在(0, +∞)上单调递增;当n<0时,函数在(0,
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.前 6 个月,该产品月产量保持 2 万件 B.6 月份的月产量为 12 万件 C.6 月份之后,该产品停止生产 D.6 月份之后,该产品月产量保持为 12 万件
图 10-4
│ 要点探究
[思路] 题目中只提供了问题的背景,而问题所有的 本质信息都综合在图象上,突破对图象的理解才是关 键.从图象可大致看出前 6 个月,总产量在不断增加, 6 月份之后,总产量却仍维持在 12 万件.
│ 知识梳理
④伸缩变换: Ⅰ、函数 y=af(x)(a>0)的图象可以将函数 y=f(x) 的图象中的每一点横坐标不变, ________纵__坐 ___标__伸__长__(_a_>_1_)_或__压__缩___(0_<_a_<_1_)_为__________ ____原__来__的___a_倍___得到;
│ 知识梳理
Ⅱ、竖直平移:函数 y=f(x)+a 的图像可以把函数 y = f(x) 的 图 象 沿 y 轴 方 向 向 上 (a>0) 或 向 下 (a<0)___平__移__|a_|__个单位即可得到;
i.y=f(x)上移―h―(--h-→>0)y=f(x)+h; ii.y=f(x)下―移---h-―(h→>0)y=f(x)-h.
Ⅲ、函数 y=-f(-x)的图象可以将函数 y=f(x) 的图象关于_原__点___对称即可得到.
y=f(x)―原―点→y=-f(-x); Ⅳ、函数 y=f(2a-x)的图象可以将函数 y=f(x) 的 图 象 关 于 ____直__线__x_=__a___ 对 称 即 可 得 到 ; y = f(x)直―线―x→=ay=f(2a-x).
│ 要点探究
[点评] 任何图象都是由点构成的,要想搞清图象特征 及其反馈出来的信息,从一些特殊的关键点入手非常实用, 这是读图识图能力的基本功,也只有这样才能弄清整个函 数图象反映出来的信息.
│ 要点探究
例5 设函数 f(x)=axx2++cb(c>0)的图像如图
10-5 所示,则 a、b、c 的大小关系是( )
│ 要点探究
方法二:函数 y=ex 的图象关于 y 轴对称得到函数 y =e-x 的图象,然后右移为 1 个单位得函数 y=e-(x-1)= e1-x 的函数图象,最后横坐标缩短为原来的一半,纵坐 标不变得到 y=e1-2x 的图象;
方法三:函数 y=ex 的图象向左平移 1 个单位得 y =ex+1 的图象,然后横坐标缩短为原来的一半,纵坐标 不变得函数 y=e1+2x 的图象,最后关于 y 轴对称得函数 y =e1+2(-x)=e1-2x 的图象;
│ 要点探究
(3)y=2x-+x1=-1+x+3 1, y=3x左移一个单位―,―→下移一个单位y=x+3 1-1,图 象如图(c); (4)y= x 左移―三―个→单位 y= x+3 关于―y―轴→对称 y= 3-x上移―两―个→单位y=2+ 3-x,图象如图(d).
│ 要点探究
│ 要点探究
例3 已知图象变换:①关于 y 轴对称;②关于 x 轴 对称;③右移 1 个单位;④左移一个单位;⑤右移12个单位; ⑥左移12个单位;⑦横坐标伸长为原来的 2 倍,纵坐标不变; ⑧横坐标缩短为原来的一半,纵坐标不变.由 y=ex 的图 象经过上述某些变换可得 y=e1-2x 的图象,这些变换可以 依次是________(请填上变换的序号).
│ 要点探究
方法四:函数 y=ex 的图象向左平移 1 个单位得 y =ex+1 的图象,然后关于 y 轴对称得函数 y=e-x+1 的图 象,最后横坐标缩短为原来的一半,纵坐标不变得函数 y=e-2x+1.
│ 要点探究
► 探究点4 函数图象的识别与应用
例4 受全球金融危机的影响,很多企业的生产都在 进行调整,如图 10-4 为某企业在 2010 年生产某产品的累 计总产量与月份之间的函数图像,则下列说法正确的是 ()
│ 规律总结
规律总结
1.幂函数 y=xa 的图象一定会出现在第一象限内, 一定不会出现的第四象限内,至于是否出现在第二、三 象限内,要看函数的奇偶性;在(0,1)上,幂函数中指数 愈大,函数图象愈靠近 x 轴,在(1,+∞)上,幂函数中 指数越大,函数图象越远离 x 轴;幂函数的单调性、奇 偶性由指数决定.
│ 知识梳理
2.函数图像 以解析式表示的函数作图像的方法有两种,即 _列__表__描__点__法___和__图__像__变__换__法__. 描点法: (1)作函数图像的步骤:①确定函数的_定__义___域__; ②化简函数的解析式;③讨论函数的性质,即
0
________单__调___性__、__奇__偶__性__、__周__期__性_________;④描点连 线,画出函数的图像.
│ 知识梳理
③翻折变换: Ⅰ、函数 y=|f(x)|的图象可以将函数 y=f(x)的 图象的 x 轴下方部分沿__x__轴____翻折到 x 轴上方, 去掉原 x 轴下方部分,并保留_y_=__f_(x_)_的___x_轴__上__方__部__分_ 即可得到;
│ 知识梳理
Ⅱ、函数 y=f(|x|)的图象可以将函数 y=f(x)的图 象右边沿 y 轴翻折到 y 轴左边替代原 y 轴左边部分, 并保留___y_=__f_(x_)_在__y__轴__右__边__部__分_____即可得到.
y=f(x)―y―×a→y=af(x); Ⅱ、函数 y=f(ax)(a>0)的图象可以将函数 y=f(x) 的图象中的每一点纵坐标不变横坐标伸长(a>1)或压缩 (0<a<1)为原来的1a倍得到.
y=f(x)―x―×a→y=f(ax).
│ 知识梳理
(3)识图:图象的分布范围、变化趋势、对 称性、周期性等等.
(2)幂函数性质 ①所有的幂函数在_(0_, __+ ___∞_)都有定义,并且图象都过 点_(_1_,_1_) _; ②α>0时,幂函数的图象通过_原__点___,并且在区间[0, +∞)上是__增__函__数__.特别地,当α>1时,幂函数的图象 _下__凸___;当0<α<1时,幂函数的图象_上__凸___; ③α<0时,幂函数的图象在区间0 (0,+∞)上是 __减__函__数____.在第一象限内,当x从右边趋向原点时,图象 在y轴右方无限地逼近y轴正半轴,当x趋于+∞时,图象在 x轴上方无限地逼近x类,然后确定图象变换 的顺序.
①⑧⑤或①③⑧或④⑧①或④①⑧(填一组即可)
[解析] 方法一:函数 y=ex 的图象关于 y 轴对称得到函 数 y=e-x 的图象,然后横坐标缩短为原来的一半,纵坐标不 变得 y=e-2x 的图象,最后向右移12个单位得函数 y=e- 2x-12=e1-2x 的图象;
│ 要点探究
► 探究点2 函数的图象的画法
例2 作出下列函数的大致图象:
(1)y=log2|x|;
(2)y=|log2(x-1)|;
(3)y=2x- +x1;
(4)y=2+ 3-x.
[思路] 根据各函数解析式的结构特征,分析 其图象是由哪类初等函数经过何种变换而得.
│ 要点探究
[解答](1)y=log2x作出其关―于―y轴→对称部分 y=log2|x|,图象如图(a); (2)y=log2x右移―一―个→单位y=log2(x-1) 把x轴下方部分―对―称→地翻折到上方 y=|log2(x- 1)|,图象如图(b);
│ 知识梳理
3.函数图象的应用 (1)利用函数图象,研究函数的几何性质,如单调性、 周期性、奇偶性、最值、零点、值域及定义域、对称性 等; (2)利用函数图象、数形结合的思想方法解题,将代 数问题转化为平面解析几何问题处理.
│ 要点探究
要点探究
► 探究点1 幂函数的图象与性质 例1 已知幂函数 f(x)=xm2-2m-3(m∈N*)的图 象关于 y 轴对称,且在(0,+∞)上是减函数,求满足(a +1)m3 <(3-2a)m3 的 a 的取值范围.
C [解析] 不妨把题图增加几个月份分析,如图, 点 A 说明 6 月份累计总产量就达到了 12 万件,B 点反映 9 月份累计总产量还是 12 万件,说明 6 月份之后,该产 品没有再生产了.而 C 点表现为 3 月份的累计总产量就 接近 12 万件,说明前 6 个月不是平均生产,而是生产在 锐减,直至停止.所以选 C.
[点评] (1)利用描点法作函数图象的步骤是:列表、 描点、连线,若对函数图象的形状比较熟悉,可不必列 表,直接描点、连线;(2)利用图象变换作函数图象, 关键是找出基本初等函数,将函数的解析式分解为只有 单个变换的函数链,然后依次进行单一变换,最终得到 所要的函数图象.
│ 要点探究
► 探究点3 函数的图象变换
│ 要点探究
[解答] ∵函数f(x)在(0,+∞)上递减,∴m2-2m-3< 0,解得-1<m<3.∵m∈N*,∴m=1或2.又函数f(x)的图 象关于y轴对称,∴m2-2m-3是偶数,而22-2×2-3=-3
为奇数,12-2×1-3=-4为偶数,∴m=1.又函数g(x)=x
1 3
在R上为增函数,∴(a+1)
│ 规律总结
2.作图 作图的常用方法有描点法和变换法,对前者,要 注意对函数性质的研究;对后者,要熟悉常见函数及 图象的变换法则,在解决函数图象的变换问题时,要 遵循“只能对函数关系式中的 x、y 变换”的原则,写出 每一次的变换所得图象对应的解析式,这样才能避免 出错.
│ 规律总结
3.识图 对于给定函数的图象,要能从图象的左右、上下 分布范围、变化趋势、对称性等方面研究函数的定义 域、值域、单调性、奇偶性、周期性等,注意图象与 函数解析式中参数的关系. 4.用图 函数图象形象地显示了函数的性质,为研究数量 关系提供了“形”的直观性,它是探求解题路径,获得 问题结果的重要工具,要重视数形结合思想的应用.
│幂函数与函数的图像
图 10-4
│ 要点探究
[思路] 题目中只提供了问题的背景,而问题所有的 本质信息都综合在图象上,突破对图象的理解才是关 键.从图象可大致看出前 6 个月,总产量在不断增加, 6 月份之后,总产量却仍维持在 12 万件.
│ 知识梳理
④伸缩变换: Ⅰ、函数 y=af(x)(a>0)的图象可以将函数 y=f(x) 的图象中的每一点横坐标不变, ________纵__坐 ___标__伸__长__(_a_>_1_)_或__压__缩___(0_<_a_<_1_)_为__________ ____原__来__的___a_倍___得到;
│ 知识梳理
Ⅱ、竖直平移:函数 y=f(x)+a 的图像可以把函数 y = f(x) 的 图 象 沿 y 轴 方 向 向 上 (a>0) 或 向 下 (a<0)___平__移__|a_|__个单位即可得到;
i.y=f(x)上移―h―(--h-→>0)y=f(x)+h; ii.y=f(x)下―移---h-―(h→>0)y=f(x)-h.
Ⅲ、函数 y=-f(-x)的图象可以将函数 y=f(x) 的图象关于_原__点___对称即可得到.
y=f(x)―原―点→y=-f(-x); Ⅳ、函数 y=f(2a-x)的图象可以将函数 y=f(x) 的 图 象 关 于 ____直__线__x_=__a___ 对 称 即 可 得 到 ; y = f(x)直―线―x→=ay=f(2a-x).
│ 要点探究
[点评] 任何图象都是由点构成的,要想搞清图象特征 及其反馈出来的信息,从一些特殊的关键点入手非常实用, 这是读图识图能力的基本功,也只有这样才能弄清整个函 数图象反映出来的信息.
│ 要点探究
例5 设函数 f(x)=axx2++cb(c>0)的图像如图
10-5 所示,则 a、b、c 的大小关系是( )
│ 要点探究
方法二:函数 y=ex 的图象关于 y 轴对称得到函数 y =e-x 的图象,然后右移为 1 个单位得函数 y=e-(x-1)= e1-x 的函数图象,最后横坐标缩短为原来的一半,纵坐 标不变得到 y=e1-2x 的图象;
方法三:函数 y=ex 的图象向左平移 1 个单位得 y =ex+1 的图象,然后横坐标缩短为原来的一半,纵坐标 不变得函数 y=e1+2x 的图象,最后关于 y 轴对称得函数 y =e1+2(-x)=e1-2x 的图象;
│ 要点探究
(3)y=2x-+x1=-1+x+3 1, y=3x左移一个单位―,―→下移一个单位y=x+3 1-1,图 象如图(c); (4)y= x 左移―三―个→单位 y= x+3 关于―y―轴→对称 y= 3-x上移―两―个→单位y=2+ 3-x,图象如图(d).
│ 要点探究
│ 要点探究
例3 已知图象变换:①关于 y 轴对称;②关于 x 轴 对称;③右移 1 个单位;④左移一个单位;⑤右移12个单位; ⑥左移12个单位;⑦横坐标伸长为原来的 2 倍,纵坐标不变; ⑧横坐标缩短为原来的一半,纵坐标不变.由 y=ex 的图 象经过上述某些变换可得 y=e1-2x 的图象,这些变换可以 依次是________(请填上变换的序号).
│ 要点探究
方法四:函数 y=ex 的图象向左平移 1 个单位得 y =ex+1 的图象,然后关于 y 轴对称得函数 y=e-x+1 的图 象,最后横坐标缩短为原来的一半,纵坐标不变得函数 y=e-2x+1.
│ 要点探究
► 探究点4 函数图象的识别与应用
例4 受全球金融危机的影响,很多企业的生产都在 进行调整,如图 10-4 为某企业在 2010 年生产某产品的累 计总产量与月份之间的函数图像,则下列说法正确的是 ()
│ 规律总结
规律总结
1.幂函数 y=xa 的图象一定会出现在第一象限内, 一定不会出现的第四象限内,至于是否出现在第二、三 象限内,要看函数的奇偶性;在(0,1)上,幂函数中指数 愈大,函数图象愈靠近 x 轴,在(1,+∞)上,幂函数中 指数越大,函数图象越远离 x 轴;幂函数的单调性、奇 偶性由指数决定.
│ 知识梳理
2.函数图像 以解析式表示的函数作图像的方法有两种,即 _列__表__描__点__法___和__图__像__变__换__法__. 描点法: (1)作函数图像的步骤:①确定函数的_定__义___域__; ②化简函数的解析式;③讨论函数的性质,即
0
________单__调___性__、__奇__偶__性__、__周__期__性_________;④描点连 线,画出函数的图像.
│ 知识梳理
③翻折变换: Ⅰ、函数 y=|f(x)|的图象可以将函数 y=f(x)的 图象的 x 轴下方部分沿__x__轴____翻折到 x 轴上方, 去掉原 x 轴下方部分,并保留_y_=__f_(x_)_的___x_轴__上__方__部__分_ 即可得到;
│ 知识梳理
Ⅱ、函数 y=f(|x|)的图象可以将函数 y=f(x)的图 象右边沿 y 轴翻折到 y 轴左边替代原 y 轴左边部分, 并保留___y_=__f_(x_)_在__y__轴__右__边__部__分_____即可得到.
y=f(x)―y―×a→y=af(x); Ⅱ、函数 y=f(ax)(a>0)的图象可以将函数 y=f(x) 的图象中的每一点纵坐标不变横坐标伸长(a>1)或压缩 (0<a<1)为原来的1a倍得到.
y=f(x)―x―×a→y=f(ax).
│ 知识梳理
(3)识图:图象的分布范围、变化趋势、对 称性、周期性等等.
(2)幂函数性质 ①所有的幂函数在_(0_, __+ ___∞_)都有定义,并且图象都过 点_(_1_,_1_) _; ②α>0时,幂函数的图象通过_原__点___,并且在区间[0, +∞)上是__增__函__数__.特别地,当α>1时,幂函数的图象 _下__凸___;当0<α<1时,幂函数的图象_上__凸___; ③α<0时,幂函数的图象在区间0 (0,+∞)上是 __减__函__数____.在第一象限内,当x从右边趋向原点时,图象 在y轴右方无限地逼近y轴正半轴,当x趋于+∞时,图象在 x轴上方无限地逼近x类,然后确定图象变换 的顺序.
①⑧⑤或①③⑧或④⑧①或④①⑧(填一组即可)
[解析] 方法一:函数 y=ex 的图象关于 y 轴对称得到函 数 y=e-x 的图象,然后横坐标缩短为原来的一半,纵坐标不 变得 y=e-2x 的图象,最后向右移12个单位得函数 y=e- 2x-12=e1-2x 的图象;
│ 要点探究
► 探究点2 函数的图象的画法
例2 作出下列函数的大致图象:
(1)y=log2|x|;
(2)y=|log2(x-1)|;
(3)y=2x- +x1;
(4)y=2+ 3-x.
[思路] 根据各函数解析式的结构特征,分析 其图象是由哪类初等函数经过何种变换而得.
│ 要点探究
[解答](1)y=log2x作出其关―于―y轴→对称部分 y=log2|x|,图象如图(a); (2)y=log2x右移―一―个→单位y=log2(x-1) 把x轴下方部分―对―称→地翻折到上方 y=|log2(x- 1)|,图象如图(b);
│ 知识梳理
3.函数图象的应用 (1)利用函数图象,研究函数的几何性质,如单调性、 周期性、奇偶性、最值、零点、值域及定义域、对称性 等; (2)利用函数图象、数形结合的思想方法解题,将代 数问题转化为平面解析几何问题处理.
│ 要点探究
要点探究
► 探究点1 幂函数的图象与性质 例1 已知幂函数 f(x)=xm2-2m-3(m∈N*)的图 象关于 y 轴对称,且在(0,+∞)上是减函数,求满足(a +1)m3 <(3-2a)m3 的 a 的取值范围.
C [解析] 不妨把题图增加几个月份分析,如图, 点 A 说明 6 月份累计总产量就达到了 12 万件,B 点反映 9 月份累计总产量还是 12 万件,说明 6 月份之后,该产 品没有再生产了.而 C 点表现为 3 月份的累计总产量就 接近 12 万件,说明前 6 个月不是平均生产,而是生产在 锐减,直至停止.所以选 C.
[点评] (1)利用描点法作函数图象的步骤是:列表、 描点、连线,若对函数图象的形状比较熟悉,可不必列 表,直接描点、连线;(2)利用图象变换作函数图象, 关键是找出基本初等函数,将函数的解析式分解为只有 单个变换的函数链,然后依次进行单一变换,最终得到 所要的函数图象.
│ 要点探究
► 探究点3 函数的图象变换
│ 要点探究
[解答] ∵函数f(x)在(0,+∞)上递减,∴m2-2m-3< 0,解得-1<m<3.∵m∈N*,∴m=1或2.又函数f(x)的图 象关于y轴对称,∴m2-2m-3是偶数,而22-2×2-3=-3
为奇数,12-2×1-3=-4为偶数,∴m=1.又函数g(x)=x
1 3
在R上为增函数,∴(a+1)
│ 规律总结
2.作图 作图的常用方法有描点法和变换法,对前者,要 注意对函数性质的研究;对后者,要熟悉常见函数及 图象的变换法则,在解决函数图象的变换问题时,要 遵循“只能对函数关系式中的 x、y 变换”的原则,写出 每一次的变换所得图象对应的解析式,这样才能避免 出错.
│ 规律总结
3.识图 对于给定函数的图象,要能从图象的左右、上下 分布范围、变化趋势、对称性等方面研究函数的定义 域、值域、单调性、奇偶性、周期性等,注意图象与 函数解析式中参数的关系. 4.用图 函数图象形象地显示了函数的性质,为研究数量 关系提供了“形”的直观性,它是探求解题路径,获得 问题结果的重要工具,要重视数形结合思想的应用.
│幂函数与函数的图像