数值分析考试复习总结修订稿

合集下载

期末数值分析重点总结

期末数值分析重点总结

期末数值分析重点总结第一部分:数值逼近(Approximation)数值逼近是数值分析的基础,主要研究如何利用有限的计算资源得到逼近数学问题的有效算法。

数值逼近的主要内容包括多项式逼近、插值和最小二乘等。

1. 多项式逼近多项式逼近是指用一个多项式函数来逼近给定函数的值。

通过选择合适的多项式次数和插值点,可以使得多项式逼近误差最小化。

其中最常用的方法是最小二乘法,它可以通过最小化残差来得到最佳的多项式逼近。

多项式逼近在信号处理、图像处理和计算机图形学等领域中有广泛的应用。

2. 插值插值是指通过已知数据点的函数值来估计在其他点的函数值。

常用的插值方法有拉格朗日插值和牛顿插值。

拉格朗日插值通过构造一个满足插值条件的多项式来逼近给定函数。

牛顿插值则利用差商的概念来构造插值多项式。

插值方法在数值微分和数值积分中有广泛的应用。

3. 最小二乘最小二乘是一种在一组离散数据点上拟合曲线的方法。

通过最小化数据点与拟合曲线之间的欧几里得距离,可以得到最佳拟合曲线。

最小二乘法可以用于曲线拟合、参数估计和数据关联等问题。

第二部分:数值解方程(Numerical Solution of Equations)数值解方程是数值分析的重要内容之一,研究如何通过数值计算来求解非线性方程组和线性方程组。

数值解方程的主要方法有迭代法、常微分方程数值解和偏微分方程数值解等。

1. 迭代法迭代法是求解非线性方程组的常用方法之一。

通过不断迭代逼近方程的根,可以得到方程组的数值解。

常用的迭代法有牛顿迭代法和弦截法。

迭代法在计算机辅助设计、优化和数据分析等领域中有广泛的应用。

2. 常微分方程数值解常微分方程数值解研究如何通过数值计算来求解常微分方程。

常微分方程数值解的主要方法有Euler方法、Runge-Kutta方法和线性多步法等。

常微分方程数值解在物理学、工程学和生物学等领域中有广泛的应用。

3. 偏微分方程数值解偏微分方程数值解研究如何通过数值方法来求解偏微分方程。

数值分析考题总结

数值分析考题总结

1设0x >,x 的相对误差为δ,求ln x 的误差。

解:近似值*x 的相对误差为*****r e x xe x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2序列{}n y 满足递推关系1101n n y y -=- (n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗? 解:02 1.41y =≈201(*)102y ε-∴=⨯又1101n n y y -=- 10101y y ∴=- 10(*)10(*)y y εε∴= 又21101y y =- 21(*)10(*)y y εε∴=220(*)10(*)......y y εε∴=101001028(*)10(*)1101021102y y εε-∴==⨯⨯=⨯计算到10y 时误差为81102⨯,这个计算过程不稳定。

.三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:并估计误差。

(10分)解:(1)利用插值法加待定系数法:设()2p x 满足 ()()()22212,24,312,p p p ===则()22376,p x x x =-+(3分) 再设()()()()()32123p x p x K x x x =+--- (3分) 2K = (1分) ()32329156p x x x x =-+- (1分) (2)()()()()()()24311234!R x f x x x ξ=--- 四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。

(10分) 解:应用梯形公式得()()11012I I f f ≈=+⎡⎤⎣⎦ (2分) 0.75= (1分)应用辛普森公式得:()()21104162I I f f f ⎡⎤⎛⎫≈=++ ⎪⎢⎥⎝⎭⎣⎦(2分) 0.69444444= (1分)应用科特斯公式得:()()41113703212327190424I I f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫≈=++++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(2分)0.6931746=五.用Newton 法求()cos 0f x x x =-=的近似解。

(完整版),数值分析笔记期末复习汇总,推荐文档

(完整版),数值分析笔记期末复习汇总,推荐文档

x
*n )
e(x *1)
f
(x *1,
x *2 ,, xn
x *n
)
e(x *n )
n i 1
f
(x *1, x *2 ,, x *n ) xi
e(x *i )
9、加减乘除运算的误差估计
加法

对 误
e(x1 x2 ) e(x1) e(x2 )



误 (x1 x2 ) (x1) (x2 )
x1
b
sign(b) 2a
b2 4ac 109
x1
x2
c a
x2
c a x1
109 109
1
求和时从小到大相加,可使和的误差减小。若干数相加,采用绝对值较小者先加的算法,
结果的相对误差限较小
y 54321100 0.4100 0.3100 0.4100 54322
(三) 注意简化计算步骤,减少运算次数,避免误差积累(秦九韶)
则称 r (x*) 为近似值 x*的相
对误差限。 (2)性质:
当|| er (x*) | 较小时,可用下
是有量纲的。 (2)绝对误差限是正的,有无穷
常取
er
( x*)
e( x*) x*
式计算
绝对误差是误差的绝对值? 多个【则比 * 大的任意正数均
(错)
是绝对误差
限】
r
( x*)
(x*) | x |

x2* =3.14
作为 π 的近似值,则 | e2
| 0.00159
1 102 :三个有效数字 2

x3* =3.1416 作为 π 的近似值,则 | e3
| 0.00000734

数值分析复习提纲(修改完)

数值分析复习提纲(修改完)

第一章 绪论【考点1】绝对误差概念。

近似数的绝对误差(误差):()a =x a E -,如果()δa E ≤则称δ为a 的绝对误差限(误差限)。

【考点2】相对误差限的概念。

近似数a 的相对误差:()()/x a x =a E r -,实际运算()()/a a x a E r -=,a r /δδ=。

【考点3】有效数字定义。

设*x 的近似值a 可表示为n m a a .a a= 21010⨯±,m 为整数,其中1a 是1到9中的一个整数,n a a 2为0到9中的任意整数,若使()n m a||=|x a |E -*⨯≤-1021成立,则a 称近似*x 有位有效数字。

例:设256010002560,00256702.×=.a .=x -*=,则4-10×21=0.00005a -x ≤*。

因为,2-m=所以2n=,a 有2位有效数字。

若257.01000257.02⨯==-a ,则5102100000500000030-≤×=..=x-a ,因为2-=m ,所以3=n ,a 有3位有效数字。

例:设000018.x=,则00008.a=具有五位有效数字。

41021000010-≤×.=x-a ,因为1=m ,所以5=n ,即a 具有五位有效数字。

例:若3587.64=x *是x 的具有六位有效数字的近似值,求x 的绝对误差限。

410×0.358764=x *,即4=m ,6=n ,0.005=1021x -x 6-4⨯≤*【考点4】四舍五入后得到的近似数,从第一位非零数开始直到末位,有几位就称该近似数有几位有效数字。

【考点5】有效数字与相对误差的关系。

设x 的近似数为n m a a .a ×a= 21010±,)(a 01≠如果a 具有n 位有效数字,则的相对误差限为()111021--≤n r ×a δ,反之,若a 的相对误差限为()()1110121--+≤n r ×a δ,则a 至少具有n 位有效数字。

数值分析期末复习要点总结

数值分析期末复习要点总结

故一般取相对误差为
er x*
e x* x*
x x* x*
如果存在正数 r 使得
er x*
ex*
x*
r
则称 r为 x*的相对误差限.
(1-4)
4
绝对误差、相对误差和有效数字
有效数字
如果近似值 x* 的误差限是 1 10n 则称x*
2
准确到小数点后第n位,并从第一个非零数字到 这一位的所有数字均称为有效数字.

e(x* ) x x*
(1-2)
通常称 为近似值 x* 的绝对误差限,简称误差限.
定义2 设 x* 为准确值 x 的近似值,称绝对误差与
准确值之比为近似值 x* 的相对误差,记为 er (x* )

er
x*
ex*
x
x
x* x
(1-3) 3 3
绝对误差、相对误差和有效数字
由于在计算过程中准确值 x 总是未知的,
设 z0(x), z1(x), ... , zn(x) 构成 Zn(x) 的一组基,则插值多项式 P(x) = a0z0(x) + a1z1(x) + ···+ anzn(x)
通过基函数来构造插值多项式的方法就称为基函数插值法
基函数法基本步骤
① 寻找合适的基函数
② 确定插值多项式在这组基下的表示系数
数值分析
期末复习要点总结
1
第一章 误差
一. 误差的来源: 1.模型误差 2.观测误差 3.截断误差 4.舍入误差
二. 绝对误差、相对误差和有效数字
2
第一章 误差
2
绝对误差、相对误差和有效数字
定义1 设 x* 为准确值x的一个近似值,称

数值分析期末复习(整理版)

数值分析期末复习(整理版)

Chapter 1 误差误差限计算、有效数字分析•绝对课差址t洵准确俏”*为工的-个近似偵「称T —工対近似偵.T '的絶村谋差,简厳供邛*可简记为E.|g(T)|=| T —*|兰£(/)数值貞门称为T的11绐对误差限或误差限*l『*、F(x ) x —x E© ) = —=——为近似值/的担zt溟誉可简{己址•有效数字若才作加的近tilt其鲍对误差的绝对值不超过某一位数字的半个单恆,而该位数字到F的第—位非零数字共有斤位關称用F近恤时具有血有效做字'简称丫有畀位有效数字.Chapter 2插值法差值条件(唯一性)1、拉格朗日差值a) 插值基函数b) 差值余项2.2拉格朗曰抽值2.2.1基函数考虑最简单、晟舉本的骼值问起+ 求押次插值家项式『低)…肋,便加滿足播值条伸可知,除斗点外.其余都星”.巧的零点■械可诛< (A) ^.4(X 一%[…(-V址 d 為"* <A -A;)X)=A(X - J- (A- - \_, )(.Y -J)其中M为常數.由&工戶1町得』=-------------------- -----------------(閔円)心7冷K%-咖卜-a -斗)和対讼>:T^V为准确血"为玄的一个近似伉称relativeerror称之为拉厳朗LI垒曲绘都是M次帝项武.. 2.1.2拉榕朗n插佢雾项式利用拉辭朗H皋啦数/态人构造次数不趙过"的雾项式£(巧二必机朗+^( v) + •…I J;/,(.v) = £昭(曰可知其搆足7韩为拉格阴Id插说饕砂式.再由插菽牟嘶的唯亠杵“ 鲁 D I特别地*造时又叫钱件擂僮其几何童又为过两点的直级-当*匸2时又叫拋物<线)掩值•具几何鳶义为过三点的拋物线.滾丘阖淘若取人1).伸伏=札1*…飒由插痕参项式的唯一性有£址工)# =x\ k= 0」厂』特别当k-OfiL就得到£佃-1□则铉格朗U的丄抚抽值雾项式为V)= j^(j(X> + I'Jj (x> + j/2(.v) * MQO=(2)弓…仗扣讪—协-町H^)xll(A + l)(r-JX^ 4}+3x —(x H)(x-LXx-3) 8 15■裁1M T-3X V-4)+^X HX A-1M A4)+ l(.v+lX.v-lXr-3)+ 3)a 1已知$ =五,耳=4眄=S.用皴件插值f即一次插惟藝坝如历的近似值.解片=2・曲=3•菇函数付别为:t-9 1 x-4 I4(J)=——=—(x-9j, Zjx)=——= -{x -4)砂14-9 5尸门9-4 5播債孝项式为V)-片fj.i) +」'占(巧-2x^(.v 夕”:(* 4)---(.V 4 J -4)(- (X + fr))所以乔金厶⑺二空R点5使2求过啟-1,-毎川』人(乱-创*(4」)的抛物线播值(即三次插値务项式).蔦-U 斗=-t t A|二L x2=3»A3- 4以为苗点加墓函.数分别为:厶何」匸迪住1±J (.r +lXA -3}(x-4)1(1 ► 1)(1-3)(1- 4J 12心)」:十汽-1年¥二Uw心一ncz (34-1X3-1X3-4) K=⑴】心-叭7= *十叫讣7】(4 + IX4-1X4-3) 152.23極値肇项M tt'r滾^Ji n(x)=f(x)兀糾也称为"次1川甘"叱插伯赛境式的余坝。

(整理)《数值分析》期末复习纲要.

(整理)《数值分析》期末复习纲要.

《数值分析》期末复习纲要 第一章 数值计算中的误差分析主要内容(一)误差分析 1、误差的基本概念:(1)绝对误差:设x 是精确值, *x 是其近似值,则称()E x x x*=-是近似值*x 的绝对误差,简称误差。

特点:可正可负,带量纲。

(2)相对误差:称()r x x E x x *-=是近似值*x 的相对误差,若精确值x 未知,则定义()r x x E x x **-=。

注: 由四舍五入得到的近似值,误差不超过最末位的半个单位(准确到最末位)。

2、有效数字的概念:P6;3、算法的数值稳定性:数值稳定的算法:初始数据所带有的误差在计算的过程中能得到有效控制,不至于因误差的过度增长影响计算结果的精度。

数值不稳定的算法:初始数据所带有的误差在计算的过程中得不到有效控制,以至于因误差的过度增长而使计算结果的精度大大降低。

P11:例子(二)算法设计的基本准则P11-15 应用实例:课堂练习,作业基本要求1、掌握误差、有效数字等基本概念2、熟记算法设计准则,并能依据算法设计准则构造或选择计算公式。

(参见课堂练习、作业)第二章 线性代数方程组的数值解法直接法:不计初始数据的误差和计算过程中的舍入误差,经过有限步四则运算求得方程组的精确解。

迭代法:先给出方程组解的某一初始值,然后按照一定的迭代法则(公式)进行迭代,经过有限次迭代,求得满足精度要求的方程组的近似解。

主要内容(一)直接法的基本模式:高斯顺序消去法基本思想:按照各方程的自然排列顺序(不交换方程),通过按列消去各未知元,将方程组化为同解的三角形方程组来求解求解过程:⎩⎨⎧回代过程消元过程应用实例:课堂例题;练习 (二)高斯列主元消去法基本思想:按列消元,但每次按列消元之前,先选取参与消元的 方程首列系数,选取绝对值最大者,通过交换方程,使之成为主元,再进行消元。

(每一步消元之前先按列选取主元) 应用实例:课堂例题,作业(三)迭代法基本原理:(1)将原方程组b Ax =改写成如下等价形式:f Bx x += (2)构造相应的迭代公式:f Bx x m m +=-)1()((3)任取一初始向量)0(x代入上述迭代公式,经迭代得到向量序列{}Tm n m m m x x x x ),,,()()(2)(1)( =,如果该向量序列{})(m x 收敛于某一向量Tn x x x x ),,,(21****= ,即),,2,1(lim )(n i x x i m i m ==*∞→Tn x x x x ),,,(21****= 即为原方程组的解。

数值分析考试复习总结

数值分析考试复习总结

数值分析考试复习总结 Last revised by LE LE in 2021第一章1 误差相对误差和绝对误差得概念 例题:当用数值计算方法求解一个实际的物理运动过程时, 一般要经历哪几个阶段 在哪些阶段将有哪些误差产生答: 实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差:建立数学模型过程中产生:模型误差 参数误差选用数值方法产生:截断误差计算过程产生:舍入误差 传播误差6.设937.0=a 关于精确数x 有3位有效数字,估计a 的相对误差. 对于x x f -=1)(,估计)(a f 对于)(x f 的误差和相对误差.解 a 的相对误差:由于31021|)(|-⋅≤-≤a x x E . x ax x E r -=)(,221018110921)(--⋅=⨯≤x E r . (1Th ))(a f 对于)(x f 的误差和相对误差.|11||)(|a x f E ---==()25.021011321⨯⋅≤-+---ax x a =310-33104110|)(|--⨯=-≤a f E r . □2有效数字基本原则:1 两个很接近的数字不做减法:2: 不用很小得数做分母(不用很大的数做分子) 例题:4.改变下列表达式使计算结果比较精确:(1) ;1||,11211<<+--+x xxx 对(2);1,11>>--+x xx xx 对(3)1||,0,cos 1<<≠-x x xx对.解 (1) )21()1(22x x x ++. (2) )11(2x x x x x-++.(3) xxx x x x x cos 1sin )cos 1(sin cos 12+≈+=-. □第二章拉格朗日插值公式(即公式(1))插值基函数(因子)可简洁表示为其中: ()∏∏≠==-='-=nij j j i i nnj jn x x x xx x 0)(,)()(ωω. 例1 n=1时,线性插值公式 )()()()()(010110101x x x x y x x x x y x P --⨯+--⨯=, 例2 n=2时,抛物插值公式 牛顿(Newton )插值公式由差商的引入,知(1) 过点10,x x 的一次插值多项式为其中(2) 过点210,,x x x 的二次插值多项式为其中重点是分段插值:例题:1. 利用Lagrange 插值公式求下列各离散函数的插值多项式(结果要简化):(1) (2) 解(2):方法一. 由 Lagrange 插值公式 可得: )21()(23-=x x x L 方法二. 令由 23)1(3-=-L , 21)1(3=L , 定A ,B (称之为待定系数法) □15.设2)(x x f =,求)(x f 在区间]1,0[上的分段线性插值函数)(x f h ,并估计误差,取等距节点,且10/1=h .解 2)(x x f =, ih x i = , 10,,1,0 =i , 101=h设 1+≤≤i i x x x ,则:误差估计: ))1(()(!2|)()(|max)1(h i x ih x f x f x f hi x ix h +--''≤-+≤≤. □第三章最佳一致逼近:(了解) 最佳平方逼近 主要分两种情形:1. 连续意义下在空间],[2b a L 中讨论2. 离散意义下在n 维欧氏空间n R 中讨论,只要求提供f 的样本值1. 最佳逼近多项式的法方程组设],[2b a L 的1+n 维子空间 n P =span },,,1{2n x x x , 其中 n x x x ,,,12 是],[2b a L 的线性无关多项式系.对],[2b a L f ∈∀,设其最佳逼近多项式*φ可表示为: ∑==ni i i x a 0**φ由 n P f ∈∀=-φφφ ,0),(*即 ∑===nj ij j i n i x f a x x 0*)1(0),,(),((*2) 其中称(*2)式为最佳逼近多项式的法方程组(或正规方程组). 由n i i x 0}{=的线性无关性,可证明G 正定,即 上述法方程组的解存在且唯一 .11、 求x x f πcos )(= ,]1,0[∈x 的一次和二次最佳平方逼近多项式. 解: 设 x a a x P 10*1)(+= , 2210*2)(x b x b b x P ++= 分别为)(x f 的一次、二次最佳平方逼近多项式。

数值分析考试复习总结

数值分析考试复习总结

第一章1误差相对误差和绝对误差得概念 例题:当用数值计算方法求解一个实际的物理运动过程时 哪些阶段将有哪些误差产生? 答:实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差: 建立数学模型过程中产生:模型误差 参数误差 选用数值方法产生:截断误差 计算过程产生:舍入误差传播误差 6 •设a 0.937关于精确数x 有3位有效数字,估计a 的相对误差. 计f(a)对于f(x)的误差和相对误差. 解 a 的相对误差:由于1 |E(x)| x a 10 32-^10 2 2 9f(a)对于f(x)的误差和相对误差.E r (x)—1018|E(f)| | -.1 x 、1 a| =般要经历哪几个阶段?在对于f (x) .J x ,估x aE r (x)(Th1)| E r (f)| 10 3. 1 a 4 10 34=102 0.252有效数字基本原则:1两个很接近的数字不做减法:2:不用很小得数做分母(不用很大的数做分子)例题:4 •改变下列表达式使计算结果比较精确:1 1 2xx 1x1 cosx(1)| 1;1;(3)0,|x|解(1)2X 2(1x)(1 2x).1 cosxsin 2 xsin x,x 1 x)■x(1 cosx) 1 cosx第二章拉格朗日插值公式(即公式(1))插值基函数(因子)可简洁表示为n其中:n(X)(X X j),j 0 n X i (X i X j).j 0例1 n=1时,线性插值公式P(x) yo (x X i) (x X o) (X o X i) y1(X i X o)例2 n=2时,抛物插值公式牛顿(Newton)插值公式由差商的引入,知(1) 过点X o , X1的一次插值多项式为其中(2) 过点X o,X1,X2的二次插值多项式为其中重点是分段插值:例题:1.利用):解⑵:方法一.由Lagrange 插值公式可得:L3(X) X2(X 12)方法二•令3 1由L a( 1) 3,L S(1)-,定A, B (称之为待定系数法) □2 215.设f(x) x2,求f(x)在区间[0,1]上的分段线性插值函数f h(x),并估计误差,取等距节点,且h 1/10.解f(x) X2,X i ih ,i 0,1, ,10,h 110第三章最佳一致逼近:(了解) 最佳平方逼近 主要分两种情形:1. 连续意义下在空间L 2[a,b]中讨论2. 离散意义下在n 维欧氏空间R n 中讨论,只要求提供f 的样本值1. 最佳逼近多项式的法方程组设 L 2[a,b]的 n 1 维子空间 P n =span {1,x,x 2 , x n }, 其中1, x,x 2 , x n 是L 2[a, b]的线性无关多项式系.n 对f L 2[a,b],设其最佳逼近多项式可表示为: a i x ii 0由(f *,) 0,P nn*即 (x —xHa j (f,x i ), i 0(1) n(*2)j 0其中称(*2)式为最佳逼近多项式的法方程组(或正规方程组) .由{x i }i n 0的线性无关性,可证明G 正定,即 上述法方程组的解存在且唯一.11、求f (x) cos x , x [0,1]的一次和二次最佳平方逼近多项式 解: 设P 1*(x) a 0 a 1x , P ; (x) b 0 b 1x b 2x 2分别为f(x)的一次、二次最佳平方逼近多项式。

数值分析总结

数值分析总结

数值分析(计算方法)总结(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章绪论误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差是的绝对误差,是的误差,为的绝对误差限(或误差限)为的相对误差,当较小时,令相对误差绝对值得上限称为相对误差限记为:即:绝对误差有量纲,而相对误差无量纲若近似值的绝对误差限为某一位上的半个单位,且该位直到的第一位非零数字共有n位,则称近似值有n位有效数字,或说精确到该位。

例:设x==…那么,则有效数字为1位,即个位上的3,或说精确到个位。

科学计数法:记有n位有效数字,精确到。

由有效数字求相对误差限:设近似值有n位有效数字,则其相对误差限为由相对误差限求有效数字:设近似值的相对误差限为为则它有n位有效数字令1.x+y近似值为和的误差(限)等于误差(限)的和2.x-y近似值为3.xy近似值为4.1.避免两相近数相减2.避免用绝对值很小的数作除数3.避免大数吃小数4.尽量减少计算工作量第二章非线性方程求根1.逐步搜索法设f (a) <0, f (b)> 0,有根区间为 (a, b),从x0=a出发,按某个预定步长(例如h=(b-a)/N)一步一步向右跨,每跨一步进行一次根的搜索,即判别f(x k)=f(a+kh)的符号,若f(x k)>0(而f(x k-1)<0),则有根区间缩小为[x k-1,x k] (若f(x k)=0,x k即为所求根), 然后从x k-1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k-x k-1|<E为止,此时取x*≈(x k+x k-1)/2作为近似根。

2.二分法设f(x)的有根区间为[a,b]= [a0,b0], f(a)<0, f(b)>0.将[a0,b0]对分,中点x0= ((a0+b0)/2),计算f(x0)。

3.比例法一般地,设 [a k,b k]为有根区间,过(a k, f(a k))、 (b k, f(b k))作直线,与x轴交于一点x k,则:1.试位法每次迭代比二分法多算一次乘法,而且不保证收敛。

数值分析期末总结与体会

数值分析期末总结与体会

数值分析期末总结与体会数值分析是一门应用数学课程,主要研究数值计算方法和数值计算误差,并为实际问题提供数值计算解决方案。

在本学期的学习中,我深入学习了数值计算的基本概念与原理,并通过编程实践掌握了常见的数值计算方法。

在期末考试前夕,我对这门课的学习经历进行了总结与体会,下面是我对数值分析的期末总结与体会。

一、总结1. 知识掌握:在学习过程中,我通过系统的学习,掌握了课程中介绍的求根问题、插值问题、数值积分和数值微分等数值计算方法。

我了解了牛顿迭代法、二分法、割线法等求解非线性方程根的方法,熟悉了拉格朗日插值、牛顿插值等插值方法,学会了辛卜生插值多项式、三次样条插值等高级插值方法。

同时,我还学习了梯形法则、辛普森法则等数值积分算法,掌握了欧拉法、龙格-库塔法等数值微分算法。

2. 编程实践:在理论学习的基础上,我通过编写程序加深了对数值计算方法的理解与掌握。

我使用Python语言编写了求解非线性方程根、插值计算、数值积分和数值微分的代码,并通过实际运行验证了这些数值计算方法的正确性与有效性。

编程实践过程中,我深刻体会到了算法的重要性,不同的算法对于同一个数值计算问题,可能会有不同的效果。

3. 数值计算误差:在学习数值计算的过程中,我逐渐认识到数值计算误差的存在与产生机理。

由于计算机内部采用的是二进制表示法,而浮点数的二进制表示无法准确表示所有的实数,从而引入了舍入误差;另外,数值计算方法本身也存在精度误差,例如插值多项式的截断误差、数值积分的数值误差等。

掌握数值计算误差的产生原因和估计方法,对于正确评估数值计算结果的精度至关重要。

4. 应用实例:在学习过程中,我们还分析了各种实际问题,并通过数值计算方法得到了解决方案。

例如,在求根问题中,我们可以利用牛顿迭代法估计气体状态方程的参数;在插值问题中,我们可以使用拉格朗日插值方法恢复图像;在数值积分中,我们可以利用梯形法则或辛普森法则计算定积分;在数值微分中,我们可以应用欧拉法或者龙格-库塔法求解微分方程等。

数值分析-第五版-考试总结

数值分析-第五版-考试总结

第一章:数值分析与科学计算引论截断误差:近似解与精确解之间的误差。

近似值的误差e∗(x为准确值):e∗=x∗−x近似值的误差限ε∗:|x∗−x |≤ε∗近似值相对误差e r∗(e r∗较小时约等):e r∗=e∗x≈e∗x∗近似值相对误差限εr∗:εr∗=ε∗|x∗|函数值的误差限ε∗(f(x∗)):ε∗(f(x∗))≈|f′(x∗)| ε∗(x∗)近似值x∗=±(a1.a2a3⋯a n)×10m有n位有效数字:ε∗=12×10m−n+1εr∗=ε∗|x∗|≤12a1×10−n+1第二章:插值法1.多项式插值P(x)=a0+a1x+⋯+a n x n 其中:P(x i)=y i ,i=0,1,⋯,n{a0+a1x0+⋯+a n x0n=y0 a0+a1x1+⋯+a n x1n=y1⋮a0+a1x n+⋯+a n x n n=y n 2.拉格朗日插值L n(x)=∑y k l k(x)nk=0=∑y kωk+1(x)(x−x k)ωn+1′(x k) nk=0n次插值基函数:l k(x)=(x−x0)⋯(x−x k−1)(x−x k+1)⋯(x−x n)(x k−x0)⋯(x k−x k−1)(x k−x k+1)⋯(x k−x n),k=0,1,⋯,n引入记号:ωn+1(x)=(x−x0)(x−x1)⋯(x−x n)余项:R n(x)=f(x)−L n(x)=f(n+1)(ξ)(n+1)!ωn+1(x) ,ξ∈(a,b)3.牛顿插值多项式:P n(x)=f(x0)+f[x0,x1](x−x0)+⋯+f[x0,x1,⋯,x n](x−x0)⋯(x−x n−1) n阶均差(把中间去掉,分别填在左边和右边):f[x0,x1,⋯,x n−1,x n]=f[x1,⋯,x n−1,x n]−f[x0,x1,⋯,x n−1]x n−x0余项:R n(x)=f[x,x0,x1,⋯,x n]ωn+1(x) 4.牛顿前插公式(令x=x0+tℎ,计算点值,不是多项式):P n(x0+tℎ)=f0+t∆f0+t(t−1)2!∆2f0+⋯+t(t−1)⋯(t−n−1)n!∆n f0n阶差分:∆n f0=∆n−1f1−∆n−1f0余项:R n(x)=t(t−1)⋯(t−n)ℎn+1(n+1)!f(n+1)(ξ) ,ξ∈(x0,x n)5.泰勒插值多项式:P n(x)=f(x0)+f′(x0)(x−x0)+⋯+f(n)(x0)n!(x−x0)nn阶重节点的均差:f[x0,x0,⋯,x0]=1n!f(n)(x0)6.埃尔米特三次插值:P(x)=f(x0)+f[x0,x1](x−x0)+f[x0,x1,x2](x−x0)(x−x1)+A(x−x0)(x−x1)(x−x2)其中,A的标定为:P′(x1)=f′(x1)7.分段线性插值:Iℎ(x)=x−x k+1x k−x k+1f k+x−x kx k+1−x kf k+1第三章:函数逼近与快速傅里叶变换1. S(x)属于 n维空间φ:S(x)=∑a jφjnj=02.范数:‖x‖∞=max1≤i≤n |x i| and maxa≤i≤b|f(x)|‖x‖1=∑|x i|ni=1 and∫|f(x)|badx‖x‖2=(∑x i2ni=1)12 and (∫f2(x)badx)123.带权内积和带权正交:(f,φk)=∑ω(x i)f(x i)φk(x i)mi=0 and ∫ρ(x)f(x)φk(x)badx(f(x),g(x))=∫ρ(x) f(x)g(x)dxba=0 4.最佳逼近的分类(范数的不同、是否离散):最优一致(∞-范数)逼近多项式P∗(x):‖f(x)−P∗(x)‖∞=minP∈H n‖f(x)−P(x)‖∞最佳平方(2-范数)逼近多项式P∗(x):‖f(x)−P∗(x)‖22=minP∈H n‖f(x)−P(x)‖22最小二乘拟合(离散点)P∗(x):‖f−P∗‖22=minP∈Φ‖f−P∗‖225.正交多项式递推关系:φn+1(x)=(x−αn)φn(x)−βnφn−1(x)φ0(x)=1,φ−1(x)=0αn=(xφn(x),φn(x))(φn(x),φn(x)),βn=(φn(x),φn(x))(φn−1(x),φn−1(x))6.勒让德多项式:正交性:∫P n(x)P m(x)dx 1−1={0 ,m≠n22n+1, m=n奇偶性:P n(−x)=(−1)n P n(x)递推关系:(n +1)P n+1(x )=(2n +1)xP n (x )−nP n−1(x)7.切比雪夫多项式:递推关系:T n+1(x )=2xT n (x )−T n−1(x )正交性:∫n m √1−x 21−1=∫cos nθcos mθπdx ={0 , m ≠n π2 , m =n ≠0π , m =n =0T n (x )在[−1,1]上有n 个零点:x k =cos2k −12nπ,k =1,⋯,n T n+1(x )在[a,b ]上有n +1个零点:(最优一致逼近)x k =b −a 2cos 2k +12(n +1)π+b +a2,k =0,1,⋯,n 首项x n 的系数:2n−18.最佳平方逼近:‖f (x )−S ∗(x)‖22=min S(x)∈φ‖f (x )−S(x)‖22=min S(x)∈φ∫ρ(x)[f (x )−S (x )]2dx ba法方程:∑(φk ,φj )a j nj=0=(f,φk )正交函数族的最佳平方逼近:a k ∗=(f,φk )(φk ,φk )9.最小二乘法:‖δ‖22=min S(x)∈φ∑ω(x i )[S (x i )−y i ]2mi=0法方程:∑(φk ,φj )a j nj=0=(f,φk )正交多项式的最小二乘拟合:a k∗=(f,P k )(P k ,P k )第四章 数值积分与数值微分1.求积公式具有m 次代数精度求积公式(多项式与函数值乘积的和),对于次数不超过m 的多项式成立,m +1不成立∫f(x)dx b a=∑A k f(x k )nk=02.插值型求积公式I n =∫L n (x)dx b a=∑∫l k (x)dx baf(x k )nk=0=∑A k f(x k )nk=0R [f ]=∫[f (x )− L n (x)]dx ba =∫R n (x)dx ba =∫f (n+1)(ξ)(n +1)!ωn+1(x)dx ba3.求积公式代数精度为m 时的余项R [f ]=∫f (x )dx ba −∑A k f (x k )nk=0=1(m +1)![∫x m+1dx ba−∑A k x k m+1nk=0]4.牛顿-柯特斯公式:将[a,b ]划分为n 等份构造出插值型求积公式I n =(b −a)∑C k (n)f(x k )nk=05.梯形公式:当n=1时,C 0(1)=C 1(1)=12T =b −a 2[f (a )+f(b)],R n (f )=−b −a12(b −a )2f ′′(η) 6.辛普森公式:当n=2时,C 0(2)=16,C 1(2)=46,C 2(2)=16S =b −a 6[f (a )+4f (a +b 2)+f(b)],R n (f )=−b −a 180(b −a 2)4f (4)(η) 7.复合求积公式:ℎ=b−a n,x k =a +kℎ,x k+1/2=x k +ℎ2复合梯形公式:T n =ℎ2[f (a )+2∑f(x k )n−1k=1+f(b)],R n (f )=−b −a 12ℎ2f ′′(η)复合辛普森公式:S n =ℎ6[f (a )+4∑f(x k+1/2)n−1k=0+2∑f(x k )n−1k=1+f(b)],R n (f )=−b −a 180(ℎ2)4f (4)(η)8.高斯求积公式(求待定参数x k 和A k ):(1)求高斯点(x k ):令 ωn+1(x )=(x −x 0)(x −x 1)⋯(x −x n )与任何次数不超过n 的多项式p(x)带权ρ(x)正交,即则∫p(x)ωn+1(x )ρ(x)dx ba =0,由n +1个方程求出高斯点x 0,x 1⋯x n 。

数值分析期末复习总结(优选.)

数值分析期末复习总结(优选.)

线性插值多项式(一次插值多项式)
n=2
L2 ( x) =
y0
(x ( x0
− −
x1 )( x − x2 ) x1 )( x0 − x2 )
+
y1
(x ( x1
− −
x0 )( x − x2 ) x0 )( x1 − x2 )
+
y2
(x ( x2
− −
x0 )( x − x1 ) x0 )( x2 − x1 )
f ( x=) f ( x0 ) + ( x − x0 ) f [x, x0]
1
f [ x, x0 ] = f [ x0 , x1] + ( x − x1 ) f [ x, x0 , x1]
2
……
f [ x, x0 , ... , xn−1] = f [ x0 , ... , xn ] + ( x − xn ) f [ x, x0 , ... , xn ] n−1
19
Newton 插值
为什么 Newton 插值
Lagrange 插值简单易用,但若要增加一个节点时,全部基函
数 lk(x) 都需重新计算,不太方便。
解决办法
设计一个可以逐次生成插值多项式的算法,即 n 次插值多项式 可以通过 n-1 次插值多项式生成 —— Newton 插值法
20
新的基函数
设插值节点为 x0 , … , xn ,考虑插值基函数组 ϕ0(x) = 1 ϕ1( x)= x − x0 ϕ2( x) = ( x − x0 )( x − x1 )
18
插值余项
几点说明
余项公式只有当 f(x) 的高阶导数存在时才能使用
ξx 与 x 有关,通常无法确定, 实际使用中通常是估计其上界

数值分析-第五版-考试总结

数值分析-第五版-考试总结

第一章:数值分析与科学计算引论截断误差:近似解与精确解之间的误差。

近似值的误差e∗(x为准确值):e∗=x∗−x近似值的误差限ε∗:|x∗−x |≤ε∗近似值相对误差e r∗(e r∗较小时约等):e r∗=e∗x≈e∗x∗近似值相对误差限εr∗:εr∗=ε∗|x∗|函数值的误差限ε∗(f(x∗)):ε∗(f(x∗))≈|f′(x∗)| ε∗(x∗)近似值x∗=±(a1.a2a3⋯a n)×10m有n位有效数字:ε∗=12×10m−n+1εr∗=ε∗|x∗|≤12a1×10−n+1第二章:插值法1.多项式插值P(x)=a0+a1x+⋯+a n x n 其中:P(x i)=y i ,i=0,1,⋯,n{a0+a1x0+⋯+a n x0n=y0 a0+a1x1+⋯+a n x1n=y1⋮a0+a1x n+⋯+a n x n n=y n 2.拉格朗日插值L n(x)=∑y k l k(x)nk=0=∑y kωk+1(x)(x−x k)ωn+1′(x k) nk=0n次插值基函数:l k(x)=(x−x0)⋯(x−x k−1)(x−x k+1)⋯(x−x n)(x k−x0)⋯(x k−x k−1)(x k−x k+1)⋯(x k−x n),k=0,1,⋯,n引入记号:ωn+1(x)=(x−x0)(x−x1)⋯(x−x n)余项:R n(x)=f(x)−L n(x)=f(n+1)(ξ)(n+1)!ωn+1(x) ,ξ∈(a,b)3.牛顿插值多项式:P n(x)=f(x0)+f[x0,x1](x−x0)+⋯+f[x0,x1,⋯,x n](x−x0)⋯(x−x n−1) n阶均差(把中间去掉,分别填在左边和右边):f[x0,x1,⋯,x n−1,x n]=f[x1,⋯,x n−1,x n]−f[x0,x1,⋯,x n−1]x n−x0余项:R n(x)=f[x,x0,x1,⋯,x n]ωn+1(x) 4.牛顿前插公式(令x=x0+tℎ,计算点值,不是多项式):P n(x0+tℎ)=f0+t∆f0+t(t−1)2!∆2f0+⋯+t(t−1)⋯(t−n−1)n!∆n f0n阶差分:∆n f0=∆n−1f1−∆n−1f0余项:R n(x)=t(t−1)⋯(t−n)ℎn+1(n+1)!f(n+1)(ξ) ,ξ∈(x0,x n)5.泰勒插值多项式:P n(x)=f(x0)+f′(x0)(x−x0)+⋯+f(n)(x0)n!(x−x0)nn阶重节点的均差:f[x0,x0,⋯,x0]=1n!f(n)(x0)6.埃尔米特三次插值:P(x)=f(x0)+f[x0,x1](x−x0)+f[x0,x1,x2](x−x0)(x−x1)+A(x−x0)(x−x1)(x−x2)其中,A的标定为:P′(x1)=f′(x1)7.分段线性插值:Iℎ(x)=x−x k+1x k−x k+1f k+x−x kx k+1−x kf k+1第三章:函数逼近与快速傅里叶变换1. S(x)属于 n维空间φ:S(x)=∑a jφjnj=02.范数:‖x‖∞=max1≤i≤n |x i| and maxa≤i≤b|f(x)|‖x‖1=∑|x i|ni=1 and∫|f(x)|badx‖x‖2=(∑x i2ni=1)12 and (∫f2(x)badx)123.带权内积和带权正交:(f,φk)=∑ω(x i)f(x i)φk(x i)mi=0 and ∫ρ(x)f(x)φk(x)badx(f(x),g(x))=∫ρ(x) f(x)g(x)dxba=0 4.最佳逼近的分类(范数的不同、是否离散):最优一致(∞-范数)逼近多项式P∗(x):‖f(x)−P∗(x)‖∞=minP∈H n‖f(x)−P(x)‖∞最佳平方(2-范数)逼近多项式P∗(x):‖f(x)−P∗(x)‖22=minP∈H n‖f(x)−P(x)‖22最小二乘拟合(离散点)P∗(x):‖f−P∗‖22=minP∈Φ‖f−P∗‖225.正交多项式递推关系:φn+1(x)=(x−αn)φn(x)−βnφn−1(x)φ0(x)=1,φ−1(x)=0αn=(xφn(x),φn(x))(φn(x),φn(x)),βn=(φn(x),φn(x))(φn−1(x),φn−1(x))6.勒让德多项式:正交性:∫P n(x)P m(x)dx 1−1={0 ,m≠n22n+1, m=n奇偶性:P n(−x)=(−1)n P n(x)递推关系:(n +1)P n+1(x )=(2n +1)xP n (x )−nP n−1(x)7.切比雪夫多项式:递推关系:T n+1(x )=2xT n (x )−T n−1(x )正交性:∫n m √1−x 21−1=∫cos nθcos mθπdx ={0 , m ≠n π2 , m =n ≠0π , m =n =0T n (x )在[−1,1]上有n 个零点:x k =cos2k −12nπ,k =1,⋯,n T n+1(x )在[a,b ]上有n +1个零点:(最优一致逼近)x k =b −a 2cos 2k +12(n +1)π+b +a2,k =0,1,⋯,n 首项x n 的系数:2n−18.最佳平方逼近:‖f (x )−S ∗(x)‖22=min S(x)∈φ‖f (x )−S(x)‖22=min S(x)∈φ∫ρ(x)[f (x )−S (x )]2dx ba法方程:∑(φk ,φj )a j nj=0=(f,φk )正交函数族的最佳平方逼近:a k ∗=(f,φk )(φk ,φk )9.最小二乘法:‖δ‖22=min S(x)∈φ∑ω(x i )[S (x i )−y i ]2mi=0法方程:∑(φk ,φj )a j nj=0=(f,φk )正交多项式的最小二乘拟合:a k∗=(f,P k )(P k ,P k )第四章 数值积分与数值微分1.求积公式具有m 次代数精度求积公式(多项式与函数值乘积的和),对于次数不超过m 的多项式成立,m +1不成立∫f(x)dx b a=∑A k f(x k )nk=02.插值型求积公式I n =∫L n (x)dx b a=∑∫l k (x)dx baf(x k )nk=0=∑A k f(x k )nk=0R [f ]=∫[f (x )− L n (x)]dx ba =∫R n (x)dx ba =∫f (n+1)(ξ)(n +1)!ωn+1(x)dx ba3.求积公式代数精度为m 时的余项R [f ]=∫f (x )dx ba −∑A k f (x k )nk=0=1(m +1)![∫x m+1dx ba−∑A k x k m+1nk=0]4.牛顿-柯特斯公式:将[a,b ]划分为n 等份构造出插值型求积公式I n =(b −a)∑C k (n)f(x k )nk=05.梯形公式:当n=1时,C 0(1)=C 1(1)=12T =b −a 2[f (a )+f(b)],R n (f )=−b −a12(b −a )2f ′′(η) 6.辛普森公式:当n=2时,C 0(2)=16,C 1(2)=46,C 2(2)=16S =b −a 6[f (a )+4f (a +b 2)+f(b)],R n (f )=−b −a 180(b −a 2)4f (4)(η) 7.复合求积公式:ℎ=b−a n,x k =a +kℎ,x k+1/2=x k +ℎ2复合梯形公式:T n =ℎ2[f (a )+2∑f(x k )n−1k=1+f(b)],R n (f )=−b −a 12ℎ2f ′′(η)复合辛普森公式:S n =ℎ6[f (a )+4∑f(x k+1/2)n−1k=0+2∑f(x k )n−1k=1+f(b)],R n (f )=−b −a 180(ℎ2)4f (4)(η)8.高斯求积公式(求待定参数x k 和A k ):(1)求高斯点(x k ):令 ωn+1(x )=(x −x 0)(x −x 1)⋯(x −x n )与任何次数不超过n 的多项式p(x)带权ρ(x)正交,即则∫p(x)ωn+1(x )ρ(x)dx ba =0,由n +1个方程求出高斯点x 0,x 1⋯x n 。

数值分析复习总结

数值分析复习总结

数值分析复习总结数值分析课本重点知识点第一章P4定义一P5定义二P6定理1P7例题3P10条件数(1)绝对误差(限)和相对误差(限)公式(2)有效数字(3)条件数及其公式第二章P26定理2(以及余项推导过程)P36两个典型的埃尔米特插值(1)拉格朗日插值多项式(包括其直线公式和抛物线公式)(2)插值余项推导及误差分析(估计)(3)两个典型的埃尔米特插值(4)三次样条插值的概念第三章P63例题3(1)最佳平方逼近公式的计算(2)T3(x)的表达式第四章P106复合梯形公式P107复合辛普森求积公式P108例题3(1)复合公式及其余项(2)判断一个代数的精确度第五章P162定义3向量的范数P165定理17P169定义8(1)左中右矩形公式(2)LU分解(3)谱半径和条件数(4)向量的范数第六章P192定理9第1条P192例题8第七章P215不动点和不动点迭代法P218定理3P228弦截法P229定理6第九章P280欧拉法与后退欧拉法P283改进欧拉公式数值分析课后点题答案第一章数值分析误差第二章插值法第三章函数逼近所以无解19。

观测物体的直线运动,得出以下数据:时间t(s) 0 0.9 1.9 3.0 3.9 5.0 距离s(m)10305080110求运动方程。

解:被观测物体的运动距离与运动时间大体为线性函数关系,从而选择线性方程 s a bt =+ 令{}1,span t Φ=22012201016,53.63,(,)14.7,(,)280,(,)1078,s s =====则法方程组为614.728014.753.631078a b = ??? ?从而解得7.85504822.25376a b =-??=? 故物体运动方程为22.253767.855048S t =-20。

已知实验数据如下:i x 19 25 31 38 44 j y19.032.349.073.397.8用最小二乘法求形如2s a bx =+的经验公式,并计算均方误差。

数值分析-第五版-考试总结培训资料

数值分析-第五版-考试总结培训资料

收集于网络,如有侵权请联系管理员删除
精品文档
第八章 矩阵特征值计算 1.格什戈林圆盘:以 为圆心,以 为半径的所有圆盘
2. 的每个特征值必属于某个圆盘之中:
3. 有 个圆盘组成一个连通的并集 , 与和余下 的 个特征值。 4.幂法:
设 的特征值满足条件: 任取非零向量 ,构造向量序列, 假设:
个圆盘是分离的,则 内恰包含
第七章 非线性方程与方程组的数值解法 1.二分法:1)计算 在有根区间 的端值 ,
2)计算区间中点值
3)判断 2.不动点迭代法:
或者
收集于网络,如有侵权请联系管理员删除
3.不动点迭代法收敛:
精品文档
4. 在 上存在不动点 :(压缩映射)
5. 不动点迭代法收敛性:满足上条,则不动点迭代法收敛,误差为:
7.复合求积公式:
收集于网络,如有侵权请联系管理员删除
复合梯形公式: 复合辛普森公式:
精品文档
8.高斯求积公式(求待定参数 和 ): (1)求高斯点( ):令
与任何次数不超过 的多项
式 带权 正交,即则 。
,由 个方程求出高斯点
(2)求待定参数 : 9.高斯-勒让德求积公式:取权函数为 式的高斯点。
数值分析-第五版-考 试总结
精品文档
第一章:数值分析与科学计算引论 截断误差:近似解与精确解之间的误差。 近似值的误差 ( 为准确值):
近似值的误差限 :
近似值相对误差 ( 较小时约等):
近似值相对误差限 :
函数值的误差限 近似值
: 有 n 位有效数字:
1.多项式插值 其中:
第二章:插值法
收集于网络,如有侵权请联系管理员删除
精品文档
第三章:函数逼近与快速傅里叶变换 1. 属于 维空间 :
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值分析考试复习总结 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-第一章1 误差相对误差和绝对误差得概念 例题:当用数值计算方法求解一个实际的物理运动过程时, 一般要经历哪几个阶段? 在哪些阶段将有哪些误差产生?答: 实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差:建立数学模型过程中产生:模型误差 参数误差选用数值方法产生:截断误差计算过程产生:舍入误差 传播误差6.设937.0=a 关于精确数x 有3位有效数字,估计a 的相对误差. 对于x x f -=1)(,估计)(a f 对于)(x f 的误差和相对误差.解 a 的相对误差:由于31021|)(|-⋅≤-≤a x x E . x ax x E r -=)(,221018110921)(--⋅=⨯≤x E r . (1Th ))(a f 对于)(x f 的误差和相对误差.|11||)(|a x f E ---==()25.021011321⨯⋅≤-+---ax x a =310-33104110|)(|--⨯=-≤a f E r . □2有效数字基本原则:1 两个很接近的数字不做减法:2: 不用很小得数做分母(不用很大的数做分子) 例题:4.改变下列表达式使计算结果比较精确:(1) ;1||,11211<<+--+x xxx 对(2);1,11>>--+x xx xx 对(3)1||,0,cos 1<<≠-x x xx对.解 (1) )21()1(22x x x ++. (2) )11(2x x x x x-++.(3) xxx x x x x cos 1sin )cos 1(sin cos 12+≈+=-. □第二章拉格朗日插值公式(即公式(1))插值基函数(因子)可简洁表示为其中: ()∏∏≠==-='-=nij j j i i nnj jn x x x xx x 0)(,)()(ωω. 例1 n=1时,线性插值公式 )()()()()(010110101x x x x y x x x x y x P --⨯+--⨯=, 例2 n=2时,抛物插值公式 牛顿(Newton )插值公式由差商的引入,知(1) 过点10,x x 的一次插值多项式为其中(2) 过点210,,x x x 的二次插值多项式为其中重点是分段插值:例题:1. 利用Lagrange 插值公式求下列各离散函数的插值多项式(结果要简化):(1) (2) 解(2):方法一. 由 Lagrange 插值公式 可得: )21()(23-=x x x L 方法二. 令由 23)1(3-=-L , 21)1(3=L , 定A ,B (称之为待定系数法) □15.设2)(x x f =,求)(x f 在区间]1,0[上的分段线性插值函数)(x f h ,并估计误差,取等距节点,且10/1=h .解 2)(x x f =, ih x i = , 10,,1,0 =i , 101=h设 1+≤≤i i x x x ,则:误差估计: ))1(()(!2|)()(|max)1(h i x ih x f x f x f hi x ix h +--''≤-+≤≤. □第三章最佳一致逼近:(了解) 最佳平方逼近 主要分两种情形:1. 连续意义下在空间],[2b a L 中讨论2. 离散意义下在n 维欧氏空间n R 中讨论,只要求提供f 的样本值1. 最佳逼近多项式的法方程组设],[2b a L 的1+n 维子空间 n P =span },,,1{2n x x x , 其中 n x x x ,,,12 是],[2b a L 的线性无关多项式系.对],[2b a L f ∈∀,设其最佳逼近多项式*φ可表示为: ∑==ni i i x a 0**φ由 n P f ∈∀=-φφφ ,0),(*即 ∑===nj ij j i n i x f a x x 0*)1(0),,(),((*2) 其中称(*2)式为最佳逼近多项式的法方程组(或正规方程组). 由n i i x 0}{=的线性无关性,可证明G 正定,即 上述法方程组的解存在且唯一 .11、 求x x f πcos )(= ,]1,0[∈x 的一次和二次最佳平方逼近多项式. 解: 设 x a a x P 10*1)(+= , 2210*2)(x b x b b x P ++= 分别为)(x f 的一次、二次最佳平方逼近多项式。

内积 ⎰⋅=10)()(),(dx x g x f g f计算如下内积:1)1,1(= , 21),1(=x , 31),1(2=x31),(=x x , 41),(2=x x , 51),(22=x x0),1(=f , 22),(π-=f x , 222),(π-=f x建立法方程组:(1) ⎪⎪⎩⎪⎪⎨⎧-=+=+210102)31(21021πa a a a ,得:2012π=a ,2124π-=a于是 x x P 22*12412)(ππ-=(2) ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=++-=++=++2210221021025141312413121031)21(ππb b b b b b b b b解得: 2012π=b , 2124π-=b , 02=b , 于是: x x P 2222412)(ππ-=. □第四章1 为什么要进行数值积分?常用哪些公式,方法? 答: 梯形复化求积公式和simpson 复化求积公式. 2: 方法好坏的判断: 代数精度 误差分析 1.代数精度的概念定义 若求积公式∑⎰=≈ni i i bax f w dx x f 0)()( (*)对所有次数m ≤的多项式是精确的,但对1+m 次多项式不精确,则称(*)具有m 次代数精度。

等价定义若求积公式(*)对m x x x ,,,,12 是精确的,但对1+m x 不精确,则(*)具有m 次代数精度。

3: 误差1 等距剖分下的数值求积公式:公式特点:节点预先给定,均匀分布,系数n iw i )1(0,=待定利用插值多项式)(x p n 近似代替)(x f ,即得插值型求积公式Newton-Cotes 公式2 给定节点数下的具有最佳逼近性质(具有最高次代数精度)的数值求积公式:Gauss 求积公式 公式特点:系数n iw i )1(0,=和节点n i x i )1(0,=均待定3 分段插值多项式)(x n φ近似代替)(x f (分段求积)复化求积公式 复化求积公式通过高次求积公式提高精度的途径不行,类似函数插值 分而治之: 分段+低次求积公式---------- 称为复化求积法 两类低次(4≤n )求积公式:1. Newton -Cotes 型:矩形、梯形、Simpson 、Cotes 公式分别称为复化矩形、梯形、辛甫生、柯特斯公式2. Gauss 型: 一点、两点、三点Gauss 求积公式称为复化一点、两点、三点Gauss 公式复化梯形公式(n T )n ab h b f x f a f h x f x f x f x f x f x f hT n k k n n n -=++=++++++≡∑-=- )],()(2)([2 )]}()([)]()([)]()({[21112110 复化辛甫生公式: (每个k e 上用辛甫生公式求积))]()(2)(4)([6)]}()(4)([)]()(4)([)]()(4)({[61111211021212321b f x f x f a f hx f x f x f x f x f x f x f x f x f hS n k k n k k n n n n +++=+++++++++≡∑∑-==---na b h -=其中,2/1-k x 为ke 的中点 复化辛甫生公式是最常用的数值求积方法。

常采用其等价形式: 复化柯特斯公式 其中,na b h -=,21-k x为],[1k k x x -的中点,41-k x ,43-k x 为],[1k k x x -的四等分的分点自适应复化求积法计算时,要预先给定n 或步长h ,在实际中难以把握因为,h 取得太大则精度难以保证,h 太小则增加计算工作量. 自适应复化梯形法的具有计算过程如下: 步1 )]()([2,,11b f a f hT a b h n +←-←← 步2步3 判断ε<-||12T T ?若是,则转步5; 步4 21,2/,2T T h h n n ←←←,转步2; 步5 输出 2T .第五章1: 常用方法:(1).直接解法:Gauss 逐步(顺序)消去法、Gauss主元素法、矩阵分解法等; (2).迭代解法:构造某种极限过程去逐步逼近方程组的解 ①.经典迭代法Jacobi迭代法、Seidel Gauss -迭代法、 逐次超松弛(SOR )迭代法等;②. Krolov 子空间的迭代法 根据A 的对称性,又分为:A 对称正定------- 共轭梯度法A 非对称--------- BICG 、 GMRes(最小残量法)③.解一类特定背景问题的迭代法 多重网格法2: 几类迭代法优缺点比较: 3: 迭代方法目标: 求解b Ax = 其中,A 非奇异。

基本思想:把线性方程组b Ax =的解x ,化为一个迭代序列极限解 关键:构造迭代序列所满足的公式:迭代格式。

构造迭代格式基本步骤:1. 将A 分裂:C B A -=:, 其中,B 非奇异 2. 构造迭代格式其中C B G ⋅=-1,称之为迭代矩阵 , b B g 1-= 其中,)(k Ax b -为)(k x 的残余向量 此时,b B g A B I G 11--=-= ,常用的迭代方法将)(ij a A =分裂为U L D A --= 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-00001,121n n n a a aL,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-0000,1112n n n a a a U,Jacobi 迭代方法若0≠ii a ,迭代格式g x G x k J k +⋅=+)()1( ① 其中 Jacobi 迭代矩阵:)(1U L D G J +=- ①式可写为分量形式 0][11)()1(≥-=∑≠=+k x a b a xnij j k j ij i ii k i, . (*1) 方法(*1)或①称为Jacobi 迭代方法. Gauss —Seidle 迭代方法若0≠ii a ,迭代格式g x G x k G k +⋅=+)()1( ② 其中,Gauss-Seidel 迭代矩阵:U L D G G 1)(--= 其分量形式][11)(11)1()1(∑∑+=-=++--=ni j k j ij i j k j ij i ii k ix a x a b a x,n i ,,2,1 =. (*2) 即,在计算新分量)1(+k i x 时,利用新值)1(+k j x ,1,,2,1-=i j 。

相关文档
最新文档