“2020广东深圳中考数学试题
2020年广东省深圳市中考数学试卷及答案
2020年广东省深圳市中考数学试卷一、选择题(每小题3分,共12小题,满分36分)1.(3分)(2020•深圳)2020的相反数是()A.2020B.12020C.﹣2020D.−120202.(3分)(2020•深圳)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)(2020•深圳)2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×1084.(3分)(2020•深圳)分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体5.(3分)(2020•深圳)某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253B.255,253C.253,247D.255,2476.(3分)(2020•深圳)下列运算正确的是( )A .a +2a =3a 2B .a 2•a 3=a 5C .(ab )3=ab 3D .(﹣a 3)2=﹣a 67.(3分)(2020•深圳)如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是( )A .40°B .60°C .70°D .80°8.(3分)(2020•深圳)如图,在△ABC 中,AB =AC .在AB 、AC 上分别截取AP ,AQ ,使AP =AQ .再分别以点P ,Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠BAC 内交于点R ,作射线AR ,交BC 于点D .若BC =6,则BD 的长为( )A .2B .3C .4D .59.(3分)(2020•深圳)以下说法正确的是( )A .平行四边形的对边相等B .圆周角等于圆心角的一半C .分式方程1x−2=x−1x−2−2的解为x =2D .三角形的一个外角等于两个内角的和10.(3分)(2020•深圳)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P 、Q 两点分别测定对岸一棵树T 的位置,T 在P 的正北方向,且T 在Q 的北偏西70°方向,则河宽(PT 的长)可以表示为( )A.200tan70°米B.200tan70°米C.200sin 70°米D.200sin70°米11.(3分)(2020•深圳)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根12.(3分)(2020•深圳)如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A .1个B .2个C .3个D .4个二、填空题(本题共4小题,每小题3分,共12分)13.(3分)(2020•深圳)分解因式:m 3﹣m = .14.(3分)(2020•深圳)一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是 .15.(3分)(2020•深圳)如图,在平面直角坐标系中,O (0,0),A (3,1),B (1,2).反比例函数y =k x(k ≠0)的图象经过▱OABC 的顶点C ,则k = .16.(3分)(2020•深圳)如图,在四边形ABCD 中,AC 与BD 相交于点O ,∠ABC =∠DAC=90°,tan ∠ACB =12,BO OD =43,则S △ABDS △CBD = .三、解答题(本题共7小题,共52分)17.(5分)(2020•深圳)计算:(13)﹣1﹣2cos30°+|−√3|﹣(4﹣π)0.18.(6分)(2020•深圳)先化简,再求值:a+1a2−2a+1÷(2+3−aa−1),其中a=2.19.(7分)(2020•深圳)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=,n=.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有名.20.(8分)(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.21.(8分)(2020•深圳)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?22.(9分)(2020•深圳)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E 、A 、D 在同一条直线上),发现BE =DG 且BE ⊥DG .小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG 绕点A 按逆时针方向旋转(如图1),还能得到BE =DG 吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG 和菱形ABCD ,将菱形AEFG 绕点A 按顺时针方向旋转(如图2),试问当∠EAG 与∠BAD 的大小满足怎样的关系时,背景中的结论BE =DG 仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG 和矩形ABCD ,且AE AG =AB AD =23,AE =4,AB =8,将矩形AEFG 绕点A 按顺时针方向旋转(如图3),连接DE ,BG .小组发现:在旋转过程中,DE 2+BG 2的值是定值,请求出这个定值.23.(9分)(2020•深圳)如图1,抛物线y =ax 2+bx +3(a ≠0)与x 轴的交点A (﹣3,0)和B (1,0),与y 轴交于点C ,顶点为D .(1)求该抛物线的解析式;(2)连接AD ,DC ,CB ,将△OBC 沿x 轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A 重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=92作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=14?若存在,请求出F的坐标;若不存在,请说明理由.2020年广东省深圳市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共12小题,满分36分)1.(3分)(2020•深圳)2020的相反数是()A.2020B.12020C.﹣2020D.−12020【解答】解:2020的相反数是:﹣2020.故选:C.2.(3分)(2020•深圳)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、既是中心对称图形,又是轴对称图形,故此选项符合题意;C、不是中心对称图形,是轴对称图形,故此选项不合题意;D、是中心对称图形,不是轴对称图形,故此选项不合题意;故选:B.3.(3分)(2020•深圳)2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×108【解答】解:将150000000用科学记数法表示为1.5×108.故选:D.4.(3分)(2020•深圳)分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体【解答】解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选:D.5.(3分)(2020•深圳)某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253B.255,253C.253,247D.255,247【解答】解:x=(247+253+247+255+263)÷5=253,这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;故选:A.6.(3分)(2020•深圳)下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a6【解答】解:a+2a=3a,因此选项A不符合题意;a2•a3=a2+3=a5,因此选项B符合题意;(ab)3=a3b3,因此选项C不符合题意;(﹣a3)2=a6,因此选项D不符合题意;故选:B.7.(3分)(2020•深圳)如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A .40°B .60°C .70°D .80°【解答】解:由题意得,∠4=60°,∵∠1=40°,∴∠3=180°﹣60°﹣40°=80°,∵AB ∥CD ,∴∠3=∠2=80°,故选:D .8.(3分)(2020•深圳)如图,在△ABC 中,AB =AC .在AB 、AC 上分别截取AP ,AQ ,使AP =AQ .再分别以点P ,Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠BAC 内交于点R ,作射线AR ,交BC 于点D .若BC =6,则BD 的长为( )A .2B .3C .4D .5【解答】解:由题可得,AR 平分∠BAC ,又∵AB =AC ,∴AD 是三角形ABC 的中线,∴BD=12BC=12×6=3,故选:B.9.(3分)(2020•深圳)以下说法正确的是()A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程1x−2=x−1x−2−2的解为x=2D.三角形的一个外角等于两个内角的和【解答】解:A、平行四边形的对边相等,所以A选项正确;B、一条弧所对的圆周角等于它所对的圆心角的一半,所以B选项错误;C、去分母得1=x﹣1﹣2(x﹣2),解得x=2,经检验原方程无解,所以C选项错误;D、三角形的一个外角等于与它不相邻的两个内角的和,所以D选项错误.故选:A.10.(3分)(2020•深圳)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米B.200tan70°米C.200sin 70°米D.200sin70°米【解答】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°﹣70°=20°,∴∠PTQ=70°,∴tan70°=PQ PT,∴PT=PQtan70°=200tan70°,即河宽200tan70°米,故选:B.11.(3分)(2020•深圳)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根【解答】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=−b2a=−1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,故B正确;C.∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(﹣1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.12.(3分)(2020•深圳)如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个【解答】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B 落在边AD 的延长线上的点G 处, ∴EF 垂直平分BG ,∴EF ⊥BG ,BO =GO ,BE =EG ,BF =FG ,故①正确, ∵AD ∥BC , ∴∠EGO =∠FBO , 又∵∠EOG =∠BOF , ∴△BOF ≌△GOE (ASA ), ∴BF =EG ,∴BF =EG =GF ,故②正确, ∵BE =EG =BF =FG , ∴四边形BEGF 是菱形, ∴∠BEF =∠GEF ,当点F 与点C 重合时,则BF =BC =BE =12, ∵sin ∠AEB =AB BE =612=12, ∴∠AEB =30°,∴∠DEF =75°,故④正确,由题意无法证明△GDK 和△GKH 的面积相等,故③错误; 故选:C .二、填空题(本题共4小题,每小题3分,共12分)13.(3分)(2020•深圳)分解因式:m 3﹣m = m (m +1)(m ﹣1) . 【解答】解:m 3﹣m , =m (m 2﹣1), =m (m +1)(m ﹣1).14.(3分)(2020•深圳)一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是37.【解答】解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为37,故答案为:37.15.(3分)(2020•深圳)如图,在平面直角坐标系中,O (0,0),A (3,1),B (1,2).反比例函数y =kx (k ≠0)的图象经过▱OABC 的顶点C ,则k = ﹣2 .【解答】解:连接OB ,AC ,交点为P , ∵四边形OABC 是平行四边形, ∴AP =CP ,OP =BP , ∵O (0,0),B (1,2), ∴P 的坐标(12,1),∵A (3,1),∴C 的坐标为(﹣2,1),∵反比例函数y =kx (k ≠0)的图象经过点C , ∴k =﹣2×1=﹣2, 故答案为﹣2.16.(3分)(2020•深圳)如图,在四边形ABCD 中,AC 与BD 相交于点O ,∠ABC =∠DAC=90°,tan ∠ACB =12,BOOD=43,则S △ABD S △CBD=332.【解答】解:如图,过点D 作DM ∥BC ,交CA 的延长线于点M ,延长BA 交DM 于点N , ∵DM ∥BC ,∴△ABC ∽△ANM ,△OBC ∽△ODM , ∴AB BC=AN NM=tan ∠ACB =12,BC DM=OB OD=43,又∵∠ABC =∠DAC =90°, ∴∠BAC +∠NAD =90°, ∵∠BAC +∠BCA =90°, ∴∠NAD =∠BCA , ∴△ABC ∽△DAN , ∴AB BC=DN NA=12,设AB =a ,DN =b ,则BC =2a ,NA =2b ,MN =4b , 由BC DM=OB OD =43得,DM =32a ,∴4b +b =32a , 即,b =310a , ∴S △ABD S △BCD=12AB⋅DN 12BC⋅NB =ab 2a⋅(a+2b)=310a 22a⋅1610a=332.故答案为:332.三、解答题(本题共7小题,共52分)17.(5分)(2020•深圳)计算:(13)﹣1﹣2cos30°+|−√3|﹣(4﹣π)0.【解答】解:原式=3﹣2×√32+3﹣13−√3+√3−1 =2.18.(6分)(2020•深圳)先化简,再求值:a+1a −2a+1÷(2+3−aa−1),其中a =2. 【解答】解:原式=a+1(a−1)2÷2a−2+3−aa−1 =a+1(a−1)2÷a+1a−1=a+1(a−1)2×a−1a+1=1a−1当a =2时,原式=12−1=1.19.(7分)(2020•深圳)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m 名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=50,n=10.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是72度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有180名.【解答】解:(1)m=15÷30%=50,n%=5÷50×100%=10%,故答案为:50,10;(2)硬件专业的毕业生有:50×40%=20(人),补全的条形统计图如右图所示;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是360°×1050=72°,故答案为:72;(4)600×30%=180(名),即“总线”专业的毕业生有180名,故答案为:180.20.(8分)(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【解答】(1)证明:连接AC 、OC ,如图, ∵CD 为切线, ∴OC ⊥CD , ∴CD ⊥AD , ∴OC ∥AD , ∴∠OCB =∠E , ∵OB =OC , ∴∠OCB =∠B , ∴∠B =∠E , ∴AE =AB ;(2)解:∵AB 为直径, ∴∠ACB =90°, ∴AC =√102−62=8, ∵AB =AE =10,AC ⊥BE , ∴CE =BC =6, ∵12CD •AE =12AC •CE ,∴CD =6×810=245.21.(8分)(2020•深圳)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?【解答】解:(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,由题意得:50(x+6)+30x=620,解得:x=4,∴6+4=10,答:蜜枣粽的进货单价是4元,则肉粽的进货单价是10元;(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,由题意得:w=(14﹣10)y+(6﹣4)(300﹣y)=2y+600,∵2>0,∴w随y的增大而增大,∵y≤2(300﹣y),∴0<y≤200,∴当y=200时,w有最大值,w最大值=400+600=1000,答:第二批购进肉粽200个时,总利润最大,最大利润是1000元.22.(9分)(2020•深圳)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG 绕点A 按逆时针方向旋转(如图1),还能得到BE =DG 吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG 和菱形ABCD ,将菱形AEFG 绕点A 按顺时针方向旋转(如图2),试问当∠EAG 与∠BAD 的大小满足怎样的关系时,背景中的结论BE =DG 仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG 和矩形ABCD ,且AE AG=AB AD=23,AE =4,AB =8,将矩形AEFG 绕点A 按顺时针方向旋转(如图3),连接DE ,BG .小组发现:在旋转过程中,DE 2+BG 2的值是定值,请求出这个定值.【解答】(1)证明:∵四边形AEFG 为正方形, ∴AE =AF ,∠EAG =90°, 又∵四边形ABCD 为正方形, ∴AB =AD ,∠BAD =90°, ∴∠EAB =∠GAD , ∴△AEB ≌△AGD (SAS ), ∴BE =DG ;(2)当∠EAG =∠BAD 时,BE =DG , 理由如下: ∵∠EAG =∠BAD , ∴∠EAB =∠GAD ,又∵四边形AEFG 和四边形ABCD 为菱形, ∴AE =AG ,AB =AD , ∴△AEB ≌△AGD (SAS ), ∴BE =DG ;(3)解:方法一:过点E 作EM ⊥DA ,交DA 的延长线于点M ,过点G 作GN ⊥AB 交AB 于点N , 由题意知,AE =4,AB =8, ∵AE AG=AB AD=23,∴AG =6,AD =12,∵∠EMA =∠ANG ,∠MAE =∠GAN , ∴△AME ∽△ANG ,设EM =2a ,AM =2b ,则GN =3a ,AN =3b ,则BN =8﹣3b , ∴ED 2=(2a )2+(12+2b )2=4a 2+144+48b +4b 2, GB 2=(3a )2+(8﹣3b )2=9a 2+64﹣48b +9b 2, ∴ED 2+GB 2=13(a 2+b 2)+208=13×4+208=260. 方法二:如图2,设BE 与DG 交于Q ,∵AE AG=AB AD=23,AE =4,AB =8∴AG =6,AD =12.∵四边形AEFG 和四边形ABCD 为矩形, ∴∠EAG =∠BAD ,∴∠EAB=∠GAD,∵EAAG =ABAD,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠P AE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.23.(9分)(2020•深圳)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(﹣3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A 重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=92作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=14?若存在,请求出F的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+3过点A(﹣3,0),B(1,0),∴{9a −3b +3=0a +b +3=0,解得{a =−1b =−2,∴抛物线的解析式为y =﹣x 2﹣2x +3;(2)①0<t <1时,如图1,若B 'C '与y 轴交于点F ,∵OO '=t ,OB '=1﹣t , ∴OF =3OB '=3﹣3t , ∴S =12×(C 'O '+OF )×OO '=12×(3+3﹣3t )×t =−32t 2+3t , ②1≤t <32时,S =32;③32≤t ≤3时,如图2,C ′O ′与AD 交于点Q ,B ′C ′与AD 交于点P ,过点P 作PH⊥C ′O ′于H ,∵AO =3,O 'O =t , ∴AO '=3﹣t ,O 'Q =6﹣2t , ∴C 'Q =2t ﹣3,∵QH =2PH ,C 'H =3PH , ∴PH =15C 'Q =15(2t ﹣3),∴S =32−12(2t −3)×15(2t ﹣3), ∴S =−25t 2+65t +35,综合以上可得:S ={ −32t 2+3t(0<t <1)32(1≤t <32)−25t 2+65t +35(32≤t ≤3). (3)令F (﹣1,t ),则MF =√(m +1)2+(n −t)2,ME =92−n , ∵ME ﹣MF =14, ∴MF =ME −14, ∴(m +1)2+(n −t)2=(174−n)2, ∴m 2+2m +1+t 2﹣2nt =−172n +28916. ∵n =﹣m 2﹣2m +3,∴(1+2n −172)m 2+(2+4n ﹣17)m +1+t 2﹣6t +512−28916=0. 当t =154时,上式对于任意m 恒成立, ∴存在F (﹣1,154).。
2020年广东深圳中考数学试卷(解析版)
2020年广东深圳中考数学试卷(解析版)一、选择题(本大题共12小题,每小题3分,共36分)1.的相反数是( ).A. B. C. D.2.下列图形既是轴对称图形又是中心对称图形的是( ).A. B. C. D.3.年月日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约元.将用科学记数法表示为( ).A. B. C. D.4.分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是( ).A.圆锥B.圆柱C.三棱柱D.正方体5.某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):,,,,.这五次成绩的和分别是( ).A.,B.,C.,D.,平.均.数.中.位.数.6.下列运算正确的是( ).A.B.C.D.7.如图,将直尺与角的三角尺叠放在一起,若,则的大小是( ).A.B.C.D.8.如图,在中,,在、上分别截取,,使,再分别以点,为圆心,以大于的长为半径作弧,两弧在内交于点,作射线,交于点,若,则的长为( ).A. B. C.D.9.以下说法正确的是( ).A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程的解为D.三角形的一个外角等于两个内角的和北东10.如图,为了测量一条河流的宽度,一测量员在河岸边相距米的、两点分别测定对岸一棵树的位置,在的正北方向,且在的北偏西方向,则河宽(的长)可以表示为( ).A.米B.米C.米D.米11.二次函数的顶点坐标为,其部分图象如图所示.以下结论的是( ).错.误.A.B.C.D.关于的方程无实数根12.如图,矩形纸片中,,.将纸片折叠,使点落在边的延长线上的点处,折痕为,点、分别在边和边上.连接,交于点,交于点.给出以下结论:①;②;③和的面积相等;④当点与点重合时,,其中的结论共有( ).A.个B.个C.个D.个正.确.二、填空题(本大题共4小题,每小题3分,共12分)13.分解因式: .14.一口袋内装有编号分别为,,,,,,的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是 .15.如图,在平面直角坐标系中,,,.反比例函数的图象经过平行四边形的顶点,则 .16.如图,在四边形中,与相交于点,,,,则 .三、解答题(本大题共7小题,共52分)17.计算:.18.先化简,再求值:,其中.19.以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了名新聘毕业生的专业情况,并将调查结果绘制成如下两幅不完整的统计图.(1)(2)(3)(4)人数名软件硬件总线测试专业类别软件硬件总线测试请根据统计图提供的信息,解答下列问题. ,.请补全条形统计图.在扇形统计图中,“软件”所对应的扇形的圆心角是 度.若该公司新招聘名毕业生,请你估计“总线”专业的毕业生有 名.(1)(2)20.如图,为的直径,点在上,与过点的切线互相垂直,垂足为.连接并延长,交的延长线于点.求证:.若,,求的长.(1)(2)21.端午节前夕,某商铺用元购进个肉粽和个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多元.肉粽和蜜枣粽的进货单价分别是多少元?由于粽子畅销,商铺决定再购进这两种粽子共个,其中肉粽数量不多于蜜枣粽数量的倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为元,蜜枣粽的销售单价为元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?22.(1)(2)(3)背景:一次小组合作探究课上,小明将两个正方形按右图所示的位置摆放(点、、在同一条直线上),发现且.小组讨论后,提出了下列三个问题,请你帮助解答:将正方形绕点按逆时针方向旋转(如图),还能得到吗?若能,请给出证明:若不能,请说明理由.图把背景中的正方形分别改成菱形和菱形,将菱形绕点按顺时针方向旋转(如图),试问当与的大小满足怎样的关系时,背景中的结论仍成立?请说明理由;图把背景中的正方形分别改写成矩形和矩形,且,,,将矩形绕点按顺时针方向旋转(如图),连接,.小组发现:在旋转过程中,的值是定值,请求出这个定值.图23.如图,抛物线与轴的交点和,与轴交于点,顶点为.(1)(2)(3)xyO图求该抛物线的解析式.连接,,,将沿轴以每秒个单位长度的速度向左平移,得到,点,,的对应点分别为点,,,设平移时间为秒,当点与点重合时停止移动,记与四边形重合部分的面积为,请直接写出与之间的函数关系式.如图,过该抛物线上任意一点向直线:作垂线,垂足为,试问在该抛物线的对称轴上是否存在一点,使得?若存在,请求出的坐标,若不存在,请说明理由.xyO图解析:的相反数是.故选.解析:用科学记数法表示为:,故错误,正确.故选.解析:圆锥的主视图和左视图是相同的,都为一个三角形,但是俯视图是一个圆形;圆柱的主视图和左视图都是矩形,但俯视图也是一个圆形;三棱柱的主视图和左视图是一个矩形,俯视图是一个三角形.故排除、、选项;正方体的三视图都是正方形,是完全相同的.故选.解析:五次跳绳成绩由小到大排列为:,,,,,总共个数据,第个数据是,则他五次跳绳成绩的中位数是:;他五次跳绳成绩的平均数是:,故这五次成绩的平均数和中位数分别是:,.故选.解析:C 1.B 2.D 3.D 4.A 5.B 6.D 7.∵,又∵,∴,∵,∴,∴.故选.解析:由尺规作图可知,为角平分线,由等腰三角形三线合一可得.故选.解析:∵,∴.解析:由折叠可知:,,,又∵,∴,∴,B 8.A 9.B 10.C 11.C 12.∴,②正确,∴四边形是菱形,∴,①正确,∵平分,,∴,∴,③错误,∵与重合,∴,∴,,∴,∴,④正确.故选.13.解析:先提公因式,再利用平方差完成因式分解,即.14.解析:编号为偶数的球有:、、一共个,总共有个球,∴.15.解析:方法一:对顶和.设坐标为,.∴.方法二:作轴,过、分别作轴、轴平行线,交于点,延长交轴于点,∵四边形为平行四边形,∴,∴,∵轴,∴,在与中,,∴≌,∴,,又,,∴,,∴,,∴,设抛物线,将代入,得,∴.16.解析:方法一:作,∵,∴(射影定理),∵,∴(字相似),∴,∴(共边定理).方法二:作,∵,∴(字相似),∵,∴,∴令,,则,,∴,∴,∴,∴.方法三:作,交的延长线于点,∵,∴,∴.方法四:作的延长线交于点,延长、交于点.令,,则易证,∴,∴,令,易得:,∵,∴,∴,∴,,∴,∴,∴,∴.(1)(2)解析:原式.解析:原式,当时,原式.解析:由条形图可知总线专业的毕业生有人,测试专业的有人,由扇形图可知总线专业的毕业生占抽样总人数的,则抽样调查的总人数为:人,即,所以测试占抽样调查总人数的百分比为:,即.答案为:,.条形图可知总线专业的毕业生有人,测试专业的有人,软件专业的有人,抽样总人数为人,所以硬件专业的人数为:人,补全条形统计图如图所示:.17.,.18.(1) ;(2)画图见解析.(3)(4)19.(3)(4)(1)人数名软件硬件总线测试专业类别在扇形统计图中软件专业所占抽样总人数的百分比为:,则在扇形统计图中“软件”所对应的扇形的圆心角是,故答案为:.在人容量的抽样调查中,总线专业所占的百分比为,若该公司新招聘名毕业生,则估计总线专业的毕业生有名,故答案为:.解析:连接、,∵,∴,又∵为的切线,∴,∴,∵为中点,∴为中位线,,(1)证明见解析.(2).20.(2)(1)(2)在中,为斜边中线,∴,∴.∵,,∴,,在中,,,又∵,∴.解析:设蜜枣粽的进货单价为元,则肉粽进货单价为元,由题意知:,解得:,∴.答:肉粽进货单价为元,蜜枣粽进货单价为元.设第二批购进肉粽个,则蜜枣粽购进个,获得利润为元,由题意知:,∵,∴随增大而增大,∵,∴,∴当时,取最大值,元.答:购进肉粽个时,总利润最大,最大利润为元.解析:(1)肉粽进货单价为元,蜜枣粽进货单价为元.(2)购进肉粽个时,总利润最大,最大利润为元.21.(1)能,证明见解析.(2)成立,证明见解析.(3).22.(1)(2)(3)∵四边形为正方形,∴,,又∵四边形为正方形,∴, ,∴,≌,∴.当时,理由如下:∵,∴,又∵四边形、为菱形,∴,,≌,∴.方法一:过作延长线交于点,过作交于.由题意知:,.∵,∴,,∵,,∴,设,,则,,则,∴,,∴.方法二:∵、为矩形,∴,∴,∵,∴,∴,∴,( “”字倒角或四点共圆)∴,连接,,∴,∴.方法三:余弦定理.在中,①,在中,②,∵,∴,由①+②得:.23.(1).(1)(2)解析:令,∴,,∴.①时,如图:∵,,∴,∴;②时,,即完全在四边形内部,此时与四边形重合的面积为,即的面积;③时,如图:∵,,(2).(3)存在,.,,,(3)∴,,∴,∵,,∴,∴,∴,综上:.方法一:令,则,,∵,∴,∴,∴,∵,∴,当时,上式等于任意恒式成立,∴存在.方法二:不妨将移至与重合,则,∵,∴,∴,∵为任意点,∴设,则,∵,,,,∴,∴,满足题意.方法三:高中焦点准线法,为向左平移个单位,向上平移个单位得到,∵,即的焦点为,准线为,∴的焦点为,准线为,若考虑为焦点,则符合题意,易知,对称轴上其它点不符合,∴.。
2020年广东省深圳市中考数学试卷(附答案详解)
2020年广东省深圳市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.(2021·辽宁省本溪市·历年真题)2020的相反数是()A. 2020B. −2020C. 12020D. −120202.(2021·黑龙江省·历年真题)下列图形既是轴对称图形又是中心对称图形的是()A. B.C. D.3.(2021·广东省·历年真题)2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A. 0.15×108B. 1.5×107C. 15×107D. 1.5×1084.(2021·河南省濮阳市·模拟题)分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A. 圆锥B. 圆柱C. 三棱柱D. 正方体5.(2021·宁夏回族自治区固原市·模拟题)某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A. 253,253B. 255,253C. 253,247D. 255,2476.(2021·广东省·其他类型)下列运算正确的是()A. a+2a=3a2B. a2⋅a3=a5C. (ab)3=ab3D. (−a3)2=−a67.(2021·全国·模拟题)如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A. 40°B. 60°C. 70°D. 80°8.(2021·吉林省·模拟题)如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于12PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为()A. 2B. 3C. 4D. 59.(2021·广东省深圳市·模拟题)以下说法正确的是()A. 平行四边形的对边相等B. 圆周角等于圆心角的一半C. 分式方程1x−2=x−1x−2−2的解为x=2D. 三角形的一个外角等于两个内角的和10.(2021·广东省·历年真题)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q 的北偏西70°方向,则河宽(PT的长)可以表示为()A. 200tan70°米B. 200tan70∘米 C. 200sin 70°米 D. 200sin70∘米11.(2021·山东省青岛市·模拟题)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(−1,n),其部分图象如图所示.以下结论错误的是()A. abc>0B. 4ac−b2<0C. 3a+c>0D. 关于x的方程ax2+bx+c=n+1无实数根12.(2021·安徽省合肥市·模拟题)如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD 和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A. 1个B. 2个C. 3个D. 4个13. (2021·江苏省徐州市·模拟题)分解因式:m 3−m =______.14. (2021·广西壮族自治区贵港市·模拟题)一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是______.15. (2021·安徽省合肥市·模拟题)如图,在平面直角坐标系中,O(0,0),A(3,1),B(1,2).反比例函数y =k x (k ≠0)的图象经过▱OABC 的顶点C ,则k =______.16. (2021·江苏省常州市·模拟题)如图,在四边形ABCD 中,AC 与BD 相交于点O ,∠ABC =∠DAC =90°,tan∠ACB =12,BO OD =43,则S △ABDS △CBD =______.三、计算题(本大题共1小题,共5.0分)17. (2021·湖南省怀化市·模拟题)计算:(13)−1−2cos30°+|−√3|−(4−π)0.18.(2021·湖南省怀化市·模拟题)先化简,再求值:a+1a2−2a+1÷(2+3−aa−1),其中a=2.19.(2021·四川省·单元测试)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=______,n=______.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是______度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有______名.20.(2021·安徽省合肥市·模拟题)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.21.(2021·广东省·历年真题)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?22.(2021·湖南省怀化市·模拟题)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG =ABAD=23,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.23.(2021·湖南省怀化市·模拟题)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(−3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O′B′C′,点O、B、C的对应点分别为点O′、B′、C′,设平移时间为t秒,当点O′与点A重合时停止移动.记△O′B′C′与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=9作垂线,垂足为E,试2?若存在,请求出F 问在该抛物线的对称轴上是否存在一点F,使得ME−MF=14的坐标;若不存在,请说明理由.答案和解析1.【答案】B【知识点】相反数【解析】【分析】此题主要考查了相反数,正确把握相反数的定义是解题关键.直接利用相反数的定义得出答案.【解答】解:2020的相反数是:−2020.故选B.2.【答案】B【知识点】中心对称图形、轴对称图形【解析】【分析】根据中心对称图形与轴对称图形的概念进行判断即可.本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.【解答】解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、既是中心对称图形,又是轴对称图形,故此选项符合题意;C、不是中心对称图形,是轴对称图形,故此选项不合题意;D、是中心对称图形,不是轴对称图形,故此选项不合题意;故选:B.3.【答案】D【知识点】科学记数法-绝对值较大的数【解析】解:将150000000用科学记数法表示为1.5×108.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【知识点】作图-三视图、由三视图判断几何体、简单几何体的三视图【解析】解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选:D.分别得出圆锥体、圆柱体、三棱柱、正方体的三视图的形状,再判断即可.本题考查简单几何体的三视图,明确圆锥、圆柱、三棱柱、正方体的三视图的形状和大小是正确判断的前提.5.【答案】A【知识点】算术平均数、中位数【解析】【分析】本题考查中位数、平均数的意义和计算方法,属于基础题.根据中位数、平均数的计算方法,分别求出结果即可.【解答】解:x−=(247+253+247+255+263)÷5=253,这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;故选A.6.【答案】B【知识点】同底数幂的乘法、幂的乘方与积的乘方、合并同类项【解析】【分析】本题考查合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则,掌握计算法则是正确计算的前提.利用合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则进行计算即可.【解答】解:A.a+2a=3a,因此选项A不符合题意;B.a2⋅a3=a2+3=a5,因此选项B符合题意;C.(ab)3=a3b3,因此选项C不符合题意;D.(−a3)2=a6,因此选项D不符合题意;故选:B.7.【答案】D【知识点】平行线的性质【解析】【分析】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.首先根据平角的定义求出∠3=80°,再由平行线的性质求解即可.【解答】解:如图,由题意得∠4=60°,∵∠1=40°,∴∠3=180°−60°−40°=80°,∵AB//CD,∴∠3=∠2=80°,故选D.8.【答案】B【知识点】作一个角的平分线、等腰三角形的性质【解析】【分析】本题主要考查了基本作图以及等腰三角形的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.依据等腰三角形的性质,即可得到BD=12BC,进而得出结论.【解答】解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD=12BC=12×6=3,故选B.9.【答案】A【知识点】平行四边形的性质、圆周角定理、圆心角、弧、弦的关系、分式方程的解【解析】解:A、平行四边形的对边相等,所以A选项正确;B、一条弧所对的圆周角等于它所对的圆心角的一半,所以B选项错误;C、去分母得1=x−1−2(x−2),解得x=2,经检验原方程无解,所以C选项错误;D、三角形的一个外角等于与它不相邻的两个内角的和,所以D选项错误.故选:A.根据平行四边形的性质对A进行判断;根据圆周角定理对B进行判断;利用分式方程有检验可对C进行判断;根据三角形外角性质对D进行判断.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.【答案】B【知识点】解直角三角形的应用【解析】【分析】此题考查了解直角三角形的应用−方向角问题,掌握方向角与正切函数的定义是解题的关键.在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.【解答】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°−70°=20°,∴∠PTQ=70°,∴tan70°=PQPT,∴PT=PQtan70∘=200tan70∘,即河宽200tan70∘米,故选:B.11.【答案】C【知识点】二次函数与一元二次方程、二次函数图象与系数的关系、根的判别式【解析】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=−b2a=−1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2−4ac>0,即4ac−b2<0,故B正确;C.∵抛物线的对称轴为直线x=−1,抛物线与x轴的一个交点在(−3,0)和(−2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(−1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.根据抛物线开口方向,对称轴的位置以及与y轴的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B进行判断;x=1时,y<0,可对C进行判断;根据抛物线y= ax2+bx+c与直线y=n+1无交点,可对D进行判断.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.12.【答案】C【知识点】翻折变换(折叠问题)、矩形的性质、菱形的判定与性质、锐角三角函数的定义、三角形的面积【解析】【分析】本题主要考查了翻折变换,全等三角形的判定和性质,菱形的判定和性质,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF=EG=GF,可判断②;通过证明四边形BEGF是菱形,可得∠BEF=∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK和△GKH的面积相等,即可求解.【解答】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD//BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,∴四边形BEGF是菱形,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB=ABBE =612=12,∴∠AEB=30°,∴∠DEF=75°,故④正确,过点K作KM⊥GH于点M,∵四边形BEGF是菱形,∴BG平分∠DGH,∴KD=KM,在Rt△DHG中,DG<HG,又∵S△DKG=12·DG·DK,S△GKH=12·GH·KM,∴S△GDK<S△GKH,故③错误;故选C.13.【答案】m(m+1)(m−1)【知识点】提公因式法与公式法的综合运用【解析】解:m3−m,=m(m2−1),=m(m+1)(m−1).先提取公因式m,再对余下的多项式利用平方差公式继续分解.本题考查提公因式法分解因式和利用平方差公式分解因式,关键在于需要进行二次分解因式.14.【答案】37【知识点】概率公式【解析】解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为3,7故答案为:3.7用袋子中编号为偶数的小球的数量除以球的总个数即可得.本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.15.【答案】−2【知识点】反比例函数图象上点的坐标特征、平行四边形的性质【解析】解:连接OB,AC,交点为P,∵四边形OABC是平行四边形,∴AP=CP,OP=BP,∵O(0,0),B(1,2),,1),∴P的坐标(12∵A(3,1),∴C的坐标为(−2,1),(k≠0)的图象经过点C,∵反比例函数y=kx∴k=−2×1=−2,故答案为−2.连接OB ,AC ,交点为P ,根据平行四边形的性质:对角线互相平分,由O ,B 的坐标易求P 的坐标,即可求出则C 点坐标,根据待定系数法即可求得k 的值.本题考查的是反比例函数图象上点的坐标特点,平行四边形的性质,求得C 点的坐标是解答此题的关键.16.【答案】332 【知识点】角平分线的性质、解直角三角形、相似三角形的判定与性质 【解析】解:如图,过点D 作DM//BC ,交CA 的延长线于点M ,延长BA 交DM 于点N , ∵DM//BC ,∴△ABC∽△ANM ,△OBC∽△ODM ,∴AB BC =AN NM =tan∠ACB =12,BC DM=OB OD =43, 又∵∠ABC =∠DAC =90°,∴∠BAC +∠NAD =90°,∵∠BAC +∠BCA =90°,∴∠NAD =∠BCA ,∴△ABC∽△DAN ,∴AB BC =DN NA =12,设AB =a ,DN =b ,则BC =2a ,NA =2b ,MN =4b ,由BC DM =OB OD =43得,DM =32a ,∴4b +b =32a ,即,b =310a ,∴S △ABDS △BCD =12AB⋅DN 12BC⋅NB =ab 2a⋅(a+2b)=310a 22a⋅1610a =332.故答案为:332.通过作辅助线,得到△ABC∽△ANM ,△OBC∽△ODM ,△ABC∽△DAN ,进而得出对应边成比例,再根据tan∠ACB =12,BO OD=43,得出对应边之间关系,设AB =a ,DN =b ,表示BC ,NA ,MN ,进而表示三角形的面积,求出三角形的面积比即可.本题考查相似三角形的性质和判定,根据对应边成比例,设常数表示三角形的面积是得出正确答案的关键.17.【答案】解:原式=3−2×√32+√3−1=3−√3+√3−1=2.【知识点】特殊角的三角函数值、负整数指数幂、零指数幂、实数的运算【解析】本题考查了实数的运算、零指数幂、负整数指数幂、特殊角的三角函数值,解决本题的关键是掌握特殊角的三角函数值.根据零指数幂、负整数指数幂、特殊角的三角函数值进行计算即可求解.18.【答案】解:原式=a+1(a−1)2÷2a−2+3−aa−1=a+1(a−1)2÷a+1a−1 =a+1(a−1)2×a−1a+1 =1a−1当a=2时,原式=12−1=1.【知识点】分式的化简求值【解析】本题考查了分式的化简求值,解决本题的关键是进行分式的化简.先将分式进行化简,然后代入值即可求解.19.【答案】解:(1)50;10;(2)硬件专业的毕业生有:50×40%=20(人),补全的条形统计图如图所示;(3)72;(4) 180.【知识点】扇形统计图、用样本估计总体、条形统计图【解析】【分析】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意.(1)根据总线的人数和所占的百分比,可以求得m的值,然后即可计算出n的值;(2)根据(1)中的结果和硬件所占的百分比,可以求得硬件专业的毕业生,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以计算出在扇形统计图中,“软件”所对应的扇形的圆心角的度数;(4)根据统计图中的数据,可以计算出“总线”专业的毕业生的人数.【解答】解:(1)m=15÷30%=50,n%=5÷50×100%=10%,故答案为50;10;(2)见答案;=72°,(3)在扇形统计图中,“软件”所对应的扇形的圆心角是360°×1050故答案为72;(4)600×30%=180(名),即“总线”专业的毕业生有180名,故答案为180.20.【答案】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∵CD⊥AD,∴OC//AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC=√102−62=8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵12CD⋅AE=12AC⋅CE,∴CD=6×810=245.【知识点】勾股定理、圆周角定理、切线的性质【解析】本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.(1)连接AC、OC,根据切线的性质得到OC⊥CD,则可判断OC//AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.21.【答案】解:(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,由题意得:50(x+6)+30x=620,解得:x=4,∴6+4=10,答:蜜枣粽的进货单价是4元,则肉粽的进货单价是10元;(2)设第二批购进肉粽y个,则蜜枣粽购进(300−y)个,获得利润为w元,由题意得:w=(14−10)y+(6−4)(300−y)=2y+600,∵2>0,∴w随y的增大而增大,∵y≤2(300−y),∴y≤200,∴当y=200时,w有最大值,w最大值=400+600=1000,答:第二批购进肉粽200个时,总利润最大,最大利润是1000元.【知识点】一元一次不等式的应用、一元一次方程的应用、一次函数的应用【解析】(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,根据用620元购进50个肉粽和30个蜜枣粽,可得出方程,解出即可;(2)设第二批购进肉粽y个,则蜜枣粽购进(300−y)个,获得利润为w元,根据w=蜜枣粽的利润+肉粽的利润,得一次函数,根据一次函数的增减性,可解答.本题考查了一次函数,一元一次方程及一元一次不等式的知识,解答本题的关键是仔细审题,找到不等关系及等量关系,难度一般.22.【答案】(1)证明:∵四边形AEFG为正方形,∴AE=EF,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,理由如下:∵∠EAG=∠BAD,∴∠EAB=∠GAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:如图,设BE与DG交于Q,∵AE AG =AB AD =23,AE =4,AB =8∴AG =6,AD =12.∵四边形AEFG 和四边形ABCD 为矩形,∴∠EAG =∠BAD ,∴∠EAB =∠GAD ,∵EA AG =AB AD ,∴△EAB∽△GAD ,∴∠BEA =∠AGD ,∴A ,E ,G ,Q 四点共圆,∴∠GQP =∠PAE =90°,∴GD ⊥EB ,连接EG ,BD ,∴ED 2+GB 2=EQ 2+QD 2+GQ 2+QB 2=EG 2+BD 2,∴EG 2+BD 2=42+62+82+122=260.【知识点】菱形的性质、相似形综合、勾股定理、全等三角形的判定与性质【解析】(1)由正方形的性质得出AE =EF ,∠EAG =90°,AB =AD ,∠BAD =90°,得出∠EAB =∠GAD ,证明△AEB≌△AGD(SAS),则可得出结论;(2)由菱形的性质得出AE =AG ,AB =AD ,证明△AEB≌△AGD(SAS),由全等三角形的性质可得出结论;(3)证明△EAB∽△GAD ,得出∠BEA =∠AGD ,则A ,E ,G ,Q 四点共圆,得出∠GQP =∠PAE =90°,连接EG ,BD ,由勾股定理可求出答案.本题是相似形综合题,考查了正方形的性质,菱形的性质,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握特殊平行四边形的性质是解题的关键. 23.【答案】解:(1)∵抛物线y =ax 2+bx +3过点A(−3,0),B(1,0),∴{9a −3b +3=0a +b +3=0,解得{a =−1b =−2, ∴抛物线的解析式为y =−x 2−2x +3;(2)①0<t <1时,如图1,∵OO′=t ,OB′=1−t ,∴OE =3OB′=3−3t ,∴S =12×(C′O′+OE)×OO′=12×(3+3−3t)×t =−32t 2+3t , ②1≤t <32时,S =32; ③32≤t ≤3时,如图2,∵AO =3,O′O =t ,∴AO′=3−t ,O′Q =6−2t ,∴C′Q =2t −3, ∵QH =2HP ,C′H =3HP ,∴HP =15C′Q =15(2t −3), ∴S =32−12(2t −3)×15(2t −3), ∴S =−25t 2+65t +35,综合以上可得:S ={ −32t 2+3t (0<t <1)32(1≤t <32)−25t 2+65t +35(32≤t ≤3). (3)令F(−1,t),则MF =√(m +1)(n −t)2,ME =92−n ,∵ME −MF =14,∴MF =ME −14, ∴(m +1)2+(n −t)2=(174−n)2,∴m 2+2m +1+t 2−2nt =−172n +28916. ∵n =−m 2−2m +3,∴(1+2t −172)m 2+(2+4t −17)m +1+t 2−6t +512−28916=0. 当t =154时,上式对于任意m 恒成立,∴存在F(−1,154).【知识点】二次函数综合【解析】(1)将点A(−3,0)、B(1,0)代入抛物线的解析式得到关于a 、b 的方程组即可;(2)分三种情况:①0<t <1时,②1≤t <32时,③32≤t ≤3时,可由面积公式得出答案;(3)令F(−1,t),则MF =√(m +1)(n −t)2,ME =92−n ,得出(m +1)2+(n −t)2=(174−n)2,可求出t =154.则得出答案.本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,两点间的距离公式,平移的性质,三角形的面积等知识.熟练运用方程的思想方法,正确进行分类是解题的关键.。
2020年广东省深圳市中考数学试题及参考答案(word解析版)
深圳市2020年初中毕业生学业考试数学试卷(满分100分,考试时间90分钟)一、选择题(每小题3分,共12小题,满分36分)1.2020的相反数是()A.2020 B.C.﹣2020 D.﹣2.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.3.2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×1084.分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体5.某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253 B.255,253 C.253,247 D.255,2476.下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a67.如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°8.如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为()A.2 B.3 C.4 D.59.以下说法正确的是()A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程=﹣2的解为x=2 D.三角形的一个外角等于两个内角的和10.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米B.米C.200sin 70°米D.米11.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0 B.4ac﹣b2<0 C.3a+c>0 D.关于x的方程ax2+bx+c=n+1无实数根12.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个二、填空题(本题共4小题,每小题3分,共12分)13.分解因式:m3﹣m=.14.一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是.15.如图,在平面直角坐标系中,O(0,0),A(3,1),B(1,2).反比例函数y=(k≠0)的图象经过▱OABC的顶点C,则k=.16.如图,在四边形ABCD中,AC与BD相交于点O,∠ABC=∠DAC=90°,tan∠ACB=,=,则=.三、解答题(本题共7小题,共52分)17.(5分)计算:()﹣1﹣2cos30°+|﹣|﹣(4﹣π)0.18.(6分)先化简,再求值:÷(2+),其中a=2.19.(7分)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=,n=.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有名.20.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.21.(8分)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?22.(9分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D 在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.23.(9分)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(﹣3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=?若存在,请求出F的坐标;若不存在,请说明理由.答案与解析一、选择题(每小题3分,共12小题,满分36分)1.2020的相反数是()A.2020 B.C.﹣2020 D.﹣【知识考点】相反数.【思路分析】直接利用相反数的定义得出答案.【解答过程】解:2020的相反数是:﹣2020.故选:C.【总结归纳】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【知识考点】轴对称图形;中心对称图形.【思路分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答过程】解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、既是中心对称图形,又是轴对称图形,故此选项符合题意;C、不是中心对称图形,是轴对称图形,故此选项不合题意;D、是中心对称图形,不是轴对称图形,故此选项不合题意;故选:B.【总结归纳】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×108【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【解答过程】解:将150000000用科学记数法表示为1.5×108.故选:D.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体【知识考点】简单几何体的三视图.【思路分析】分别得出圆锥体、圆柱体、三棱柱、正方体的三视图的形状,再判断即可.【解答过程】解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选:D.【总结归纳】本题考查简单几何体的三视图,明确圆锥、圆柱、三棱柱、正方体的三视图的形状和大小是正确判断的前提.5.某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253 B.255,253 C.253,247 D.255,247【知识考点】算术平均数;中位数.【思路分析】根据中位数、众数的计算方法,分别求出结果即可.【解答过程】解:=(247+253+247+255+263)÷5=253,这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;故选:A.【总结归纳】本题考查中位数、众数的意义和计算方法,掌握中位数、众数的计算方法是正确计算的前提.6.下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a6【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】利用合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则进行计算即可.【解答过程】解:a+2a=3a,因此选项A不符合题意;a2•a3=a2+3=a5,因此选项B符合题意;(ab)3=a3b3,因此选项C不符合题意;(﹣a3)2=a6,因此选项D不符合题意;故选:B.【总结归纳】本题考查合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则,掌握计算法则是正确计算的前提.7.如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°【知识考点】平行线的性质.【思路分析】根据平角的定义和平行线的性质即可得到结论.【解答过程】解:由题意得,∠4=60°,∵∠1=40°,∴∠3=180°﹣60°﹣40°=80°,∵AB∥CD,∴∠3=∠2=80°,故选:D.【总结归纳】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.8.如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为()A.2 B.3 C.4 D.5【知识考点】等腰三角形的性质;作图—基本作图.【思路分析】依据等腰三角形的性质,即可得到BD=BC,进而得出结论.【解答过程】解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD=BC=×6=3,故选:B.【总结归纳】本题主要考查了基本作图以及等腰三角形的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.9.以下说法正确的是()A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程=﹣2的解为x=2 D.三角形的一个外角等于两个内角的和【知识考点】分式方程的解;平行四边形的性质;圆心角、弧、弦的关系;圆周角定理.【思路分析】根据平行四边形的性质对A进行判断;根据圆周角定理对B进行判断;利用分式方程有检验可对C进行判断;根据三角形外角性质对D进行判断.【解答过程】解:A、平行四边形的对边相等,所以A选项正确;B、一条弧所对的圆周角等于它所对的圆心角的一半,所以B选项错误;C、去分母得1=x﹣1﹣2(x﹣2),解得x=2,经检验原方程无解,所以C选项错误;D、三角形的一个外角等于与它不相邻的两个内角的和,所以D选项错误.故选:A.【总结归纳】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米B.米C.200sin 70°米D.米【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.【解答过程】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°﹣70°=20°,∴∠PTQ=70°,∴tan70°=,∴PT==,即河宽米,故选:B.【总结归纳】此题考查了解直角三角形的应用﹣方向角问题,掌握方向角与正切函数的定义是解题的关键.11.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0 B.4ac﹣b2<0 C.3a+c>0 D.关于x的方程ax2+bx+c=n+1无实数根【知识考点】根的判别式;二次函数图象与系数的关系;抛物线与x轴的交点.【思路分析】根据抛物线开口方向,对称轴的位置以及与y轴的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B进行判断;x=1时,y<0,可对C进行判断;根据抛物线y=ax2+bx+c 与直线y=n+1无交点,可对D进行判断.【解答过程】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣=﹣1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,故B正确;C.∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(﹣1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.【总结归纳】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a ≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.12.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个【知识考点】三角形的面积;矩形的性质;翻折变换(折叠问题).【思路分析】连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF=EG=GF,可判断②;通过证明四边形BEGF是菱形,可得∠BEF=∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK和△GKH的面积相等,即可求解.【解答过程】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD∥BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,∴四边形BEGF是菱形,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB===,∴∠AEB=30°,∴∠DEF=75°,故④正确,由题意无法证明△GDK和△GKH的面积相等,故③错误;故选:C.【总结归纳】本题考查了翻折变换,全等三角形的判定和性质,菱形的判定和性质,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.二、填空题(本题共4小题,每小题3分,共12分)13.分解因式:m3﹣m=.【知识考点】提公因式法与公式法的综合运用.【思路分析】先提取公因式m,再对余下的多项式利用平方差公式继续分解.【解答过程】解:m3﹣m=m(m2﹣1),=m(m+1)(m﹣1).【总结归纳】本题考查提公因式法分解因式和利用平方差公式分解因式,关键在于需要进行二次分解因式.14.一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是.【知识考点】概率公式.【思路分析】用袋子中编号为偶数的小球的数量除以球的总个数即可得.【解答过程】解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为,故答案为:.【总结归纳】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.15.如图,在平面直角坐标系中,O(0,0),A(3,1),B(1,2).反比例函数y=(k≠0)的图象经过▱OABC的顶点C,则k=.【知识考点】反比例函数图象上点的坐标特征;平行四边形的性质.【思路分析】连接OB,AC,根据O,B的坐标易求P的坐标,再根据平行四边形的性质:对角线互相平分即可求出则C点坐标,根据待定系数法即可求得k的值.【解答过程】解:连接OB,AC,交点为P,∵四边形OABC是平行四边形,∴AP=CP,OP=BP,∵O(0,0),B(1,2),∴P的坐标(,1),∵A(3,1),∴C的坐标为(﹣2,1),∵反比例函数y=(k≠0)的图象经过点C,∴k=﹣2×1=﹣2,故答案为﹣2.【总结归纳】本题考查的是反比例函数图象上点的坐标特点,平行四边形的性质,求得C点的坐标是解答此题的关键.16.如图,在四边形ABCD中,AC与BD相交于点O,∠ABC=∠DAC=90°,tan∠ACB=,=,则=.【知识考点】角平分线的性质;解直角三角形.【思路分析】通过作辅助线,得到△ABC∽△ANM,△OBC∽△ODM,△ABC∽△DAN,进而得出对应边成比例,再根据tan∠ACB=,=,得出对应边之间关系,设AB=a,DN=b,表示BC,NA,MN,进而表示三角形的面积,求出三角形的面积比即可.【解答过程】解:如图,过点D作DM∥BC,交CA的延长线于点M,延长BA交DM于点N,∵DM∥BC,∴△ABC∽△ANM,△OBC∽△ODM,∴==tan∠ACB=,==,又∵∠ABC=∠DAC=90°,∴∠BAC+∠NAD=90°,∵∠BAC+∠BCA=90°,∴∠NAD=∠BCA,∴△ABC∽△DAN,∴==,设AB=a,DN=b,则BC=2a,NA=2b,MN=4b,由==得,DM=a,∴4b+b=a,即,b=a,∴====.故答案为:.【总结归纳】本题考查相似三角形的性质和判定,根据对应边成比例,设常数表示三角形的面积是得出正确答案的关键.三、解答题(本题共7小题,共52分)17.(5分)计算:()﹣1﹣2cos30°+|﹣|﹣(4﹣π)0.【知识考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【思路分析】根据零指数幂、负整数指数幂、特殊角的三角函数值进行计算即可求解.【解答过程】解:原式=3﹣2×+3﹣13﹣+﹣1=2.【总结归纳】本题考查了实数的运算、零指数幂、负整数指数幂、特殊角的三角函数值,解决本题的关键是掌握特殊角的三角函数值.18.(6分)先化简,再求值:÷(2+),其中a=2.【知识考点】分式的化简求值.【思路分析】先将分式进行化简,然后代入值即可求解.【解答过程】解:原式=÷=÷=×=当a=2时,原式==1.【总结归纳】本题考查了分式的化简求值,解决本题的关键是进行分式的化简.19.(7分)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=,n=.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有名.【知识考点】用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)根据总线的人数和所占的百分比,可以求得m的值,然后即可计算出n的值;(2)根据(1)中的结果和硬件所占的百分比,可以求得硬件专业的毕业生,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以计算出在扇形统计图中,“软件”所对应的扇形的圆心角的度数;(4)根据统计图中的数据,可以计算出“总线”专业的毕业生的人数.【解答过程】解:(1)m=15÷30%=50,n%=5÷50×100%=10%,故答案为:50,10;(2)硬件专业的毕业生有:50×40%=20(人),补全的条形统计图如右图所示;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是360°×=72°,故答案为:72;(4)600×30%=180(名),即“总线”专业的毕业生有180名,故答案为:180.【总结归纳】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【知识考点】三角形中位线定理;切线的性质.【思路分析】(1)证明:连接AC、OC,如图,根据切线的性质得到OC⊥CD,则可判断OC∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.【解答过程】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC==8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵CD•AE=AC•CE,∴CD==.【总结归纳】本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.21.(8分)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?【知识考点】一元一次方程的应用;一元一次不等式的应用;一次函数的应用.【思路分析】(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,根据用620元购进50个肉粽和30个蜜枣粽,可得出方程,解出即可;(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,根据w=蜜枣粽的利润+肉粽的利润,得一次函数,根据一次函数的增减性,可解答.【解答过程】解:(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,由题意得:50(x+6)+30x=620,解得:x=4,∴6+4=10,答:蜜枣粽的进货单价是4元,则肉粽的进货单价是10元;(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,由题意得:w=(14﹣10)y+(6﹣4)(300﹣y)=2y+600,∵2>0,∴w随y的增大而增大,∵y≤2(300﹣y),∴0<y≤200,∴当y=200时,w有最大值,w最大值=400+600=1000,答:第二批购进肉粽200个时,总利润最大,最大利润是1000元.【总结归纳】本题考查了一次函数,一元一次方程及一元一次不等式的知识,解答本题的关键是仔细审题,找到不等关系及等量关系,难度一般.22.(9分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D 在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.【知识考点】相似形综合题.【思路分析】(1)由正方形的性质得出AE=AF,∠EAG=90°,AB=AD,∠BAD=90°,得出∠EAB=∠GAD,证明△AEB≌△AGD(SAS),则可得出结论;(2)由菱形的性质得出AE=AG,AB=AD,证明△AEB≌△AGD(SAS),由全等三角形的性质可得出结论;(3)方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,求出AG=6,AD=12,证明△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,可得出答案;方法二:证明△EAB∽△GAD,得出∠BEA=∠AGD,则A,E,G,Q四点共圆,得出∠GQP =∠PAE=90°,连接EG,BD,由勾股定理可求出答案.【解答过程】(1)证明:∵四边形AEFG为正方形,∴AE=AF,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,理由如下:∵∠EAG=∠BAD,∴∠EAB=∠GAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,由题意知,AE=4,AB=8,∵=,∴AG=6,AD=12,∵∠EMA=∠ANG,∠MAE=∠GAN,∴△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,∴ED2=(2a)2+(12+2b)2=4a2+144+48b+4b2,GB2=(3a)2+(8﹣3b)2=9a2+64﹣48b+9b2,∴ED2+GB2=13(a2+b2)+208=13×4+208=260.方法二:如图2,设BE与DG交于Q,∵,AE=4,AB=8∴AG=6,AD=12.∵四边形AEFG和四边形ABCD为矩形,∴∠EAG=∠BAD,∴∠EAB=∠GAD,∵,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠PAE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.【总结归纳】本题是相似形综合题,考查了正方形的性质,菱形的性质,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握特殊平行四边形的性质是解题的关键.23.(9分)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(﹣3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=?若存在,请求出F的坐标;若不存在,请说明理由.【知识考点】二次函数综合题.【思路分析】(1)将点A(﹣3,0)、B(1,0)代入抛物线的解析式得到关于a、b的方程组即可;(2)分三种情况:①0<t<1时,②1≤t<时,③≤t≤3时,可由面积公式得出答案;(3)令F(﹣1,t),则MF=,ME=﹣n,得出,可求出n=.则得出答案.【解答过程】解:(1)∵抛物线y=ax2+bx+3过点A(﹣3,0),B(1,0),∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)①0<t<1时,如图1,若B'C'与y轴交于点F,∵OO'=t,OB'=1﹣t,∴OF=3OB'=3﹣3t,∴S=×(C'O'+OF)×OO'=×(3+3﹣3t)×t=﹣+3t,②1≤t<时,S=;③≤t≤3时,如图2,C′O′与AD交于点Q,B′C′与AD交于点P,过点P作PH⊥C′O′于H,∵AO=3,O'O=t,∴AO'=3﹣t,O'Q=6﹣2t,∴C'Q=2t﹣3,∵QH=2PH,C'H=3PH,∴PH=C'Q=(2t﹣3),∴S=(2t﹣3),∴S=﹣,综合以上可得:S=.(3)令F(﹣1,t),则MF=,ME=﹣n,∵ME﹣MF=,∴MF=ME﹣,∴,∴m2+2m+1+t2﹣2nt=﹣.∵n=﹣m2﹣2m+3,∴+(2+4n﹣17)m+1+t2﹣6t+﹣=0.当t=时,上式对于任意m恒成立,∴存在F(﹣1,).【总结归纳】本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,两点间的距离公式,平移的性质,三角形的面积等知识.熟练运用方程的思想方法,正确进行分类是解题的关键.。
2020年深圳市中考数学试卷及答案(完整版)
2020 年深圳市中考数学试卷·回忆版第 1 页共2 页2一.选择题(共 12 小题,每小题 3 分,满分 36 分)1.2020 的相反数是()12.在矩形ABCD 中,AB=6,点E 在AD 上,点F 在BC 上,将AEFB 沿EF 折叠,点B 的对应点G 在AD 的延长线上,点A 的对应点是点H,EG=12,下列结论中,有几个是正确的()①EF 丄BG;1 A.-2020 B.20201C.2020 D.-2020②EG=FG;2.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.将150 000 000 用科学记数法表示为()A.1.5×109 B.1.5×107 C.1.5×108 D.0.15×109 4.下列哪个图形,主视图、左视图和俯视图相同的是()A.圆锥B.圆柱C.三棱柱D.正方体5.一组数据246,254,247,263,255 的平均数和屮位数分别是()A.253,247 B.253,254 C.254,247 D.254,2546.下列计算正确的是()A.a + a = a2 B.(ab)3=ab3C.a(a + b) = a2 +ab D.a2·a3=a67.一把直尺与30°的直角三角板如图所示,∠l=40°,则∠2=()A.50°B.60°C.70°D.80°8.如图,已知AB=AC,BC=6,由尺规作图痕迹可求出()A.2③S△ABE = S△BEG;④点F 在C 点时,∠GEF=75°;4.1个B.2 个C.3 个D.4 个二.填空题(共 4 小题,满分 12 分,每小题 3 分)13.因式分解:m3-m=.14.口袋里装有编号为1,2,3,4,5,6,7 的7 个球,从中随机摸岀一个球,摸出编号为偶数球的概率是.15.如图,在平面直角坐标系中,ABOC 为平行四边形,A (1,2),B (3,1),C 在反比例函数的图象上,则上= .16.如图,已知四边形ABCD,连接AC、BD 交于点O,已知∠ABC =∠DAC=90°,B.3 tan ACB 1,BO 4 ,则S ABD =.C.4D.59.以下说法中正确的是()A.平行四边形的对边相等B.圆周角等干圆心角的一半2 OD 3S CBDC.分式方程1 x 12 的解为x=2 D.三角形的一个外角等于两个内角的和x 2 x 210.在△TPQ 中,∠P=90°,∠T=70°,PQ=200,则TP 的长为()三.解答题(第 17 题 5 分,第 18 题 6 分,第 19 题 7 分,第 20 题 8 分,第 21 题 8 分,第 22 题 9 分,第 23 题 9 分,满分 52 分)17.(5 分)计算:(1)-1-2cos30°+|−√3|+(4-π)0.A.200·tan70°B.C.200·sin70°D.200 3 tan700200sin70011.二次函数y = ax2+bx + c(a>0)的图象如图所示,下列说法错误的是()A.abc>0B.4ac-b2<0C.3a +c>0D.ax2+bx+c = n+1 无实数根a a+118.(6 分)先化简:a−2a+13−a÷ (2 + ),再将a=2 代入求值。
2020年深圳市中考数学试题及详解(WORD版)
2020年深圳市中考数学试题及详解(WORD版)1.2020的相反数是(-2020)。
2.图形C既是轴对称图形,也是中心对称图形。
3.150 000 000用科学记数法表示为1.5×10^8.4.正方体的主视图、左视图和俯视图相同。
5.平均数为253,中位数为253.6.运算(2/3)×(-9/10)的结果为(-3/5)。
7.三角形的一个外角等于两个内角的和。
8.BD的长度为4.9.平行四边形的对边相等,圆周角等于圆心角的一半,分式方程的解为x=2.10.河宽(PT的长)可以表示为200sin70°米。
11.3a+c>0是错误的结论。
12.点H、K分别是线段CD上的中点。
二、填空题13.m^3-m=(m-1)m(m+1)14.B.2个15.k=2x-516.∠XXX∠XXX,∠XXX∠DCA,∠ABC+∠ADC=180°三、解答题17.5/818.3/419.(1) m=100.n=30 (2) 人数/名:软件 30,硬件 40,总线15,测试 15 (3) 108° (4) 90人20.(1) 连接OB,∠XXX°,∠XXX∠OAD=90°,∴四边形OBCD是矩形,BC=OD=6,∵∠OAB=90°,∴AB=OA=OB=10,∵∠OAE=∠OAB+∠BAE=90°+∠BAE,∠OEA=∠OED+∠DEA=90°+∠BAE,∴∠OAE=∠OEA,AE=AB (2) ∵BC=6,CD=BD-BC=AB-BC=4,∴AD=√(AB^2-BD^2)=√(100-36)=8,∴CE=CD+DE=CD+AD=12,∵BE=2AB=20,∴AE=BE-AB=10,∵∠AEC=∠ABC=90°,∴三角形AEC与三角形ABC全等,∴AC=BC=6,∴CD/AC=4/6=2/321.(1) 设肉粽的进货单价为x元,蜜枣粽的进货单价为y 元,则50x+30y=620,且x=y+6,解得x=14,y=8 (2) 设肉粽的单价为p元,则p+6为蜜枣粽的单价,50p+30(p+6)=620,解得p=8,∴肉粽的单价为8元,蜜枣粽的单价为14元,进货总价为400元,∴肉粽的数量为50个,蜜枣粽的数量为20个,剩下的200元可以买16个肉粽或10个蜜枣粽,所以最终可以买到66个肉粽和30个蜜枣粽。
广东省深圳市2020年中考数学试题(原卷版)
2020年深圳市中考数学试卷一、选择题(每小题3分,共12小题,满分36分)1. 2020的相反数是()A. 2020B. ﹣2020C.12020D.12020-2. 下列图形中既是轴对称图形,也是中心对称图形的是()A. B. C. D.3. 2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A. 0.15×108B. 1.5×107C. 15×107D. 1.5×1084. 下列哪个图形,主视图、左视图和俯视图相同的是()A. 圆锥B. 圆柱C. 三棱柱D. 正方体5. 某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数...和中位数...分别是()A. 253,253B. 255,253C. 253,247D. 255,2476. 下列运算正确的是()A.a+2a=3a2B. 235a a a⋅=C33()ab ab= D. 326()a a-=-7. 一把直尺与30°直角三角板如图所示,∠1=40°,则∠2=()A. 50°B. 60°C. 70°D. 80°8. 如图,已知AB =AC ,BC =6,尺规作图痕迹可求出BD =( )A. 2B. 3C. 4D. 59. 以下说法正确的是( )A. 平行四边形的对边相等B. 圆周角等于圆心角的一半C. 分式方程11222x x x -=---的解为x =2 D. 三角形的一个外角等于两个内角的和10. 如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P 、Q 两点分别测定对岸一棵树T 的位置,T 在P 的正北方向,且T 在Q 的北偏西70°方向,则河宽(PT 的长)可以表示为( )A 200tan70°米 B. 200tan 70︒米 C. 200sin70°米 D. 200sin 70︒米11. 二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列说法错误的是( )A. B. 4ac -b 2>0C. 3a +c =0D. ax 2+bx +c =n +1无实数根 12. 如图,矩形纸片ABCD 中,AB =6,BC =12.将纸片折叠,使点B 落在边AD 的延长线上的点G 处,折痕为EF ,点E 、F 分别在边AD 和边BC 上.连接BG ,交CD 于点K ,FG 交CD 于点H .给出以下结论:①EF ⊥BG ;②GE=GF ;③△GDK 和△GKH 的面积相等;④当点F 与点C 重合时,∠DEF =75°.其中正确..的结论共有( )A. 1个B. 2个C. 3个D. 4个二、填空题(每小题3分,共4小题,满分12分)13. 分解因式:3m m -=__________.14. 口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是___.15. 如图,在平面直角坐标系中,ABCO 为平行四边形,O (0,0),A (3,1),B (1,2),反比例函数(0)k y k x=≠的图象经过OABC 的顶点C ,则k =___.16. 如图,已知四边形ABCD,AC与BD相交于点O,∠ABC=∠DAC=90°,14 tan,23BOACBOD∠==,则ABDCBDSS=___.三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,满分52分)17. 计算:101()2cos30|3|(4)3π--︒+---.18. 先化简,再求值:213(2)211a aa a a+-÷+-+-,其中a=2.19. 以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调査了m名新聘毕业生的专业情况,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题:(1)m=,n=;(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应圆心角的度数是;(4)若该公司新聘600名毕业生,请你估计“总线”专业的毕业生有名.20. 如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.21. 端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?22. 背景:一次小组合作探究课上,小明将两个正方形按背景图位置摆放(点E,A,D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转,(如图1)还能得到BE=DG吗?如果能,请给出证明.如若不能,请说明理由:(2)把背景中的正方形分别改为菱形AEFG 和菱形ABCD ,将菱形AEFG 绕点A 按顺时针方向旋转,(如图2)试问当∠EAG 与∠BAD 的大小满足怎样的关系时,背景中的结论BE =DG 仍成立?请说明理由; (3)把背景中的正方形改成矩形AEFG 和矩形ABCD ,且23AE AB AG AD ==,AE =4,AB =8,将矩形AEFG 绕点A 按顺时针方向旋转(如图3),连接DE ,BG .小组发现:在旋转过程中, BG 2+DE 2是定值,请求出这个定值.23. 如图1,抛物线y =ax 2+bx +3(a ≠0)与x 轴交于A (-3,0)和B (1,0),与y 轴交于点C ,顶点为D .(1)求解抛物线解析式;(2)连接AD ,CD ,BC ,将△OBC 沿着x 轴以每秒1个单位长度的速度向左平移,得到O B C '''∆,点O 、B 、C 的对应点分别为点O ',B ',C ',设平移时间为t 秒,当点O'与点A 重合时停止移动.记O B C '''∆与四边形AOCD 的重叠部分的面积为S ,请直接写出....S 与时间t 的函数解析式;(3)如图2,过抛物线上任意..一点M (m ,n )向直线l :92y =作垂线,垂足为E ,试问在该抛物线的对称轴上是否存在一点F ,使得ME -MF =14?若存在,请求F 点的坐标;若不存在,请说明理由.衡石量书整理。
2020年深圳市中考数学试卷
2020年深圳市中考数学试卷一、选择题(每小题3分,共12小题,满分36分)1. 2020的相反数是( )A.2020B. C.-2020D.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应圆心角的度数是 .(4)若该公司新聘600名毕业生,请你估计“总线”专业的毕业生有 名 数据统计(1)50,10(2)见解析(3)700(4)180 解:由统计图可知,,n=10。
硬件专业的毕业生为人,则统计图为软件专业的毕业生对应的占比为,所对的圆心角的度数为。
若该公司新聘600名毕业生,“总线”专业的毕业生为名。
2. 如图,AB 为⊙O 的直径,点C 在⊙O 上,AD 与过点C 的切线互相垂直,垂足为D .连接BC 并延长,交AD 的延长线于点E (1)求证:AE =AB(2)若AB =10,BC =6,求CD 的长 圆的证明与计算 解:(1)证:连接OC ∵CDC 点∴OC ⊥CD 又∵CD ⊥AE ∴OC //AE∴∵OC =OB∴B∴∴AE=AB(2)连接AC∵AB∴∵AB=AE,AC⊥BE∴EC=BC=6∵,∴△EDC∽△ECA∴3.端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?方程(组)与不等式解:(1)设肉粽和蜜枣粽的进货单价分别为x,y元,则根据题意可得:解此方程组得:答:肉粽得进货单价为10元,蜜枣粽得进货单价为4元(2)设第二批购进肉粽t个,第二批粽子得利润为W,则∵k=2>0∴W随t的增大而增大。
∴当t =200时,第二批粽子由最大利润,最大利润答:第二批购进肉粽200个时,全部售完后,第二批粽子获得利润最大,最大利润为1000元。
2020年广东省深圳市中考数学试卷和答案解析
2020年广东省深圳市中考数学试卷和答案解析一、选择题(每小题3分,共12小题,满分36分)1.(3分)2020的相反数是()A.2020B.C.﹣2020D.﹣解析:直接利用相反数的定义得出答案.参考答案:解:2020的相反数是:﹣2020.故选:C.点拨:此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.解析:根据中心对称图形与轴对称图形的概念进行判断即可.参考答案:解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、既是中心对称图形,又是轴对称图形,故此选项符合题意;C、不是中心对称图形,是轴对称图形,故此选项不合题意;D、是中心对称图形,不是轴对称图形,故此选项不合题意;故选:B.点拨:本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×108解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.参考答案:解:将150000000用科学记数法表示为1.5×108.故选:D.点拨:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体解析:分别得出圆锥体、圆柱体、三棱柱、正方体的三视图的形状,再判断即可.参考答案:解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B 不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C 不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选:D.点拨:本题考查简单几何体的三视图,明确圆锥、圆柱、三棱柱、正方体的三视图的形状和大小是正确判断的前提.5.(3分)某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253B.255,253C.253,247D.255,247解析:根据中位数、众数的计算方法,分别求出结果即可.参考答案:解:=(247+253+247+255+263)÷5=253,这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;故选:A.点拨:本题考查中位数、众数的意义和计算方法,掌握中位数、众数的计算方法是正确计算的前提.6.(3分)下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a6解析:利用合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则进行计算即可.参考答案:解:a+2a=3a,因此选项A不符合题意;a2•a3=a2+3=a5,因此选项B符合题意;(ab)3=a3b3,因此选项C不符合题意;(﹣a3)2=a6,因此选项D不符合题意;故选:B.点拨:本题考查合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则,掌握计算法则是正确计算的前提.7.(3分)如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°解析:根据平角的定义和平行线的性质即可得到结论.参考答案:解:由题意得,∠4=60°,∵∠1=40°,∴∠3=180°﹣60°﹣40°=80°,∵AB∥CD,∴∠3=∠2=80°,故选:D.点拨:本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.8.(3分)如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ 的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC 于点D.若BC=6,则BD的长为()A.2B.3C.4D.5解析:依据等腰三角形的性质,即可得到BD=BC,进而得出结论.参考答案:解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD=BC=×6=3,故选:B.点拨:本题主要考查了基本作图以及等腰三角形的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.9.(3分)以下说法正确的是()A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程=﹣2的解为x=2D.三角形的一个外角等于两个内角的和解析:根据平行四边形的性质对A进行判断;根据圆周角定理对B 进行判断;利用分式方程有检验可对C进行判断;根据三角形外角性质对D进行判断.参考答案:解:A、平行四边形的对边相等,所以A选项正确;B、一条弧所对的圆周角等于它所对的圆心角的一半,所以B选项错误;C、去分母得1=x﹣1﹣2(x﹣2),解得x=2,经检验原方程无解,所以C选项错误;D、三角形的一个外角等于与它不相邻的两个内角的和,所以D选项错误.故选:A.点拨:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.(3分)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米B.米C.200sin 70°米D.米解析:在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.参考答案:解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°﹣70°=20°,∴∠PTQ=70°,∴tan70°=,∴PT==,即河宽米,故选:B.点拨:此题考查了解直角三角形的应用﹣方向角问题,掌握方向角与正切函数的定义是解题的关键.11.(3分)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根解析:根据抛物线开口方向,对称轴的位置以及与y轴的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B进行判断;x =1时,y<0,可对C进行判断;根据抛物线y=ax2+bx+c与直线y=n+1无交点,可对D进行判断.参考答案:解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣=﹣1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,故B正确;C.∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(﹣1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.点拨:本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c (a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.12.(3分)如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD 于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个解析:连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF =EG=GF,可判断②;通过证明四边形BEGF是菱形,可得∠BEF =∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK和△GKH的面积相等,即可求解.参考答案:解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD∥BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,∴四边形BEGF是菱形,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB===,∴∠AEB=30°,∴∠DEF=75°,故④正确,由题意无法证明△GDK和△GKH的面积相等,故③错误;故选:C.点拨:本题考查了翻折变换,全等三角形的判定和性质,菱形的判定和性质,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.二、填空题(本题共4小题,每小题3分,共12分)13.(3分)分解因式:m3﹣m=m(m+1)(m﹣1).解析:先提取公因式m,再对余下的多项式利用平方差公式继续分解.参考答案:解:m3﹣m,=m(m2﹣1),=m(m+1)(m﹣1).点拨:本题考查提公因式法分解因式和利用平方差公式分解因式,关键在于需要进行二次分解因式.14.(3分)一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是.解析:用袋子中编号为偶数的小球的数量除以球的总个数即可得.参考答案:解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为,故答案为:.点拨:本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.15.(3分)如图,在平面直角坐标系中,O(0,0),A(3,1),B (1,2).反比例函数y=(k≠0)的图象经过▱OABC的顶点C,则k=﹣2.解析:连接OB,AC,根据O,B的坐标易求P的坐标,再根据平行四边形的性质:对角线互相平分即可求出则C点坐标,根据待定系数法即可求得k的值.参考答案:解:连接OB,AC,交点为P,∵四边形OABC是平行四边形,∴AP=CP,OP=BP,∵O(0,0),B(1,2),∴P的坐标(,1),∵A(3,1),∴C的坐标为(﹣2,1),∵反比例函数y=(k≠0)的图象经过点C,∴k=﹣2×1=﹣2,故答案为﹣2.点拨:本题考查的是反比例函数图象上点的坐标特点,平行四边形的性质,求得C点的坐标是解答此题的关键.16.(3分)如图,在四边形ABCD中,AC与BD相交于点O,∠ABC =∠DAC=90°,tan∠ACB=,=,则=.解析:通过作辅助线,得到△ABC∽△ANM,△OBC∽△ODM,△ABC ∽△DAN,进而得出对应边成比例,再根据tan∠ACB=,=,得出对应边之间关系,设AB=a,DN=b,表示BC,NA,MN,进而表示三角形的面积,求出三角形的面积比即可.参考答案:解:如图,过点D作DM∥BC,交CA的延长线于点M,延长BA交DM于点N,∵DM∥BC,∴△ABC∽△ANM,△OBC∽△ODM,∴==tan∠ACB=,==,又∵∠ABC=∠DAC=90°,∴∠BAC+∠NAD=90°,∵∠BAC+∠BCA=90°,∴∠NAD=∠BCA,∴△ABC∽△DAN,∴==,设AB=a,DN=b,则BC=2a,NA=2b,MN=4b,由==得,DM=a,∴4b+b=a,即,b=a,∴====.故答案为:.点拨:本题考查相似三角形的性质和判定,根据对应边成比例,设常数表示三角形的面积是得出正确答案的关键.三、解答题(本题共7小题,共52分)17.(5分)计算:()﹣1﹣2cos30°+|﹣|﹣(4﹣π)0.解析:根据零指数幂、负整数指数幂、特殊角的三角函数值进行计算即可求解.参考答案:解:原式=3﹣2×+3﹣13﹣+﹣1=2.点拨:本题考查了实数的运算、零指数幂、负整数指数幂、特殊角的三角函数值,解决本题的关键是掌握特殊角的三角函数值.18.(6分)先化简,再求值:÷(2+),其中a=2.解析:先将分式进行化简,然后代入值即可求解.参考答案:解:原式=÷=÷=×=当a=2时,原式==1.点拨:本题考查了分式的化简求值,解决本题的关键是进行分式的化简.19.(7分)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=50,n=10.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是72度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有180名.解析:(1)根据总线的人数和所占的百分比,可以求得m的值,然后即可计算出n的值;(2)根据(1)中的结果和硬件所占的百分比,可以求得硬件专业的毕业生,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以计算出在扇形统计图中,“软件”所对应的扇形的圆心角的度数;(4)根据统计图中的数据,可以计算出“总线”专业的毕业生的人数.参考答案:解:(1)m=15÷30%=50,n%=5÷50×100%=10%,故答案为:50,10;(2)硬件专业的毕业生有:50×40%=20(人),补全的条形统计图如右图所示;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是360°×=72°,故答案为:72;(4)600×30%=180(名),即“总线”专业的毕业生有180名,故答案为:180.点拨:本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C 的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.解析:(1)证明:连接AC、OC,如图,根据切线的性质得到OC ⊥CD,则可判断OC∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.参考答案:(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC==8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵CD•AE=AC•CE,∴CD==.点拨:本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.21.(8分)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?解析:(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,根据用620元购进50个肉粽和30个蜜枣粽,可得出方程,解出即可;(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,根据w=蜜枣粽的利润+肉粽的利润,得一次函数,根据一次函数的增减性,可解答.参考答案:解:(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,由题意得:50(x+6)+30x=620,解得:x=4,∴6+4=10,答:蜜枣粽的进货单价是4元,则肉粽的进货单价是10元;(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,由题意得:w=(14﹣10)y+(6﹣4)(300﹣y)=2y+600,∵2>0,∴w随y的增大而增大,∵y≤2(300﹣y),∴0<y≤200,∴当y=200时,w有最大值,w最大值=400+600=1000,答:第二批购进肉粽200个时,总利润最大,最大利润是1000元.点拨:本题考查了一次函数,一元一次方程及一元一次不等式的知识,解答本题的关键是仔细审题,找到不等关系及等量关系,难度一般.22.(9分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.解析:(1)由正方形的性质得出AE=AF,∠EAG=90°,AB=AD,∠BAD=90°,得出∠EAB=∠GAD,证明△AEB≌△AGD(SAS),则可得出结论;(2)由菱形的性质得出AE=AG,AB=AD,证明△AEB≌△AGD (SAS),由全等三角形的性质可得出结论;(3)方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,求出AG=6,AD=12,证明△AME ∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN =8﹣3b,可得出答案;方法二:证明△EAB∽△GAD,得出∠BEA=∠AGD,则A,E,G,Q四点共圆,得出∠GQP=∠PAE=90°,连接EG,BD,由勾股定理可求出答案.参考答案:(1)证明:∵四边形AEFG为正方形,∴AE=AF,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,理由如下:∵∠EAG=∠BAD,∴∠EAB=∠GAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,由题意知,AE=4,AB=8,∵=,∴AG=6,AD=12,∵∠EMA=∠ANG,∠MAE=∠GAN,∴△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,∴ED2=(2a)2+(12+2b)2=4a2+144+48b+4b2,GB2=(3a)2+(8﹣3b)2=9a2+64﹣48b+9b2,∴ED2+GB2=13(a2+b2)+208=13×4+208=260.方法二:如图2,设BE与DG交于Q,∵,AE=4,AB=8∴AG=6,AD=12.∵四边形AEFG和四边形ABCD为矩形,∴∠EAG=∠BAD,∴∠EAB=∠GAD,∵,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠PAE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.点拨:本题是相似形综合题,考查了正方形的性质,菱形的性质,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握特殊平行四边形的性质是解题的关键.23.(9分)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(﹣3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t 之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=?若存在,请求出F的坐标;若不存在,请说明理由.解析:(1)将点A(﹣3,0)、B(1,0)代入抛物线的解析式得到关于a、b的方程组即可;(2)分三种情况:①0<t<1时,②1≤t<时,③≤t≤3时,可由面积公式得出答案;(3)令F(﹣1,t),则MF=,ME=﹣n,得出,可求出n=.则得出答案.参考答案:解:(1)∵抛物线y=ax2+bx+3过点A(﹣3,0),B(1,0),∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)①0<t<1时,如图1,若B'C'与y轴交于点F,∵OO'=t,OB'=1﹣t,∴OF=3OB'=3﹣3t,∴S=×(C'O'+OF)×OO'=×(3+3﹣3t)×t=﹣+3t,②1≤t<时,S=;③≤t≤3时,如图2,C′O′与AD交于点Q,B′C′与AD交于点P,过点P作PH⊥C′O′于H,∵AO=3,O'O=t,∴AO'=3﹣t,O'Q=6﹣2t,∴C'Q=2t﹣3,∵QH=2PH,C'H=3PH,∴PH=C'Q=(2t﹣3),∴S=(2t﹣3),∴S=﹣,综合以上可得:S=.(3)令F(﹣1,t),则MF=,ME=﹣n,∵ME﹣MF=,∴MF=ME﹣,∴,∴m2+2m+1+t2﹣2nt=﹣.∵n=﹣m2﹣2m+3,∴+(2+4n﹣17)m+1+t2﹣6t+﹣=0.当t=时,上式对于任意m恒成立,∴存在F(﹣1,).点拨:本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,两点间的距离公式,平移的性质,三角形的面积等知识.熟练运用方程的思想方法,正确进行分类是解题的关键.。
2020年广东省深圳市中考数学试卷-含详细解析
2020年广东省深圳市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.2020的相反数是()A. 2020B. −2020C. 12020D. −120202.下列图形既是轴对称图形又是中心对称图形的是()A. B.C. D.3.2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A. 0.15×108B. 1.5×107C. 15×107D. 1.5×1084.分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A. 圆锥B. 圆柱C. 三棱柱D. 正方体5.某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A. 253,253B. 255,253C. 253,247D. 255,2476.下列运算正确的是()A. a+2a=3a2B. a2⋅a3=a5C. (ab)3=ab3D. (−a3)2=−a67.如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A. 40°B. 60°C. 70°D. 80°8.如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于12PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为()A. 2B. 3C. 4D. 59.以下说法正确的是()A. 平行四边形的对边相等B. 圆周角等于圆心角的一半C. 分式方程1x−2=x−1x−2−2的解为x=2D. 三角形的一个外角等于两个内角的和10.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A. 200tan70°米B. 200tan70∘米 C. 200sin 70°米 D. 200sin70∘米11.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(−1,n),其部分图象如图所示.以下结论错误的是()A. abc>0B. 4ac−b2<0C. 3a+c>0D. 关于x的方程ax2+bx+c=n+1无实数根12.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD 于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共4小题,共12.0分)13.分解因式:m3−m=______.14.一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是______.15.如图,在平面直角坐标系中,O(0,0),A(3,1),B(1,2).反比例函数y=kx(k≠0)的图象经过▱OABC的顶点C,则k=______.16.如图,在四边形ABCD中,AC与BD相交于点O,∠ABC=∠DAC=90°,tan∠ACB=12,BO OD =43,则S△ABDS△CBD=______.三、计算题(本大题共2小题,共11.0分)17.计算:(13)−1−2cos30°+|−√3|−(4−π)0.18.先化简,再求值:a+1a2−2a+1÷(2+3−aa−1),其中a=2.四、解答题(本大题共5小题,共41.0分)19.以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=______,n=______.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是______度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有______名.20.如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.21.端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?22.背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG =ABAD=23,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(−3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O′B′C′,点O、B、C的对应点分别为点O′、B′、C′,设平移时间为t秒,当点O′与点A重合时停止移动.记△O′B′C′与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=9作垂线,垂足为E,试2?若存在,请求出F 问在该抛物线的对称轴上是否存在一点F,使得ME−MF=14的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:2020的相反数是:−2020.故选:B.直接利用相反数的定义得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.2.【答案】B【解析】解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、既是中心对称图形,又是轴对称图形,故此选项符合题意;C、不是中心对称图形,是轴对称图形,故此选项不合题意;D、是中心对称图形,不是轴对称图形,故此选项不合题意;故选:B.根据中心对称图形与轴对称图形的概念进行判断即可.本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】D【解析】解:将150000000用科学记数法表示为1.5×108.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【解析】解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选:D.分别得出圆锥体、圆柱体、三棱柱、正方体的三视图的形状,再判断即可.本题考查简单几何体的三视图,明确圆锥、圆柱、三棱柱、正方体的三视图的形状和大小是正确判断的前提.5.【答案】A【解析】解:x−=(247+253+247+255+263)÷5=253,这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;故选:A.根据中位数、众数的计算方法,分别求出结果即可.本题考查中位数、众数的意义和计算方法,掌握中位数、众数的计算方法是正确计算的前提.6.【答案】B【解析】解:a+2a=3a,因此选项A不符合题意;a2⋅a3=a2+3=a5,因此选项B符合题意;(ab)3=a3b3,因此选项C不符合题意;(−a3)2=a6,因此选项D不符合题意;故选:B.利用合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则进行计算即可.本题考查合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则,掌握计算法则是正确计算的前提.7.【答案】D【解析】解:由题意得,∠4=60°,∵∠1=40°,∴∠3=180°−60°−40°=80°,∵AB//CD,∴∠3=∠2=80°,故选:D.根据平角的定义和平行线的性质即可得到结论.本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.8.【答案】B【解析】解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD=12BC=12×6=3,故选:B.依据等腰三角形的性质,即可得到BD=12BC,进而得出结论.本题主要考查了基本作图以及等腰三角形的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.9.【答案】A【解析】解:A、平行四边形的对边相等,所以A选项正确;B、一条弧所对的圆周角等于它所对的圆心角的一半,所以B选项错误;C、去分母得1=x−1−2(x−2),解得x=2,经检验原方程无解,所以C选项错误;D、三角形的一个外角等于与它不相邻的两个内角的和,所以D选项错误.故选:A.根据平行四边形的性质对A进行判断;根据圆周角定理对B进行判断;利用分式方程有检验可对C进行判断;根据三角形外角性质对D进行判断.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.【答案】B【解析】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°−70°=20°,∴∠PTQ=70°,∴tan70°=PQPT,∴PT=PQtan70∘=200tan70∘,即河宽200tan70∘米,故选:B.在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.此题考查了解直角三角形的应用−方向角问题,掌握方向角与正切函数的定义是解题的关键.11.【答案】C【解析】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=−b2a=−1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2−4ac>0,即4ac−b2<0,故B正确;C.∵抛物线的对称轴为直线x=−1,抛物线与x轴的一个交点在(−3,0)和(−2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(−1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.根据抛物线开口方向,对称轴的位置以及与y轴的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B进行判断;x=1时,y<0,可对C进行判断;根据抛物线y= ax2+bx+c与直线y=n+1无交点,可对D进行判断.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.12.【答案】C【解析】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD//BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,∴四边形BEGF是菱形,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB=ABBE =612=12,∴∠AEB=30°,∴∠DEF=75°,故④正确,由题意无法证明△GDK和△GKH的面积相等,故③错误;故选:C.连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF=EG=GF,可判断②;通过证明四边形BEGF 是菱形,可得∠BEF=∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK和△GKH的面积相等,即可求解.本题考查了翻折变换,全等三角形的判定和性质,菱形的判定和性质,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.13.【答案】m(m+1)(m−1)【解析】解:m3−m,=m(m2−1),=m(m+1)(m−1).先提取公因式m,再对余下的多项式利用平方差公式继续分解.本题考查提公因式法分解因式和利用平方差公式分解因式,关键在于需要进行二次分解因式.14.【答案】37【解析】解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为37,故答案为:37.用袋子中编号为偶数的小球的数量除以球的总个数即可得.本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.15.【答案】−2【解析】解:连接OB,AC,交点为P,∵四边形OABC是平行四边形,∴AP=CP,OP=BP,∵O(0,0),B(1,2),∴P的坐标(12,1),∵A(3,1),∴C的坐标为(−2,1),∵反比例函数y=kx(k≠0)的图象经过点C,∴k=−2×1=−2,故答案为−2.连接OB,AC,根据O,B的坐标易求P的坐标,再根据平行四边形的性质:对角线互相平分即可求出则C点坐标,根据待定系数法即可求得k的值.本题考查的是反比例函数图象上点的坐标特点,平行四边形的性质,求得C点的坐标是解答此题的关键.16.【答案】332【解析】解:如图,过点D作DM//BC,交CA的延长线于点M,延长BA交DM于点N,∵DM//BC,∴△ABC∽△ANM,△OBC∽△ODM,∴ABBC =ANNM=tan∠ACB=12,BCDM=OBOD=43,又∵∠ABC=∠DAC=90°,∴∠BAC+∠NAD=90°,∵∠BAC+∠BCA=90°,∴∠NAD=∠BCA,∴△ABC∽△DAN,∴ABBC =DNNA=12,设AB=a,DN=b,则BC=2a,NA=2b,MN=4b,由BCDM =OBOD=43得,DM=32a,∴4b+b=32a,即,b=310a,∴S △ABD S △BCD =12AB⋅DN 12BC⋅NB =ab 2a⋅(a+2b)=310a 22a⋅1610a =332.故答案为:332.通过作辅助线,得到△ABC∽△ANM ,△OBC∽△ODM ,△ABC∽△DAN ,进而得出对应边成比例,再根据tan∠ACB =12,BO OD =43,得出对应边之间关系,设AB =a ,DN =b ,表示BC ,NA ,MN ,进而表示三角形的面积,求出三角形的面积比即可.本题考查相似三角形的性质和判定,根据对应边成比例,设常数表示三角形的面积是得出正确答案的关键.17.【答案】解:原式=3−2×√32+3−1 3−√3+√3−1=2.【解析】根据零指数幂、负整数指数幂、特殊角的三角函数值进行计算即可求解. 本题考查了实数的运算、零指数幂、负整数指数幂、特殊角的三角函数值,解决本题的关键是掌握特殊角的三角函数值.18.【答案】解:原式=a+1(a−1)2÷2a−2+3−a a−1=a +1(a −1)2÷a +1a −1 =a +1(a −1)2×a −1a +1 =1a −1当a =2时,原式=12−1=1.【解析】先将分式进行化简,然后代入值即可求解.本题考查了分式的化简求值,解决本题的关键是进行分式的化简.19.【答案】50 10 72 180【解析】解:(1)m =15÷30%=50,n%=5÷50×100%=10%,故答案为:50,10;(2)硬件专业的毕业生有:50×40%=20(人),补全的条形统计图如右图所示;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是360°×1050=72°,故答案为:72;(4)600×30%=180(名),即“总线”专业的毕业生有180名,故答案为:180.(1)根据总线的人数和所占的百分比,可以求得m的值,然后即可计算出n的值;(2)根据(1)中的结果和硬件所占的百分比,可以求得硬件专业的毕业生,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以计算出在扇形统计图中,“软件”所对应的扇形的圆心角的度数;(4)根据统计图中的数据,可以计算出“总线”专业的毕业生的人数.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.【答案】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC//AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC=√102−62=8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵12CD⋅AE=12AC⋅CE,∴CD=6×810=245.【解析】(1)证明:连接AC、OC,如图,根据切线的性质得到OC⊥CD,则可判断OC//AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.21.【答案】解:(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,由题意得:50(x+6)+30x=620,解得:x=4,∴6+4=10,答:蜜枣粽的进货单价是4元,则肉粽的进货单价是10元;(2)设第二批购进肉粽y个,则蜜枣粽购进(300−y)个,获得利润为w元,由题意得:w=(14−10)y+(6−4)(300−y)=2y+600,∵2>0,∴w随y的增大而增大,∵y≤2(300−y),∴y≤200,∴当y=200时,w有最大值,w最大值=400+600=1000,答:第二批购进肉粽200个时,总利润最大,最大利润是1000元.【解析】(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,根据用620元购进50个肉粽和30个蜜枣粽,可得出方程,解出即可;(2)设第二批购进肉粽y个,则蜜枣粽购进(300−y)个,获得利润为w元,根据w=蜜枣粽的利润+肉粽的利润,得一次函数,根据一次函数的增减性,可解答.本题考查了一次函数,一元一次方程及一元一次不等式的知识,解答本题的关键是仔细审题,找到不等关系及等量关系,难度一般.22.【答案】(1)证明:∵四边形AEFG为正方形,∴AE=AF,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,理由如下:∵∠EAG=∠BAD,∴∠EAB=∠GAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:如图,设BE与DG交于Q,∵AEAG =ABAD=23,AE=4,AB=8∴AG=6,AD=12.∵四边形AEFG和四边形ABCD为矩形,∴∠EAG=∠BAD,∴∠EAB=∠GAD,∵EAAG =ABAD,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠PAE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.【解析】(1)由正方形的性质得出AE =AF ,∠EAG =90°,AB =AD ,∠BAD =90°,得出∠EAB =∠GAD ,证明△AEB≌△AGD(SAS),则可得出结论;(2)由菱形的性质得出AE =AG ,AB =AD ,证明△AEB≌△AGD(SAS),由全等三角形的性质可得出结论;(3)证明△EAB∽△GAD ,得出∠BEA =∠AGD ,则A ,E ,G ,Q 四点共圆,得出∠GQP =∠PAE =90°,连接EG ,BD ,由勾股定理可求出答案.本题是相似形综合题,考查了正方形的性质,菱形的性质,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握特殊平行四边形的性质是解题的关键.23.【答案】解:(1)∵抛物线y =ax 2+bx +3过点A(−3,0),B(1,0),∴{9a −3b +3=0a +b +3=0,解得{a =−1b =−2, ∴抛物线的解析式为y =−x 2−2x +3;(2)①0<t <1时,如图1,∵OO′=t ,OB′=1−t ,∴OE =3OB′=3−3t ,∴S =12×(C′O′+OE)×OO′=12×(3+3−3t)×t =−32t 2+3t , ②1≤t <32时,S =32; ③32≤t ≤3时,如图2,∵AO =3,O′O =t ,∴AO′=3−t ,O′O =6−2t ,∴C′Q =2t −3,∵QH =2HE ,C′H =3HE ,∴HE =15C′D =15(2t −3),∴S =32−12(2t −3)×15(2t −3), ∴S =−25t 2+65t +35,综合以上可得:S ={ −32t 2+3t (0<t <1)32(1≤t <32)−25t 2+65t +35(32≤t ≤3). (3)令F(−1,t),则MF =√(m +1)(n −t)2,ME =92−n ,∵ME −MF =14, ∴MF =ME −14, ∴(m +1)2+(n −t)2=(174−n)2,∴m 2+2m +1+t 2−2nt =−172n +28916. ∵n =−m 2−2m +3,∴(1+2n −172)m 2+(2+4n −17)m +1+t 2−6t +512−28916=0. 当n =154时,上式对于任意m 恒成立,∴存在F(−1,154).【解析】(1)将点A(−3,0)、B(1,0)代入抛物线的解析式得到关于a 、b 的方程组即可;(2)分三种情况:①0<t <1时,②1≤t <32时,③32≤t ≤3时,可由面积公式得出答案;(3)令F(−1,t),则MF =√(m +1)(n −t)2,ME =92−n ,得出(m +1)2+(n −t)2=(174−n)2,可求出n =154.则得出答案.本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,两点间的距离公式,平移的性质,三角形的面积等知识.熟练运用方程的思想方法,正确进行分类是解题的关键.。
2020年广东省深圳市中考数学试卷及答案解析
2020年广东省深圳市中考数学试卷一、选择题(每小题3分,共12小题,满分36分)1.(3分)2020的相反数是()A.2020B.12020C.﹣2020D.−120202.(3分)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×1084.(3分)分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体5.(3分)某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253B.255,253C.253,247D.255,247 6.(3分)下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a67.(3分)如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是( )A .40°B .60°C .70°D .80°8.(3分)如图,在△ABC 中,AB =AC .在AB 、AC 上分别截取AP ,AQ ,使AP =AQ .再分别以点P ,Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠BAC 内交于点R ,作射线AR ,交BC 于点D .若BC =6,则BD 的长为( )A .2B .3C .4D .59.(3分)以下说法正确的是( )A .平行四边形的对边相等B .圆周角等于圆心角的一半C .分式方程1x−2=x−1x−2−2的解为x =2D .三角形的一个外角等于两个内角的和10.(3分)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P 、Q 两点分别测定对岸一棵树T 的位置,T 在P 的正北方向,且T 在Q 的北偏西70°方向,则河宽(PT 的长)可以表示为( )A.200tan70°米B.200tan70°米C.200sin 70°米D.200sin70°米11.(3分)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根12.(3分)如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD 的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD 于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A .1个B .2个C .3个D .4个二、填空题(本题共4小题,每小题3分,共12分)13.(3分)分解因式:m 3﹣m = .14.(3分)一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是 .15.(3分)如图,在平面直角坐标系中,O (0,0),A (3,1),B (1,2).反比例函数y =k x (k≠0)的图象经过▱OABC 的顶点C ,则k = .16.(3分)如图,在四边形ABCD 中,AC 与BD 相交于点O ,∠ABC =∠DAC =90°,tan∠ACB =12,BO OD =43,则S △ABDS △CBD = .三、解答题(本题共7小题,共52分)17.(5分)计算:(13)﹣1﹣2cos30°+|−√3|﹣(4﹣π)0.18.(6分)先化简,再求值:a+1a2−2a+1÷(2+3−aa−1),其中a=2.19.(7分)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=,n=.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有名.20.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.21.(8分)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?22.(9分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E 、A 、D 在同一条直线上),发现BE =DG 且BE ⊥DG .小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG 绕点A 按逆时针方向旋转(如图1),还能得到BE =DG 吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG 和菱形ABCD ,将菱形AEFG 绕点A 按顺时针方向旋转(如图2),试问当∠EAG 与∠BAD 的大小满足怎样的关系时,背景中的结论BE =DG 仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG 和矩形ABCD ,且AE AG =AB AD =23,AE =4,AB =8,将矩形AEFG 绕点A 按顺时针方向旋转(如图3),连接DE ,BG .小组发现:在旋转过程中,DE 2+BG 2的值是定值,请求出这个定值.23.(9分)如图1,抛物线y =ax 2+bx +3(a ≠0)与x 轴的交点A (﹣3,0)和B (1,0),与y 轴交于点C ,顶点为D .(1)求该抛物线的解析式;(2)连接AD ,DC ,CB ,将△OBC 沿x 轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A 重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=92作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=14?若存在,请求出F的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共12小题,满分36分)1.(3分)2020的相反数是()A.2020B.12020C.﹣2020D.−12020【解答】解:2020的相反数是:﹣2020.故选:C.2.(3分)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、既是中心对称图形,又是轴对称图形,故此选项符合题意;C、不是中心对称图形,是轴对称图形,故此选项不合题意;D、是中心对称图形,不是轴对称图形,故此选项不合题意;故选:B.3.(3分)2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×108【解答】解:将150000000用科学记数法表示为1.5×108.故选:D.4.(3分)分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体【解答】解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选:D.5.(3分)某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253B.255,253C.253,247D.255,247【解答】解:x=(247+253+247+255+263)÷5=253,这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;故选:A.6.(3分)下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a6【解答】解:a+2a=3a,因此选项A不符合题意;a2•a3=a2+3=a5,因此选项B符合题意;(ab)3=a3b3,因此选项C不符合题意;(﹣a3)2=a6,因此选项D不符合题意;故选:B.7.(3分)如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°【解答】解:由题意得,∠4=60°,∵∠1=40°,∴∠3=180°﹣60°﹣40°=80°,∵AB ∥CD ,∴∠3=∠2=80°,故选:D .8.(3分)如图,在△ABC 中,AB =AC .在AB 、AC 上分别截取AP ,AQ ,使AP =AQ .再分别以点P ,Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠BAC 内交于点R ,作射线AR ,交BC 于点D .若BC =6,则BD 的长为( )A .2B .3C .4D .5【解答】解:由题可得,AR 平分∠BAC ,又∵AB =AC ,∴AD 是三角形ABC 的中线,∴BD =12BC =12×6=3, 故选:B .9.(3分)以下说法正确的是( )A .平行四边形的对边相等B .圆周角等于圆心角的一半C .分式方程1x−2=x−1x−2−2的解为x =2D.三角形的一个外角等于两个内角的和【解答】解:A、平行四边形的对边相等,所以A选项正确;B、一条弧所对的圆周角等于它所对的圆心角的一半,所以B选项错误;C、去分母得1=x﹣1﹣2(x﹣2),解得x=2,经检验原方程无解,所以C选项错误;D、三角形的一个外角等于与它不相邻的两个内角的和,所以D选项错误.故选:A.10.(3分)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米B.200tan70°米C.200sin 70°米D.200sin70°米【解答】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°﹣70°=20°,∴∠PTQ=70°,∴tan70°=PQ PT,∴PT=PQtan70°=200tan70°,即河宽200tan70°米,故选:B.11.(3分)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根【解答】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=−b2a=−1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,故B正确;C.∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(﹣1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.12.(3分)如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD 的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD 于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个【解答】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD∥BC,∴∠EGO =∠FBO , 又∵∠EOG =∠BOF , ∴△BOF ≌△GOE (ASA ), ∴BF =EG ,∴BF =EG =GF ,故②正确, ∵BE =EG =BF =FG , ∴四边形BEGF 是菱形, ∴∠BEF =∠GEF ,当点F 与点C 重合时,则BF =BC =BE =12, ∵sin ∠AEB =AB BE =612=12, ∴∠AEB =30°,∴∠DEF =75°,故④正确,由题意无法证明△GDK 和△GKH 的面积相等,故③错误; 故选:C .二、填空题(本题共4小题,每小题3分,共12分) 13.(3分)分解因式:m 3﹣m = m (m +1)(m ﹣1) . 【解答】解:m 3﹣m , =m (m 2﹣1), =m (m +1)(m ﹣1).14.(3分)一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是37.【解答】解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为37,故答案为:37.15.(3分)如图,在平面直角坐标系中,O (0,0),A (3,1),B (1,2).反比例函数y =kx (k ≠0)的图象经过▱OABC 的顶点C ,则k = ﹣2 .【解答】解:连接OB ,AC ,交点为P , ∵四边形OABC 是平行四边形, ∴AP =CP ,OP =BP , ∵O (0,0),B (1,2), ∴P 的坐标(12,1),∵A (3,1),∴C 的坐标为(﹣2,1),∵反比例函数y =kx (k ≠0)的图象经过点C , ∴k =﹣2×1=﹣2, 故答案为﹣2.16.(3分)如图,在四边形ABCD 中,AC 与BD 相交于点O ,∠ABC =∠DAC =90°,tan ∠ACB =12,BO OD=43,则S △ABD S △CBD=332.【解答】解:如图,过点D 作DM ∥BC ,交CA 的延长线于点M ,延长BA 交DM 于点N , ∵DM ∥BC ,∴△ABC ∽△ANM ,△OBC ∽△ODM , ∴AB BC=AN NM=tan ∠ACB =12,BC DM=OB OD=43,又∵∠ABC =∠DAC =90°, ∴∠BAC +∠NAD =90°, ∵∠BAC +∠BCA =90°, ∴∠NAD =∠BCA , ∴△ABC ∽△DAN , ∴AB BC=DN NA=12,设AB =a ,DN =b ,则BC =2a ,NA =2b ,MN =4b , 由BC DM=OB OD =43得,DM =32a ,∴4b +b =32a , 即,b =310a , ∴S △ABD S △BCD=12AB⋅DN 12BC⋅NB =ab 2a⋅(a+2b)=310a 22a⋅1610a=332.故答案为:332.三、解答题(本题共7小题,共52分)17.(5分)计算:(13)﹣1﹣2cos30°+|−√3|﹣(4﹣π)0.【解答】解:原式=3﹣2×√32+3﹣1 3−√3+√3−1 =2.18.(6分)先化简,再求值:a+1a 2−2a+1÷(2+3−aa−1),其中a =2.【解答】解:原式=a+1(a−1)2÷2a−2+3−aa−1=a+1(a−1)2÷a+1a−1 =a+1(a−1)2×a−1a+1=1a−1当a =2时,原式=12−1=1.19.(7分)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m 名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题. (1)m = 50 ,n = 10 . (2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是 72 度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有 180 名. 【解答】解:(1)m =15÷30%=50,n%=5÷50×100%=10%,故答案为:50,10;(2)硬件专业的毕业生有:50×40%=20(人),补全的条形统计图如右图所示;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是360°×1050=72°,故答案为:72;(4)600×30%=180(名),即“总线”专业的毕业生有180名,故答案为:180.20.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【解答】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC ∥AD , ∴∠OCB =∠E , ∵OB =OC , ∴∠OCB =∠B , ∴∠B =∠E , ∴AE =AB ;(2)解:∵AB 为直径, ∴∠ACB =90°, ∴AC =√102−62=8, ∵AB =AE =10,AC ⊥BE , ∴CE =BC =6, ∵12CD •AE =12AC •CE ,∴CD =6×810=245.21.(8分)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?【解答】解:(1)设蜜枣粽的进货单价是x 元,则肉粽的进货单价是(x +6)元, 由题意得:50(x +6)+30x =620,解得:x =4, ∴6+4=10,答:蜜枣粽的进货单价是4元,则肉粽的进货单价是10元;(2)设第二批购进肉粽y 个,则蜜枣粽购进(300﹣y )个,获得利润为w 元, 由题意得:w =(14﹣10)y +(6﹣4)(300﹣y )=2y +600, ∵2>0,∴w 随y 的增大而增大, ∵y ≤2(300﹣y ), ∴y ≤200,∴当y =200时,w 有最大值,w 最大值=400+600=1000,答:第二批购进肉粽200个时,总利润最大,最大利润是1000元.22.(9分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E 、A 、D 在同一条直线上),发现BE =DG 且BE ⊥DG . 小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG 绕点A 按逆时针方向旋转(如图1),还能得到BE =DG 吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG 和菱形ABCD ,将菱形AEFG 绕点A 按顺时针方向旋转(如图2),试问当∠EAG 与∠BAD 的大小满足怎样的关系时,背景中的结论BE =DG 仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG 和矩形ABCD ,且AE AG=AB AD=23,AE =4,AB =8,将矩形AEFG 绕点A 按顺时针方向旋转(如图3),连接DE ,BG .小组发现:在旋转过程中,DE 2+BG 2的值是定值,请求出这个定值.【解答】(1)证明:∵四边形AEFG 为正方形,∴AE =AF ,∠EAG =90°,又∵四边形ABCD 为正方形,∴AB =AD ,∠BAD =90°,∴∠EAB =∠GAD ,∴△AEB ≌△AGD (SAS ),∴BE =DG ;(2)当∠EAG =∠BAD 时,BE =DG ,理由如下:∵∠EAG =∠BAD ,∴∠EAB =∠GAD ,又∵四边形AEFG 和四边形ABCD 为菱形,∴AE =AG ,AB =AD ,∴△AEB ≌△AGD (SAS ),∴BE =DG ;(3)解:如图,设BE 与DG 交于Q ,∵AE AG =AB AD =23,AE =4,AB =8 ∴AG =6,AD =12.∵四边形AEFG 和四边形ABCD 为矩形,∴∠EAG =∠BAD ,∴∠EAB =∠GAD ,∵EA AG =AB AD ,∴△EAB ∽△GAD ,∴∠BEA =∠AGD ,∴A ,E ,G ,Q 四点共圆,∴∠GQP =∠P AE =90°,∴GD ⊥EB ,连接EG ,BD ,∴ED 2+GB 2=EQ 2+QD 2+GQ 2+QB 2=EG 2+BD 2,∴EG 2+BD 2=42+62+82+122=260.23.(9分)如图1,抛物线y =ax 2+bx +3(a ≠0)与x 轴的交点A (﹣3,0)和B (1,0),与y 轴交于点C ,顶点为D .(1)求该抛物线的解析式;(2)连接AD ,DC ,CB ,将△OBC 沿x 轴以每秒1个单位长度的速度向左平移,得到△O 'B 'C ',点O 、B 、C 的对应点分别为点O '、B '、C ',设平移时间为t 秒,当点O '与点A 重合时停止移动.记△O 'B 'C '与四边形AOCD 重合部分的面积为S ,请直接写出S 与t 之间的函数关系式;(3)如图2,过该抛物线上任意一点M (m ,n )向直线l :y =92作垂线,垂足为E ,试问在该抛物线的对称轴上是否存在一点F ,使得ME ﹣MF =14?若存在,请求出F 的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y =ax 2+bx +3过点A (﹣3,0),B (1,0),∴{9a −3b +3=0a +b +3=0,解得{a =−1b =−2,∴抛物线的解析式为y =﹣x 2﹣2x +3;(2)①0<t <1时,如图1,∵OO '=t ,OB '=1﹣t ,∴OE =3OB '=3﹣3t ,∴S =12×(C 'O '+OE )×OO '=12×(3+3﹣3t )×t =−32t 2+3t , ②1≤t <32时,S =32;③32≤t ≤3时,如图2,∵AO =3,O 'O =t ,∴AO '=3﹣t ,O 'O =6﹣2t ,∴C 'Q =2t ﹣3,∵QH =2HE ,C 'H =3HE ,∴HE =15C 'D =15(2t ﹣3),∴S =32−12(2t −3)×15(2t ﹣3),∴S =−25t 2+65t +35,综合以上可得:S ={ −32t 2+3t(0<t <1)32(1≤t <32)−25t 2+65t +35(32≤t ≤3). (3)令F (﹣1,t ),则MF =√(m +1)(n −t)2,ME =92−n , ∵ME ﹣MF =14,∴MF =ME −14,∴(m +1)2+(n −t)2=(174−n)2, ∴m 2+2m +1+t 2﹣2nt =−172n +28916. ∵n =﹣m 2﹣2m +3, ∴(1+2n −172)m 2+(2+4n ﹣17)m +1+t 2﹣6t +512−28916=0. 当n =154时,上式对于任意m 恒成立,∴存在F (﹣1,154).。
2020年广东省深圳市中考数学试卷(含解析)
2020年广东省深圳市中考数学试卷(考试时间:100分钟满分:100分)一、选择题(每小题3分,共36分)1.2020的相反数是()A.2020 B.C.﹣2020 D.﹣2.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.3.2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×1084.分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体5.某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253 B.255,253 C.253,247 D.255,2476.下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a67.如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°8.如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为()A.2 B.3 C.4 D.59.以下说法正确的是()A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程=﹣2的解为x=2D.三角形的一个外角等于两个内角的和10.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米B.米C.200sin 70°米D.米11.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根12.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共12分)13.分解因式:m3﹣m=.14.一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是.15.如图,在平面直角坐标系中,O(0,0),A(3,1),B(1,2).反比例函数y=(k≠0)的图象经过▱OABC的顶点C,则k=.16.如图,在四边形ABCD中,AC与BD相交于点O,∠ABC=∠DAC=90°,tan∠ACB=,=,则=.三、解答题(本题共7小题,共52分)17.(5分)计算:()﹣1﹣2cos30°+|﹣|﹣(4﹣π)0.18.(6分)先化简,再求值:÷(2+),其中a=2.19.(7分)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m 名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=,n=.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有名.20.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.21.(8分)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?22.(9分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB=8,将矩形AEFG 绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.23.(9分)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(﹣3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C 的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=?若存在,请求出F的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题1.【解答】解:2020的相反数是:﹣2020.故选:C.2.【解答】解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、既是中心对称图形,又是轴对称图形,故此选项符合题意;C、不是中心对称图形,是轴对称图形,故此选项不合题意;D、是中心对称图形,不是轴对称图形,故此选项不合题意;故选:B.3.【解答】解:将150000000用科学记数法表示为1.5×108.故选:D.4.【解答】解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选:D.5.【解答】解:=(247+253+247+255+263)÷5=253,这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;故选:A.6.【解答】解:a+2a=3a,因此选项A不符合题意;a2•a3=a2+3=a5,因此选项B符合题意;(ab)3=a3b3,因此选项C不符合题意;(﹣a3)2=a6,因此选项D不符合题意;故选:B.7.【解答】解:由题意得,∠4=60°,∵∠1=40°,∴∠3=180°﹣60°﹣40°=80°,∵AB∥CD,∴∠3=∠2=80°,故选:D.8.【解答】解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD=BC=×6=3,故选:B.9.【解答】解:A、平行四边形的对边相等,所以A选项正确;B、一条弧所对的圆周角等于它所对的圆心角的一半,所以B选项错误;C、去分母得1=x﹣1﹣2(x﹣2),解得x=2,经检验原方程无解,所以C选项错误;D、三角形的一个外角等于与它不相邻的两个内角的和,所以D选项错误.故选:A.10.【解答】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°﹣70°=20°,∴∠PTQ=70°,∴tan70°=,∴PT==,即河宽米,故选:B.11.【解答】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣=﹣1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,故B正确;C.∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(﹣1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.12.【解答】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD∥BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,∴四边形BEGF是菱形,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB===,∴∠AEB=30°,∴∠DEF=75°,故④正确,由题意无法证明△GDK和△GKH的面积相等,故③错误;故选:C.二、填空题13.【解答】解:m3﹣m,=m(m2﹣1),=m(m+1)(m﹣1).14.【解答】解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为,故答案为:.15.【解答】解:连接OB,AC,交点为P,∵四边形OABC是平行四边形,∴AP=CP,OP=BP,∵O(0,0),B(1,2),∴P的坐标(,1),∵A(3,1),∴C的坐标为(﹣2,1),∵反比例函数y=(k≠0)的图象经过点C,∴k=﹣2×1=﹣2,故答案为﹣2.16.【解答】解:如图,过点D作DM∥BC,交CA的延长线于点M,延长BA交DM于点N,∵DM∥BC,∴△ABC∽△ANM,△OBC∽△ODM,∴==tan∠ACB=,==,又∵∠ABC=∠DAC=90°,∴∠BAC+∠NAD=90°,∵∠BAC+∠BCA=90°,∴∠NAD=∠BCA,∴△ABC∽△DAN,∴==,设AB=a,DN=b,则BC=2a,NA=2b,MN=4b,由==得,DM=a,∴4b+b=a,即,b=a,∴====.故答案为:.三、解答题17.【解答】解:原式=3﹣2×+3﹣13﹣+﹣1=2.18.【解答】解:原式=÷=÷=×=当a=2时,原式==1.19.【解答】解:(1)m=15÷30%=50,n%=5÷50×100%=10%,故答案为:50,10;(2)硬件专业的毕业生有:50×40%=20(人),补全的条形统计图如右图所示;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是360°×=72°,故答案为:72;(4)600×30%=180(名),即“总线”专业的毕业生有180名,故答案为:180.20.【解答】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC==8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵CD•AE=AC•CE,∴CD==.21.【解答】解:(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,由题意得:50(x+6)+30x=620,解得:x=4,∴6+4=10,答:蜜枣粽的进货单价是4元,则肉粽的进货单价是10元;(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,由题意得:w=(14﹣10)y+(6﹣4)(300﹣y)=2y+600,∵2>0,∴w随y的增大而增大,∵y≤2(300﹣y),∴0<y≤200,∴当y=200时,w有最大值,w最大值=400+600=1000,答:第二批购进肉粽200个时,总利润最大,最大利润是1000元.22.【解答】(1)证明:∵四边形AEFG为正方形,∴AE=AF,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,理由如下:∵∠EAG=∠BAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,由题意知,AE=4,AB=8,∵=,∴AG=6,AD=12,∵∠EMA=∠ANG,∠MAE=∠GAN,∴△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,∴ED2=(2a)2+(12+2b)2=4a2+144+48b+4b2,GB2=(3a)2+(8﹣3b)2=9a2+64﹣48b+9b2,∴ED2+GB2=13(a2+b2)+208=13×4+208=260.方法二:如图2,设BE与DG交于Q,∵,AE=4,AB=8∴AG=6,AD=12.∵四边形AEFG和四边形ABCD为矩形,∴∠EAB=∠GAD,∵,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠PAE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.23.【解答】解:(1)∵抛物线y=ax2+bx+3过点A(﹣3,0),B(1,0),∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)①0<t<1时,如图1,∵OO'=t,OB'=1﹣t,∴OE=3OB'=3﹣3t,∴S=×(C'O'+OE)×OO'=×(3+3﹣3t)×t=﹣+3t,②1≤t<时,S=;③≤t≤3时,如图2,C′O′与AD交于点Q,B′C′与AD交于点P,过点P作PH⊥C′O′于H,∵AO=3,O'O=t,∴AO'=3﹣t,O'Q=6﹣2t,∴C'Q=2t﹣3,∵QH=2PH,C'H=3PH,∴PH=C'Q=(2t﹣3),∴S=(2t﹣3),∴S=﹣,综合以上可得:S=.(3)令F(﹣1,t),则MF=,ME=﹣n,∵ME﹣MF=,∴MF=ME﹣,∴,∴m2+2m+1+t2﹣2nt=﹣.∵n=﹣m2﹣2m+3,∴+(2+4n﹣17)m+1+t2﹣6t+﹣=0.当t=时,上式对于任意m恒成立,∴存在F(﹣1,).。
广东省深圳市2020年中考数学试题
广东省深圳市2020年中考数学试题学校:___________姓名:___________班级:___________考号:___________1. 2020的相反数是( ) A .2020B .﹣2020C .12020D .12020-2.下列图形中既是轴对称图形,也是中心对称图形的是( )A .B .C .D .3.2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为( ) A .0.15×108B .1.5×107C . 15×107D .1.5×1084.下列哪个图形,主视图、左视图和俯视图相同的是( )A .圆锥B .圆柱C .三棱柱D .正方体5.某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数...和中位数...分别是( ) A .253,253B .255,253C .253,247D .255,2476.下列运算正确的是( ) A .a+2a=3a 2 B .235a a a ⋅= C .33()ab ab =D .326()a a -=-7.一把直尺与30°的直角三角板如图所示,∠1=40°,则∠2=( )A.50°B.60°C.70°D.80°8.如图,已知AB=AC,BC=6,尺规作图痕迹可求出BD=()A.2 B.3 C.4 D.5 9.以下说法正确的是()A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程11222xx x-=---的解为x=2D.三角形的一个外角等于两个内角的和10.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT 的长)可以表示为()A.200tan70°米B.200tan70︒米C.200sin70°米D.200sin70︒米11.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()A .B .4ac -b 2<0C .3a +c =0D .ax 2+bx +c =n +1无实数根12.如图,矩形纸片ABCD 中,AB =6,BC =12.将纸片折叠,使点B 落在边AD 的延长线上的点G 处,折痕为EF ,点E 、F 分别在边AD 和边BC 上.连接BG ,交CD 于点K ,FG 交CD 于点H .给出以下结论:①EF ⊥BG ;②GE=GF ;③△GDK 和△GKH 的面积相等;④当点F 与点C 重合时,∠DEF =75°.其中正确..的结论共有( )A .1个B .2个C .3个D .4个13.分解因式:3m m -=__________.14.口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是___.15.如图,在平面直角坐标系中,ABCO 为平行四边形,O (0,0),A (3,1),B (1,2),反比例函数(0)ky k x=≠的图象经过OABC 的顶点C ,则k =___.16.如图,已知四边形ABCD ,AC 与BD 相交于点O ,∠ABC =∠DAC =90°,11tan ,23BO ACB OD ∠==,则ABD CBDS S =___.17.计算:101()2cos30|(4)3π--︒+--.18.先化简,再求值:213(2)211a aa a a +-÷+-+-,其中a =2.19.以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调査了m 名新聘毕业生的专业情况,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题: (1)m = ,n= ; (2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应圆心角的度数是 ;(4)若该公司新聘600名毕业生,请你估计“总线”专业的毕业生有 名. 20.如图,AB 为⊙O 的直径,点C 在⊙O 上,AD 与过点C 的切线互相垂直,垂足为D .连接BC 并延长,交AD 的延长线于点E .(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.21.端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?22.背景:一次小组合作探究课上,小明将两个正方形按背景图位置摆放(点E,A,D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转,(如图1)还能得到BE=DG吗?如果能,请给出证明.如若不能,请说明理由:(2)把背景中的正方形分别改为菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转,(如图2)试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形改成矩形AEFG和矩形ABCD,且23AE ABAG AD==,AE=4,AB=8,将矩形AEFG 绕点A 按顺时针方向旋转(如图3),连接DE ,BG .小组发现:在旋转过程中, BG 2+DE 2是定值,请求出这个定值.23.如图1,抛物线y =ax 2+bx +3(a ≠0)与x 轴交于A (-3,0)和B (1,0),与y 轴交于点C ,顶点为D .(1)求解抛物线解析式;(2)连接AD ,CD ,BC ,将△OBC 沿着x 轴以每秒1个单位长度的速度向左平移,得到O B C '''∆,点O 、B 、C 的对应点分别为点O ',B ',C ',设平移时间为t 秒,当点O'与点A 重合时停止移动.记O B C '''∆与四边形AOCD 的重叠部分的面积为S ,请直接..写出..S 与时间t 的函数解析式;(3)如图2,过抛物线上任意..一点M (m ,n )向直线l :92y =作垂线,垂足为E ,试问在该抛物线的对称轴上是否存在一点F ,使得ME -MF =14?若存在,请求F 点的坐标;若不存在,请说明理由.参考答案1.B【解析】【分析】直接利用相反数的定义得出答案.【详解】解:2020的相反数是:﹣2020.故选:B.【点睛】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意.故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【详解】解:将150000000用科学记数法表示为1.5×108.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.D【解析】【分析】分别得出圆锥体、圆柱体、三棱柱、正方体的三视图的形状,再判断即可.【详解】解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选:D.【点睛】本题考查简单几何体的三视图,明确圆锥、圆柱、三棱柱、正方体的三视图的形状和大小是正确判断的前提.5.A【解析】【分析】根据题干找出基准数,排列出新数列,则找到平均数,再由从小到大排列找出中位数.【详解】求平均数可用基准数法,设基准数为250,则新数列为-4,3,-3,5,13,新数列的平均数为3,则原数列的平均数为253;对数据从小到大进行排列,可知中位数为253,故选A.【点睛】此题考查中位数和平均数相关知识,难度一般.6.B【解析】【分析】根据合并同类项、同底数幂的乘法、幂的乘方、积的乘方逐项分析即可.【详解】A .a +2a =3a ,该选项错误;B .235a a a ⋅=,该选项正确;C .333()ab a b =,该选项错误;D .326()a a -=,该选项错误; 故选B . 【点睛】本题考查了整式的运算,熟练掌握幂的运算法则是解答本题的关键. 7.D 【解析】 【分析】如图:根据直角三角形的性质可得360︒∠=,然后再根据两直线平行,同旁内角互补解答即可. 【详解】解:如图:∵含30°直角三角形 ∴360︒∠= ∵直尺两边平行 ∴∠1+∠2+∠3=180°∴21803180︒︒∠=-∠-∠=. 故答案为D .【点睛】本题考查了直角三角形的性质和平行线的性质,其中灵活运用两直线平行、同旁内角互补的性质是解答本题的关键.8.B【解析】【分析】根据尺规作图的方法步骤判断即可.【详解】由作图痕迹可知AD为∠BAC的角平分线,而AB=AC,由等腰三角形的三线合一知D为BC重点,BD=3,故选B【点睛】本题考查尺规作图-角平分线及三线合一的性质,关键在于牢记尺规作图的方法和三线合一的性质.9.A【解析】【分析】根据平行四边形的性质、圆周角定理、解分式方程以及三角形外角的性质逐项分析即可.【详解】解:A选项正确;B选项:同弧所对的圆周角等于圆心角的一半,故B选项错误;C选项:x=2为增根,原分式方程无解,故C选项错误;D选项:没有指明两个内角为不想邻的内角,故D选项错误.故答案为A.【点睛】本题考查了平行四边形的性质、圆周角定理、解分式方程以及三角形外角的性质等知识,掌握相关性质、定理所关注的细节是解答本题的关键.10.B【解析】【分析】在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.【详解】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°-70°=20°,∴∠PTQ=70°,∴tan70PQPT︒=,∴200tan70tan70PQPT==︒︒,即河宽200tan70︒米,故选:B.【点睛】此题考查了解直角三角形的应用-方向角问题,掌握方向角与正切函数的定义是解题的关键.11.B【解析】【分析】根据函数图象确定a、b、c的符号判断A;根据抛物线与x轴的交点判断B;利用抛物线的对称轴得到b=2a,再根据抛物线的对称性求得c=-3a即可判断C;利用抛物线的顶点坐标判断抛物线与直线y=n+1即可判断D.【详解】由函数图象知a<0,c>0,由对称轴在y轴左侧,a与b同号,得b<0,故abc>0,选项A正确;二次函数与x轴有两个交点,故∆=240b ac->,则选项B错误,由图可知二次函数对称轴为x=-1,得b=2a,根据对称性可得函数与x轴的另一交点坐标为(1,0),代入解析式y=ax2+bx+c可得c=-3a,∴3a+c=0,选项C正确;∵二次函数y=ax2+bx+c的顶点坐标为(-1,n),∴抛物线与直线y=n+1没有交点,故D正确;故选:B.【点睛】此题考查抛物线的性质,抛物线的图象与点坐标,抛物线的对称性,正确理解和掌握y=ax2+bx+c型抛物线的性质及特征是解题的关键.12.C【解析】【分析】由折叠的性质可得四边形EBFG是菱形从而判断①②正确;由角平分线定理即可判断DG≠GH,由此推出③错误;根据F、C重合时的性质,可得∠AEB=30°,进而算出④正确.【详解】连接BE,由折叠可知BO=GO,∵EG//BF,∴∠EGO=∠FBO,又∵∠EOG=∠FOB,∴△EOG≌△FOB(ASA) ,∴EG=BF,∴四边形EBFG是平行四边形,由折叠可知BE=EG,则四边形EBFG为菱形,故EF⊥BG,GE=GF,∴①②正确;∵四边形EBFG为菱形,∴KG 平分∠DGH ,∴,DG≠GH ,∴ S △GDK ≠S △GKH ,故③错误;当点F 与点C 重合时,BE=BF=BC=12=2AB ,∴∠AEB =30°,1752DEF DEB ∠=∠=︒,故④正确. 综合,正确的为①②④.故选C .【点睛】本题考查矩形的性质,菱形的判断,折叠的性质,关键在于结合图形对线段和角度进行转换. 13.(1)(1)m m m +-【解析】【分析】综合利用提取公因式法和平方差公式法分解因式即可得.【详解】原式2(1)m m =-(1)(1)m m m =-+ 故答案为:(1)(1)m m m +-.【点睛】本题考查了利用提取公因式法和平方差公式法分解因式,熟练掌握因式分解的方法是解题关键.14.37【解析】【分析】用袋子中编号为偶数的小球的数量除以球的总个数即可得.【详解】解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为37,故答案为:37.【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.15.-2【解析】【分析】连接OB,AC,交点为P,根据O,B的坐标求解P的坐标,再根据平行四边形的性质:对角线互相平分即可求出则C点坐标,根据待定系数法即可求得k的值.【详解】解:连接OB,AC,交点为P,∵四边形OABC是平行四边形,∴AP=CP,OP=BP,∵O(0,0),B(1,2),∴P的坐标1,12⎛⎫ ⎪⎝⎭,∵A(3,1),∴C的坐标为(-2,1),∵反比例函数kyx=(k≠0)的图象经过点C,∴k=-2×1=-2,故答案为-2.【点睛】本题考查的是反比例函数图象上点的坐标特点,平行四边形的性质,求得C 点的坐标是解答此题的关键.16.317【解析】【分析】过B 点作BE//AD 交AC 于点E ,证明ADO EBO ∽△△,得到3,AO OE =再证明,ABE ACB ∠=∠利用1tan tan ,2BE AE ACB ABE CE BE ∠==∠==设,OE a =利用三角形的面积公式可得答案.【详解】 解:过B 点作BE//AD 交AC 于点E ,90,DAC ∠=︒∴ BE ⊥AD ,ADO EBO ∴∽, ∴,AO DO EO BO= 13BO OD = ∴3,AO DO EO BO== 3,AO OE ∴=由1tan 2ACB ∠=, 1,2BE CE ∴= 2,CE BE ∴=90,,ABC BE AC ∠=︒⊥90,ABE CBE CBE ACB ∴∠+∠=︒=∠+∠,ABE ACB ∴∠=∠1tan tan ,2AE ACB ABE BE ∴∠=∠== 2,BE AE ∴=24,CE BE AE ∴== ∴OAB OAD ABD CBD OCB OCD S S S S S S ∆∆+=+()()11221122AO AD AO BE AO AD BE AO OC AD BE OC OC AD OC BE •+•+===+•+• 设,OE a = 则3,AO a =4,AE AO OE a ∴=+= 16,CE a = 17.OC OE CE a =+=33.1717ABD CBD S AO a S OC a ∆∆===故答案为:3.17【点睛】本题考查相似三角形的性质和判定,锐角三角函数的应用,能正确作出辅助线,借助三角函数和相似三角形表示线段的长度是解题关键.17.2【解析】【分析】分别计算负整数指数幂,锐角三角函数,绝对值,零次幂,再合并即可.【详解】解:101()2cos30|(4)3π--︒+--3212=-⨯31=2.=【点睛】本题考查实数的运算,考查了负整数指数幂,锐角三角函数,绝对值,零次幂的运算,掌握以上知识是解题的关键.18.11a -,1. 【解析】【分析】先将分式进行化简,再把a 的值代入化简的结果中求值即可.【详解】213(2)211a a a a a +-÷+-+- 212(1)3(1)1a a a a a +-+-=÷-- 211(1)1a a a a ++=÷-- 211(1)1a a a a +-=⨯-+ 11a =- 当a=2时,原式1121==-. 【点睛】本题考查了分式的化简求值,解决本题的关键是进行分式的化简.19.(1)50,10;(2)补全条形统计图见解析;(3)70°;(4)估计“总线”专业的毕业生有180名.【解析】【分析】(1)根据条形统计图和扇形统计图的数据计算即可.(2)先算出硬件专业的毕业生人数,再补充统计图即可.(3)先算出软件专业的占比,再利用周角相乘即可算出圆心角.(4)用600与总线所占比相乘即可求出.【详解】(1)由统计图可知155030%m==,510%50n==,n=10.(2)硬件专业的毕业生为5040%=20⨯人,则统计图为(3)软件专业的毕业生对应的占比为10100%=20%50⨯,所对的圆心角的度数为20%360=72⨯︒︒.(4)该公司新聘600名毕业生,“总线”专业的毕业生为60030%=180⨯名.【点睛】本题考查条形统计图和扇形统计图的画图和信息获取,关键在于通过图象获取有用信息.20.(1)见解析;(2)245 CD=.【解析】【分析】(1)连接OC,由同旁内角互补得出AD//OC,可得∠OCB=∠E,即可推出∠ABE=∠E,AE=AB.(2)连接AC,由勾股定理求出AC,由△EDC∽△ECA得出相似比,求出CD即可.【详解】(1)证明:连接OC∵CD与⊙O相切于C点∴OC⊥CD又∵CD⊥AE∴OC//AE∴∠OCB=∠E∵OC=OB∴∠ABE=∠OCB∴∠ABE=∠E∴AE=AB(2)连接AC∵AB为⊙O的直径∴∠ACB=90°∴8AC==∵AB=AE,AC⊥BE∴EC=BC=6∵∠DEC=∠CEA, ∠EDC=∠ECA ∴△EDC∽△ECA∴DC EC AC EA=∴6248105ECCD ACEA=⋅=⨯=.【点睛】本题考查圆与三角形的综合性质及相似的证明和性质,关键在于合理作出辅助线将已知条件转换求解.21.(1)肉粽得进货单价为10元,蜜枣粽得进货单价为4元;(2)第二批购进肉粽200个时,全部售完后,第二批粽子获得利润最大,最大利润为1000元.【解析】【分析】(1)设肉粽和蜜枣粽的进货单价分别为x 、y 元,根据题意列方程组解答;(2)设第二批购进肉粽t 个,第二批粽子得利润为W ,列出函数关系式再根据函数的性质解答即可.【详解】(1)设肉粽和蜜枣粽的进货单价分别为x 、y 元,则根据题意可得:50306206x y x y +=⎧⎨-=⎩. 解此方程组得:104x y =⎧⎨=⎩. 答:肉粽得进货单价为10元,蜜枣粽得进货单价为4元;(2)设第二批购进肉粽t 个,第二批粽子得利润为W ,则(1410)(64)(300)2600W t t t =-+--=+,∵k =2>0,∴W 随t 的增大而增大,由题意2(300)t t ≤-,解得200t ≤,∴当t =200时,第二批粽子由最大利润,最大利润22006001000W =⨯+=,答:第二批购进肉粽200个时,全部售完后,第二批粽子获得利润最大,最大利润为1000元.【点睛】此题考查二元一次方程组的实际应用,不等式的实际应用,一次函数解决实际问题,一次函数的性质,正确理解题意列出方程组或函数、不等式解决问题是关键.22.(1)见解析;(2)当∠EAG =∠BAD 时,BE =DG 成立;理由见解析;(3)22260BG DE +=.【解析】【分析】(1)根据四边形ABCD 和AEFG 是正方形的性质证明△EAB ≌△GAD 即可;(2)根据菱形AEFG 和菱形ABCD 的性质以及角的和差证明△EAB ≌△GAD 即可说明当∠EAG =∠BAD 时,BE =DG 成立;(3)如图:连接EB ,BD ,设BE 和GD 相交于点H ,先根据四边形AEFG 和ABCD 为矩形的性质说明△EAB ∽△GAD ,再根据相似的性质得到90GHE EAC ︒∠=∠=,最后运用勾股定理解答即可.【详解】(1)证明:∵四边形ABCD 为正方形∴AB =AD ,90DAB ︒∠=∵四边形AEFG 为正方形∴AE =AG ,90EAG ︒∠=∴EAB GAD ∠=∠在△EAB 和△GAD 中有:AE AG EAB GAD AB AD =⎧⎪∠=∠⎨⎪=⎩∴△EAB ≌△GAD∴BE =DG ;(2)当∠EAG =∠BAD 时,BE =DG 成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年广东省深圳市中考数学试卷参考答案与试题解析一、选择题1.﹣2的绝对值是()A.﹣2 B.2 C.﹣D.故选B.2.图中立体图形的主视图是()A.B.C.D.故选A.3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106D.82×107故选:C.4.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.故选D.5.下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°故选C.6.不等式组的解集为()A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<3故选:D.7.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330D.(1+10%)x=330故选D.8.如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°故选B.9.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=2故选:C.10.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差故选B.11.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C 处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10cm,则树AB的高度是()m.A.20B.30 C.30D.40【解答】解:在Rt△CDE中,∵CD=20m,DE=10m,∴sin∠DCE==,∴∠DCE=30°.∵∠ACB=60°,DF∥AE,∴∠BGF=60°∴∠ABC=30°,∠DCB=90°. ∵∠BDF=30°, ∴∠DBF=60°, ∴∠DBC=30°, ∴BC===20m , ∴AB=BC•sin60°=20×=30m .故选B .12.如图,正方形ABCD 的边长是3,BP=CQ ,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②OA 2=OE•OP ;③S △AOD =S 四边形OECF ;④当BP=1时,tan ∠OAE=,其中正确结论的个数是( )A .1B .2C .3D .4【解答】解:∵四边形ABCD 是正方形, ∴AD=BC ,∠DAB=∠ABC=90°, ∵BP=CQ , ∴AP=BQ ,在△DAP 与△ABQ 中,,∴△DAP ≌△ABQ , ∴∠P=∠Q , ∵∠Q +∠QAB=90°, ∴∠P +∠QAB=90°, ∴∠AOP=90°, ∴AQ ⊥DP ; 故①正确;∵∠DOA=∠AOP=90,∠ADO +∠P=∠ADO +∠DAO=90°, ∴∠DAO=∠P , ∴△DAO ∽△APO ,∴,∴AO 2=OD•OP , ∵AE >AB , ∴AE >AD , ∴OD ≠OE ,∴OA 2≠OE•OP ;故②错误; 在△CQF 与△BPE 中,∴△CQF ≌△BPE , ∴CF=BE , ∴DF=CE ,在△ADF 与△DCE 中,, ∴△ADF ≌△DCE ,∴S △ADF ﹣S △DFO =S △DCE ﹣S △DOF , 即S △AOD =S 四边形OECF ;故③正确; ∵BP=1,AB=3, ∴AP=4,∵△AOP ∽△DAP , ∴,∴BE=,∴QE=,∵△QOE ∽△PAD , ∴, ∴QO=,OE=, ∴AO=5﹣QO=, ∴tan ∠OAE==,故④正确,故选C.二、填空题13.因式分解:a3﹣4a=a(a+2)(a﹣2).14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.15.阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)=2.16.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=3.【解答】解:如图作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ,∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,∴2x+3x=3,∴x=,∴AP=5x=3.故答案为3.三、解答题17.计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.【解答】解:|﹣2|﹣2cos45°+(﹣1)﹣2+,=2﹣﹣2×+1+2,=2﹣﹣+1+2,=3.18.先化简,再求值:( +)÷,其中x=﹣1.【解答】解:当x=﹣1时,原式=×=3x+2=﹣119.深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y(1)学生共120人,x=0.25,y=0.2;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有500人.【解答】解:(1)由题意总人数==120人,x==0.25,m=120×0.4=48,y=1﹣0.25﹣0.4﹣0.15=0.2,n=120×0.2=24,(2)条形图如图所示,(3)2000×0.25=500人,故答案为500.20.一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方米的矩形吗?请说明理由.【考点】AD:一元二次方程的应用.【分析】(1)设出矩形的一边长为未知数,用周长公式表示出另一边长,根据面积列出相应方程求解即可.(2)同样列出方程,若方程有解则可,否则就不可以.【解答】解:(1)设矩形的长为x厘米,则另一边长为(28﹣x)厘米,依题意有x(28﹣x)=180,解得x1=10(舍去),x2=18,28﹣x=28﹣18=10.故长为18厘米,宽为10厘米;(2)设矩形的长为x厘米,则宽为(28﹣x)厘米,依题意有x(28﹣x)=200,即x2﹣28x+200=0,则△=282﹣4×200=784﹣800<0,原方程无解,故不能围成一个面积为200平方厘米的矩形.21.如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先确定出反比例函数的解析式,进而求出点B的坐标,最后用待定系数法求出直线AB的解析式;(2)由(1)知,直线AB的解析式,进而求出C,D坐标,构造直角三角形,利用勾股定理即可得出结论.【解答】解:(1)将点A(2,4)代入y=中,得,m=2×4=8,∴反比例函数的解析式为y=,将点B(a,1)代入y=中,得,a=8,∴B(8,1),将点A(2,4),B(8,1)代入y=kx+b中,得,,∴,∴一次函数解析式为y=﹣x+5;(2)∵直线AB的解析式为y=﹣x+5,∴C(10,0),D(0,5),如图,过点A作AE⊥y轴于E,过点B作BF⊥x轴于F,∴E(0,4),F(8,0),∴AE=2,DE=1,BF=1,CF=2,在Rt△ADE中,根据勾股定理得,AD==,在Rt△BCF中,根据勾股定理得,BC==,∴AD=BC.22.如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.【考点】MR:圆的综合题.【分析】(1)在Rt△COH中,利用勾股定理即可解决问题;(2)只要证明∠CMD=△COA,求出sin∠COA即可;(3)由△EHM∽△NHF,推出=,推出HE•HF=HM•HN,又HM•HN=AH•HB,推出HE•HF=AH•HB,由此即可解决问题.【解答】解:(1)如图1中,连接OC.∵AB⊥CD,∴∠CHO=90°,在Rt△COH中,∵OC=r,OH=r﹣2,CH=4,∴r2=42+(r﹣2)2,∴r=5.(2)如图1中,连接OD.∵AB⊥CD,AB是直径,∴==,∴∠AOC=∠COD,∵∠CMD=∠COD,∴∠CMD=∠COA,∴sin∠CMD=sin∠COA==.(3)如图2中,连接AM.∵AB是直径,∴∠AMB=90°,∴∠MAB+∠ABM=90°,∵∠E+∠ABM=90°,∴∠E=∠MAB,∴∠MAB=∠MNB=∠E,∵∠EHM=∠NHFM∴△EHM∽△NHF,∴=,∴HE•HF=HM•HN,∵HM•HN=AH•HB,∴HE•HF=AH•HB=2•(10﹣2)=16.23.如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);=S△ABD?若存在(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.【考点】HF:二次函数综合题.【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)由条件可求得点D到x轴的距离,即可求得D点的纵坐标,代入抛物线解析式可求得D点坐标;(3)由条件可证得BC⊥AC,设直线AC和BE交于点F,过F作FM⊥x轴于点M,则可得BF=BC,利用平行线分线段成比例可求得F点的坐标,利用待定系数法可求得直线BE解析式,联立直线BE和抛物线解析式可求得E点坐标,则可求得BE的长.【解答】解:(1)∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)由题意可知C(0,2),A(﹣1,0),B(4,0),∴AB=5,OC=2,∴S△ABC=AB•OC=×5×2=5,∵S△ABC =S△ABD,∴S△ABD=×5=,设D(x,y),∴AB•|y|=×5|y|=,解得|y|=3,当y=3时,由﹣x2+x+2=3,解得x=1或x=2,此时D点坐标为(1,3)或(2,3);当y=﹣3时,由﹣x2+x+2=﹣3,解得x=﹣2(舍去)或x=5,此时D点坐标为(5,﹣3);综上可知存在满足条件的点D,其坐标为(1,3)或(2,3)或(5,﹣3);(3)∵AO=1,OC=2,OB=4,AB=5,∴AC==,BC==2,文档收集于互联网,已重新整理排版.word版本可编辑,有帮助欢迎下载支持.∴AC2+BC2=AB2,∴△ABC为直角三角形,即BC⊥AC,如图,设直线AC与直线BE交于点F,过F作FM⊥x轴于点M,由题意可知∠FBC=45°,∴∠CFB=45°,∴CF=BC=2,∴=,即=,解得OM=2,=,即=,解得FM=6,∴F(2,6),且B(4,0),设直线BE解析式为y=kx+m ,则可得,解得,∴直线BE解析式为y=﹣3x+12,联立直线BE 和抛物线解析式可得,解得或,∴E(5,﹣3),∴BE==.2017年7月8日1文档来源为:从网络收集整理.word版本可编辑.。