诱导公式的化简与求值20题教学内容
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
诱导公式的化简与求
值20题
诱导公式的化简与求值20题
诱导公式的化简与求值20题
一.解答题(共20小题)
1.已知角α终边上一点P(﹣,1)
(1)求的值
(2)写出角α的集合S.
2.已知角α的终边经过点P(,﹣).
(1)求sinα的值.
(2)求式﹣的值
3.已知角α终边上一点A的坐标为,
(1)求角α的集合(6分)
(2)化简下列式子并求其值:(6分)
4.(1)已知tanα=2,求的值
(2)已知cos(75°+α)=,其中﹣180°<α<﹣90°,求sin(105°﹣α)+cos(375°﹣α)的值.5.已知α是第三象限角,且
(1)化简f(α);
(2)若,求f(α)的值.
6.已知角α的终边上一点P(x,4),且cosα=﹣.
(1)求x的值;
(2)求sin(α+π)的值;
(3)将角α的终边沿顺时针旋转π弧度得到角β,求sinβ的值.
7.已知
(1)化简f(α)
(2)若α是第三象限角,且,求f(α)的值.
8.求值:①sin870°+cos660°+tan1215°﹣tan(﹣300°)+cot(﹣330°)
②.
9.已知sin(3π+θ)=,求
+的值.
10.已知.
(1)求sinx﹣cosx的值;
(2)求的值.
11.已知α是第四象限角,且.
(1)求tanα的值;
(2)求的值.
12.已知.
①化简f(α).
②若sinα是方程10x2+x﹣3=0的根,且α在第三象限,求f(α)的值.
③若a=,求f(α)的值.
13.(1)已知,求sinα﹣cosα的值.(2)已知且,求cosα﹣sinα的值.
14.已知f(α)=
(1)化简f(α);
(2)若α是第三象限角,且cos()=,求f(α+π)的值;
(3)若,求f(α)的值.
15.已知f(a)=.
(1)化简f(a);
(2)若角a的终边经过点P(﹣2,3),求f(a)的值.
16.已知.
(1)若α是第三象限角,,求f(α)的值;
(2)若,求f(α)的值.
17.已知0<α<π,tanα=﹣2.
(1)求sin(α+)的值;
(2)求的值;
(3)2sin2α﹣sinαcosα+cos2α
18.已知α是第三象限角,且f(α)=.
(1)化简f(α);
(2)若tan(π﹣α)=﹣2,求f(α)的值;
(3)若α=﹣420°,求f(α)的值.
19.已知.
(Ⅰ)化简f(α);
(Ⅱ)若α是第三象限角,且,求f(α)的值.
20.(1)已知,计算:
(2)已知α为第二象限角,化简.
诱导公式的化简与求值20题
参考答案与试题解析
一.解答题(共20小题)
1.已知角α终边上一点P(﹣,1)
(1)求的值
(2)写出角α的集合S.
考点:任意角的三角函数的定义;运用诱导公式化简求值.
专题:计算题.
分析:先求出点P(﹣,1)到原点的距离,再由定义求出角α的三角函数值,
(1)先用诱导公式化简,再代入角α的三角函数值求值;
(2)写出角α的集合S,由于本题中的角是一个特殊角,故可以用终边相同的角将它表示出来.
解答:
解:点P(﹣,1)到原点的距离是2,由定义sinα=,cosα=﹣
(1)==﹣==﹣
(2)由sinα=,cosα=﹣知角α的终边与角的终边相同,故α=2kπ+,k∈z
故S={α|α=2kπ+,k∈z}
点评:本题考查任意角三角函数的定义以及终边相同角的表示,利用诱导公式化简求值,求解本题的关键是熟练掌握定义与诱导公式,基础概念只有在掌握熟练得基础上才能正确运用它做题,不出错误.
2.已知角α的终边经过点P(,﹣).
(1)求sinα的值.
(2)求式﹣的值
考点:任意角的三角函数的定义;运用诱导公式化简求值.
专题:计算题.
分析:(1)求出|OP|,利用三角函数的定义,直接求出sinα的值.
(2)利用诱导公式化简表达式,根据角的终边所在象限,求出cosα=,可得结果.
解答:
解:(1)∵|OP|=,
∴点P在单位圆上.(2分)
由正弦函数的定义得
sinα=﹣(5分)
(2)原式=(9分)
=..(10分)
由余弦的定义可知,cosα=(11分)
即所求式的值为(12分)
点评:本题考查任意角的三角函数的定义,运用诱导公式化简求值,考查计算能力,推理能力,是基础题.3.已知角α终边上一点A的坐标为,
(1)求角α的集合(6分)
(2)化简下列式子并求其值:(6分)
考点:三角函数的化简求值;终边相同的角;同角三角函数间的基本关系;诱导公式的作用.
专题:计算题.
分析:(1)根据角的终边过一个定点,根据三角函数的定义做出角的正弦值,根据角的终边在第四象限,写出与角终边相同的所有的角的集合.
(2)首先用诱导公式进行整理,再把正割与余割变化成正弦与余弦的形式,约分整理出最简形式,得到结果.
解答:解:(1)点P到原点的距离为r=
根据三角函数的定义,得….(2分)
∵点P在第四象限,也就是角α在第四象限….(4分)
∴α的集合是…(6分)
(2)原式=….(8分)
==﹣sinα=
点评:本题考查三角函数的恒等变化求值即终边相同的角,本题解题的关键是先用诱导公式进行整理,再把正割与余割变化成正弦与余弦.本题是一个中档题目.
4.(1)已知tanα=2,求的值
(2)已知cos(75°+α)=,其中﹣180°<α<﹣90°,求sin(105°﹣α)+cos(375°﹣α)的值.
考点:同角三角函数基本关系的运用;运用诱导公式化简求值.
专题:计算题.
分析:(1)利用诱导公式化简表达式,应用tanα=2求出,代入化简后的表达式即可求出原式的值.(2)利用诱导公式化简sin(105°﹣α)+cos(375°﹣α),为2sin(75°+α),利用
求出2sin(75°+α)即可.
解答:
解:(1)原式=(2分)
=(3分)