高中数学必修4重点公式与解题技巧

合集下载

数学必修4平面向量公式总结

数学必修4平面向量公式总结

数学必修4平面向量公式总结平面向量是高中数学必修4新教材中新增加的重要内容之一,是高中学生需要学习的重要知识点。

下面店铺给大家带来数学必修4平面向量公式总结,希望对你有帮助。

数学必修4平面向量公式高中数学必修4平面向量知识点坐标表示法平面向量的坐标表示:在直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量作为基底。

由平面向量的基本定理知,该平面内的任一向量可表示成,由于与数对(x,y)是一一对应的,因此把(x,y)叫做向量的坐标,记作=(x,y),其中x叫作在x轴上的坐标,y叫做在y 轴上的坐标。

来表示平面内的各个方向在数学中,我们通常用点表示位置,用射线表示方向.在平面内,从任一点出发的所有射线,可以分别用向量的表示向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.向量也可用字母a①、b、c等表示,或用表示向量的有向线段的起点和终点字母表示.向量的大小,也就是向量的长度(或称模),记作|a|长度为0的向量叫做零向量,记作0.长度等于1个单位长度的向量,叫做单位向量.方向相同或相反的非零向量叫做平行向量.向量a、b、c平行,记作a∥b∥c.0向量长度为零,是起点与终点重合的向量,其方向不确定,我们规定0与任一向量平行.长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b.零向量与零向量相等.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.向量的运算1、向量的加法:AB+BC=AC设a=(x,y) b=(x',y')则a+b=(x+x',y+y')向量的加法满足平行四边形法则和三角形法则。

向量加法的性质:交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)a+0=0+a=a2、向量的减法AB-AC=CBa-b=(x-x',y-y')若a//b则a=eb则xy`-x`y=0若a垂直b则ab=0则xx`+yy`=0高中数学学习方法抓好基础是关键数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。

人教版高中数学必修4巧记积化和差公式

人教版高中数学必修4巧记积化和差公式

巧记积化和差公式二倍积式化和差,角度前减后相加,同名配余异配正,含C 连接号用加.这里的“积式”是指含正弦、余弦两个三角函数式的乘积.此歌诀即为公式:2cosαcosβ= cos(α-β) + cos(α+β);2 sinαsinβ= cos (α-β)- cos(α+β);2 sinαcosβ= sin (α-β) + sin(α+β).不难得知,在积式中只要有一个因式是余弦,则后面的连接号用加号;若不含有余弦则连号用减号.故有“含C 连接号用加”之说.例1 sin x + sin y = sin x sin y , 求证:[2sin 2cos y x y x +--]2 = 1. 证明:∵ sin x + sin y = sin x sin y , ∴ 2cos 2sin2y x y x -+21=[cos(x -y ) - cos(x+y )] =)]2sin 21(12cos 2[2122y x y x +----=12sin 2cos 22-++-y x y x . 由此可得 1 =2sin 2cos 2sin 22cos 22y x y x y x y x ++-+--, 故 [2sin 2cos y x y x +--] 2 = 1. 点评:从所给式的两边同时出发,一边和差化积,一边积化和差.这种双箭齐发的战术是我们必须要掌握的.另外,和差化积公式它实际上积化和差的逆运算,对于此公式我们也应有所了解.例2 在△ABC 中,已知Ccos B cos A cos C sin B sin A sin ++++3=.求证:A 、B 、C 中至少有一个等于60o . 证明:由已知条件得 B cos 3B sin A cos 3A sin -+-+0cos 3C sin =-C ,即 2sin(A - 60o ) + 2sin(B -60o ) + 2sin(C - 60o ) = 0,∴ 2B A cos 2120B A sin 2o --+0260C cos 260C sin 2o o =--+, 故 0)2cos 260C (cos 206C sin2o =----B A o ,从而可得 0260sin 260sin 260sin o o o =---A B C , 于是260sin ,260sin ,260sin oo o ---A B C 中至少有一个为0.又∵ A 、B 、C 为△ABC 的内角,∴ 260A 0-,260B 0-,260C 0-中至少有一个为0, 故A 、B 、C 中至少有一个等于60o .点评:本例是运用和差化积公式解题的一个例子.从证法可知,对于含有附加条件的三角等式的证明,若从已知条件入手进行推证,必须注意对条件和结论的剖析,即既要分清条件式与求证式的差异(从条件入手推证正是从这里出发的),又要寻找其相互间的有机联系,这正是把条件代入求证式的突破口.。

高中数学全套讲义 必修4 和差角公式与二倍角公式 中等教师版

高中数学全套讲义 必修4 和差角公式与二倍角公式 中等教师版

目录和差角公式和二倍角公式 (2)模块一:和角公式与差角公式 (2)考点1:和差角公式逆用 (2)考点2:凑角求值 (3)模块二:二倍角公式 (5)考点3:二倍角公式及其变形 (6)课后作业: (8)和差角公式和二倍角公式模块一:和角公式与差角公式1.两角和与差的余弦公式()C cos cos cos sin sin αβαβαβαβ--=+∶ ()C cos cos cos sin sin αβαβαβαβ++=-∶2.两角和与差的正弦公式()S sin sin cos cos sin αβαβαβαβ--=-∶ ()S sin sin cos cos sin αβαβαβαβ++=+∶3.两角和与差的正切公式()tan tan T tan 1tan tan αβαβαβαβ+++=-⋅∶.()tan tan T tan 1tan tan αβαβαβαβ---=+⋅∶.考点1:和差角公式逆用例1.(1)(2019春•广安期末)sin 20cos40cos160sin 40(︒︒-︒︒= )A B .12C .sin 20︒D .cos20︒【解答】解:sin20cos40cos160sin40︒︒-︒︒ sin20cos40cos20sin40=︒︒+︒︒故选:A .(2)(2019春•天津期末)已知4cos()cos sin()sin 5αββαββ+++=,α是第四象限角,则tan()(4πα-= )A .7-B .17-C .17D .7解:已知α是第四象限角,故选:A.(3)(2019春•广安期末)tan15(︒=)A.2-B.2+C.3-D.3+故选:A.例2.(2017春•瑞昌市校级月考)tan()tan()tan()tan()6666ππππθθθθ-++-+的值是.故得:.考点2:凑角求值例3.(1)(2017秋•兴化市校级月考)已知α、β都是锐角,且3cos()5αβ+=-,12sin13β=,则cosα=.(2)(2017秋•蚌山区校级月考)已知45,,,,5213sin cos πααπββ⎛⎫=∈=- ⎪⎝⎭是第三象限角.(1)求sin()αβ-的值 (2)求tan()αβ+的值. 【解答】(本题满分为12分) )sin )sin tan cos α=tan()1αβ+=(3)(2017秋•双峰县校级月考)若(0,)4πα∈,(0,)βπ∈且1tan()2a β-=,1tan 7β=-,则2(αβ- ) A .56π-B.23π-C .712π-D .34π-解:tan tan[(11327α==,tan(2α-(0,4πα∈tan β=-(2πβ∴∈,2(,0)αβπ∴-∈-, 故选:D .(4)(2017春•历城区校级月考)已知02πβαπ<<<<,且1cos()29βα-=-,2sin()23αβ-=,求cos2αβ+的值. 解:例4.(1)(2019春•南陵县校级月考)若3sin cos 5αβ-=,4cos sin 5αβ+=,则sin()(αβ-=)A B C .13 D .12解:sin cos α-两边同时平方可得,sin 2sin cos ββ+两式相加可得,22(sin cos sin cos )1αββα--=,22sin()1αβ∴--=,故选:D .模块二:二倍角公式1.二倍角的正弦、余弦、正切2S :sin 22sin cos αααα=.22222C :cos 2cos sin 2cos 112sin αααααα=-=-=-.222tan T :tan 21tan αααα=-.2. 公式的逆向变换及常用变形1sin cos sin 22ααα=.221cos21cos2cos sin 22αααα+-==,. ()2221sin 2sin cos 2sin cos sin cos ααααααα±=+±=±;()()cos 2cos sin cos sin ααααα=+-.考点3:二倍角公式及其变形例5.(1)(2019春•信州区校级月考)已知1sin 4x =,x 为第二象限角,则sin 2(x = )A .316-B .C .D 解:1sin 4x =2sin x -=-2sin cos 2x x =故选:B .(2)(2018秋•黄冈月考)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线3y x =上,则sin 2(θ= ) A .45-B .35-C .35D .45【解答】解:由已知可得,tan 3θ=,故选:C .(3)(2019春•桃城区校级月考)已知(,)22ππα∈-,且cos22sin21αα=-,则tan (α= )A .12-B .12C .2-D .2解:(2πα∈-2cos 2sin cos ααα∴=, cos 0α≠, cos 2sin αα∴=,故选:B .(4)(2018秋•民乐县校级月考)已知72sin cos ,2sin cos 55αααα+=--=-,则cos2(α=) A .725B .725-C .1625D .1625-故选:A .例6.(1)(2018春•宛城区校级月考)已知tan()24πα+=-,则1sin 2(cos 2αα-= )A .2B .12C .2-D .12-故选:D .例7.(1)(2017春•江西月考)已知α是第二象限角,且3sin 4cos 0αα+=,则tan(2α=) A .2B .12C .2-D .12-【解答】解:3sin 4cos 0αα+=,α是第二象限角,故选:A .(2)(2017秋•兴庆区校级月考)若3tan 4α=,α是第三象限的角,则1tan21tan 2αα-=+.故答案为:2-.(3)(2017春•郊区校级月考)已知1sin 3α=,则sin cos 22αα+= .解:已知课后作业:1.(2019春•广安期末)sin 20cos40cos160sin 40(︒︒-︒︒= ) A B .12C .sin20︒D .cos20︒【解答】解:sin20cos40cos160sin40︒︒-︒︒sin20cos40cos20sin40=︒︒+︒︒故选:A .2.(2017秋•兴化市校级月考)已知α、β都是锐角,且3cos()5αβ+=-,12sin 13β=,则。

数学必修四知识点(15篇)

数学必修四知识点(15篇)

数学必修四知识点(15篇)数学必修四知识点1平面向量戴氏航天学校老师总结加法与减法的代数运算:(1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2).向量加法与减法的几何表示:平行四边形法则、三角形法则。

戴氏航天学校老师总结向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);两个向量共线的充要条件:(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.(2)若=(),b=()则‖b.平面向量基本定理:若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,戴氏航天学校老师提醒有且只有一对实数,,使得=e1+e2 高考数学必修四学习方法养成良好的课前和课后学习习惯:在当前高中数学学习中,培养正确的学习习惯是一项重要的学习技能。

虽然有一种刻板印象的猜疑,但在高中数学学习真的是反复尝试和错误的。

学生们不得不预习课本。

我准备的数学教科书不是简单的阅读,而是一个例子,至少十分钟的思考。

在使用前不能通过学习知识解决问题的情况下,可以在教学内容中找到答案,然后在教材中考察问题的解决过程,掌握解决问题的思路。

同时,在课堂上安排笔记也是必要的。

在高中数学研究中,建议采用两种形式的笔记,一种是课堂速记,另一种是课后笔记。

这不仅提高了课堂记忆的吸收能力,而且有助于对笔记内容的查询。

高考数学必修四学习技巧养成良好的学习数学习惯多质疑、勤思考、好动手、重归纳、注意应用。

学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的'脑海中。

良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

及时了解、掌握常用的数学思想和方法中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。

高中数学必修四公式大全[1]

高中数学必修四公式大全[1]

基本三角函数 ⅠⅡ ◆ 终边落在x 轴上的角的集合:{}z ∈=κκπαα, ❖ 终边落在y 轴上的角的集合:⎭⎬⎫⎩⎨⎧∈+=z κπκπαα,2♦ 终边落在坐标轴上的角的集合:⎭⎬⎫⎩⎨⎧∈=z κπκαα,2⌧ 2 21 21 rr l S rl αα===弧度度弧度弧度弧度度 18018011801 2360.ππππ====︒︒ 倒数关系 1+(tan a 的平方)= cos a 的平方分之一平方关系:αααα222211Csc Cot Cos Sin =+=+乘积关系:αααCos Sin tan = , 顶点的三角函数等于相邻的点对应的函数乘积Ⅲ 诱导公式◆ 终边相同的角的三角函数值相等 ()()()z k , tan 2tan z k , 2zk , 2∈=+∈=+∈=+απααπααπαk Cos k Cos Sin k Sin❖ 轴对称关于与角角x αα- ()()()ααααααtan tan -=-=--=-Cos Cos Sin Sin♦ 轴对称关于与角角y ααπ- ()()()ααπααπααπtan tan -=--=-=-Cos Cos Sin Sin ⌧ 关于原点对称与角角ααπ+()()()ααπααπααπtan tan =+-=+-=+Cos Cos Sin Sin ⍓对称关于与角角x y =-ααπ2ααπααπααπcot 2tan 22=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-Sin Cos Cos Sin ααπααπααπcot 2tan 22-=⎪⎭⎫⎝⎛+-=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+Sin Cos Cos Sin上述的诱导公式记忆口诀:“奇变偶不变,符号看象限三角函数的性质单调性 减函数增函数,,232,22,,22,22z k k k z k k k ∈⎥⎦⎤⎢⎣⎡++∈⎥⎦⎤⎢⎣⎡+-ππππππππ[][]减函数增函数,,2,2,,2,2z k k k z k k k ∈+∈-ππππππ对称中心 ()z k k ∈,0,πz k k ∈⎪⎭⎫ ⎝⎛+,0,2ππ对称轴z k k x ∈+=,2ππz k k x ∈=,π图像性 质 x y tan =x y cot =定义域 ⎭⎬⎫⎩⎨⎧∈+≠z x x κπκπ,2{}z x x ∈≠κκπ,值 域 RR周期性 ππ奇偶性 奇函数奇函数单调性 增函数,,2,2z k k k ∈⎪⎭⎫ ⎝⎛+-ππππ()增函数,,,z k k k ∈+πππ对称中心()z k k ∈,0,πz k k ∈⎪⎭⎫ ⎝⎛+,0,2ππ()k x ASin y Sinx y ++==ϕω变化为怎样由 ?振幅变化:Sinx y = ASinx y = 左右伸缩变化: x ASin y ω= 左右平移变化 )(ϕω+=x ASin y 上下平移变化 k x ASin y ++=)(ϕωⅥ平面向量共线定理:一般地,对于两个向量 ()如果有,,0,b a a ≠()是共线向量与是共线向量;反之如果与则使得一个实数a b a b a a b ,0,,≠=λλ.,a b λλ=使得那么又且只有一个实数Ⅶ 线段的定比分点P P 所成的比的定义式PP P P λλ+=121OP OP↓当1=λ时↓当1=λ时221yyy+=Ⅷ向量的一个定理的类似推广向量共线定理:()0≠=aabλ↓推广平面向量基本定理:⎪⎪⎭⎫⎝⎛+=不共线的向量为该平面内的两个其中212211,,eeeeaλλ↓推广空间向量基本定理:⎪⎪⎭⎫⎝⎛++=不共面的向量为该空间内的三个其中321332211,,,eeeeeeaλλλⅨ一般地,设向量()()aayxbyxa如果且,0,,,2211≠==∥01221=-yxyxb那么反过来,如果ayxyx则,01221=-∥b.Ⅹ一般地,对于两个非零向量ba,有θba=•,其中θ为两向量的夹角。

高中数学必修四 角度制 三角函数关系及诱导公式讲解

高中数学必修四 角度制 三角函数关系及诱导公式讲解

3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

A90B 90∠-︒=∠︒=∠+∠得由B A7、正切、余切的增减性:一、任意角的三角函数的定义: 设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y x r r αα==,()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec rxα=()0x ≠,()csc 0ry yα=≠。

三角函数值只与角的大小有关,而与终边上点P 的位置无关。

设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos_α,sin_α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.三角函数线的特征是:正弦线MP “站在x 轴上(起点在x 轴上)”、余弦线OM “躺在x 轴上(起点是原点)”、正切线AT “站在点(1,0)A 处(起点是A )”.有向线段OM 为余弦线有向线段AT 为正切线比较)2,0(∈x ,x sin ,x tan ,x 的大小关系:三角函数线的重要应用是比较三角函数值的大小和解三角不等式。

四、一条规律三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦.两个技巧(1)在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点,|OP |=r 一定是正值.(2)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧. 利用单位圆解三角不等式(组)的一般步骤是: (1)用边界值定出角的终边位置; (2)根据不等式(组)定出角的范围; (3)求交集,找单位圆中公共的部分; (4)写出角的表达式.(1)注意易混概念的区别:第一象限角、锐角、小于90°的角是概念不同的三类角,第一类是象限角,第二类、第三类是区间角.(2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.(3)α与2α的终边关系:由“两等分各象限、一二三四确定”.若α是第一象限,则2α是第一、三象限角;若α是第二象限,则2α是第一、三象限角;若α是第三象限角,则2α是第二、四象限;若α是第四象限角,则2α是第二、四象限。

【精品】高中数学 必修4_三角函数的诱导公式_讲义 知识点讲解+巩固练习(含答案)提高

【精品】高中数学 必修4_三角函数的诱导公式_讲义 知识点讲解+巩固练习(含答案)提高

三角函数的诱导公式【学习目标】1.借助单位圆中的三角函数线导出诱导公式(απαπ±±,2的正弦、余弦、正切);2.掌握并运用诱导公式求三角函数值,化简或证明三角函数式. 【要点梳理】 要点一:诱导公式 诱导公式一:sin(2)sin k απα+=, cos(2)cos k απα+=,tan(2)tan k απα+=,其中k Z ∈诱导公式二:sin()sin αα-=-, cos()cos αα-=,tan()tan αα-=-,其中k Z ∈诱导公式三:sin[((21)]sin k απα++=-, cos[(21)]cos k απα++=-, tan[(21)]tan k απα++=,其中k Z ∈诱导公式四:sin cos 2παα⎛⎫+= ⎪⎝⎭, cos sin 2παα⎛⎫+=- ⎪⎝⎭.sin cos 2παα⎛⎫-= ⎪⎝⎭, cos sin 2παα⎛⎫-= ⎪⎝⎭,其中k Z ∈ 要点诠释:(1)要化的角的形式为α±⋅ο90k (k 为常整数); (2)记忆方法:“奇变偶不变,符号看象限”;(3)必须对一些特殊角的三角函数值熟记,做到“见角知值,见值知角”;(4)sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;cos sin 44x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.要点二:诱导公式的记忆诱导公式一~三可用口诀“函数名不变,符号看象限”记忆,其中“函数名不变”是指等式两边的三角函数同名,“符号”是指等号右边是正号还是负号,“看象限”是指把α看成锐角时原三角函数值的符号.诱导公式四可用口诀“函数名改变,符号看象限”记忆,“函数名改变”是指正弦变余弦,余弦变正弦,为了记忆方便,我们称之为函数名变为原函数的余名三角函数.“符号看象限”同上.因为任意一个角都可以表示为k ·90°+α(|α|<45°)的形式,所以这六组诱导公式也可以统一用“口诀”: “奇变偶不变,符号看象限”,意思是说角90k α⋅±o(k 为常整数)的三角函数值:当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视α为锐角时原函数值的符号.要点三:三角函数的三类基本题型(1)求值题型:已知一个角的某个三角函数值,求该角的其他三角函数值. ①已知一个角的一个三角函数值及这个角所在象限,此类情况只有一组解;②已知一个角的一个三角函数值但该角所在象限没有给出,解题时首先要根据已知的三角函数值确定这个角所在的象限,然后分不同情况求解;③一个角的某一个三角函数值是用字母给出的,这时一般有两组解.求值时要注意公式的选取,一般思路是“倒、平、倒、商、倒”的顺序很容易求解,但要注意开方时符号的选取.(2)化简题型:化简三角函数式的一般要求是:能求出值的要求出值;函数种类要尽可能少;化简后的式子项数最少,次数最低,尽可能不含根号.(3)证明题型:证明三角恒等式和条件等式的实质是消除式子两端的差异,就是有目标的化简.化简、证明时要注意观察题目特征,灵活、恰当选取公式. 【典型例题】类型一:利用诱导公式求值【高清课堂:三角函数的诱导公式385952 例2】例1.求下列各三角函数的值: (1)252525sincos tan()634πππ++-; (2)()()cos 585tan 300---o o(3)2222132131sin cos 6tan 10cot 243ππππ-+-⎛⎫⎛⎫⎛⎫⎪⎪⎪⎝⎭⎝⎭⎝⎭【思路点拨】利用诱导公式把所求角化为我们熟悉的锐角去求解. 【答案】(1)0(2)2-(3)16【解析】(1)原式=sin(4)cos(8)tan(6)634ππππππ+++-+sincostan634111022πππ=+-=+-=(2)原式=cos(18045)tan(36060)++-o o o o =cos 45tan 60--o o= (3)原式=2222sin (6)cos (5)6tan 10cot (10)243πππππππ+-++-+=2222sin cos 6tan 0cot 243πππ-+-=111023-+-=16【总结升华】(1)对任意角求三角函数值,一般遵循“化负为正,化大为小”的化归方向,但是在具体的转化过程中如何选用诱导公式,方法并不唯一,这就需要同学们去认真体会,适当选择,找出最好的途径,完成求值.(2)运用诱导公式求任意三角函数值的过程的本质是化任意角的三角函数为锐角三角函数的过程,而诱导公式就是这一转化的工具. 举一反三:【变式】(1)10sin 3π⎛⎫- ⎪⎝⎭;(2)31cos 6π;(3)tan (-855°).【答案】(1)2(2)2-(3)1 【解析】(1)1010sin sin 33ππ⎛⎫-=- ⎪⎝⎭44sin 2sin 33πππ⎛⎫=-+=- ⎪⎝⎭sin sin sin 3332ππππ⎛⎫⎛⎫=-+=--==⎪ ⎪⎝⎭⎝⎭.(2)3177coscos 4cos 666ππππ⎛⎫=+= ⎪⎝⎭cos cos 662πππ⎛⎫=+=-=- ⎪⎝⎭. (3)tan(-855°)=tan(-3×360°+225°)=tan225°=tan(180°+45°)=tan45°=1. 例2.已知函数()sin()cos()f x a x b x παπβ=+++,其中a 、b 、α、β都是非零实数,又知f (2009)=-1,求f (2010).【解析】 (2009)sin(2009)cos(2009)f a b παπβ=+++sin(2008)cos(2008)a b ππαππβ=+++++sin()cos()sin cos (sin cos )a b a b a b παπβαβαβ=+++=--=-+.∵f (2009)=-1 ∴sin cos 1a b αβ+=. ∴(2010)sin(2010)cos(2010)f a b παπβ=+++sin cos 1a b αβ=+=.【总结升华】 求得式子sin cos 1a b αβ+=,它是联系已知和未知的纽带.解决问题的实质就是由未知向已知的转化过程,在这个转化过程中一定要抓住关键之处.举一反三:【变式1】 已知1cos(75)3α︒+=,其中α为第三象限角,求cos(105°―α)+sin(α―105°)的值.【答案】13【解析】 ∵cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=13-,sin(α―105°)=―sin[180°-(75°+α)]=-sin(75°+α), ∵α为第三象限角,∴75°+α为第三、四象限角或终边落在y 轴负半轴上.又cos(75°+α)=13>0,∴75°+α为第四象限,∴sin(75)3α︒+===-.∴11cos(105)sin(105)333αα︒-+-︒=-+=.【总结升华】 解答这类给值求值的问题,关键在于找到已知角与待求角之间的相互关系,从而利用诱导公式去沟通两个角之间的三角函数关系,如:75°+α=180°-(105°-α)或105°-α=180°-(75°+α)等.【变式2】已知3sin()2παπβ⎛⎫-=+ ⎪⎝⎭))απβ-=+,且0<α<π,0<β<π,求α和β的值.【解析】由已知得sin αβ=αβ=. 两式平方相加,消去β,得22sin 3cos 2αα+=, ∴21cos 2α=,而0απ<<,∴cos 2α=±,∴4πα=或34πα=.当4πα=时,cos 2β=,又0βπ<<,∴6πβ=;当34πα=时,cos 2β=-,又0βπ<<,∴56βπ=.故4πα=,6πβ=或34πα=,56βπ=. 类型二:利用诱导公式化简 例3.化简(1)sin(180)sin()tan(360)tan(180)cos()cos(180)αααααα-++--+++-+-o o o o ;(2)sin()sin()()sin()cos()n n n Z n n απαπαπαπ++-∈+-.【思路点拨】化简时,要认真观察“角”,显然利用诱导公式,但要注意公式的合理选用.【答案】(1)-1(2)略 【解析】(1)原式sin sin tan tan 1tan cos cos tan αααααααα--==-=-+-;(2)①当2,n k k Z =∈时,原式sin(2)sin(2)2sin(2)cos(2)cos k k k k απαπαπαπα++-==+-.②当21,n k k Z =+∈时,原式sin[(21)]sin[(21)]2sin[(21)]cos[(21)]cos k k k k απαπαπαπα+++-+==-++-+.【总结升华】(1)诱导公式应用的原则是:负化正,大化小,化到锐角就终了; (2)关键抓住题中的整数n 是表示π的整数倍与公式一中的整数k 有区别,所以必须把n 分成奇数和偶数两种类型,分别加以讨论.举一反三: 【变式1】化简 (1)()()()()cos cot 7tan 8sin 2-⋅--⋅--αππαπααπ;(2)()sin2n n Z π∈; (3)()222121tan tan ,22n n n Z παπα++⎛⎫⎛⎫+--∈ ⎪ ⎪⎝⎭⎝⎭(4)sin()cos[(1)]sin[(1)]cos(]k k k k παπαπαπα---+++,()k z ∈.【解析】(1)原式=[]cos()cot()tan(2)sin(2)παπαπαπα----+=cos cot (tan )(sin )αααα-⋅-=3cot α(2)1,(41)sin1,(43)20,(2)n k n n k n k π=+⎧⎪=-=+⎨⎪=⎩ (3)原式=22cot cot αα-=0(4)由(k π+α)+(k π―α)=2k π,[(k ―1)π―α]+[(k+1)π+α]=2k π,得cos[(1)]cos[(1)]cos()k k k παπαπα--=++=-+,sin[(1)]sin()k k παπα++=-+.故原式sin()[cos()]1sin()cos()k k k k παπαπαπα-+-+==--++.【总结升华】 常见的一些关于参数k 的结论: (1)sin()(1)sin ()k k k Z παα+=-∈; (2)cos()(1)cos ()k k k Z παα+=-∈; (3)1sin()(1)sin ()k k k z παα+-=-∈; (4)cos()(1)cos ()k k k Z παα-=-∈. 类型三:利用诱导公式进行证明例4.设8tan 7m πα⎛⎫+= ⎪⎝⎭,求证:1513sin 3cos 37720221sin cos 77m m ππααππαα⎛⎫⎛⎫++- ⎪ ⎪+⎝⎭⎝⎭=+⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭. 【思路点拨】证明此恒等式可采取从“繁”到“简”,从左边到右边的方法.【证明】 证法一:左边88sin 3cos 37788sin 4cos 277πππααπππαππα⎡⎤⎡⎤⎛⎫⎛⎫++++- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦888sin 3cos tan 3777888sin cos tan 1777πππαααπππααα⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭31m m +=+=右边. ∴等式成立.证法二:由8tan 7m πα⎛⎫+= ⎪⎝⎭,得tan 7m πα⎛⎫+= ⎪⎝⎭,∴左边sin 23cos 277sin 2cos 277πππαπαππππαππα⎡⎤⎡⎤⎛⎫⎛⎫+++++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫+-+-+++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin 3cos 77sin cos 77ππααπππαπα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin 3cos 77sin cos 77ππααππαα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭tan 3371tan 17m m παπα⎛⎫++ ⎪+⎝⎭==+⎛⎫++ ⎪⎝⎭=右边, ∴等式成立. 举一反三:【高清课堂:三角函数的诱导公式385952 例4 】 【变式1】设A 、B 、C 为ABC ∆的三个内角,求证: (1)()sin sin A B C +=;(2)sincos22A B C+=; (3)tan cot 22A B C+=【解析】(1)左边=sin()sin()sin A B c C π+=-==右边,等式得证. (2)左边=sin2A =()sin cos cos 2222B C B C B C ππ-+++⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭=右边,等式得证. (3)左边=tantan cot 2222A B C C π+⎛⎫=-= ⎪⎝⎭=右边,等式得证. 【变式2】求证:232sin cos 1tan(9)12212sin ()tan()1ππθθπθπθπθ⎛⎫⎛⎫-+- ⎪ ⎪++⎝⎭⎝⎭=-++-. 证明:∵左边2232sin sin 12sin (sin )12212sin 12sin πππθθθθθθ⎡⎤⎛⎫⎛⎫+----⋅-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦==-- 22222sin sin 12cos sin 1212sin cos sin 2sin πθθθθθθθθ⎛⎫--- ⎪--⎝⎭==-+-222(sin cos )sin cos sin cos sin cos θθθθθθθθ++==--,右边tan(9)1tan 1sin cos tan()1tan 1sin cos πθθθθπθθθθ++++===+---,∴左边=右边,故原式得证. 类型四:诱导公式的综合应用例5.已知3sin(3)cos(2)sin 2()cos()sin()f παππαααπαπα⎛⎫---+⎪⎝⎭=----.(1)化简()f α;(2)若α是第三象限的角,且31cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值. (3)若313πα=-,求()f α的值. 【解析】 (1)(sin )cos (cos )()cos (cos )sin f ααααααα-⋅⋅-==--.(2)∵3cos sin 2παα⎛⎫-=- ⎪⎝⎭, ∴1sin 5α=-,∴cos α==()f α=. (3)31315cos cos 62333f ππππ⎛⎫⎛⎫⎛⎫-=--=--⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭51cos cos 332ππ=-=-=-. 【总结升华】这是一个与函数相结合的问题,解决此类问题时,可先用诱导公式化简变形,将三角函数的角度统一后再用同角三角函数关系式,这样可避免公式交错使用时导致的混乱.举一反三: 【变式1】已知α、β均为锐角,cos()sin()αβαβ+=-,若()sin cos 44f ππααα⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,求2f πα⎛⎫- ⎪⎝⎭的值. 【解析】由cos()sin()αβαβ+=-得cos()cos ()2παβαβ⎡⎤+=--⎢⎥⎣⎦,又α、β均为锐角.则()2παβαβ+=--,即4πα=.于是,sin cos 0222f ππα⎛⎫-=+= ⎪⎝⎭.【巩固练习】1.sin585°的值为( )A.2-B.2 C.2- D.2A .13 B . 13- C. D3.已知(cos )cos3f x x =,则(sin 30)f ︒的值等于( )A .―1B .1C .12D .0)A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos25.若sin cos 2sin cos αααα+=-,则3sin(5)sin 2παπα⎛⎫-⋅-⎪⎝⎭等于( ) A .34 B .310 C .310± D .310-6.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是( )A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形7.已知3sin()cos(2)tan 2()cos()f ππαπαααπα⎛⎫---+ ⎪⎝⎭=--,则313f π⎛⎫-⎪⎝⎭的值为( ) A .12 B .12- C.2 D.2-8.已知cos 63πα⎛⎫-= ⎪⎝⎭,则25sin cos 66ππαα⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭的值是( )A .23+B .23+-C .23- D.23-+9.计算:)425tan(325cos 625sinπππ-++= .10.若()θ+ο75cos 31=,θ为第三象限角,则()()θθ++--οο435sin 255cos 的值是 . 11.已知1sin()43πα-=,则cos()4πα+=__________. 12.(1)cos1°+cos2°+cos3°+…+cos180°的值为________;(2)cos 21°+cos 22°+cos 23°+…+cos 289°的值为________。

高中数学必修4知识总结(完整版)

高中数学必修4知识总结(完整版)

高中数学必修四知识点总结⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z 第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度的角.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lr α=.7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+, 21122S lr r α==.9、(一)设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么:(1)y 叫做α的正弦,记做sin α,即sin y α=;(2)x 叫做α的余弦,记做cos α,即cos x α=;(3)yx叫做α的正切,记做tan α,即tan (0)yx xα=≠。

高中数学必修4 三角函数的诱导公式

高中数学必修4 三角函数的诱导公式

三角函数的诱导公式一、教学目标:(1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式;(2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题;(3)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力;(4)通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力.教学重点:用联系的观点发现并证明诱导公式.教学难点: 如何引导学生从单位圆的对称性与任意角终边的对称性中,发现问题,提出研究方法.教学设想一.问题引入:角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值.怎么求呢?先看一个具体的问题。

求390°角的正弦、余弦值.一般地,由三角函数的定义可以知道,终边相同的角的同一三角函数值相等,即有:sin(α+2kπ) = sinα,cos(α+2kπ) = cosα,ta n(α+2kπ) = tanα(k∈Z) 。

(公式一)二.尝试推导由上一组公式,我们知道,终边相同的角的同一三角函数值一定相等。

反过来呢?问题:你能找出和30°角正弦值相等,但终边不同的角吗?角π-α与角α的终边关于y轴对称,有sin(π-α) = sin α,cos(π-α) = - cos α,(公式二)tan(π-α) = - tan α。

因为与角α 终边关于y 轴对称是角π-α,,利用这种对称关系,得到它们的终边与单位圆的交点的纵坐标相等,横坐标互为相反数。

于是,我们就得到了角π-α 与角α的三角函数值之间的关系:正弦值相等,余弦值互为相反数,进而,就得到我们研究三角函数诱导公式的路线图:角间关系→对称关系→坐标关系→三角函数值间关系。

三.自主探究问题:两个角的终边关于x 轴对称,你有什么结论?两个角的终边关于原点对称呢?角-α 与角α 的终边关于x 轴对称,有:sin(-α) = -sin α,cos(-α) = cos α,(公式三)tan(-α) = -tan α。

人教版高中数学高一A版必修4 两角和与差的正弦、余弦、正切公式

人教版高中数学高一A版必修4  两角和与差的正弦、余弦、正切公式

互动课堂疏导引导1.两角和的余弦公式比较cos(α-β)与cos(α+β),并且注意到α+β与α-β之间的关系:α+β=α-(-β),则由两角差的公式得 cos(α+β)=cos [α-(-β)]=cosαcos(-β)+sinαsin(-β)=cosαcosβ-sinαsinβ,即cos(α+β)=cosαcosβ-sinαsinβ.(C (α+β))2.两角和与差的正弦公式sin(α-β)=cos(2π-α+β)=cos [(2π-α)+β] =cos(2π-α)cosβ-sin(2π-α)sinβ =sinαcosβ-cosαsinβ,即sin(α-β)=sinαcosβ-cosαsinβ.(S (α-β))在上式中,以-β代β可得sin(α+β)=sinαcosβ+cosαsinβ.(S (α+β))3.正确理解和差角的正弦公式(1)公式对于任意的角α、β都成立.(2)搞清sin(α±β)的意义.例如sin(α+β)是两角α与β的和的正弦,它表示角α+β终边上任意一点的纵坐标与原点到这点的距离之比.在一般情况下,sin(α+β)≠sinα+sinβ,如α=3π,β=6π时,sin(3π+6π)=sin 2π=1, sin 3π+sin 6π=23+21=213+≠1. ∴sin(3π+6π)≠sin 3π+sin 6π. 只有在某些特殊情况下,sin(α+β)=sinα+sinβ,例如,当α=0,β=6π时, sin(0+6π)=sin 6π=21,sin0+sin 6π=0+21=21, ∴sin(0+6π)=sin0+sin 6π. 在学习时一定要注意:不能把sin(α+β)按分配律展开.(3)牢记公式并能熟练左、右两边互化.例如化简sin20°cos50°-sin70°cos40°,要能观察出此式等于sin(20°-50°)=-sin30°=-21. (4)灵活运用和(差)角公式.例如化简sin(α+β)cosβ-cos(α+β)sinβ,不要将sin(α+β),cos(α+β)展开,而应就整个式子,直接运用公式sin [(α+β)-β]=sinα,这也是公式的逆用.4.两角和与差的正切公式的推导当cos(α+β)≠0时,将公式S (α+β),C (α+β)的两边分别相除,有tan(α+β)=βαβαβαβαβαβαsin sin cos cos sin cos cos sin )cos()sin(-+=++.当cosα·cosβ≠0时,将上式的分子、分母分别除以cosα·cosβ,得 tan(α+β)=βαβαtan tan 1tan tan -+(T (α+β)). 由于tan(-β)=ββββcos sin )cos()sin(-=-=-tanβ. 在T (α+β)中以-β代β,可得tan(α-β)=βαβαtan tan 1tan tan +-(T (α-β)). 5.关于两角和与差的正切公式要注意几个问题(1)公式适用范围.因为y=tanx 的定义域为x≠2π+kπ,k ∈Z . 所以T (α±β)只有在α≠2π+kπ,β≠2π+kπ,α±β≠2π+kπ时才成立,否则不成立,这是由任意角的正切函数的定义域所决定的.当tanα、tanβ或tan(α±β)的值不存在时,不能使用T (α±β)处理某些有关问题,但可改用诱导公式或其他方法.例如,化简tan(2π-β),因为tan 2π的值不存在,不能利用公式T (α-β),所以改用诱导公式.(2)注意公式的逆向运用 ββαββαtan )tan(1tan )tan(++-+=tan [(α+β)-β]=tanα, ααααtan 45tan 1tan 45tan tan 1tan 1︒-+︒=-+=tan(45°+α). (3)变形应用tanα+tanβ=tan(α+β)(1-tanαtanβ),tanα-tanβ=tan(α-β)(1+tanαtanβ),如tanα+tanβ+tanαtanβtan(α+β)=tan(α+β),tan(α+β)-tanα-tan β=tanαtanβtan(α+β).活学巧用1.在△ABC 中,若sinAsinB <cosAcosB,则此三角形的外心位于它的( )A.内部B.外部C.一边上D.不确定 解析:cosAcosB-sinAsinB >0,即cos(A+B)>0,∴-cosC >0.∴cosC <0.∴C 为钝角.∴△ABC 为钝角三角形.∴三角形的外心位于它的外部.答案:B2.化简下列各式:(1)cos(80°+3α)cos(35°+3α)+sin(80°+3α)cos(55°-3α); (2)sin(x+3π)+2sin(x-3π)-3cos(32π-x); (3))cos(cos cos 2sin cos 2)sin βαβαβαβα+--+(. 解析:(1)原式=cos(80°+3α)cos(35°+3α)+sin(80°+3α)sin(35°+3α)=cos [(80°+3α)-(35°+3α)]=cos45°=22. (2)原式=sinxcos 3π+cosxsin 3π+2sinxcos 3π-2cosxsin 3π-3cos 32πcosx-3sin 32πsinx =23sinx-23cosx+23cosx-23sinx=0. (3)原式=βαβαβαβαβαβαβαβαβαβαsin sin cos cos sin cos cos sin sin sin cos cos cos cos 2sin cos 2sin cos cos sin +-=+--+ =)cos()sin(βαβα--=tan(α-β). 答案:(1)22;(2)0;(3)tan(α-β). 3.已知cos(α+β)=-31,cos2α=-135,α、β均为钝角,求sin(α-β). 解析:∵α、β∈(90°,180°),∴α+β,2α∈(180°,360°).∵cos(α+β)=- 31<0,cos2α=-135<0. ∴α+β,2α∈(180°,270°).∴sin(α+β)=322)31(1)(cos 122-=---=+--βα,sin2α=1312)135(12cos 122-=---=--α. ∴sin (α-β)=sin [2α-(α+β)]=sin2αcos(α+β)-cos2α·sin(α+β) =(-1312)×(-31)-(-135)(322-)=3921012-. 答案:3921012-. 4.求下列各式的值. (1)︒︒+︒-︒15tan 75tan 115tan 75tan(2))25tan()305tan(1385tan 55tan ︒-︒--︒-︒ (3)︒+︒-15tan 3115tan 3.解:(1)原式=tan(75°-15°)=tan60°=3.(2)原式=)25tan )(36055tan(1)36025tan(55tan ︒-︒-︒-︒+︒-︒=︒︒+︒-︒25tan 55tan 125tan 55tan =tan(55°-25°)=tan30°=33. (3 ︒+︒-15tan 3115tan 3=︒︒+︒-︒15tan 60tan 115tan 60tan =tan(60°-15°)=tan45°=1. 答案:(1)3;(2) 33;(3)1. 5.化简求值:(3+tan30°tan40°+tan40°tan50°+tan50°tan60°)·tan10°.解:原式=(1+tan30°tan40°+1+tan40°tan50°+1+tan50°tan60°)·tan10°,因为tan10°=tan(40°-30°)=︒︒+︒-︒30tan 40tan 130tan 40tan 所以1+tan40°tan30°=︒︒-︒10tan 30tan 40tan . 同理,1+tan40°tan50°=︒︒-︒10tan 40tan 50tan , 1+tan50°tan60°=︒︒-︒10tan 50tan 60tan . 所以原式=(︒︒-︒10tan 30tan 40tan +︒︒-︒10tan 40tan 50tan +︒︒-︒10tan 50tan 60tan )·tan10° =tan40°-tan30°+tan50°-tan40°+tan60°-tan50°=-tan30°+tan60° =332333=+-. 6.tan12°+tan33°+tan12°tan33°的值为_______________.解析:因为tan45°=tan(12°+33°)=︒︒-︒+︒33tan 12tan 133tan 12tan =1, 所以原式=tan12°tan33°+1-tan12°tan33°=1.答案:1。

高中数学必修四公式

高中数学必修四公式

高中数学必修四公式一、函数公式1. 一次函数的公式一次函数的一般公式为:y = kx + b其中,k为斜率,表示函数的变化速率;b为截距,表示函数与y轴交点的纵坐标值。

2. 二次函数的公式二次函数的一般公式为:y = ax^2 + bx + c其中,a、b、c为常数,a不等于0。

a决定了抛物线开口的方向,b影响了抛物线在x轴上的位置,c决定了抛物线与y轴的交点纵坐标。

3. 指数函数的公式指数函数的一般公式为:y = a^x其中,a为底数,x为指数。

指数函数的特点是随着指数增大,函数值也随之增大(当a大于1时),或者随着指数增大,函数值趋近于0(当0 < a < 1时)。

4. 对数函数的公式对数函数的一般公式为:y = log<sub>a</sub>(x)其中,a为底数,x为函数值。

对数函数表示的是一个数在某个底数下的指数,也可以看作是某个数的幂次方等于x。

二、三角函数公式1. 正弦函数的公式正弦函数的一般公式为:y = Asin(Bx + C) + D其中,A为振幅,表示正弦函数的最大值与最小值之间的差;B为周期,表示正弦函数的一个周期内的长度;C为相位,表示正弦函数的水平方向的偏移;D为垂直偏移,表示正弦函数的纵向平移。

2. 余弦函数的公式余弦函数的一般公式为:y = Acos(Bx + C) + D其中,A为振幅,表示余弦函数的最大值与最小值之间的差;B为周期,表示余弦函数的一个周期内的长度;C为相位,表示余弦函数的水平方向的偏移;D为垂直偏移,表示余弦函数的纵向平移。

3. 正切函数的公式正切函数的一般公式为:y = Atan(Bx + C) + D其中,A为振幅,表示正切函数的最大值与最小值之间的差;B为周期,表示正切函数的一个周期内的长度;C为相位,表示正切函数的水平方向的偏移;D为垂直偏移,表示正切函数的纵向平移。

三、立体几何公式1. 三角形面积的公式三角形的面积可以通过以下公式计算:S = 0.5 * 底边长度 * 高其中,S为三角形的面积,底边长度为三角形底边的长度,高为从底边到顶点的垂直距离。

高中数学必修四的全部公式整理

高中数学必修四的全部公式整理

高中数学必修四的全部公式整理
常用公式:
一、抛物线公式
1.抛物线的准确方程:y=ax2+bx+c (a ≠ 0)
2.其中a为凹凸性系数,且当a>0时,抛物线是凹性曲线;当a<0时,抛物线是凸性曲线。

3.顶点坐标:(x0,y0)=(-b/2a,c-b2/4a)
4.顶点方程:y=-b2/4a+c
5.焦点坐标(-c/a,0)
6.过焦点作平行于y轴的直线的斜率:-b/2a
7.过焦点作垂直于x轴的直线的斜率:-1/b
二、椭圆公式
1.椭圆的准确方程:(x-x0)2/a2+(y-y0)2/b2=1 (a>b)
2.中心:(x0,y0)
3.长轴:2a
4.短轴:2b
5.长短轴方向:与坐标轴平行
6.焦点坐标:(±c,0),其中c=√a2-b2。

三、双曲线公式
1.双曲线的准确方程:y2/a2-x2/b2=1 (a>b)
2.中心:(0,0)
3.长轴:2a
4.短轴:2b
5.长短轴方向:与坐标轴正交
6.焦点坐标:(±c,0),其中c=√a2+b2。

四、圆的公式
1.圆的准确方程:(x-x0)2+(y-y0)2=r2
2.圆心:(x0,y0)
3.半径:r
4.圆面积:S=πr2
5.圆周长:C=2πr。

高中数学必修四第三章三角恒等变换

高中数学必修四第三章三角恒等变换

必修四 第三章:三角恒等变换【知识点梳理】:考点一:两角和、差的正、余弦、正切公式两角差的余弦:cos()cos cos sin sin αβαβαβ-=+ 两角和的余弦:()cos cos cos sin sin αβαβαβ+=- 两角和的正弦:()sin αβ+sin cos cos sin αβαβ=+ 两角差的正弦:()sin sin cos cos sin αβαβαβ-=- 两角和的正切:()tan tan tan 1tan tan αβαβαβ++=-两角差的正切:()tan tan tan 1tan tan αβαβαβ--=+注意:对于正切,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈.【典型例题讲解】:例题1.已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.例题2.利用和、差角余弦公式求cos 75、cos15的值。

例题3.已知()sin αβ+=32,)sin(βα-=51,求βαtan tan 的值。

例题4.cos13计算sin43cos 43-sin13的值等于( )A .12B .33C .22D .32例题5.已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值.例题6.已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____例题7.如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角,αβ,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 225(1) 求tan()αβ+的值; (2) 求2αβ+的值。

例题8.设ABC ∆中,tan A tan B Atan B +=,sin Acos A =,则此三角形是____三角形【巩固练习】练习1. 求值(1)sin 72cos 42cos72sin 42-; (2)cos 20cos70sin 20sin 70-;练习2.0sin 45cos15cos 225sin15⋅+⋅的值为(A ) -2 1(B ) -2 1(C )2 (D )2练习3.若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A.3-B.13-C.3D.13练习4. 已知α,β为锐角,1tan 7α=,sin 10β=,求2αβ+.考点二:二倍角公式及其推论:在两角和的三角函数公式βαβαβαβα=+++中,当T C S ,,时,就可得到二倍角的三角函数公式222,,S C T ααα:()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=;()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-;22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-;22222cos2cos sin cos (1cos )2cos 1αααααα=-=--=-.()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+==--.注意:2,22k k ππαπαπ≠+≠+ ()k z ∈二倍角公式不仅限于2α是α的二倍的形式,其它如4α是2α的二倍,24αα是的二倍,332αα是的二倍等等,要熟悉这多种形 式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公式的关键.二倍角公式的推论升幂公式:21cos 22cos αα+=, 21cos 22sin αα-=降幂公式:ααα2sin 21cos sin =; 22cos 1sin 2αα-=; 22cos 1cos 2αα+=.【典型例题讲解】例题l. ) A .2sin15cos15 B .22cos 15sin 15- C .22sin 151-D .22sin 15cos 15+例题2..已知1sin cos 5θθ+=,且432πθπ≤≤,则cos 2θ的值是 .例题3.化简0000cos10cos 20cos30cos 40••• 例题4.23sin 702cos 10-=-( )A .12B .2C .2D例题5.已知02x π<<,化简:2lg(cos tan 12sin ))]lg(1sin 2)24x x x x x π⋅+-+--+.例题6.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 。

必修四第一章 三角函数解题技巧

必修四第一章 三角函数解题技巧

必修四第一章 三角函数解题技巧1 例说弧度制中的扇形问题与扇形有关的问题是弧度制中的难点,我们可以应用弧长公式l =|α|r 和扇形面积公式S =12|α|r 2解决一些实际问题,这类问题既充分体现了弧度制在运算上的优越性,又能帮助我们加深对弧度制概念的理解.下面通过几例帮助同学们分析、归纳弧度制下的扇形问题. 例1 已知扇形的圆心为60°,所在圆的半径为10,求扇形的弧长及扇形中该弧所在的弓形面积.例2 扇形的半径为R ,其圆心角α(0<α≤π)为多大时,扇形内切圆面积最大,其最大值是多少?例3 已知扇形的周长为30 cm ,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?针对练习:1.扇形的周长C 一定时,它的圆心角θ取何值才能使扇形面积S 最大?最大值是多少?2.在扇形AOB 中,∠AOB =90°,弧AB 的长为l ,求此扇形内切圆的面积.3.已知扇形AOB 的周长是6 cm ,该扇形的中心角是1弧度,求该扇形的面积.2 任意角三角函数问题错解辨析任意角三角函数是三角函数的基础,在学习这部分内容时,有的同学经常因为概念不清、考虑不周、观察代替推理等原因而错解题目,下面就解题中容易出现的错误进行分类讲解,供同学们参考.一、概念不清例1 已知角α的终边在直线y =2x 上,求sin α+cos α的值.二、观察代替推理例2 当α∈(0,π2)时,求证:sin α<tan α.三、估算能力差例3 若θ∈⎝⎛⎭⎫0,π2,则sin θ+cos θ的一个可能的值是( ) A.23B.27πC.4-22 D .13 同角三角函数关系巧应用同角三角函数的用途主要体现在三角函数的求值和恒等变形中各函数间的相互转化,下面结合常见的应用类型举例分析,体会其转化作用,展现同角三角函数关系巧应用.一、知一求二型例1 已知sin α=255,π2≤α≤π,则tan α=_________________________________.二、妙用“1”例2 证明:1-sin 6x -cos 6x 1-sin 4x -cos 4x =32.三、齐次式型求值例3 已知tan α=2,求值:(1)2sin α-3cos α4sin α-9cos α=________; (2)2sin 2α-3cos 2α=________.4 单调不“单调”,应用很“奇妙”三角函数的单调性是三角函数的重要性质之一,也是高考常考的内容.利用其可以方便地进行比较值的大小、求单调区间、求解最值和解不等式等.下面举例归纳该性质在解题中的具体应用,希望能对同学们的学习有所帮助.一、信心体验——比较大小例1 比较cos5π14,sin 2π7,-cos 8π7的大小.二、重拳出击——求解最值例2 已知f (x )=2sin(2x -π4),x ∈R .求函数f (x )在区间[π8,3π4]上的最小值和最大值.三、触类旁通——解不等式例3 若0≤α<2π,sin α>33cos α,求α的取值范围.5 善用数学思想——巧解题一、数形结合思想例1 在(0,2π)内,使sin x >cos x 成立的x 的取值范围是________.二、分类讨论思想例2 已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值.三、函数与方程的思想例3 函数f (x )=3cos x -sin 2x (π6≤x ≤π3)的最大值是________.四、转化与化归思想例4 比较下列每组数的大小.(1)tan 1,tan 2,tan 3;(2)tan(-13 π4)与tan(-17 π5).6 三角函数的性质总盘点三角函数的性质是高考考查的重点和热点内容之一,应用“巧而活”.要能够灵活地运用性质,必须在脑海中能及时地浮现出三角函数的图象.下面通过典型例题对三角函数的性质进行盘点,请同学们用心体会.一、定义域例1 函数y = cos x -12的定义域为________.二、值域与最值例2 函数y =cos(x +π3),x ∈(0,π3]的值域是________.三、单调性例3 已知函数f (x )=sin(π3-2x ),求:(1)函数f (x )的单调递减区间;(2)函数f (x )在[-π,0]上的单调递减区间.四、周期性与对称性例4 已知函数f (x )=sin(2ωx -π3)(ω>0)的最小正周期为π,则函数f (x )的图象的一条对称轴方程是( )A .x =π12B .x =π6C .x =5π12D .x =π3五、奇偶性例5 若函数f (x )=sin x +φ3(φ∈[0,2π))是偶函数,则φ等于( ) A.π2 B.2π3 C.3π2 D.5π37 数形结合百般好,形象直观烦琐少——构建正弦、余弦函数图象解题正弦、余弦函数的图象是本章的重点,也是高考的一个热点,它不仅能直观反映三角函数的性质,而且它还有着广泛的应用,若能根据问题的题设特点灵活构造图象,往往能直观、准确、快速解题.一、确定函数的值域例1 定义运算a ※b 为a ※b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,例如,1※2=1,则函数f (x )=sin x ※cos x 的值域为( )A .[-1,1]B.⎣⎡⎦⎤-22,1C.⎣⎡⎦⎤-1,22D.⎣⎡⎦⎤-1,-22二、确定零点个数例2 函数f (x )=⎝⎛⎭⎫12x -sin x 在区间[0,2π]上的零点个数为________.三、确定参数的值例3 已知f (x )=sin(ωx +π3)(ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=_________________________________________________.四、判断函数单调性例4 设函数f (x )=⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3(x ∈R ),则f (x )( ) A .在区间⎣⎡⎦⎤2π3,4π3上是增函数 B .在区间⎣⎡⎦⎤3π4,13π12上是增函数 C .在区间⎣⎡⎦⎤-π8,π4上是减函数 D .在区间⎣⎡⎦⎤π3,5π6上是减函数五、确定参数范围例5 当0≤x ≤1时,不等式sinπx 2≥kx 恒成立,则实数k 的取值范围是________.六、研究方程的实根例6 已知方程2sin(2x +π3)-1=a ,x ∈[-π6,13π12]有两解,求a 的取值范围.8 三角函数学习中的“小技巧、大突破”从近几年高考数学试卷统计情况看,三角函数是高考的六大板块之一,每年考一道大题和一道小题,而一道大题里面往往又隐含了若干个小问题.所以,高中生应该注意三角函数知识里面的容易被忽略的一些小问题、小技巧.一、“已知三角函数值求角”问题在学习过程中学生们通常存在这么几个困惑:1、给出一个三角函数值可能对应着多个或无数个角,不知道该先求哪个角?2、不能准确的写出已知要求的那个范围的角.下面以四个例题说明:例1 已知sin x =22且x ∈[-π2,π2],求x 的取值集合. 例2 已知sin x =-22且x ∈[-π2,π2],求x 的取值集合. 例3 已知sin x =-22且x ∈[0,2π],求x 的取值集合. 例4 已知sin x =-22,求x 的取值集合.二、“利用三角函数的单调性比较大小”问题在教学中通常要求学生把三角函数化成同名且自变量落在一个单调区间内即可,但是学生在实际操作过程中容易混淆单调区间,不如我们把此问题中的自变量利用诱导公式负角化为正角,正角统一都化为锐角,这样就更简洁、明朗了,因为正弦、余弦、正切函数都在区间(0,π2)内的单调性依次为:单调递增、单调递减、单调递增。

高中数学必修4三角函数常考题型:三角函数的诱导公式(一)

高中数学必修4三角函数常考题型:三角函数的诱导公式(一)

三角函数的诱导公式(一)【学问梳理】1.诱导公式二(1)角π+α与角α的终边关于原点对称. 如图所示. (2)公式:sin(π+α)=-sin_α.cos(π+α)=-cos_α.tan(π+α)=tan_α.2.诱导公式三(1)角-α与角α的终边关于x 轴对称.如图所示.(2)公式:sin(-α)=-sin_α.cos(-α)=cos_α.tan(-α)=-tan_α.3.诱导公式四(1)角π-α与角α的终边关于y 轴对称.如图所示.(2)公式:sin(π-α)=sin_α.cos(π-α)=-cos_α.tan(π-α)=-tan_α.【常考题型】题型一、给角求值问题【例1】 求下列三角函数值:(1)sin(-1 200°);(2)tan 945°;(3)cos 119π6. [解] (1)sin(-1 200°)=-sin 1 200°=-sin(3×360°+120°)=-sin 120°=-sin(180°-60°)=-sin 60°=-32; (2)tan 945°=tan(2×360°+225°)=tan 225°=tan(180°+45°)=tan 45°=1;(3)cos 119π6=cos ⎝⎛⎭⎫20π-π6=cos ⎝⎛⎭⎫-π6=cos π6=32.【类题通法】利用诱导公式解决给角求值问题的步骤【对点训练】求sin 585°cos 1 290°+cos(-30°)sin 210°+tan 135°的值.解:sin 585°cos 1 290°+cos(-30°)sin 210°+tan 135°=sin(360°+225°)cos(3×360°+210)+cos 30°sin 210°+tan(180°-45°)=sin 225°cos 210°+cos 30°sin 210°-tan 45°=sin(180°+45°)cos(180°+30°)+cos 30°·sin(180°+30°)-tan 45°=sin 45°cos 30°-cos 30°sin 30°-tan 45°=22×32-32×12-1=6-3-44. 题型二、化简求值问题【例2】 (1)化简:cos (-α)tan (7π+α)sin (π-α)=________; (2)化简sin (1 440°+α)·cos (α-1 080°)cos (-180°-α)·sin (-α-180°). (1)[解析]cos (-α)tan (7π+α)sin (π-α)=cos αtan (π+α)sin α=cos α·tan αsin α=sin αsin α=1. [答案] 1(2)[解] 原式=sin (4×360°+α)·cos (3×360°-α)cos (180°+α)·[-sin (180°+α)]=sin α·cos (-α)(-cos α)·sin α=cos α-cos α=-1. 【类题通法】利用诱导公式一~四化简应留意的问题(1)利用诱导公式主要是进行角的转化,从而达到统一角的目的;(2)化简时函数名没有变更,但肯定要留意函数的符号有没有变更;(3)同时有切(正切)与弦(正弦、余弦)的式子化简,一般采纳切化弦,有时也将弦化切.【对点训练】化简:tan (2π-θ)sin (2π-θ)cos (6π-θ)(-cos θ)sin (5π+θ). 解:原式=tan (-θ)sin (-θ)cos (-θ)(-cos θ)sin (π+θ)=tan θsin θcos θcos θsin θ=tan θ. 题型三、给角(或式)求值问题【例3】 (1)已知sin β=13,cos(α+β)=-1,则sin(α+2β)的值为( ) A .1 B .-1C.13 D .-13 (2)已知cos(α-55°)=-13,且α为第四象限角,求sin(α+125°)的值. (1)[解析] ∵cos(α+β)=-1,∴α+β=π+2k π,k ∈Z ,∴sin(α+2β)=sin[(α+β)+β]=sin(π+β)=-sin β=-13. [答案] D(2)[解] ∵cos(α-55°)=-13<0,且α是第四象限角. ∴α-55°是第三象限角.sin(α-55°)=-1-cos 2(α-55°)=-223. ∵α+125°=180°+(α-55°),∴sin(α+125°)=sin[180°+(α-55°)]=-sin(α-55°)=223. 【类题通法】解决条件求值问题的策略(1)解决条件求值问题,首先要细致视察条件与所求式之间的角、函数名称及有关运算之间的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.【对点训练】已知sin(π+α)=-13,求cos(5π+α)的值. 解:由诱导公式得,sin(π+α)=-sin α,所以sin α=13,所以α是第一象限或其次象限角. 当α是第一象限角时,cos α= 1-sin 2α=223, 此时,cos(5π+α)=cos(π+α)=-cos α=-223. 当α是其次象限角时,cos α=-1-sin 2α=-223, 此时,cos(5π+α)=cos(π+α)=-cos α=223. 【练习反馈】1.如图所示,角θ的终边与单位圆交于点P ⎝⎛⎭⎫-55,255,则cos(π-θ)的值为( )A .-255B .-55C.55D.255解析:选C ∵r =1,∴cos θ=-55, ∴cos(π-θ)=-cos θ=55. 2.已知sin(π+α)=45,且α是第四象限角,则cos(α-2π)的值是( ) A .-35B.35 C .±35 D.45解析:选B sin α=-45,又α是第四象限角, ∴cos(α-2π)=cos α=1-sin 2α=35. 3.设tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)=________. 解析:∵tan(5π+α)=tan α=m ,∴原式=-sin α-cos α-sin α+cos α=-tan α-1-tan α+1=-m -1-m +1=m +1m -1. 答案:m +1m -14.cos (-585°)sin 495°+sin (-570°)的值是________. 解析:原式=cos (360°+225°)sin (360°+135°)-sin (210°+360°)=cos 225°sin 135°-sin 210°=cos (180°+45°)sin (180°-45°)-sin (180°+30°)=-cos 45°sin 45°+sin 30°=-2222+12=2-2. 答案:2-25.已知cos ⎝⎛⎭⎫π6-α=33,求cos ⎝⎛⎭⎫α+5π6的值. 解:cos ⎝⎛⎭⎫π+5π6=-cos ⎣⎡⎦⎤π-⎝⎛⎭⎫α+5π6= -cos ⎝⎛⎭⎫π6-α=-33.。

高中数学必修 第四章 数 列-课件 第1课时 等差数列前n项和公式的推导及简单应用

高中数学必修 第四章 数 列-课件 第1课时 等差数列前n项和公式的推导及简单应用

【题型探究】
题型一 等差数列前 n 项和的基本运算——师生共研 例 1 在等差数列{an}中, (1)已知 a1=56,an=-32,Sn=-5,求 n 和 d; (2)已知 a1=4,S8=172,求 a8 和 d. (3)已知 d=2,an=11,Sn=35,求 a1 和 n.
解:(1)由题意得,Sn=na1+ 2 an=n56- 2 32=-5,解得 n=15. 又 a15=56+(15-1)d=-32,∴d=-16.∴n=15,d=-16. (2)由已知得 S8=8a12+a8=84+2 a8=172,解得 a8=39, 又∵a8=4+(8-1)d=39,∴d=5,∴a8=39,d=5.
跟踪训练 2 (1)设等差数列{an}的前 n 项和为 Sn,若 S4=8,S8=20,
2.若 S 奇表示奇数项的和,S 偶表示偶数项的和,公差为 d, ①当项数为偶数 2n 时,S 偶-S 奇=___n_d____,SS奇偶=___a_an+_n1___;
②当项数为奇数 2n-1 时,S 奇-S 偶=_____a_n______, SS奇偶=____n_-_n_1_____,S2n-1=_(_2_n_-__1_)_an.
例 2 (1)等差数列前 3 项的和为 30,前 6 项的和为 100,
则它的前 9 项的和为( )
A.130
B.170
C.210
D.260
解析:利用等差数列的性质:S3,S6-S3,S9-S6 成等 差数列,所以 S3+(S9-S6)=2(S6-S3), 即 30+(S9-100)=2(100-30),解得 S9=210. 答案:C
解析:Sn-Sn-4=an-3+an-2+an-1+an=80, S4=a1+a2+a3+a4=40. 两式相加得 4(a1+an)=120,∴a1+an=30, 又 Sn=na12+an=15n=210,∴n=14. 答案:14

高中数学必修 第四章 数 列- 第1课时 等差数列前n项和公式的推导及简单应用(步步高)

高中数学必修 第四章 数 列- 第1课时 等差数列前n项和公式的推导及简单应用(步步高)

2 题型探究
PART TWO
一、等差数列前n项和的有关计算
例1 在等差数列{an}中: (1)已知a6=10,S5=5,求a8和S10;
解 S5=5a1+5×2 4d=5, a6=a1+5d=10,
解得a1=-5,d=3. ∴a8=a6+2d=10+2×3=16, S10=10a1+102×9d=10×(-5)+5×9×3=85.
(2)已知a1=4,S8=172,求a8和d.
解 由已知得 S8=8a1+ 2 a8=84+2 a8=172,解得 a8=39, 又∵a8=4+(8-1)d=39, ∴d=5. ∴a8=39,d=5.
反思 感悟
等差数列中的基本计算 (1)利用基本量求值: 等差数列的通项公式和前n项和公式中有五个量a1,d,n,an 和Sn,这五个量可以“知三求二”.一般是利用公式列出基本 量a1和d的方程组,解出a1和d,便可解决问题.解题时注意整 体代换的思想.
11a12+a11=11a6, 同理可得 T11=11b6,因此,TS1111=1111ba66=ab66=23××66+-31=1157.
3 随堂演练
PART THREE
1.已知数列{an}的通项公式为an=2-3n,n∈N*,则{an}的前n项和Sn等于
√A.-32n2+n2
C.32n2+n2
(2)a3+a15=40,求S17; 解 S17=17×a21+a17=17×a23+a15=17×2 40=340.
(3)a1=56,an=-32,Sn=-5,求 n 和 d.
解 由题意得,Sn=na1+ 2 an=n65- 2 32=-5,解得 n=15. 又 a15=56+(15-1)d=-32, 所以 d=-16, 所以 n=15,d=-16.

高中数学必修四知识点

高中数学必修四知识点

高中数学必修四知识点高中数学是学生学习的一门重要课程,主要包括必修一、必修二、必修三、必修四四个部分。

其中,必修四是学生最后一年的数学学习环节,所以必修四的知识点掌握的好不好会对高中数学的总成绩有很大的影响。

本文将介绍必修四中的常见知识点,希望能为高中学生提供一些帮助。

一、立体几何1. 常见概念:正方体、长方体、圆锥、圆柱、球等。

2. 轴测图法:三视图、剖视图、轴侧投影等。

3. 体积和表面积的计算:正方体、长方体、圆锥、圆柱、球的体积和表面积的计算。

二、函数与导数1. 常见概念:函数、定义域、值域、单调性、奇偶性、周期性等。

2. 函数的运算:加、减、乘、除等。

3. 导数的定义与计算方法:导数表示函数的变化率,可以用于求函数的极值、拐点、曲率等。

三、向量和数列1. 向量的定义和运算:加、减、数量积、点积等。

2. 向量的坐标表示法:平面直角坐标系和空间直角坐标系中的向量坐标表示法。

3. 数列的基本概念:数列是一组有规律的数,分为等差数列和等比数列两种。

四、概率统计1. 随机事件:可以发生也可以不发生的事件。

2. 事件的概率计算:概率是一个介于0和1之间的实数,可以用分段计数法、几何概型等方法来计算概率。

3. 统计:数据的集中趋势和离散程度的计算。

以上是必修四中的常见知识点,其中,立体几何部分主要是为了引导学生思维的三维空间的认识和表达;函数与导数部分可以帮助学生提高数学分析和解决实际问题的能力;向量和数列部分则可以帮助学生加强几何的直观性和数学证明的技巧;最后的概率统计部分可以帮助学生对实际生活中的数据进行分析和处理。

此外,在学习必修四的时候,还需要注意以下几点:1. 熟练掌握概念和公式:每个知识点都有很多概念和公式需要掌握,但不要只死记硬背,要理解其意义和应用。

2. 掌握解题方法:不同的知识点有不同的解题方法,在做题时要根据具体情况选择合适的方法。

3. 多练习:数学是需要多做题才能掌握好的学科,学生需要花时间做各种类型的题目。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修4重点公式与解题技巧公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosα上述的记忆口诀是:奇变偶不变,符号看象限。

公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆水平诱导名不变;符号看象限。

各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”。

这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内切函数是“+”,弦函数是“-”;第四象限内只有余弦是“+”,其余全部是“-”。

其他三角函数关系:⒈同角三角函数的基本关系式倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)同角三角函数关系六角形记忆法六角形记忆法:(参看图片或参考资料链接)构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

(1)倒数关系:对角线上两个函数互为倒数;(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积)。

由此,可得商数关系式。

(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式⒉两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα·tanβtanα-tanβtan(α-β)=——————1+tanα·tanβ倍角公式⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)2tanαtan2α=—————1-tan^2(α)半角公式⒋半角的正弦、余弦和正切公式(降幂扩角公式)1-cosαsin^2(α/2)=—————21+cosαcos^2(α/2)=—————21-cosαtan^2(α/2)=—————1+cosα⒌万能公式2tan(α/2)sinα=——————1+tan^2(α/2)1-tan^2(α/2)cosα=——————1+tan^2(α/2)2tan(α/2)tanα=——————1-tan^2(α/2)万能公式推导附推导:sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,(因为cos^2(α)+sin^2(α)=1)再把*分式上下同除cos^2(α),可得sin2α=tan2α/(1+tan^2(α))然后用α/2代替α即可。

同理可推导余弦的万能公式。

正切的万能公式可通过正弦比余弦得到。

三倍角公式⒍三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα3tanα-tan^3(α)tan3α=——————1-3tan^2(α)三倍角公式推导附推导:tan3α=sin3α/cos3α=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)上下同除以cos^3(α),得:tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))sin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinαcos^2(α)+(1-2sin^2(α))sinα=2sinα-2sin^3(α)+sinα-2sin^2(α)=3sinα-4sin^3(α)cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=(2cos^2(α)-1)cosα-2cosαsin^2(α)=2cos^3(α)-cosα+(2cosα-2cos^3(α))=4cos^3(α)-3cosα即sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα三倍角公式联想记忆记忆方法:谐音、联想正弦三倍角:3元减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))余弦三倍角:4元3角减 3元(减完之后还有“余”)☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

和差化积公式⒎三角函数的和差化积公式α+βα-βsinα+sinβ=2sin—----·cos—---2 2α+βα-βsinα-sinβ=2cos—----·sin—----2 2α+βα-βcosα+cosβ=2cos—-----·cos—-----2 2α+βα-βcosα-cosβ=-2sin—-----·sin—-----2 2积化和差公式⒏三角函数的积化和差公式sinα·cosβ=0.5[sin(α+β)+sin(α-β)]cosα·sinβ=0.5[sin(α+β)-sin(α-β)]cosα·cosβ=0.5[cos(α+β)+cos(α-β)]sinα·sinβ=- 0.5[cos(α+β)-cos(α-β)]和差化积公式推导附推导:首先,我们知道sin(a+b)=sina*cosb+cosa*sinb, sin(a-b)=sina*cosb-cosa*sinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb所以,sina*cosb=(sin(a+b)+sin(a-b))/2同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb, cos(a-b)=cosa*cosb+sina*sinb所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2这样,我们就得到了积化和差的四个公式:sina*cosb=(sin(a+b)+sin(a-b))/2cosa*sinb=(sin(a+b)-sin(a-b))/2cosa*cosb=(cos(a+b)+cos(a-b))/2sina*sinb=-(cos(a+b)-cos(a-b))/2好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2把a,b分别用x,y表示就可以得到和差化积的四个公式:sinx+siny=2sin((x+y)/2)*cos((x-y)/2)sinx-siny=2cos((x+y)/2)*sin((x-y)/2)cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)向量的运算加法运算AB+BC=AC,这种计算法则叫做向量加法的三角形法则。

已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O 为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。

对于零向量和任意向量a,有:0+a=a+0=a。

|a+b|≤|a|+|b|。

向量的加法满足所有的加法运算定律。

减法运算与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

数乘运算实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ> 0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ= 0时,λa = 0。

设λ、μ是实数,那么:(1)(λμ)a =λ(μa)(2)(λ+μ)a =λ a +μa(3)λ(a± b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。

向量的加法运算、减法运算、数乘运算统称线性运算。

向量的数量积已知两个非零向量a、b,那么|a||b|cosθ叫做a与b的数量积或内积,记作a•b,θ是a与b的夹角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。

零向量与任意向量的数量积为0。

a•b的几何意义:数量积a•b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。

两个向量的数量积等于它们对应坐标的乘积的和。

相关文档
最新文档