三角形内角和定理的证明教学设计

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名师精编优秀教案

北师大八年级下册数学

6.5《三角形内角和定理的证明》教学设计

西乡三中蒲忠明

在学生掌握了平行线的性质及严格的证明等知识的基础教案背景:上展开的本节课教学。

北师大八年级下册数学6.5《三角形内角和定理的证明》教学课题:教材分析:

(一)教材的地位和作用:

这节内容是在前面学生对“三角形内角和是180°”这个结论有了一定直观认识的基础上编排的,以往对这个结论也曾进行过简单的说理,这里则以严格的步骤演绎证明,旨在让学生从实践操作转移到理性思维上来,使学生初步掌握证明的要求和格式,促使学生养成严谨的数学思维方法,发展学生的证明素养。

三角形内角和定理从数量角度揭示三角形三内角之间的关系,是三角形的一个重要性质,既是今后几何推理的重要依据,又是计算角度的重要方法。教材从学生实践操作到证明过程的呈现训练了学生的抽象思维能力和逻辑推理能力;其中辅助线的作法学生第一次接触,它集中了条件、构造了新图形、形了成新关系,实现了未知与已知的转化,起到了解决问题的桥梁作用;课本议一议引导学生一题多思,体现运动变化的观点,读一读为学生认识定理的发现过程另劈蹊径,渗透极限的思想,是学生认识客观世

界、不断探求新知的一种重要途径。

因此本节内容不仅在知识上具有承前启后的地位,而且对今后学习和生活都将起到重要的指导作用。

教学目标:)二(

名师精编优秀教案

[知识与技能目标]:掌握三角形内角和定理的证明和简单应用,初步学会作辅助线证明的基本方法,培养学生观察、猜想、和推理论证能力。

[过程与方法目标]:

1、对比过去折纸、撕纸等探索过程,体会思维实验和符号化的理性作用。

2、通过一题多证、一题多变体会思维的多向性。

3、引导学生应用运动变化的观点认识数学。

[情感与态度目标]:通过一题多证、一题多变激发学生勇于探索、合作交流的精神,体验成功的乐趣,引导学生的个性发展。感悟逻辑推理的价值。

(三)教学重难点:

本节课的重点是:探索证明三角形内角和定理的不同方法,利用三角形内角和定理进行简单的计算或证明。

本节课的难点是:应用运动变化的观点认识数学。从拼图过程中发现并正确引入辅助线是本节课的关键。

引导发现法、尝试探究法。教学方法:教学过程:

一、创设情景、提出问题:

“三角形内角和是180°”一定是个真命题吗?你是怎样知道的?

(学生回答:是个真命题。是从度量、折纸、拼角得到的)。教

师指出:任何实验都会有误差,即使全班同学都各自剪出了不同形状的三角形,但也不能就此说明所有的三角形都具有这一共性。那么怎样才能说明“三角形内角和是180°”的真实性呢?(

证明)由哪些公理、定理、定义可以得到一个角或几个角的和为180°?渗透公理化的思想,自然导入三角形内角和定理证明的

学习。

二、探究新知.

优秀教案名师精编

(一)动手操作、探索解法:每个学生画出一个三角形,并将

它的内角剪下,分小组做拼角实验。通过小组合作交流,讨论

有几种拼合方法?、开展小组竞赛(看哪个小组发现多?说理清楚。),各小组派1 代表展示拼图,并说出理由。学生各抒已见,畅所欲言,鼓励学生倾听他人的方法。归纳:可以搬一个角用“两直线平行,同旁内角互补”来说理,也可以搬两个角、三个角用“平角定义”说明。引导学生合理添加辅助线(学生讨论,教

师点评),为书写证明过程做好铺垫。教师点评,(抽两人板演,求证、证明过程2、指导学生写出已知、规范证明格式)。添加辅助线不并在证明前交代说明。应指出辅助线通常画为虚线,是

盲目的,而是证明需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达

到证明A

的目的。E

ABC 已知:如图,△D

B+∠C=180°求证:∠A+∠B

C

C作射线CE∥BA.CD证明:作BC的延长线,过点BA

∥∵CE ECD(两直线平行,同位角相等)∠∴∠B= (两直线平行,内错角相等)∠A=∠ACE °ACE+∠ECD=180∠∵∠BCA+)

等量代换(°ACB=180∠B+∠A+∴∠.

优秀教案名师精编

(二)议一议、开阔思野:‘搬三个角'的特点:把角‘搬'到一起,让顶点重合、两条边

形成一条直线,以便利用平角定义。在证明三角形内角和定理时,可以把三个角集中到三角形的某一个顶点吗?引导学生叙述证明过程。A

ABC 已知:如图,△E

D

°C=180∠B+∠求证:∠A+BC ∥A点作DE证明:过C

B

BC

∥∵DE ,∠EAC=∠C(两直线平行,内错角相等)∴∠

DAB=∠B °∠EAC=180BAC+∵∠DAB+∠)

(等量代换B+∴∠BAC+∠∠C=180°那么是否可以把三个角集中

到三角形的一边上呢?集中在内部任意一点上呢?外部呢?引

导学生开阔思维,大胆探索证明方法。让学生讲解自己的思维

过程和解法。(三)例题解析,强化重点:°(用两ABE+∠BED+

∠EDC=360∥已知:如图, ABCD。求证:∠。种方法证明)A B

A B A B

E

E F E

D

C

C D C

D

(四)应用知识,深化主题:

学习了以上定理,我们来看看特殊三角形内角和有什么特殊的地

方?

名师精编优秀教案

问题:“直角三角形的两锐角之和是多少度?等边三角形的一个

内角是多少度?请证明你的结论。”

(五)探究升化:

利用课件演示:

相关文档
最新文档