【数学】2018年广东省普通高中学业水平考试真题
2018年普通高等学校招生全国统一考试数学(广东卷理)
2018年普通高等学校招生全国统一考试数学(广东卷理)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设复数满足,其中为虚数单位,则=A.B.C.D.解析B;依题意得,故选B.2.已知集合为实数,且,为实数,且,则的元素个数为A.0 B.1 C.2D.3解析C;题意等价于求直线与圆的交点个数,画大致图像可得答案为C. 3. 若向量,,满足∥且⊥,则A.4 B.3 C.2D.0解析D;因为∥且⊥,所以⊥,从而,故选D.4. 设函数和分别是上的偶函数和奇函数,则下列结论恒成立的是A.是偶函数B.是奇函数C.是偶函数D.是奇函数解析A;依题意,故,从而是偶函数,故选A.5. 在平面直角坐标系上的区域由不等式组给定,若为上的动点,点的坐标为,则的最大值为A.B.C.4 D.3解析C;目标函数即,画出可行域如图所示,代入端点比较之,易得当时取得最大值,故选C.6. 甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为A.B.C.D.解析D;设甲队获得冠军为事件,则包含两种情况:(1)第一局胜;(2)第一局负但第二局胜;故所求概率,从而选D.7. 如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A.B.C.D.解析B;该几何体是以正视图所在的平行四边形为底面,高为的四棱柱,又平行四边形的底边长为,高为,所以面积,从而所求几何体的体积,故选B.8.设是整数集的非空子集,如果有,则称关于数的乘法是封闭的.若,是的两个不相交的非空子集,且有有,则下列结论恒成立的是A.中至少有一个关于乘法是封闭的B. 中至多有一个关于乘法是封闭的C. 中有且只有一个关于乘法是封闭的D. 中每一个关于乘法都是封闭的解析A;因为,故必有或,不妨设,则令,依题意对,有,从而关于乘法是封闭的;(其实到此已经可以选A了,但为了严谨,我们往下证明可以有一个不封闭以及可以两个都封闭),取,则为所有负整数组成的集合,显然封闭,但显然是不封闭的,如;同理,若奇数,偶数,显然两者都封闭,从而选A.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
2018年高考广东卷理科数学试题及答案解析版 精品
2018年普通高等学校招生全国统一考试(广东卷)数学(理科)本试题共4页,21小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.线性回归方程 y bx a =+ 中系数计算公式121()()()niii nii x x y y bx x ==--=-∑∑ , a y bx =- ,其中x ,y 表示样本均值.n 是正整数,则1221()()n n n n n n a b a b a a b ab b -----=-++++ .一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足(1)2i z +=,其中i 为虚数单位,则z =A .1i +B .1i -C .22i +D .22i -1.(B ).22(1)11(1)(1)iz i i i i -===-++-2.已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则A B ⋂的元素个数为A .0B .1C .2D .32.(C ).A B ⋂的元素个数等价于圆221x y +=与直线y x =的交点个数,显然有2个交点 3.若向量,,a b c 满足a ∥b 且⊥a c ,则(2)⋅+=c a bA .4B .3C .2D .0 3.(D ).依题意得⊥c a ,⊥c b ,则(2)20⋅+=⋅+⋅=c a b c a c b正视图 图1 侧视图 图24.设函数()f x 和()g x 分别是R 上的偶函数和奇函数,则下列结论恒成立的是 A .()()f x g x +是偶函数 B .()()f x g x -是奇函数 C .()()f xg x +是偶函数 D .()()f xg x -是奇函数4.(A ).由()f x 是偶函数、()g x 是奇函数,得()f x 和()g x 都是偶函数,所以()()f xg x +与()()f xg x -都是偶函数,()()f xg x +与()()f xg x -的奇偶性不能确定5.已知平面直角坐标系xOy 上的区域D 由不等式组02x y x ⎧⎪⎨⎪⎩≤≤给定.若(,)M x y 为D 上的动点,点A的坐标为,则z OM OA=⋅的最大值为A. B . C .4D .3 5.(C ).zy =+,即y z=+,画出不等式组表示的平面区域,易知当直线y z =+经过点时,z 取得最大值,max24z == 6.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军. 若两队胜每局的概率相同,则甲队获得冠军的概率为A .12B .35C .23D .346.(D ).乙获得冠军的概率为111224⨯=,则甲队获得冠军的概率为13144-=7.如图1 ~ 3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A. B. C. D.7.(B ).该几何体是一个底面为平行四边形,高为3则33V Sh ===8.设S 是整数集Z 的非空子集,如果,a b S ∀∈,有ab S ∈,则称S 关于数的乘法是封闭的.若,T V 是Z 的两个不相交的非空子集,T V Z ⋃=,且,,a b c T ∀∈,有abc T ∈;,,x y z V ∀∈,有xyz V ∈,则下列结论恒成立的是A .,T V 中至少有一个关于乘法是封闭的B .,T V 中至多有一个关于乘法是封闭的C .,T V 中有且只有一个关于乘法是封闭的D .,T V 中每一个关于乘法都是封闭的 8.(A ).若T 为奇数集,V 为偶数集,满足题意,此时T 与V 关于乘法都是封闭的,排除B 、C 若T 为负整数集,V 为非负整数集,也满足题意,此时只有V 关于乘法是封闭的,排除D二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9 ~ 13题) 9.不等式13x x +--≥0的解集是 .9.[1,)+∞.13x x +--≥0 ⇒1x +≥3x -⇒2(1)x +≥2(3)x -⇒x ≥110.72()x x x -的展开式中,4x 的系数是 (用数字作答) 10.84.72()x x x -的通项7821772()(2)r r r r r r r T xC x C x x --+=-=-,由824r -=得2r =,则227(2)84C -= 11.等差数列{}n a 前9项的和等于前4项的和.若11a =,40k a a +=,则k = .11.10.方法1:由94S S =得93646d d +=+,求得16d =-,则4111(1)()13()066k a a k +=+-⨯-++⨯-=,解得10k =方法2:由94S S =得567890a a a a a ++++=,即750a =,70a =,即104720a a a +==,即10k =12.函数32()31f x x x =-+在x = 处取得极小值. 12.2.2()363(2)f x x x x x '=-=-,令()0f x '=得0x =或2x =,显然当0x <时()0f x '>;当02x <<时()0f x '<;当2x >时()0f x '>,函数32()31f x x x =-+在2x =处取得极小值 13.某数学老师身高176cm ,他爷爷、父亲和儿子的身高分别是173cm 、170cm 和182cm .因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为 cm . 13.185.设父亲的身高为x cm ,儿子的身高为y cm ,则根据上述数据可得到如下表格:上表中的最后一组(182,?)是预测数据,173,176x y ==12221()()00361033()niii nii x x y y bx x ==--++⨯===++-∑∑ , 3a y bx =-=线性回归方程3y x =+,所以当182x =时,185y =,即他孙子的预测身高为185 cm .(二)选做题(14 ~ 15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知两曲线参数方程分别为sin xy θθ⎧=⎪⎨=⎪⎩(0)θπ<≤和254x t y t ⎧=⎪⎨⎪=⎩ (t ∈)R ,它们的交点坐标为___________.14.(1,5.sin x y θθ⎧=⎪⎨=⎪⎩表示椭圆2215x y +=(01)x y <≤≤,254x t y t ⎧=⎪⎨⎪=⎩表示抛物线245y x =图4COPBA22221(01)5450145x y x y x x x y x ⎧+=≤≤≤⎪⎪⇒+-=⇒=⎨⎪=⎪⎩或5x =-(舍去),又因为01y ≤≤,所以它们的交点坐标为15.(几何证明选讲选做题)如图4,过圆O 外一点P 分别作 圆的切线和割线交圆于,A B ,且7PB =,C 是圆上一点使得5BC =,BAC APB ∠=∠,则AB =___________.15由弦切角定理得PAB ACB ∠=∠,又BAC APB ∠=∠,则△PAB ∽△ACB ,则PB ABAB BC =,235AB PB BC =⋅=,即AB =三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数1()2sin()36f x x π=-,x ∈R . (1)求5()4f π的值;(2)设,0,2παβ⎡⎤∈⎢⎥⎣⎦,10(3)213f πα+=,6(32)5f βπ+=,求cos()αβ+的值.16.解:(1)515()2sin()2sin 43464f ππππ=⨯-==(2)110(3)2sin[(3)]2sin 232613f πππααα+=+-==,即5sin 13α=16(32)2sin[(32)]2sin()3625f ππβπβπβ+=+-=+=,即3cos 5β=∵,0,2παβ⎡⎤∈⎢⎥⎣⎦,∴12cos 13α==,4sin 5β==∴1235416cos()cos cos sin sin 13513565αβαβαβ+=-=⨯-⨯=17.(本小题满分13分)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素,x y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据:(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量; (2)当产品中的微量元素,x y 满足175x ≥且75y ≥时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望).17.解:(1)设乙厂生产的产品数量为a 件,则98145a =,解得35a =图5CDPAEFPF所以乙厂生产的产品数量为35件(2)从乙厂抽取的5件产品中,编号为2、5的产品是优等品,即5件产品中有2件是优等品由此可以估算出乙厂生产的优等品的数量为235145⨯=(件)(3)ξ可能的取值为0,1,223253(0),10C P C ξ=== 1123256(1),10C C P C ξ=== 22251(2),10C P C ξ===∴ξ的分布列为:∴3614012.1010105E ξ=⨯+⨯+⨯=18.(本小题满分13分)如图5,在锥体P ABCD -中,ABCD 是边长为1的 菱形,且60DAB ∠=,PA PD ==2PB =,,E F分别是BC ,PC 的中点. (1)证明:AD ⊥平面DEF ; (2)求二面角P AD B --的余弦值.18.(1)证明:取AD 的中点H ,连接,,PH BH BD ∵PA PD =,∴AD PH ⊥∵在边长为1的菱形ABCD 中,60DAB ∠=∴△ABD 是等边三角形 ∴AD HB ⊥,PH HB H = ∴AD ⊥平面PHB ∴AD PB ⊥∵,E F 分别是BC ,PC 的中点 ∴EF ∥PB ,HB ∥DE∴AD DE ⊥,AD EF ⊥,DE EF E = ∴AD ⊥平面DEF(2)解:由(1)知PH AD ⊥,HB AD ⊥ ∴PHB ∠是二面角P AD B --的平面角易求得PH BH ==∴2227334cos 27PH HB PB PHB PH HB +--+-∠====-⋅∴二面角P AD B --的余弦值为7-19.(本小题满分14分)设圆C与两圆22(4x y +=,22(4x y +=中的一个内切,另一个外切. (1)求C 的圆心轨迹L 的方程;(2)已知点M,F ,且P 为L 上动点,求MP FP - 的最大值及此时点P 的坐标.19.解:(1)设(F F ',圆C 的半径为r ,则(2)(2)4CF CF r r '-=+--=< ∴C 的圆心轨迹L 是以,F F '为焦点的双曲线,2a =,c =1b =∴C 的圆心轨迹L 的方程为2214x y -=(2)2MP FP MF -≤== ∴MP FP - 的最大值为2如图所示,P 必在L 直线MF 的斜率2k =-:2MF y x =-+22142x y y x ⎧-=⎪⎨⎪=-+⎩215280x -+=6)0--=12x x ==∵P x >P x =,P y =∴MP FP - 的最大值为2,此时P 为(55-20.(本小题满分14分)设0b >,数列{}n a 满足1a b =,1122n n n nba a a n --=+-(2)n ≥.(1)求数列{}n a 的通项公式;(2)证明:对于一切正整数n ,1112n n n b a ++≤+.20.(1)解:∵1122n n n nba a a n --=+-∴1122n n n a ba n a n --=+- ∴1211nn n n a b a b --=⋅+ ① 当2b =时,1112nn n n a a ---=,则{}n n a 是以12为首项,12为公差的等差数列∴11(1)22nn n a =+-⨯,即2n a = ② 当0b >且2b ≠时,11211()22n n n n a b b a b --+=+-- 当1n =时,122(2)nn a b b b +=--∴1{}2nn a b +-是以2(2)b b -为首项,2b 为公比的等比数列 ∴112()22n nn a b b b +=⋅-- ∴212(2)2(2)n n nn n n n b a b b b b b -=-=---∴(2)2n n nn n b b a b -=- 综上所述(2),02222nn nn n b b b b a b b ⎧->≠⎪=-⎨⎪=⎩ 且, (2)方法一:证明:① 当2b =时,11122n n n b a ++=+=;② 当0b >且2b ≠时,12212(2)(222)nnn n n n b b b b b -----=-++++1221222n nnn n n n n n b a b b b ----⋅=≤=++++111211112222222n n n n n n n n b b b b+++---++=====<=⋅1112n n b +++∴对于一切正整数n ,1112n n n b a ++≤+.方法二:证明:① 当2b =时,11122n n n b a ++=+=;② 当0b >且2b ≠时,要证1112n n n b a ++≤+,只需证11(2)122n n n nn nb b b b ++-≤+-, 即证1(2)122n nn n n b b bb +-≤+- 即证1221112222n n n n n n n b b b bb ----+≤+++++ 即证122111()(222)2n n n n n n b b b b n b ----++++++≥即证2112231122221()()2222n n n n n n n n b b b b nb b b b ---+-+++++++++≥ ∵2112231122221()()2222n n n n n n n n b b b b b b b b ---+-+++++++++ 2121232111222()()()()2222n n n n n n n n b b b b b b b b ----+=++++++++n≥+= ,∴原不等式成立∴对于一切正整数n ,1112n n n b a ++≤+.21.(本小题满分14分)在平面直角坐标系xOy 上,给定抛物线L :214y x =.实数,p q 满足24p q -≥0,12,x x 是方程20x px q -+=的两根,记12(,)max{,}p q x x ϕ=.(1)过点2001(,)4A p p 0(0)p ≠作L 的切线交y 轴于点B .证明:对线段AB 上的任一点(,)Q p q ,有0(,)2p p q ϕ=;(2)设(,)M a b 是定点,其中,a b 满足240a b ->,0a ≠.过(,)M a b 作L 的两条切线12,l l ,切点分别为2111(,)4E p p ,2221(,)4E p p ',12,l l 与y 轴分别交于,F F '.线段EF 上异于两端点的点集记为X .证明:112(,)(,)2p M a b X p p a b ϕ∈⇔>⇔=;(3)设{(,)|D x y y =≤1x -,y ≥215(1)}44x +-.当点(,)p q 取遍D 时,求(,)p q ϕ的最小值 (记为min ϕ)和最大值(记为max ϕ)21.解:(1)2001(,)4A p p 是抛物线L 上的点,12y x '=,则切线的斜率012k p = 过点A 的抛物线L 的切线方程为AB :200011()42y p p x p -=-,即2001124y p x p =-∵(,)Q p q 在线段AB 上,∴2001124q p p p =-,∴22220001144()()24p q p p p p p p -=--=-≥0不妨设方程20x px q -+=的两根为1x =,2x =则12p p p x --=,22p p p x +-=① 当00p >时,00p p ≤≤,001222p p p x p -==-,022px =∵00122p p x -<≤,∴12x x ≤,∴122(,)max{,}p q x x x ϕ==02p =② 当00p <时,00p p ≤≤,012p x =,002222p p px p -==-∵00222p px ≤<-,∴12x x ≥,∴121(,)max{,}p q x x x ϕ==02p =综上所述,对线段AB 上的任一点(,)Q p q ,有(,)2p p q ϕ=(2)由(1)知抛物线L 在2001(,)4p p 处的切线方程为2001124y p x p =-,即200240p p x y -+=∵切线恒过点(,)M a b ,则200240p ap b -+=,∴1,2p a =① 当0a >时,(,)M a b X ∈⇔10a p <<⇔1p a =+2p a =⇔12p p >② 当0a <时,(,)M a b X ∈⇔10p a <<⇔1p a =-2p a =⇔12p p >综合①②可得(,)M a b X ∈⇔12p p >∵由(1)可知,若2111(,)4E p p ,点(,)M a b 在线段EF 上,有1(,)2p a b ϕ=∴(,)M a b X ∈⇒1(,)2p a b ϕ=③由(1)可知,方程20x ax b -+=的两根11,22p x =或12p a -,21,22p x =或22pa -若1(,)2p a b ϕ=,即112max{,}2px x =则1122p a p -≥、 2122p p ≥、 2122p a p -≥∴12p p >∴1(,)2p a b ϕ=⇒12||||p p >⇒(,)M a b X ∈ ④综合③④可得(,)M a b X ∈⇔1(,)2p a b ϕ=综上所述112(,)(,)2p M a b X p p a b ϕ∈⇔>⇔=;(3)由2115(1)44y x y x =-⎧⎪⎨=+-⎪⎩,求得两个交点(0,1),(2,1)- 则02p ≤≤,过点(,)G p q 作抛物线L 的切线,设切点为N2001(,)4x x ,切线与y 轴的交点为H由(2)知200240x px q -+=,解得0x p =,①若0x p =,则点(,)G p q 在线段NH 上由1y x ≤-,得1q p ≤-,∴022x p p p p =+≥=+-=,∴m min in )12(x ϕ==.由215(1)44y x ≥+-,得221511(1)14442q p p p ≥+-=+-∴2442p q p -≤-,∴0x p p =++t =,则2122p t =-+,02t ≤≤∴22011552(1)2222x t t t ≤-++=--+≤∴0max max 5)24(x ϕ==②若0x p =,则点(,)G p q 在线段NH 的延长线上方程20x px q -+=的两根为12p p x x --=,22p p x x +-=即01,22x x =或02xp -∵0x p ≤∴00012(,)max{,}max{,}222x x xp q x x p p ϕ==-=-p ==,同理可得51(,)4p q ϕ≤≤综上所述min 1ϕ=,max 54ϕ=。
2018年广东省普通高等学校招收中等职业学校毕业生统一考试数学试题
2018年广东省普通高等学校招收中等职业学校毕业生统一考试数学试卷一、选择题1.已知集合A={0,1,2,4,5},B={0,2},则A∩B=A.{1}B.{0,2}C.{3,4,5}D.{0,1,2}2.函数f(x)=√3−4x的定义域是A.[34,+∞)B.[43,+∞)C.(−∞,34]D.(−∞,43]3.下列等式正确的是A.lg5−lg3=lg2B.lg5+lg3=lg8C.lg5=lg10lg5D.lg1100=−24.指数函数y=a x(0<a<1)的图象大致是5.x<−3是x2>9的A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件6.抛物线y2=4x的准线方程是A.x=−1B.x=1C.y=−1D.y=17.已知ΔABC,BC=√3,AC=√6,C=π2则A.sin A=√22B.cos A=√62C.tan A=√2D.cos(A+B)=18.1+12+122+⋯+12n−1=A.π2B.23πC.πD.2π9.若向量AB⃗⃗⃗⃗⃗ =(1,2),AC ⃗⃗⃗⃗⃗ =(3,4),则BC ⃗⃗⃗⃗⃗ = A.(4,6)B.(−2,−2)C.(1,3)D.(2,2)10.现有3000棵树,其中400棵松树,现在提取150做样本,其中抽取松树做样本的有()棵A.15B.20C.25D.3011.f (x )={x −3,x ≥0x 2−1,x <0,则f(f (2))= A.1B.0C.−1D.−212.一个硬币抛两次,至少一次是正面的概率是A.13B.12C.23D.34 13.已知点A (−1,4)B (5,2),则AB 的垂直平分线是A.3x −y −3=0B.3x +y −9=0C.3x −y −10=0D.3x +y −8=014.已知数列{a n }为等比数列,前n 项和S n =3n+1+a ,则a =A.−6B.−3C.0D.315.设f (x )是定义在R 上的奇函数,且对于任意实数x ,有f (x +4)=f (x ),若f (−1)=3,则f(4)+f(5)=A.−3B.3C.4D.6二、填空题16.双曲线x 24−y232=1的离心率ⅇ=17.已知向量a=(4,3),b⃗=(x,4),若a⊥b⃗,则|b⃗|=18.已知数据10,x,11,y,12,z的平均数为8,则x,y,z的平均数为19.以两直线x+y=0和2x−y−3=0的交点为圆心,且与直线2x−y+2=0相切的圆的标准方程是20.已知ΔABC的内角A,B,C对应边分别为a,b,c,已知3b=4a,B=2A,则cos A=三、解答题21.矩形周长为10,面积为A,一边长为x(1)求A与x的函数关系式(2)求A的最大值(3)设有一个周长为10的圆,面积为S,试比较A与S的大小关系22.已知数列{a n}是等差数列,a1+a2+a3=6,a5+a6=25(1)求a n的通项公式(2)若b n=a2n,求数列{b n}的前n项和为T n23.已知f(x)=A sin(ωx+φ),(A>0,ω>0,0<φ<π),最小值为−3,最小正周期为π(1)求A的值,ω的值(2)函数y=f(x),过点(π4,√7),求f(π8)24.已知椭圆的焦点F1(−√6,0),F2(√6,0),椭圆与x轴的一个交点A(−3,0)(1)求椭圆的标准方程(2)设P为椭圆上任意一点,求∠F1PF2的最小值。
(完整版)2018年的1月广东省普通高中的学业水平考试数学试卷真的题目及答案详解解析汇报
2018年1月广东省普通高中学业水平考试数学试卷(B 卷)1、选择题:本大题共15小题. 每小题4分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合,,则( ){}1,0,1,2M =-{}|12N x x =-≤<M N = . . . .A {}0,1,2B {}1,0,1-C M D N2、对任意的正实数,下列等式不成立的是( ),x y . ...A lg lg lgyy x x-=B lg()lg lg x y x y +=+C 3lg 3lg x x =D ln lg ln10x x =3、已知函数,设,则( )31,0()2,0x x x f x x ⎧-≥⎪=⎨<⎪⎩(0)f a =()=f a . . ..A 2-B 1-C 12D 04、设是虚数单位,是实数,若复数的虚部是2,则( )i x 1xi+x =. . . .A 4B 2C 2-D 4-5、设实数为常数,则函数存在零点的充分必要条件是( )a 2()()f x x x a x R =-+∈. . . .A 1a ≤B 1a >C 14a ≤D 14a >6、已知向量,,则下列结论正确的是( )(1,1)a = (0,2)b =. . . .A //a b B (2)a b b -⊥C a b =D 3a b = A7、某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生人数分别是( ). . . .A 69和B 96和C 78和D 87和8、如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为( ). .. .A 1B 2C 4D 89、若实数满足,则的最小值为,x y 1000x y x y x -+≥⎧⎪+≥⎨⎪≤⎩2z x y =-( ). . . .A 0B 1-C 32-D 2-10、如图,是平行四边形的两条对角线的交点,则下列等式正确的是( )o ABCD . .A DA DC AC -=B DA DC DO +=. .C OA OB AD DB -+= D AO OB BC AC++= 11、设的内角的对边分别为,若,则( )ABC A ,,A B C ,,a b c 2,a b c ===C =.. . .A 56πB 6πC 23πD 3π12、函数,则的最大值和最小正周期分别为( )()4sin cos f x x x =()f x . . . .A 2π和B 4π和C 22π和D 42π和13、设点是椭圆上的一点,是椭圆的两个焦点,若P 2221(2)4x y a a +=>12F F ,12F F =( )12PF PF +=. . . .A 4B 8C D 14、设函数是定义在上的减函数,且为奇函数,若,,则下列结论不()f x R ()f x 10x <20x >正确的是( ). . . .A (0)0f =B 1()0f x >C 221((2)f x f x +≤D 111()(2)f x f x +≤15、已知数列的前项和,则( ){}n a n 122n n S +=-22212n a a a +++= . . ..A 24(21)n -B 124(21)n -+C 4(41)3n -D 14(42)3n -+二、填空题:本大题共4小题,每小题4分,满分16分.16、双曲线的离心率为 .221916x y -=17、若,且,则 .2sin()23πθ-=0θπ<<tan θ=18、笔筒中放有2支黑色和1支红色共3支签字笔,先从笔筒中随机取出一支笔,使用后放回笔筒,第二次再从笔筒中随机取出一支笔使用,则两次使用的都是黑色笔的概率为 .19、圆心为两直线和的交点,且与直线相切的圆的标20x y +-=3100x y -++=40x y +-=准方程是 .三、解答题:本大题共2小题. 每小题12分,满分24分. 解答须写出文字说明、证明过程和演算步骤.20、若等差数列满足,且.{}n a 138a a +=61236a a +=(1)求的通项公式;{}n a(2)设数列满足,,求数列的前项和.{}n b 12b =112n n n b a a ++=-{}n b n n S 21、如图所示,在三棱锥中,,,为的中点,垂P ABC -PA ABC ⊥平面PB BC =F BC DE 直平分,且分别交于点.PC DE AC PC ,,D E (1)证明:;//EF ABP 平面(2)证明:.BD AC ⊥2018年1月广东省普通高中学业水平考试数学试卷(B 卷)答案解析一、选择题:本大题共15小题. 每小题4分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1、B 解析:,故选B.{}101M N =- ,,2、B 解析:对于B 项,令,则,而,显然不成1x y ==lg()lg 2lg10x y +=>=lg lg 0x y +=立,故选B.3、C 解析: ,故选C.3(0)011a f ==-=- 11()(1)22f a f -∴=-==4、D 解析: ,故选D.(1)1(1)(1)22x x i x x i i i i -==-++-242xx ∴-=⇒=-5、C 解析:由已知可得,,故选C.11404a a ∆=-≥⇒≤6、B 解析:对于A 项,,错误;12-010⨯⨯≠对于B 项,,,则,正确;2(2,0)a b -= (0,2)b = 20+020(2)a b b ⨯⨯=⇒-⊥对于C 项,,错误;2a = 对于D 项,,错误. 故选B.10122a b =⨯+⨯=A7、A 解析:抽样比为,则应抽取的男生人数为,应抽取的女生人数1535010k ==320=6()10⨯人为,故选A.3(5020)9()10-⨯=人8、C解析:由三视图可知,该几何体为长方体,长为2,宽为2,高为1,则体积为,故选C.2214V =⨯⨯=9、D 解析:(快速验证法)交点为,则分别为,所以11(0,1),(0,0),(,22-2z x y =-32,0,2--的最小值为,故选D.z 2-10、D 解析:对于A 项,,错误;DA DC CA -=对于B 项,,错误;2DA DC DO +=对于C 项,,错误;OA OB AD BA AD BD -+=+=对于D 项,,正确. 故选D.AO OB BC AB BC AC ++=+=11、A解析:由余弦定理,得,又222cos 2a b c C ab +-=== ,故选A.0C π<< 5=6C π∴12、A 解析:,最小正周期为,故选A. ()2sin 2f x x = max ()2f x ∴=22T ππ==13、B 解析:122F F c c ==⇒= 22224164a cb a ∴=+=+=⇒=,故选B.122248PF PF a ∴+==⨯=14、D 解析:对于A 项,为上的奇函数 ,正确;()f x R (0)0f ∴=对于B 项,为上的减函数 ,正确;()f x R 110()(0)0x f x f ∴<⇒>=对于C 项,20x > 222221121x x x x x ∴+≥===(当且仅当,即时等号成立),正确;221()(2)f x f x ∴+≤对于D 项, 10x < 111111(2x x x x ∴+=--+≤-=--ll,错误. 故选D.111()(2)(2)f x f fx∴+≥-=-15、C 解析:当时,;当时,2n≥1122(22)2222n n n n nn n na S S+-=-=---=⨯-=1n=适合上式. 是首项为,公比211222a S==-=222()(2)4n n nn na n N a*∴=∈⇒=={}2n a∴4为的等比数列,故选C.4222124(14)4(41)143n nna a a--∴+++==-二、填空题:本大题共4小题,每小题4分,满分16分.16、解析:由已知,得532293,164a ab b=⇒==⇒= 222916255c a b c∴=+=+=⇒=双曲线的离心率为.∴53cea==17解析:,且2sin()cos23πθθ-==0θπ<< sinθ∴===.sin3tancos2θθθ∴===18、解析:.49224339P⨯==⨯19、解析:联立得22(4)(2)2x y-++=203100x yx y+-=⎧⎨-++=⎩4(4,2)2xy=⎧⇒-⎨=-⎩圆心为则圆心到直线的距离为(4,2)-40x y+-=d圆的标准方程为.∴22(4)(2)2x y-++=3、解答题:本大题共2小题. 每小题12分,满分24分. 解答须写出文字说明、证明过程和演算步骤.20、解:(1)设等差数列的公差为.{}n a d ∴1311161211828236511362a a a a d a a a a d a d d +=++==⎧⎧⎧⇒⇒⎨⎨⎨+=+++==⎩⎩⎩ 数列的通项公式为.2(1)22n a n n ∴=+-⨯=∴{}n a 2n a n =(2)由(1)知, 2n a n =1122(1)2222n n n b a a n n n ++∴=-=+-⨯=-+ 又适合上式 2(1)224n b n n ∴=--+=-+12b = 24()n b n n N *∴=-+∈ 数列是首项为,公差为的等差数列.122(24)2n n b b n n +∴-=-+--+=-∴{}n b 22-22(1)2(2)232n n n S n n n n n n -∴=+⨯-=-+=-+21、解:(1)证明:垂直平分 为的中点DE PC E ∴PC 又为的中点 为的中位线 F BC EF ∴BCP A //EF BP∴又 ,EF ABP BP ABP ⊄⊂ 平面平面//EF ABP∴平面(2)证明:连接BE,为的中点 PB BC = E PC PC BE∴⊥垂直平分 DE PC PC DE∴⊥又, BE DE E = ,BE DE BDE ⊂平面PC BDE∴⊥平面又 BD BDE ⊂ 平面PC BD∴⊥ ,PA ABC BD ABC ⊥⊂平面平面PA BD∴⊥又, PC PA P = ,PC PA PAC ⊂平面BD PAC∴⊥平面又 AC PAC ⊂ 平面BD AC∴⊥。
最新-2018年普通高等学校招生全国统一考试数学理试题广东卷含答案 精品003
2018年普通高等学校招生全国统一考试数学理试题(广东卷,含答案)参考公式:柱体的体积公式V =Sh ,其中S 为柱体的底面积,h 为柱体的高; 线性回归方程y bx a =+中系数计算公式为1122211()()()nnii i ii i nniii i xx y y x yx y b xx xnxη====---==--∑∑∑∑,a y bx =-,其中,x y 表示样本均值;若n 是正整数,则()n n a b a b -=-12(n n a a b --++ (2)1n n ab b --+).一、 选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i -C. 22i +D.22i -2.已知集合(){,A x y =∣,x y 为实数,且}221xy +=,(){,B x y =∣,x y 为实数,且}y x =,则A B 的元素个数为A.0 B.1 C.2 D.3 3.若向量a, b, c 满足a ∥b 且a ⊥c ,则(2)⋅+=c a bA.4 B.3C.2D.04.设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是 A.()()f x g x +是偶函数 B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数5.在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定。
若(,)M x y 为D 上的动点,点A的坐标为,则=⋅z OM OA 的最大值为 A. B. C .4D .36.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为 A .12 B .35 C .23 D .347.如下图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为正视图侧视图A.B.C.D.8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的,若T ,V 是Z 的两个不相交的非空子集,TV Z =且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A.,T V 中至少有一个关于乘法是封闭的B. ,T V 中至多有一个关于乘法是封闭的C.,T V 中有且只有一个关于乘法是封闭的D. ,T V 中每一个关于乘法都是封闭的二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
最新-广东省揭阳市2018―2018学年度高三数学学业水平
FCB A ED 绝密★启用前广东省揭阳市2018—2018学年度高三学业水平考试数学理试题数学试题(理科)本试卷共4页,21小题,满分150分.考试用时l20分钟. 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 为锥体的高. 一.选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{|}A x y x Z ==∈,则A .i A ∈B .2i A ∈C .3i A ∈D .4i A ∉2.已知倾斜角为α的直线l 与直线220x y -+=平行,则tan 2α的值为A.45B. 34C. 43D. 23 3.已知()f x 是定义在R 上的奇函数,当0x ≥时()3x f x m =+(m 为常数),则3(log 5)f -的值为A. 4B.4-C.6D. 6-4.双曲线2213x y -=的一个焦点到它的渐近线的距离为5.“2a =”是 “函数()2xf x ax =-有零点”的.A.充分不必要条件B.必要不充分条件C. 充要条件D. 既不充分也不必要条件 6.如图,已知ABCDEF 是边长为1的正六边形,则()BA BC CF ⋅+的值为 A.34C. 32D.32- 7.已知向量(,1),(2,)a x z b y z =-=+,且a b ⊥,若变量x,y 满足约束条件1325x y x x y ≥-⎧⎪≥⎨⎪+≤⎩,则z 的最大值为 A.1 B.2 C.3 D.4 8.已知函数()|1|()f x x x x R =-∈,则不等式1()4f x >的解集为 (第6题图)P A.1(,2-∞ B.1(,)2+∞ C.11()22+D.1()2+∞二.填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9-13题)9. 设i是虚数单位,若复数1a ii+-为纯虚数,则实数a的值为 .10.设nS是等差数列{}na的前n项和,且151,9a a==,则6S= .11.近年来,随着以煤炭为主的能源消耗大幅攀升、机动车保有量急剧增加,我国许多大城市灰霾现象频发,造成灰霾天气的“元凶”之一是空气中的pm2.5(直径小于等于2.5微米的颗粒物).右图是某市某月(按30天计)根据对“pm2.5”24小时平均浓度值测试的结果画成的频率分布直方图,若规定空气中“pm2.5”24小时平均浓度值不超过0.185毫克/立方米为达标,那么该市当月有天“pm2.5”含量不达标.12.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门相同的选法共有种.(用数字作答)13.某几何体的三视图如图示,已知其主视图的周长为6,则该几何体体积的最大值为.(二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题) 直线2()1x tty t=-+⎧⎨=-⎩为参数被圆35cos15sinxyθθ=+⎧⎨=-+⎩()θθπ∈为参数,[0,2)所截得的弦长为 . 15.(几何证明选讲选做题)如图,从圆O外一点P引圆的切线PC和割线PBA,已知PC=2PB,BC=,则AC的长为.三.解答题:本大题共6小题,满分8016.(本小题满分12分)已知函数()sin cos(),f x x x x Rπ=+-∈.(1) 求函数()f x的最小正周期;(2) 求函数()f x的最大值和最小值;(3) 若1(),(0,)42fπαα=∈,求sin cosαα+的值.FEDP17. (本小题满分12分)某产品按行业生产标准分成8个等级,等级系数ξ依次为1,2,,8…,其中5ξ≥为标准A ,3ξ≥为标准B ,产品的等级系数越大表明产品的质量越好,已知某厂执行标准B 生产该产品,且该厂的产品都符合相应的执行标准.(1)从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 38 3 4 3 4 4 7 5 6 7该行业规定产品的等级系数7ξ≥的为一等品,等级系数57ξ≤<的为二等品,等级系数35ξ≤<的为三等品,试分别估计该厂生产的产品的一等品率、二等品率和三等品率;(2)已知该厂生产一件该产品的利润y (单位:元)与产品的等级系数ξ的关系式为:1,352,574.7y ξξξ≤<⎧⎪=≤<⎨⎪≥⎩,从该厂生产的产品中任取一件,其利润记为X ,用这个样本的频率分布估计总体分布,将频率视为概率,求X 的分布列和数学期望.18. (本小题满分14分) 已知函数321()2,3f x x bx x a =-++2x =是()f x 的一个极值点. (1)求函数()f x 的单调区间;(2)若当[1,)x ∈+∞时,22()3f x a ->恒成立,求a 的取值范围.19.(本小题满分14分)如图①边长为1的正方形ABCD 中,点E 、 F 分别为AB 、BC 的中点,将△BEF 剪去,将 △AED 、△DCF 分别沿DE 、DF 折起,使A 、 C 两点重合于点P 得一三棱锥如图②示. (1)求证:PD EF ⊥;(2)求三棱锥P DEF -的体积; ① ② (3)求DE 与平面PDF 所成角的正弦值. 第19题图20.(本小题满分14分)已知定点A (-3,0),MN 分别为x 轴、y 轴上的动点(M 、N 不重合),且MN AN ⊥,点P 在直线MN 上,32NP MP =. (1)求动点P 的轨迹C 的方程;(2)设点Q 是曲线228150x y x +-+=上任一点,试探究在轨迹C 上是否存在点T ?使得点T 到点Q 的距离最小,若存在,求出该最小距离和点T 的坐标,若不存在,说明理由.21.(本小题满分14分)已知113x =,21n n n x x x a +=+-.(n N *∈,a 为常数) (1)若14a =,求证:数列1lg()2n x ⎧⎫+⎨⎬⎩⎭是等比数列;(2)在(1)条件下,求证:51(),()62n n x n N *≤-∈;(3)若0a =,试问代数式2011111n nx =+∑的值在哪两个相邻的整数之间?并加以证明.揭阳市2018—2018学年度高中三年级学业水平考试数学试题(理科)参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.一.选择题:BCBA ACCD解析:1.∵{1,0,1}A =-,21i =-,故选B. 2.依题意知:1tan 2α=,从而22tan 4tan 21tan 3ααα==-,选C. 3.由()f x 是定义在R 上的奇函数得(0)101f m m =+=⇒=-,3log 533(log 5)(log 5)(31)f f -=-=--4=-,选B.4.双曲线的一个焦点为(2,0),一条渐近线方程为y x =,可得焦点到它的渐近线的距离y1=,选A. 5.若2a =,则函数()2x f x ax =-必有零点,反之函数()2x f x ax =- 有零点,a 未必为2.故选A.6.由余弦定理得||1BF =+=3()12BA BC CF BA BF ⋅+=⋅=⨯=,选C. 7.∵a b ⊥ ∴2()02x z y z z x y -++=⇒=+,点(,)x y 的可行域如图示, 当直线2z x y =+过点(1,1)时,Z 取得最大值,max 213z =+=,选C. 8.在同一坐标系内作出函数()|1|f x x x =-和14y =的图象如图, 利用数形结合易得答案选D.二.填空题:9. 1;10. 36;11. 27;12. 30;13.π.15. 解析:10.易得661611,3()36a S a a ==+=. 11.该市当月“pm2.5”含量不达标有801001601206020()0.0053027333333+++++⨯⨯=(天);12.间接法.2222444230C C C C ⋅-=(种);直接法:分成两类:有一门相同的有111432C C C 种,两门相同的有24C 种,至少一门相同有1112432430C C C C +=(种)13.由三视图知,该几何体为圆柱,设其底面的半径为r ,高为h ,则42623r h r h +=⇒+=,2V r h π=3()3r r h ππ++≤=(当r h =时“=”成立)或2V r h π==2(32)r r π-, 2'[2(32)2]6(1)V r r r r r ππ=--=-,令'0V =得1r =,当(0,1)r ∈时,'0V >,当(1,)r ∈+∞时,'0V <,故当1r =时,V 有最大值,max V π=,14.把直线和圆的参数方程化为普通方程得,01=++y x 22(3)(1)25x y -++=,于是弦心距,223=d 弦长l ==15.∵,PCB PAC CPB APC ∠=∠∠=∠ ∴PBC ∆∽PCA ∆∴12PB BC BC AC PC AC AC =⇒=⇒=三.解题题:16.解:(1)∵()sin cos ),4f x x x x x R π=-=-∈-------------------------------2分∴函数()f x 的最小正周期2T π=-------------------------------------3分(2)函数()f x .----------------------------------5分(3)由1()4f α=得1sin cos 4αα-= ∴21(sin cos )16αα-=,-----------------------------------------------------6分1151sin 2,sin 21616αα-==---------------------------------------------------7分∴21531(sin cos )1sin 211616ααα+=+=+=---------------------------------------9分∵(0,)2πα∈,∴sin cos 0αα+>∴sin cos αα+=.------------------------------------------------------12分17.解:(1)由样本数据知,30件产品中等级系数7ξ≥有6件,即一等品有6件,二等品有9件,三等品有15件-----------------------------------------------------------3分∴样本中一等品的频率为60.230=,故估计该厂生产的产品的一等品率为0.2--------4分二等品的频率为90.330=,故估计该厂生产的产品的二等品率为0.3;--------------5分三等品的频率为150.530=,故估计该厂生产的产品的三等品的频率为0.5.----------6分(2)∵X 的可能取值为:1,2,4用样本的频率分布估计总体分布,将频率视为概率,由(1) 可得(1)0.5P X ==,(2)0.3P X ==,(4)0.2P X ==--8分∴可得X 的分布列如右:----------------------------------------------------10分其数学期望10.52EX =⨯+⨯+⨯=(元)-----------------------------12分18.解:(1)∵2'()22f x x bx =-+且2x =是()f x 的一个极值点∴'(2)4420f b =-+=32b ⇒=,--------------------------------------------2分∴2'()32(1)(2)f x x x x x =-+=--------------------------------------------4分由'()0f x >得2x >或1x <,∴函数()f x 的单调增区间为(,1)-∞,(2,)+∞;------6分由'()0f x <得12x <<,∴函数()f x 的单调减区间为(1,2),---------------------8分(2)由(1)知,函数()f x 在(1,2)上单调递减,在(2,)+∞上单调递增 ∴当2x =时,函数()f x 取得最小值,min ()(2)f x f ==23a +,------------------10PDEFM FEDP 分[1,)x ∈+∞时,22()3f x a ->恒成立等价于2min 2(),[1,)3a f x x <-∈+∞-----------12分即2001a a a -<⇒<<。
广东省揭阳市2018届高三学业水平考试数学理Word版含解析
⼴东省揭阳市2018届⾼三学业⽔平考试数学理Word版含解析2018届⼴东省揭阳市⾼三学业⽔平(期末)考试数学理⼀、选择题:共12题1. 已知==,则A. B. C. D.【答案】D所以=.故答案为:D.2. 已知复数=为实数,为虚数单位)的实部与虚部相等,则A. B. C. D.【答案】B【解析】因为==的实部与虚部相等,所以,则,所以,则.故答案为:B.3. 已知命题;命题若,则,下列命题为假命题的是A. B. C. D.【答案】C【解析】因为=,所以命题p是真命题,则命题是假命题;若,则,但是,故命题q是假命题,命题是真命题.所以命题是假命题,均为真命题,故选C.4. 已知==,且的夹⾓为,则A. B. C. D.【答案】B【解析】因为==,且的夹⾓为,所以=====.故答案为:B.5. 设x,y满⾜约束条件,则=的最⼩值为A. B. C. D. 0【答案】A【解析】作出不等式组所表⽰的平⾯区域,如图所⽰,由⽬标函数z与直线=在y轴上的截距之间的关系可知,平移直线=,当直线过点B(1,5)时,⽬标函数=取得最⼩值.故答案为:A.6. 函数的部分图象如图所⽰,则的解析式可以是A. B.C. D.【答案】C【解析】由函数的部分图象可知,该函数是偶函数,故排除B;当时,,故排除D;当x=1时,对于A选项,=,故排除A,因此选C.7. 如图程序框图是为了求出的常⽤对数值,那么在空⽩判断框中,应该填⼊A. B. C. D.【答案】A【解析】由题意,循环结构的功能是为了求出的值,当k=99时,此时S=,不满⾜结果,则继续循环,当k=100时,S=,满⾜结果,则循环结束,所以判断框中应该填⼊的条件为:.故答案为:A.8. 某⼏何体三视图如图所⽰,则此⼏何体的体积为A. B. C. D. 704【答案】C【解析】由三视图可知,该⼏何体是:上⾯是底⾯半径为4、⾼是3的圆锥,下⾯是底⾯为边长为8的正⽅形、⾼是10的长⽅体,所以该⼏何体的体积V==.故答案为:C.9. 已知,则A. B. C. D.【答案】B【解析】因为,所以,所以,故A错误;⼜,所以,所以,所以,B正确;⼜,所以的⼤⼩不确定,故C错误;由指数函数的单调性可知,由幂函数的单调性可知,所以的⼤⼩关系不确定,故D错误.则答案为B.点睛:这个题⽬考查的是⽐较指数和对数值的⼤⼩;⼀般⽐较⼤⼩的题⽬,常⽤的⽅法有:先估算⼀下每个数值,看能否根据估算值直接⽐⼤⼩;估算不⾏的话再找中间量,经常和0,1,-1⽐较;还可以构造函数,利⽤函数的单调性来⽐较⼤⼩。
2018年广东高考(理科)数学试题及答案
2018年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。
) 1、设z=,则∣z ∣=( )A.0B. 12 C.1 D. √2 2、已知集合A={x|x 2-x-2>0},则C R A =( ) A 、{x|-1<x<2} B 、{x|-1≤x ≤2} C 、{x|x<-1}∪{x|x>2} D 、{x|x ≤-1}∪{x|x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记S n 为等差数列{a n }的前n 项和,若3S 3 = S 2+ S 4,a 1 =2,则a 5 =( ) A 、-12 B 、-10 C 、10 D 、125、设函数f (x )=x ³+(a-1)x ²+ax .若f (x )为奇函数,则曲线y= f (x )在点(0,0)处的切线方程为( )A.y= -2xB.y= -xC.y=2xD.y=x6、在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB→ =( ) A. 34 AB → - 14 AC → B. 14 AB → - 34 AC → C. 34 AB→ +14AC → D. 14 AB → + 34 AC→7、某圆柱的高为2,底面周长为16,其三视图如右图。
圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A. 2√17B. 2√5C. 3D. 28.设抛物线C :y ²=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM → ·FN→ =( ) A.5 B.6 C.7 D.8 9.已知函数f (x )=g (x )=f (x )+x+a ,若g (x )存在2个零点,则a 的取值范围是( )A. [-1,0)B. [0,+∞)C. [-1,+∞)D. [1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形。
最新-广东省揭阳市2018届高三学业水平考试文科数学试
绝密★启用前揭阳市2018-2018学年度高中三年级学业水平考试数学(文科)本试卷共4页,满分150分.考试用时120分钟.注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4.考试结束,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|20}A x x x =-≤,{0,1,2,3}B =,则A B =(A) {12}, (B) {012},, (C) {1} (D) {123},, 2.已知复数z 满足(21)2z i +=,则z = (A)12i --(B) 12i -+ (C) 12i -- (D)12i - 3.已知向量(1,2),(1,1)a b =-=- ,则()a b a -⋅=(A) 8 (B)5 (C) 4 (D) 4- 4.若方程()20f x -=在区间(0,)+∞有解,则函数()y f x =的图象可能是5.在等差数列{}n a 中,已知35710132,9,a a a a a +=++=则此数列的公差为(A)31 (B)3 (C) 12 (D) 166.利用计算机在区间 (0,1)上产生随机数a ,则不等式ln(31)0a -<成立的概率是(A)12(B)23(C)31 (D)147.抛物线28y x =的焦点到双曲线2213y x -=的渐近线的距离是(A) 12 (B)32 (C) 1 (D) 38.函数22()cos ()cos ()44f x x x ππ=--+的最大值和最小正周期分别为(A)1,2π (B) 1,π (C) 1,22π (D)1,2π9.某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,图1是描 述汽车价值变化的算法流程图,则当4n =时,最后输出的S 为 (A)9.6 (B)7.68 (C)6.144 (D)4.915210.已知棱长为2的正方体ABCD-A 1B 1C 1D 1的一个面A 1B 1C 1 D 1在一半球底面上,且A 、B 、C 、D 四个顶点都在此半球面上,则此半球的体积为(A)(B)(C)(D) 11.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若20FP FQ +=,则||QF =(A)3 (B)4 (C)6 (D)812.若关于x 的方程24sin sin 10x m x -+=在(0,)π内有两个不同的实数解,则实数m 的取值范围为(A) 4m >或4m <- (B)45m << (C)48m << (D)5m >或4m =第Ⅱ卷本卷包括必考题和选考题两部分.第13题 第21题为必考题,每个试题考生都必须做答.第22题 第24题为选考题,考生根据要求做答.二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填写在答题卡相应的横线上.13. 已知121(),(,1);4()log ,[1,).xx f x x x ⎧∈-∞⎪⎪=⎨⎪∈+∞⎪⎩,则((2))f f -= .14.设变量x ,y 满足约束条件222y xx y x ≥⎧⎪+≤⎨⎪≥-⎩,则3z x y =-的最小值为 .15.如图2,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则被截 去部分的几何体的表面积为 . 16.数列{}n a 的通项公式(1)2cos()n n n a n n π=-⋅+⋅,其前 i =1输入S =15否i =i +1开始结束输出Si >n ?S =S (1-20%)是图1C 1Bx时间(分钟)0.003608040201000.002频率/组距0.025图4n 项和为n S ,则10S 等于 .三、解答题:解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C sin cos A a C =. (I )求C 的值; (II )若c =,b =,求ABC ∆的面积.18.(本小题满分12分)某中学随机抽取50名高一学生调查其每天运动的时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图3),其中运动的时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(Ⅰ)求直方图中x 的值;(Ⅱ)定义运动的时间不少于1小时的学生称为“热爱运动”, 若该校有高一学生1200人,请估计有多少学生“热爱运动”; (Ⅲ)设,m n 表示在抽取的50人中某两位同学每天运动的时间,且已知,[40,60)[80,100]m n ∈⋃,求事件“||20m n ->”的概率. 19.(本小题满分12分)如图4,在三棱柱ABC -A 1B 1C 1中,底面△ABC 是边长为2的等边三角形,D 为AB 中点.(Ⅰ)求证:BC 1∥平面A 1CD ;(Ⅱ)若四边形CB B 1C 1是正方形,且1A D =求多面体11CAC BD 的体积. 20. (本小题满分12分)已知椭圆C 的中心在原点,焦点在y 轴上,且长轴的长为4. (Ⅰ)求椭圆C 的方程;(Ⅱ)若椭圆C 在第一象限的一点P 的横坐标为1,过点P 作倾斜角互补的两条不同的直线PA ,PB 分别交椭圆C 于另外两点A ,B ,求证:直线AB 的斜率为定值. 21.(本小题满分12分)已知函数(1)()ln ,b x f x a x x+=+ 曲线()y f x =在点(1,(1))f 处的切线方程为 2.y = (Ⅰ)求a 、b 的值;图3图4OEBD CP A(Ⅱ)当0x >且1x ≠时,求证:(1)ln ().1x xf x x +>-22.(本小题满分10分)选修4—1:几何证明选讲如图5,四边形ABCD 内接于,过点A 作的切线EP 交CB的延长线于P ,已知025PAB ∠=.(I )若BC 是⊙O 的直径,求D ∠的大小;(II )若025DAE ∠=,求证:2DA DC BP =⋅. 23.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,已知直线l 的参数方程为2cos 324sin 3x t y t ππ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是4ρ=. (Ⅰ)写出直线l 的普通方程与曲线C 的直角坐标系方程;(Ⅱ)设直线l 与曲线C 相交于A 、B 两点,求AOB ∠的值. 24.(本小题满分10分)选修4-5不等式选讲已知函数()|2|f x x =-.(Ⅰ)解不等式()(1)2f x f x ++≤; (Ⅱ)若0a <,求证:()()(2).f ax af x f a -≥揭阳市2018-2018学年度高中三年级学业水平考试数学(文科)参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数. 一、选择题:BCADAC DBCACD 解析:9.依题意知,设汽车x 年后的价值为S ,则15(120%)xS =-,结合程序 框图易得当4n =时,415(120%) 6.144S =-=.10. 设半球的半径为r ,依题意可得 2222r +=,解得r =,图5x=-2y 2=8xyxOF 'Q 'F (2,0)Q所以此半球的体积为323r π=.11. 如右图,根据已知条件结合抛物线的定义易得:|'|||2|'|||3FF PF QQ PQ ==|'|6QQ ⇒=.12. 令sin ,x u =则(0,1]u ∈,关于x 的方程24sin sin 10x m x -+=在(0,)π内有两个不同的实数解等价于方程2()410f u u mu =-+=在(0,1]上有唯一解2160,0.8m m ⎧∆=-=⎪⇔⎨>⎪⎩或(1)50f m =-<,解得4m =或5m >.[或方程2()410f u u mu =-+=在(0,1]上有唯一解等价于直线y m =与关于u 的函数14y u u=+,(0,1]u ∈图象有唯一交点,结合图象易得.二、填空题:13.4-;14. -8;15.54+;16.687.解析:15.依题意知该几何体如右图示:则被截去部分的几何体的表面积为2236542⨯+=+. 16.21010(2)(2)(2)S =-+-++- cos 2cos 210cos10πππ++++ 102[1(2)]5687.1(2)---=+=--三、解答题:17.解:(I )∵A 、C 为ABC ∆的内角,sin cos A a C =知sin 0,cos 0A C ≠≠,结合正弦定理可得:sin sin a Ac C==------------------------------------------------------------3分⇒tan C =,-----------------------------------------------------------------4分∵0C π<< ∴6C π=.--------------------------------------------------------5分(II )解法1:∵c =,b =由余弦定理得:22712a a =+-----------------------------------------7分整理得: 220a a +-= 解得:1a =或2a =-(不合舍去)--------------------------9分∴1a =,由1sin 2ABC S ab C ∆=得ABC ∆的面积11122ABC S ∆=⨯⨯=.--------------------------------------12分【解法2:由c =结合正弦定理得:sinA C ==,---------------------6分∵a c <, ∴A C <, ∴cos A ==,-----------------------------7分∴sin sin[()]sin()B A C A C π=-+=+sin cos cos sin A C A C =+=12=----------------------------9分由正弦定理得:sin 1sin b Aa B==,-------------------------------------------------10分∴ABC ∆的面积11122ABC S ∆=⨯⨯=.------------------------------------12分】18.解:(1)由20(0.0020.00320.025)1x ⨯+⨯++=得0.017x =;-------------------2分(Ⅱ)运动时间不少于1小时的频率为20(0.0020.003)0.1⨯+=,--------------------3分不少于1小时的频数为12000.1120⨯=,所以该校估计“热爱运动”的学生有120人;------5分(Ⅲ)由直方图知,成绩在[40,60)的人数为50200.0033⨯⨯=人,设为,,A B C ;------6分成绩在[80,100] 的人数为50200.0022⨯⨯=人,设为,x y .---------------------------7分若,[40,60)m n ∈时,有,,AB AC BC 三种情况;若,[80,100]m n ∈时,只有xy 一种情况;-------------------------------------------8分若,m n 分别在[40,60),[80,100]内时,则有,,,,,Ax Ay Bx By Cx Cy 共有6种情况.所以基本事件总数为10种,D 11C 1A 1DCA EB 1C 1A 1DCBA EHB 1C 1A 1DCA------------------------------------------------------------------10分 事件“||20m n ->”所包含的基本事件个数有6种. ∴P (||20m n ->)=63.105=----------------------------------------------------12分19.(I)证法1:连结AC 1,设AC 1与A 1C 相交于点E ,连接DE , 则E 为AC 1中点,-------------------------------2分 ∵D 为AB 的中点,∴DE ∥BC 1,------------------4分 ∵BC 1Ë平面A 1CD ,DE Ì平面A 1CD ,------------5分∴BC 1∥平面A 1CD . -----------------------------6分 【证法2:取11A B 中点1D ,连结1BD 和11C D ,-----1分 ∵BD 平行且等于11A D ∴四边形BD 11A D 为平行四边形 ∴11//A D BD -----------------------------------2分 ∵1A D ⊂平面1ACD ,1BD ⊄平面1ACD ∴1//BD 平面1ACD ,------------------------------3分 同理可得11//C D 平面1ACD ------------------------4分 ∵1111BD C D D = ∴平面1ACD //平面11BD C 又∵1BC ⊂平面11BD C∴BC 1∥平面A 1CD. -------------------------------6分】(Ⅱ) 222115AD +A A =A D = 1,A A AD \^-------------------------------------7分又111,//B B BC B B A A ^ 1A A BC \^,又AD BC B = 1A A \^面ABC -------------------------------------------9分(法一)∴所求多面体的体积V =1111111ABC A B C A ACD B A B C V V V ----------------------------10分111111133ABC ACD A B C AA S AA S BB S ∆∆∆=⨯-⋅⨯-⋅⨯112ABC AA S ∆=⋅⨯2112222=⋅⋅= 即所求多面体11CAC BD.----------------12分【(法二)过点1A 作111A H B C ⊥于H ,∵平面11BB C C ⊥平面111A B C 且平面11BB C C 平面111A B C 11B C =∴1A H ⊥平面11BB C C ,----------------------------------------------------------10分∴所求多面体的体积V =1111A ACD A A CC V V --+1111133BCD BCC S AA S A H ∆∆=⋅+⋅11114243232=⨯⨯+⨯⨯=.------------------------------------------12分】20.解:(Ⅰ)设椭圆的方程为22221(0)y x a b a b+=>>--------------------------------1分由题意22224a b c a c a⎧⎪=+⎪⎪=⎨⎪⎪=⎪⎩,解得2,a b ==-----------------------------------------4分所以,椭圆的方程为22142y x +=.-------------------------------------------------5分(Ⅱ)由椭圆的方程22142y x +=,得P .-------------------------------------6分由题意知,两直线PA 、PB 的斜率必存在,设PA 的斜率为k ,则PA的直线方程为(1)y k x -=-.--------------------------------------------7分由22(1)124y k x x y ⎧-=-⎪⎨+=⎪⎩得:222(2)2))40k x k k x k ++-+--=.-------------8分设A (x A , y A ),B (x B , y B ),则1A A x x =⋅=-------------------------------9分同理可得B x =----------------------------------------------------10分则B A x x -=,28(1)(1)2B A B A ky y k x k x k-=----=+. 所以直线AB的斜率A BAB A By y k x x -==-为定值.----------------------------------12分(1)ln ()1x x f x x +>-21.解:(Ⅰ)∵2(),a bf x x x '=-----------------------------------------------------1分由直线2y =的斜率为0,且过点(1,2)得(1)2,1(1),2f f =⎧⎪⎨'=⎪⎩即1,0,b a b =⎧⎨-=⎩------------------------------------------------------3分解得1, 1.a b ==-----------------------------------------------------------------5分(Ⅱ)当1x >时,不等式(1)ln 1()2ln 0.1x x f x x x x x +>⇔-->---------------------------6分当01x <<时,不等式(1)ln 1()2ln 0.1x x f x x x x x +>⇔--<------------------------------7分令22211221()2ln ,()1,x x g x x x g x x x x x-+'=--=+-= ∴当0x >时,()0,g x '≥ 所以函数()g x 在(0,)+∞单调递增,------------------------9分当1x >时,()(1)0,g x g >=故(1)ln ()1x xf x x +>-成立------------------------------10分当01x <<时,()(1)0,g x g <=故(1)ln ()1x xf x x +>-也成立-------------------------11分所以当0x >且1x ≠时,不等式 总成立----------------------------12分22.解:(I ) EP 与⊙O 相切于点A ,025ACB PAB ∴∠=∠=,-----------------------1分又BC 是⊙O 的直径,065ABC ∴∠=----------------------------------------------3分四边形ABCD 内接一于⊙O ,0180ABC D ∴∠+∠=0115.D ∴∠=-------------------------------------------------------------------5分(II )025,DAE ∠= ,,ACD PAB D PBA ∴∠=∠∠=∠.ADC PBA ∴∆∆ ---------------------------------------------------------------7分.DA DCBP BA∴=-------------------------------------------------------------------8分又,DA BA =2.DA DC BP ∴=⋅--------------------------------------------------10分23.解:(I )直线l 40y +-=,------------------------------------2分曲线C 的直角坐标系方程为2216.x y +=--------------------------------------------4分(II )⊙C 的圆心(0,0)到直线:40l y +-=的距离2,d ==------------------------------------------------------------6分 ∴121cos ,242AOB ∠== --------------------------------------------------------8分 ∵10,22AOB π<∠< 1,23AOB π∴∠=故23AOB π∠=.-----------------------------------------------10分24.解:(I )由题意,得()(1)|1||2|f x f x x x ++=-+-,因此只须解不等式|1||2|2x x -+-≤ ---------------------------------------------1分当x≤1时,原不式等价于-2x+3≤2,即112x ≤≤;------------------------------------2分当12x <≤时,原不式等价于1≤2,即12x <≤;------------------------------------3分当x>2时,原不式等价于2x-3≤2,即522x <≤.--------------------------------------4分综上,原不等式的解集为15|22x x ⎧⎫≤≤⎨⎬⎩⎭. -------------------------------------------5 分 (II )由题意得()()22f ax af x ax a x -=---------------------------------------6分 =2222ax a ax ax a ax -+-≥-+----------------------------------------------8分22(2).a f a =-=--------------------------------------------------------------9分所以()()(2)f ax af x f a -≥成立.------------------------------------------------10分。
广东省揭阳市2018届高三学业水平考试数学试卷(理)Word版含答案
广东省揭阳市2018届高三学业水平考试数学试卷(理)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效。
3.答案第Ⅱ卷时,将答案写在答题卡上,答在本试卷上无效。
4.考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,则(A)(B)(C)(D)2.复数的实部与虚部的和为(A)(B)(C)(D)3.在等差数列中,已知,则此数列的公差为(A)(B)(C)(D)4.如果双曲线经过点,且它的一条渐近线方程为,那么该双曲线的方程式(A)(B)(C)(D)5.利用计算机在区间(0,1)上产生随机数a,则不等式成立的概率是(A)(B)(C)(D)6.设是两个非零向量,则“”是“”的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分又不必要条件7.已知奇函数的图像关于直线对称,且,则的值为(A)3 (B)0 (C)-3 (D)8.函数的最大值和最小正周期分别为(A)(B)(C)(D)9.某人以15万元买了一辆汽车,此汽车将以每年的速度折旧,图1是描述汽车价值变化的算法流程图,则当n=4时,最后输出的S的值为(A)9.6 (B)7.68(C)6.144 (D)4.915210.如图2,网格纸上小正方形是边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为(A)54 (B)162(C)(D)11.已知直线与圆心为C的圆相交于A,B两点,且,则实数a的值为(A)或(B)或(C)或(D)或12.若函数存在唯一的零点,则实数a的取值范围为(A)(B)(C)(D)第Ⅱ卷本卷包括必答题和选考题两部分,第13题~第21题为必答题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答。
2018年全国高考广东省数学(理)试卷及答案【精校版】
2018年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1}M =-,{0,1,2}N =,则M N =A. {0,1}B. {1,0,2}-C. {1,0,1,2}-D. {1,0,1}-2.已知复数Z 满足(34)25i z +=,则Z=A. 34i -+B. 34i --C. 34i +D. 34i -3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为m 和n ,则m n -=A.5B.6C.7D.84.若实数k 满足09k <<,则曲线221259x y k-=-与曲线221259x y k -=-的 A. 焦距相等 B. 实半轴长相等 C. 虚半轴长相等 D. 离心率相等5.已知向量()1,0,1a =-,则下列向量中与a 成60︒夹角的是A.(-1,1,0)B.(1,-1,0)C.(0,-1,1)D.(-1,0,1)6.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别是A.200,20B.100,20C.200,10D.100,107.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下面结论一定正确的是A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定 8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A.60B.90C.120D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。
广东省1月普通高中学业水平考试数学试卷Word版含解析
2018年1月广东省普通高中学业水平考试数学试卷(B卷)一.选择题:本大题共15小题. 每小题4分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. )【答案】B【解析】由题意可知故选B2. )D.【答案】B【解析】∵故选B3. )B. C. D.【答案】C故选C4. 2)【答案】D2故选D5. )【答案】C∴函数故选C6. )【答案】B故选B7. 某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生人数分别是()A. 6和9B. 9和6C. 7和8D. 8和7【答案】A∵用分层抽样的方法,从该班学生中随机选取15人参加某项活动故选A点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.8. 如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为()【答案】C【解析】由图像可知该空间几何体为长方体,长和宽为2,高为1故选C点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点. 观察三视图并将其“翻译”成直观图是解题的关键,做题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.9. )C. D.【答案】D【解析】根据已知作出可行域如图所示:故选D点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题. 求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.10. )【答案】D,故故选D11. )【答案】A故选A12. )A. 2【答案】A∴函数的最大值为2故选A13.)【答案】B【解析】∵故选B点睛:本题主要考查利用椭圆的简单性质及椭圆的定义. 求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.14. ,确的是()【答案】D正确;对于2是定义域上的减函数,所以,故错误故选D15. )【答案】C故选C二.填空题:本大题共4小题,每小题4分,满分16分.16. ____________.【解析】∵由题可知17.【答案】【解析】∵故答案为18. 笔筒中放有2支黑色和1支红色共3支签字笔,先从笔筒中随机取出一支笔,使用后放回笔筒,第二次再从笔筒中随机取出一支笔使用,则两次使用的都是黑色笔的概率为____________.【解析】第一次为黑色的概率为19. 圆心为两直线方程是____________.【解析】联立方程组∵圆与直线∴圆的半径点睛:此题考查了直线与圆的位置关系,涉及的知识有:点到直线的距离公式,圆的标准方程,当直线与圆相切时,圆心到切线的距离等于圆的半径.属于基础题.三.解答题:本大题共2小题. 每小题12分,满分24分. 解答须写出文字说明、证明过程和演算步骤.20.(1(2【答案】(12【解析】试题分析:(1组即可求解(2)由(1试题解析:(1(2)由(1.21. 如图所示,在三棱锥中,(1(2【答案】(1)见解析(2)见解析【解析】试题分析:(1(2.试题解析:(1(2点睛:本题主要考查线面平行的判定定理、线面垂直的判定定理等应用,此类题目是立体几何中的常见问题,解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,本题能较好的考查考生的空间想象能力、逻辑推理能力、转化与化归思想及基本运算能力等,试题有一定的综合性,属于中档试题.。
2018学年1月广东省普通高中数学学业水平考试真题(一)+Word版含解析10
广东省普通高中学业水平考试真题卷(时间:90分钟 满分:100分)一、选择题(本大题共15小题,每小题4分,共60分.每小题中只有一个选项是符合题意的,不选、多选、错选均不得分)1.已知集合M ={0,2,4},N ={1,2,3},P ={0,3},则(M ∪N )∩P 等于( )A .{0,1,2,3,4}B .{0,3}C .{0,4}D .{0} 2.函数y =lg(x +1)的定义域是( )A .(-∞,+∞)B .(0,+∞)C .(-1,+∞)D .-1,+∞)3.设i 为虚数单位,则复数1-ii等于( )A .1+iB .1-iC .-1+iD .-1-i4.已知甲:球的半径为1 cm ;乙:球的体积为4π3cm 3,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知直线l 过点A (1,2),且与直线y =12x +1垂直,则直线l 的方程是( )A .y =2xB .y =-2x +4C .y =12x +32D .y =12x +526.顶点在坐标原点,准线为x =-2的抛物线的标准方程是( )A .y 2=8xB .y 2=-8xC .x 2=8yD .x 2=-8y7.已知三点A (-3,3), B (0, 1),C (1,0),则|AB→+BC →|等于( ) A .5 B .4 C.13+ 2 D.13- 28.已知角α的顶点为坐标原点,始边为x 轴的正半轴,终边过点P (5,-2),则下列等式不正确的是( )A. sin α=-23 B .sin(α+π)=23C .cos α=53D .tan α=-529.下列等式恒成立的是( )A.13x =x -23(x ≠0)B .(3x )2=3x 2C .log 3(x 2+1)+log 32=log 3(x 2+3)D .log 313x =-x10.已知数列{a n }满足a 1=1,且a n +1-a n =2,则{a n }的前n 项和S n 等于( )A .n 2+1B .n 2C .2n -1D .2n -111.已知实数x ,y 满足⎩⎪⎨⎪⎧x ≤3,y ≤x ,x +y ≥2,则z =2x +y 的最大值为()A .3B .5C .9D .1012.已知点A (-1,8)和B (5, 2),则以线段AB 为直径的圆的标准方程是( )A .(x +2)2+(y +5)2=3 2B .(x +2)2+(y +5)2=18C .(x -2)2+(y -5)2=3 2D .(x -2)2+(y -5)2=18 13.下列不等式一定成立的是( )A .x +2x ≥2(x ≠0)B .x 2+1x 2+1≥1(x ∈R)C .x 2+1≤2x (x ∈R)D .x 2+5x +6≥0(x ∈R)14.已知f (x )是定义在R 上的偶函数,且当x ∈(-∞,0]时,f (x )=x 2-sin x ,则当x ∈0,+∞)时,f (x )=( )A .x 2+sin xB .-x 2-sin xC .x 2-sin xD .-x 2+sin x15.已知样本x 1,x 2,x 3,x 4,x 5的平均数为4, 方差为3,则x 1+6,x 2+6,x 3+6,x 4+6,x 5+6的平均数和方差分别为( )A .4和3B .4和9C .10和3D .10和9二、填空题(本大题共4小题,每小题4分,共16分.将正确答案填在题中横线上)16.已知x >0,且53,x ,15成等比数列,则x =____________.17.函数f (x )=sin x cos(x +1)+sin(x +1)cos x 的最小正周期是____________.18.从1,2,3,4这四个数字中任意选取两个不同的数字,将它们组成一个两位数,该两位数小于20的概率是____________.19.中心在坐标原点的椭圆,其离心率为12,两个焦点F 1和F 2在x 轴上,P 为该椭圆上的任意一点,若|PF 1|+|PF 2|=4,则椭圆的标准方程是________.三、解答题(本大题共2小题,共24分.解答时应写出必要的文字说明、证明过程及演算步骤)20.(12分)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a cos A =bcos B. (1)证明:△ABC 为等腰三角形; (2)若a =2,c =3,求sin C 的值.21.(12分)如图,在四棱锥PABCD中,PA⊥AB,PA⊥AD,AC ⊥CD,∠ABC=60°,PA=AB=BC=2,E为PC的中点.(1) 证明:AP⊥CD;(2) 求三棱锥PABC的体积;(3) 证明:AE⊥平面PCD.广东省普通高中学业水平考试真题卷解析(时间:90分钟满分:100分)一、选择题(本大题共15小题,每小题4分,共60分.每小题中只有一个选项是符合题意的,不选、多选、错选均不得分) 1.已知集合M={0,2,4},N={1,2,3},P={0,3},则(M∪N)∩P 等于()A.{0,1,2,3,4} B.{0,3} C.{0,4} D.{0}解析:M∪N={0,1,2,3,4},(M∪N)∩P={0,3},故选B.答案:B2.函数y=lg(x+1)的定义域是()A.(-∞,+∞) B.(0,+∞)C.(-1,+∞) D.-1,+∞)解析:对数函数要求真数大于0,所以x+1>0,解得x>-1,故选C.答案:C3.设i为虚数单位,则复数1-ii等于()A.1+i B.1-i C.-1+i D.-1-i解析:1-ii=(1-i)·ii·i=i-i2i2=i+1-1=-1-i,故选D.答案:D4.已知甲:球的半径为1 cm;乙:球的体积为4π3cm3,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:充分性:若r=1 cm,由V=43πr3可得体积为43πcm3,同样利用此公式可证必要性也成立.答案:C5.已知直线l过点A(1,2),且与直线y=12x+1垂直,则直线l的方程是()A.y=2x B.y=-2x+4 C.y=12x+32D.y=12x+52解析:因为两直线垂直时,斜率互为倒数的相反数(k1k2=-1),所以直线l的斜率k=-2,由点斜式方程y-y0=k(x-x0)可得,y-2=-2(x-1),整理得y=-2x+4,故选B.答案:B6.顶点在坐标原点,准线为x=-2的抛物线的标准方程是() A.y2=8x B.y2=-8x C.x2=8y D.x2=-8y解析:因为准线方程为x=-2,所以焦点在x轴上,且-p2=-2,所以p=4,由y2=2px得y2=8x.7.已知三点A (-3,3), B (0, 1),C (1,0),则|AB →+BC →|等于( ) A .5 B .4 C.13+ 2 D.13- 2解析:因为AB →=(3,-2),BC →=(1,-1),所以AB →+BC →=(4,-3),所以|AB →+BC →|=42+(-3)2=5,故选A. 答案:A8.已知角α的顶点为坐标原点,始边为x 轴的正半轴,终边过点P (5,-2),则下列等式不正确的是( )A .sin α=-23B .sin(α+π)=23C .cos α=53 D .tan α=-52解析:依题意得,r =x 2+y 2=5+4=3,sin α=y r ,cos α=xr ,tan α=yx,所以sin α=-23,cos α=53,tan α=-25=-255,所以A ,B ,C 正确,D 错误.答案:D9.下列等式恒成立的是( ) A.13x=x -23(x ≠0)B .(3x )2=3x 2C .log 3(x 2+1)+log 32=log 3(x 2+3) D .log 313x =-x解析:13x =x -13(x ≠0),故A 错;(3x )2=32x ,故B 错;log 3(x 2+1)+log 32=log 32(x 2+1),故C 错.10.已知数列{a n }满足a 1=1,且a n +1-a n =2,则{a n }的前n 项和S n 等于( )A .n 2+1B .n 2C .2n -1D .2n -1解析:数列{a n }是以1为首项,2为公差的等差数列,由S n =na 1+n (n -1)2d =n +n (n -1)2·2=n 2,故选B. 答案:B11.已知实数x ,y 满足⎩⎪⎨⎪⎧x ≤3,y ≤x ,x +y ≥2,则z =2x +y 的最大值为()A .3B .5C .9D .10解析:如图,画出可行域,当y =-2x +z 移动到A 点时,直线与y 轴的截距z 取得最大值,因为A (3,3),所以z =2x +y 的最大值为9.答案:C12.已知点A (-1,8)和B (5, 2),则以线段AB 为直径的圆的标准方程是( )A .(x +2)2+(y +5)2=3 2B .(x +2)2+(y +5)2=18C .(x -2)2+(y -5)2=3 2D .(x -2)2+(y -5)2=18解析:圆的标准方程(x -a )2+(y -b )2=r 2,圆心为C ⎝ ⎛⎭⎪⎫-1+52,8+22=(2,5),半径r =12(5+1)2+(2-8)2=32,所以圆的标准方程为(x -2)2+(y -5)2=18.答案:D13.下列不等式一定成立的是()A.x+2x≥2(x≠0) B.x2+1x2+1≥1(x∈R)C.x2+1≤2x(x∈R) D.x2+5x+6≥0(x∈R)解析:A选项中,当x<0时,显然不成立;C选项中,当x=-1时,显然不成立;D选项中,当x∈(-3,-2)时,x2+5x+6<0,所以不成立;B选项中,x2+1x2+1=(x2+1)+1x2+1-1≥2(x2+1)·1x2+1-1=1(x∈R),当且仅当x=0时取“=”.答案:B14.已知f(x)是定义在R上的偶函数,且当x∈(-∞,0]时,f(x)=x2-sin x,则当x∈0,+∞)时,f(x)=()A.x2+sin x B.-x2-sin x C.x2-sin x D.-x2+sin x解析:设x∈0,+∞),则-x∈(-∞,0],所以f(-x)=(-x)2-sin(-x)=x2+sin x,又f(x)是定义在R上的偶函数,所以f(x)=f(-x)=x2+sin x,故选A.答案:A15.已知样本x1,x2,x3,x4,x5的平均数为4, 方差为3,则x1+6,x2+6,x3+6,x4+6,x5+6的平均数和方差分别为() A.4和3 B.4和9 C.10和3 D.10和9解析:由平均数的定义可知x1+6,x2+6,x3+6,x4+6,x5+6的平均数=x-+6=10,方差不变.答案:C二、填空题(本大题共4小题,每小题4分,共16分.将正确答案填在题中横线上)16.已知x>0,且53,x,15成等比数列,则x=____________.解析:因为513,x,15成等比数列,所以x2=53×15=25,又x>0,所以x=5.答案:517.函数f(x)=sin x cos(x+1)+sin(x+1)cos x的最小正周期是____________.解析:f(x)=sin x cos(x+1)+sin(x+1)cos x=sin x+(x+1)]=sin(2x +1),所以最小正周期T=2π2=π.答案:π18.从1,2,3,4这四个数字中任意选取两个不同的数字,将它们组成一个两位数,该两位数小于20的概率是____________.解析:从1,2,3,4这四个数字中任意选取两个不同的数字,将它们组成一个两位数一共有如下12个基本事件:12,13,14,21,23,24,31,32,34,41,42,43;其中该两位数小于20的共有12,13,14三个,所以该两位数小于20的概率为312=14.答案:1 419.中心在坐标原点的椭圆,其离心率为12,两个焦点F1和F2在x轴上,P为该椭圆上的任意一点,若|PF1|+|PF2|=4,则椭圆的标准方程是________.解析:根据焦点在x轴上可以设椭圆的标准方程为x2a2+y2b2=1(a>b>0),因为长轴长2a=|PF1|+|PF2|=4,离心率e=ca=12,所以a=2,c=1,b=a2-c2=3,所以椭圆的标准方程为x24+y23=1.答案:x24+y23=1三、解答题(本大题共2小题,共24分.解答时应写出必要的文字说明、证明过程及演算步骤)20.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,且acos A=bcos B.(1)证明:△ABC为等腰三角形;(2)若a=2,c=3,求sin C的值.(1)证明:因为acos A=bcos B,所以a cos B=b cos A,由正弦定理知sin A cos B=sin B cos A,所以tan A=tan B,又A,B∈(0,π),所以A=B,所以△ABC为等腰三角形.(2)解:由(1)可知A=B,所以a=b=2,根据余弦定理有:c2=a2+b2-2ab cos C,所以9=4+4-8cos C,解得cos C=-18,因为C∈(0,π),所以sin C>0,所以sin C=1-cos2C=638.21.(12分)如图,在四棱锥PABCD中,PA⊥AB,PA⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC=2,E为PC的中点.(1) 证明:AP⊥CD;(2) 求三棱锥PABC的体积;(3) 证明:AE⊥平面PCD.(1)证明:因为PA⊥AB,PA⊥AD,AB⊂平面ABCD,AD⊂平面ABCD,AB∩AD=A,所以PA⊥平面ABCD,又CD⊂平面ABCD,所以AP⊥CD.(2)解:由(1)可知AP⊥平面ABC,所以V P-ABC=13S△ABC·AP,又S△ABC=12AB·BC·sin ∠ABC=12×2×2×sin 60°=3,所以V P-ABC=13×3×2=233.(3)证明:因为CD⊥AP,CD⊥AC,AP⊂平面APC,AC⊂平面APC,AP∩AC=A,所以CD⊥平面APC,又AE⊂平面APC,所以CD⊥AE,由AB=BC=2且∠ABC=60°得△ABC为等边三角形,且AC=2,又因为AP=2,且E为PC的中点,所以AE⊥PC,又AE⊥CD,PC⊂平面PCD,CD⊂平面PCD,PC∩CD=C,所以AE⊥平面PCD.。
广东2018年理数高考试题(word档含答案解析)
绝密★启用前
2018年普通高等学校招生全国统一考试(广东卷)
理科数学
注意事项:
1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一
项是符合题目要求的。
1.设1i 2i 1i z
,则||z A .0
B .12
C .1
D .22.已知集合220A
x x x ,则A R e A .12x
x B .12x x C .|1|2x x x x D .|1|2
x x x x 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:
建设前经济收入构成比例
建设后经济收入构成比例则下面结论中不正确的是
A .新农村建设后,种植收入减少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机密★启用前
试卷类型:A
2018年1月广东省普通高中学业水平考试
数学试卷
本试卷共4页,21小题,满分100分。
考试用时90分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考生号、考场
号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.每题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如
需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑卷字迹的钢笔或签字笔作答,答案必频写在答题卡各题目
指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题(本题共有15小题,每小题4分,满分60分,在每小题给出的四个选项中,只
有一项是符合题目要求的)
1.已知集合M={-1,0,1,2},N={x|-1≤x<2},则N M =()A.M
B.N
C.{-1,0,1}
D.{0,1,2}
2.对于任意的正实数x ,y ,下列等式不.成立的是()
A.x x lg 3lg 3
= B.x
y
x y lg
lg lg =-C.10
ln ln lg x x =
D.y
x y x lg lg )lg(+=+
3.已知函数=
)(x f 0
20≥ 1-3<,,x x x x
设a f =)0(则=)(a f (
)
A.
2
1
B.0
C.-1
D.24.设i 是虚数单位,x 是实数,若复数
i
x x
+的虚部为2,则x =()
A.-4
B.-2
C.2
D.4
5.设实数a 为常数,则函数)()(2
R x a x x x f ∈+-=存在零点的充分必要条件是()
A.4
1≤
a B.4
1>
a C.a≤1 D.a>1
6.已知向量a =(1,1),b=(0,2),则下列结论正确的是(
)
A.b
a = B.
b a •=3
C.b
∥a D.b
b a ⊥)-2(7.某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生人数分别是(
)A.9和6
B.8和7
C.7和8
D.6和9
8.如图1所示,一个空间几何体的正(主)视图和侧(左)视图都矩形,俯视图是正方形,则该几何体的体积为(
)
A.1
B.2
C.4
D.8
9.若实数x ,y 满足则z=x-2y 的最小值为
(
)
A.-2
B.2
3-
C.-1
D.0
10.如图2所示,O 是平行四边形ABCD 的两条对角线的交点,则下列等式正确的是
(
)
A.DO
=DC +DA B.AC
=DC -DA C.AC
=BC +OB +AO D.DB
=AD +OB -OA 11.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a =3b=2,c=13则C =
()
A.
6
π
B.
π6
5
C.
3
π
D.
π3
2,
0,0,
01≤>+≥+-x y x y x
12.已知函数f(x)=4sin x cos x ,则f(x)的最大值和最小正周期分别为
()
A.2和2π
B.2和π
C.4和2π
D.4和π
13.设点P 是椭圆142
22=+y a
x (a>2)上的一点,F 1和F 2是该椭圆的两个焦点,若
|F 1F 2|=34,则|PF 1|+|PF 2|=(
)A.4
B.8
C.42
D.47
14.设函数f(x)是定义在R 上的减函数,且f(x)为奇函数,若x 1<0,x 2>0,则下列结论不正确的是
A.f (0)=0
B.f (x 1)>0
C.⎪⎪⎭⎫
⎝
⎛+111x x f ≤f (2) D.⎪⎪⎭⎫
⎝
⎛+221x x f ≤f (2)15.已知数列{n a }的前n 项和22
1
-=+n n S ,则=
⋯⋯++2
2221n a a a A.(
)
2
1
12
++n B.(
)
2
1
24-n
C.
()3
2441+-n D.
()
3
1441--n 二、填空题(本题共4小题,每小题4分,满分16分)
16.双曲线116
92
2=-y x 的离心率为
17.若3
22sin =⎪⎭⎫
⎝⎛-θπ
,且πθ<<0,则θtan 18.笔筒中放有2支黑色和1支红色共3支签字笔,先从笔筒中随机取出一支笔,使用后放回笔筒,第二次再从笔筒中随机取出一支笔使用,则两次使用的都是黑色笔的概率为
19.圆心为两直线x+y-2=0和-x+3y+10=0的交点,且与直线x+y-4=0相切的圆的标准方程
是
三、解答题(本题共2小题,每小题12分,满分24分,解答须写出文字说明,证明过程
和验算步骤)
20.若等差数列}{n a 满足 831=+a a ,36=+126a a (1)求的通项公式:
(2)设数列{n b }满足1b =2,n n a a 2-1+=1+b n 求{n b }的前n 项和n
s 21.如图3所示,在三棱锥P -ABC 中,,P A ⊥平面ABC ,PB=BC ,F 为BC 的中点,DE
垂直平分PC ,且DE 分别交AC ,PC 于点D ,E 。
(1)证明:EF //平面ABP ;(2)证明:B D ⊥AC。