第2章静力学基础
工程流体力学第2章流体静力学
① 沿任意方向 ② 沿外法线方向
有切向分力 流体受拉力
都将破坏流体平衡。
这与静止前提不符,故假设不成立,则原命题成立。
①
②
4
第2章 流体静力学
特性二、静止流体中任何一点上各个方向的静压力大小相等,与作用面方位无关。
证明:采用微元体分析法 ① 取微单元体
在静止流体中,在O点附近取出各边长分别 为dx、dy、dz的微小四面体OABC。相应坐标 轴为x、y、z。
第2章 流体静力学
流体静力学:研究流体在静止状态下的平衡规律及其应用。 静止:流体质点相对于参考系没有运动,质点之间也没有相对运动。 静止状态包括两种情况: 1、绝对静止:流体整体对地球没有相对运动。
2、相对静止:流体整体对地球有运动,但流体各质点之间没有相对运动。
举例:
绝对静止
等加速水平直线运动 等角速定轴转动
2
第2章 流体静力学
§2.1 流体静压力及其特性
1、静压力的概念
(1)静压力:静止流体作用在单位面积上的压力,称为静压力,或静压强。记作“p”
一点的静压力表示方法:
设静止流体中某一点m,围绕该点取一微小作用面积A,其上压力为P,则: 平均静压力: p P
A
m点的静压力:p lim P
单位:
A0 A
m
国际单位:Pa
物理单位:dyn/cm2
工程单位:kgf/m2
混合单位:1大气压(工程大气压) = 1kgf/cm2
(2)总压力:作用在某一面积上的总静压力,称为总压力。记作“P”
单位:N
3
第2章 流体静力学
2、静压力的两个重要特性
特性一、静压力方向永远沿着作用面内法线方向。
工程力学第2章静力学
力使物体形状发生改变的效应称为力的内效应或变形效应;
力的单位,在采用国际单位为:
牛顿(N)、或千牛顿 (KN)
2.力的三要素
力对物体的作用效果取决于力的 大小、方向 与作用点
力的大小反映了物体间相互作用的强弱程度。
力的方向指的是静止质点在该力作用下开始运 动的方向。 力的作用点是物体相互作用位置的抽象化。
该定律是受力分析必须遵循的原则。
作用力与反作用力
2.4 力对点之矩
力对物体除了移动效应以外,还有对物体的转动效应。 观察扳手拧紧螺母的过程,说明拧紧程度与什么有关?
拧紧螺母时,其拧紧程度不仅与力 F 的大小有关,而 且与转动中心(O点)到力的作用线的垂直距离d有关 。
2.4.1 力对点之矩 —— 力矩
E
B
C
B
C
FNB
FNC
练习3
球W1、W2置于墙和板AB间,BC为绳索。 画受力图。
(b)
FNK
W2 FNK W2 FNH FNE
AF
Ay
FT FND W 1
AF
C
W2 FAx
B (d)
FT FD
D
FND W1
B
FNH
W1
A
K
W2
E FAx H (a)
FNE
FND W1
(c)
Ay
FNE
FNH
FT
2.2.1 公理1 力的平行四边形法则 作用于物体上同一点的两个力,可以合成为一个合 力。合力的作用点仍在该点,合力的大小和方向由以这 两个力为边构成的平行四边形的对角线确定,如图。
大学工程力学第2章力学基本知识
用一个力等效地代替一个力系,称为力系的合成,该力 称为合力,原力系中各力称为分力;用一个力系等效地代替 一个力,称为力的分解。
8
水利土木工程学院工程力学课程组
第2章 力学基本知识 2.1 力与力系
力系,是指作用于物体上的多个力。 静力学主要研究以下问题:
物体的受力分析; 力系的简化; 建立各种力系的平衡条件及应用。
水利土木工程学院工程力学课程组
第2章 力学基本知识 2.1 力与力系
力的概念
力是物体间相互的机械作用,这种作用使物体的机械运动 状态发生变化(运动效应)或使物体产生变形(变形效应)。
力系的概念
平ห้องสมุดไป่ตู้条件与平衡力系
物体平衡 是指物体相对于地面保持静止或作匀速直
线运动的状态。
要使物体处于平衡状态,作用于物体上的力系必须
满足一定的条件,这些条件称为力系的平衡条件 ;
作用于物体上正好使之保持平衡的力系则称为平衡 力系 。
9
水利土木工程学院工程力学课程组
第2章 力学基本知识
2.1 力与力系
推论2:三力平衡汇交定理
若刚体受三个力作用而平衡,且其中两个力的作用线相 交于一点,则三力必共面且三个力的作用线必汇交于一点。
F1
A
O
F3
C
B
F2
F1
A
F12
O
F3
C
B
F2
17
水利土木工程学院工程力学课程组
第2章 力学基本知识 2.2 静力学基本公理
公理 4 作用与反作用定律
两物体间相互作用的力,总是大小相等,方向相反, 且沿同一直线,并分别作用在两个物体上。
第2章静力学
yD
=
Jc + yc A
yc
!压力中心 D 恒在平面形心 C 的下方。
为什么?
应用上述公式时应该注意: (1)没有考虑大气压的影响。 (2)在压力中心的计算式中y坐标原点的取法。
将y轴原点取在自由液面上。
[例题2-3] 如图所示,一矩形闸门两面受到水的压力,左 边水深H1 = 4.5m,右边水深 H2 = 2.5m ,闸门与水面成 α = 450
四.流体静压力的两个重要特性:
特性一:静压力方向永远沿着作用面内法线方向
p
τ
证明:
pn m
一方面,流体静止时只有法向力,没有切向力,静压力只 能沿法线方向;
另一方面,流体不能承受拉力,只能承受压力。所以,静 压力唯一可能的方向就是内法线方向。
特性二:静止流体中任何一点上各个方向的静压力
大小相等,与作用面方位无关。
说明: 实压力体(+):压力体内充满液体,垂直分力是向下的; 虚压力体(-):压力体内没有液体,垂直分力是向上的。 压力体液重并不一定是压力体内实际具有的液体重力,只 是一个虚构概念。
综上所述,压力体的画法可归纳为以下几步:
(1)将受力曲面根据具体情况分成若干段; (2)找出各段的等效自由液面。 (3)画出每一段的压力体并确定虚实。 (4)根据虚实相抵的原则将各段的压力体合成,得到最
受压曲面ab的压力体为V=BAabc。 面积Aabc为扇形面积aob与三角形 cob面积之差,所以有
θ
P
Pz
b
Pz = ρ gBAacb
图2-23 例2-4图
Pz = ρ gBAacb
=
ρgB
⎡α
⎢ ⎣
360
(π H )2 − sin α
第二章 刚体静力学基本概念与理论(5学时)
合力偶定理: M=Mi
§2-3 约束与约束反力
一、概念 自由体:位移不受限制的物体叫自由体。 非自由体:位移受限制的物体叫非自由体。 约束:对非自由体的某些位移预先施加的限制条件称为约束。
(这里,约束是名词,而不是动词的约束。) 约束反力:约束给被约束物体的力叫约束反力。
主动力:促使物体运动或有运动趋势的力,在理论力学 中它作为已知条件给出
在第三象限,如图所示。
§ 2.2力偶
如图所示,用手扳螺母时,作用在扳手上的两个力使扳 手绕O点作转动
力偶:作用在同一平面内,大小 相等、方向相反、作用线 相互平行的两个力。
作用效应
使刚体的转动状态发生改变
力偶(F,F’)两个力所在平面称力偶作用面. 两力作用线之间的垂直距离d称为力偶臂.
力偶矩 m Fd
物体受到的约束力只能沿光滑支撑面的法线方向, 并通过铰链中心。
5. 固定端约束
Fx
m
Fy
FAy
空间 A
FAz
FAx
球铰
FAy
FBy
FAz
A FAx FBz
一对轴承
FAy My
Mz B FAz
A Mx
固定端
§2-4 物体的受力分析和受力图
一、受力分析 解决力学问题时,首先要选定需要进行研究的物体,即选
y
F1 F
y F1 F
y
Fy
F
Fy
F2
F2 F2
o
Fx x
Fy O Fx
x
O F1
Fx x
讨论:力的投影与分力
力F在垂直坐标轴x、y上的投影分量与沿轴分解的 分力大小相等。
力F在相互不垂直的轴x、y上的投影分量与沿 轴分解的分力大小是不相等的。
静力学第二章
§2–3
空间力偶
1、力偶矩以矢量表示,力偶矩矢
空间力偶的三要素 (1) 大小:力与力偶臂的乘积; (2) 方向:转动方向; (3) 作用面:力偶作用面。
F1 F2 F1 F2
力偶矩矢 M rBA F (4–10)
2、力偶的性质
(1)力偶中两力在任意坐标轴上投影的代数和为零 . (2)力偶对任意点取矩都等于力偶矩,不因矩心改变而改变 。 力偶矩
B
A
A O
α
FAB
FBA
B
M1
M2 D
FO
M1 O
M2 D FD
解:杆AB为二力杆。 由于力偶只能与力偶平衡, 则AO杆与BD杆的受力如图所示。 分别写出杆AO和BD的平衡方程: Mi 0 由 得 M1 r ·AB cosα= 0 F
M2 + 2r · BA cosα= 0 F
则得
因为
三式与(2-3)式比较
比较(2-3)、(2-5)、(2-6)、(2-7)式可得
M o ( F ) yFz zFy M x ( F )
x
M o ( F ) zFx xF M y ( F )
y
M o ( F ) xFy yFz M z ( F )
FAB = FBA
M2 = 2 M1
例2-5 如图所示机构的自重不计。圆轮上的销子A放在摇杆BC上的光
滑导槽内。圆轮上作用一力偶,其力偶矩为M1=2 kN· , OA = r =0.5 m。 m
图示位置时OA与OB垂直,角α=30o , 且系统平衡。求作用于摇杆BC上的力偶 的矩 M2 及铰链O,B处的约束力。 先取圆轮为研究对象。 解:
第二章 流体静力学
所以表面abcd的总压力为:( p
p dx )dxdy x 2
同理面aˊbˊcˊd ˊ的总压
p dx 力为: (p )dydz x 2
z
微团在X轴方向的表面
力和为:
(p p dx p dx )dydz ( p )dydz x 2 x 2
p
p dx x 2
位质量流体受到的质量力在水平面x轴和y轴的投影为零, 铅直方向z轴的投影为重力加速度g,根据
则有
dp g dz
dp ( f x dx f y dy f z dz)
积分得
p zc g
液体静止的基本方程
式中:g在本书中取值9.807m/s2;
z为测压处相对于边界条件(基准面)的高差。 c为常数,大小由边界条件确定。
若一个函数W(x,y,z)使质量力的投影等于这个函数的偏
导数,即
W fx x
fy
W y
fz
W z
则称函数W(x,y,z)为质量力势函数。 一个存在质量力势函数的力场,称为有势力场,相应的
质量力称为有势质量力,简称有势力。
等压面性质: • 等压面就是等势面; • 等压面与质量力垂直; •两种互不掺混液体的分界面也是等压面。
等压面:在静止流体内,由静压力相等的各点组成的面
自由面:静止液体和气体接触的面
水平面既是等压面也是自由面
液体静压强分布规律只适用静止、同种、连续液体
同一容器或同一连通器盛有多种不同密度的液体时,关键是找到等 压面
§2-4
液体的相对静止
辩证唯物主义:
①运动是普遍的、永恒的和无条件的,因而是绝
静力学(第二章)
A FC
C
B
W
①选研究对象; ②去约束,取分离体;③画上主动力;④画出约束反力。
例3 图示结构中各杆重力均不计,所有接触处均为光滑 接触。试画出:构件AO、AB和CD的受力图。
①选研究对象; ②去约束,取分离体;③画上主动力;④画出约束反力。
例4 画出下列各构件的受力图
说明:三力平衡必汇交 当三力平行时,在无限 远处汇交,它是一种特 殊情况。
改变原力系对刚体的作用。
只适于刚体!
静力学基本公理
推理1
力的可传性
作用在刚体上某点的力,可沿其作用线移动, 而不改变它对刚体的作用。
力对刚体的作用决定于:力的大小、方向和作用线。 力是有固定作用线的滑动矢量。
静力学基本公理
根据力的可传性,作D 的受力图, 此受力图是否正确?
分析整个系统平衡时,作用力 是否可沿其作用线移动?
刚体静力学模型
1.3 接触和连接方式的抽象和理想化
自由体:
-约束
其运动没有受到其它物体预加 的直接制约的物体
刚体静力学模型
约束:对非自由体运动起制约作用的周围物体 约束反力:约束作用于被约束物体的力
非自由体:
其运动受到其它物体预加的直接制约的物体
刚体静力学模型 约束反力的特点:
大小:常常是未知的 作用点:接触点 方向:总是与约束所能阻止的物体运动方向相反 F G
工程常见约束与约束反力
2.1 柔性约束
柔性约束只能承受拉力 约束反力: 沿柔索而背离被约束物体,作 用于连接点。
工程常见约束与约束反力
2.1 柔性约束
柔性约束只能承受拉力
约束反力: 沿柔索而背离被约束物体,作用于连接点。
链条约束与约束力
理论力学课件-02第二章静力学(2)
例:起重机的挂钩。
3
第二章 平面汇交力系与平面力偶系
§2–1 平面汇交力系合成与平衡的几何法 §2–2 平面汇交力系合成与平衡的解析法 §2–3 平面力对点之矩的概念及计算 §2–4 平面力偶
4
§2-1 平面汇交力系合成与平衡的几何法
一、平面汇交力系的合成
1.两个共点力的合成
力偶矩矢量有关.
45
力偶在任何轴上的投影为零,本身又不平衡。
y
F
d
F'
x
力偶不能合成为一个力,不能用一个力来等效 替换;力偶也不能用一个力来平衡,只能由力偶来 平衡。力和力偶是静力学的两个基本要素。
46
力偶对平面内任意一点的矩: MO (F , F ) MO(F ) MO(F) F(x d) F x
力对刚体可以产生 移动效应—用力矢度量 转动效应—用力对点的矩度量
F
O—矩心
h —力臂
o
h
MO(F) F h
+-
37
B
F o rA
h
MO(F) F h
2AOB
说明:① M O (F )是代数量,逆时针为正
②单位N·m,工程单位kgf·m。
38
二、合力矩定理
定理:平面汇交力系的合力对平面内任一点的矩, 等于所有各分力对同一点的矩的代数和
力的平行四边形法则或力三角形
5
2. 任意个汇交力的合成
F1 F2
A F3
F4
R F1 F2 F3 F4 即:R Fi
结论: 平面汇交力系的合力等于各分力的矢量和,合力
的作用线通过各力的汇交点。
6
F2
F3
R1
2第二章 流体静力学基本方程
p b 为大气压强
17
图1-8 静力水头线与测压管水头线
公安海警学院基础部
热工基础
第二章 流体静力学方程
设一个大气压力为 9 . 81 10 4 N 3 3 的密度 10 kg / m 2 力加速度 g 9 . 81 m / s 则
pb
/m
2
而水 重
g
9 . 81 10
3
4
例2
热工基础
第二章 流体静力学方程
解: A点: 位置水头: z 压力水头: h 测压管水头:
H
A
A
h1 h 2 3 3 6 m
A
pA
g
5 10
5 3
10 10
50 m
z A h A 6 50 56 m
24
公安海警学院基础部
热工基础
第二章 流体静力学方程
第二章 流体静力学方程
当f2>>f1时: 可以用很小的力:p1*f1 f1 举起重物:p1*f2
帕斯卡定律:在平衡液 体里面,其液面或任意 一点的压力和压力变化, 可以按照它原来的大小, 传递到液体的各个部分。
35
p1
G
p1
f2
公安海警学院基础部
热工基础
第二章 流体静力学方程
36
图1-16 油压千斤顶的 构造原理
27
公安海警学院基础部
热工基础
第二章 流体静力学方程
小结
重力
作 用 在 流 体 上 的 力
质量力
惯性力
直线惯性力
离心惯性力 切应力 表面力
压强
28
公安海警学院基础部
建筑力学第2章静力学基本概念
第二节 力矩与力偶
第二节 力 矩与力偶
第二章 静力学基本概念
第二节 力矩与力偶
(一)力对点之矩
l
A
(1)用扳手拧螺母;
(2)开门,关门。
d
F
o
由上图知,力 F 使物体绕 o 点转动的效应,不仅与力的大小, 而且与 o 点到力的作用线的垂直距离 d 有关,故用乘积 Fd 来
度量力的转动效应。该乘积根据转动效应的转向取适当的正
有的则在某些处受到限制而使其沿某些方 向的运动成为不可能,称为非自由体。
对非自由体运动的限制条件(物体)称为 约束。
在静力学里,约束是以物体相互接触的方 式构成的。
第二章 静力学基本概念
第四节 约束与约束反力
物体受到的力一般可以分为两类: 主动力——是使物体运动或使物体有运动趋势的力。 如重力、水压力、土压力、风压力等。 在工程中通常称主动力为荷载。 被动力——是约束对于物体的约束反力。
AB施加两个拉力(图1-3a)或压力(图1-3b )F1
及F2,使F1=-F2 ,刚杆将保持静止。
F1 A
B F2 F1 A
B F2
(a)
(b)
二力平衡杆件
第二章 静力学基本概念
第一节 力 的 概 念
该公理指出了作用在刚体上最简单力系的平衡条件。但应 该注意对刚体而言,这条件既必要又充分,但对变形体而 言,这条件并不充分。以绳为例,如图所示。
负号称为力 F 对点 o 之矩,简称力矩,以符号M o (F) 表示。
第二章 静力学基本概念
第二节 力矩与力偶
即
M o (F ) Fd
o 点称为力矩的中心,简称矩心;o 点到力 F 作用 线的垂直距离 d ,称为力臂。
工程力学基础第2章 静力学的基本概念和受力分析
(二)常见约束的约束力性质
图2-33
(二)常见约束的约束力性质
几个构件固连在一起的连接处称为刚接点,构件之间的夹角保 持不变,如曲杆的拐角处。刚接点处的约束与固定端相似。 固定端与光滑铰链都是刚性铰,可以看做是柔性铰的两种极限 情况。在通常情况下,将构件的连接简化为刚性铰进行分析计 算,得到的结果就可以满足工程的要求。更精确的分析则要求 采用复杂的柔性铰模型,如机器人的柔性关节(图2-34
(二)常见约束的约束力性质 1 柔索 柔索指不计自重的、不可伸长且无限柔软的细长物 体。
图2-15
(二)常见约束的约束力性质
图2-16
(二)常见约束的约束力性质 2 光滑接触面 光滑接触面指摩擦阻力可以忽略不计的两物 体的刚性接触面。
图2-17
(二)常见约束的约束力性质
图2-18
(二)常见约束的约束力性质
(二)分离体和受力图
在进行受力分析时,为了清晰和便于计算,需要把研究对象从 其周围物体中分离出来,画出其简图,单独地考察它,这种被 解除了约束的物体就称为分离体或自由体;然后,将分离体所 受的全部力,包括主动力和约束力,以力矢的形式画在简图上, 这种图形称为分离体的受力图或自由体图。受力图形象地表示 了研究对象的受力情况。 解除约束原理:受约束的物体在某些主动力和约束的作用下处 于平衡状态,若将其部分或全部约束除去,代之以相应的约束 力,则物体的平衡不受影响。
图2-29
(二)常见约束的约束力性质 6 固定端和转动约束 固定端是一种常见的约束类型,其结 构特点为被约束体的一部分固嵌于约束体内,如车床上固定工 件的卡盘和固定刀具的刀架,固定电线杆和建筑物立柱的混凝 土地基,固定雨篷的墙壁等,如图2-30所示。
图2-30
第2章静力学
【例2-1】画出如图2-17(a)所示球形物体的受力图。
图2-17 【例2-1】图
【例2-2】 如图2-18(a)所示,简支梁AB,跨中受集 中力F的作用,A端为固定铰支座约束,B端为可动铰支座 约束。试画出梁的受力图。
图2-18
【例2-2】图
【例2-3】 水平梁AB用直杆CD支撑,A,C,D三处均为 铰连接。均质梁AB重W1,其上放置一重为W2的电动机。不计 CD杆自重,试画出杆CD和梁AB(包括电动机)的受力图。 如图2-19(a)所示。
G bhl q bh(kN/m) l l
即均布线荷载为重度乘以截面面积。
④非均布线荷载 沿跨度方向单位长度非均匀分布的荷载,称为非均 匀线荷载。其单位N/m或kN/m。
G=γbhL ⑤集中荷载 集中地作用于一点的荷载称为集中荷载,其单位N或kN, 通常用G或F表示。
如图2-25所示为一房屋结构平面图,设板上受到均匀 的面荷载p(kN/m2)作用,板跨度为3.6m,L1梁的截面 尺寸为b×h,跨度为6.1m。那么,L1梁上受到的全部均布 线荷载q=p×3.6+γbh。
图2-12 光滑圆柱铰链约束
4.链杆约束
不计自重且没有外力作用的刚性构件,其两端借助铰 将两物体连接起来,就构成刚性链杆约束。
约束特点:只能限制物体沿链杆中心线趋向或离开 链杆的运动,而不能限制其他方向的运动。 约束反力的方向: 沿着链杆 中心线,其指向 未定,或为压力, 或为拉力。
图2-13 链杆约束
2.5
结构计算简图
结构计算简图: 对结构进行力学分析和计算时,用一个简化的结构 模型来代替实际结构的图形。 简化原则: 反映实际——抓住主要特征,以反映实际结构的受 力、变形等特征,使计算结果尽可能准确。 计算简单——略去次要因素。 抽象和简化过程包括三个环节: (1)建筑物所受荷载的抽象和简化; (2)约束的抽象和简化; (3)结构的抽象和简化。
理论力学教案2
本次讲稿第二章刚体静力学基础第一节静力学基本概念静力学是研究物体的平衡问题的科学。
主要讨论作用在物体上的力系的简化和平衡两大问题。
所谓平衡,在工程上是指物体相对于地球保持静止或匀速直线运动状态,它是物体机械运动的一种特殊形式。
一、刚体的概念工程实际中的许多物体,在力的作用下,它们的变形一般很微小,对平衡问题影响也很小,为了简化分析,我们把物体视为刚体。
所谓刚体,是指在任何外力的作用下,物体的大小和形状始终保持不变的物体。
静力学的研究对象仅限于刚体,所以又称之为刚体静力学。
二、力的概念力的概念是人们在长期的生产劳动和生活实践中逐步形成的,通过归纳、概括和科学的抽象而建立的。
力是物体之间相互的机械作用,这种作用使物体的机械运动状态发生改变,或使物体产生变形。
力使物体的运动状态发生改变的效应称为外效应,而使物体发生变形的效应称为内效应。
刚体只考虑外效应;变形固体还要研究内效应。
经验表明力对物体作用的效应完全决定于以下力的三要素:(1)力的大小是物体相互作用的强弱程度。
在国际单位制中,力的单位用牛顿(N)或千牛顿(kN),1kN=103N。
(2)力的方向包含力的方位和指向两方面的涵义。
如重力的方向是“竖直向下”。
“竖直”是力作用线的方位,“向下”是力的指向。
(3)力的作用位置是指物体上承受力的部位。
一般来说是一块面积或体积,称为分布力;而有些分布力分布的面积很小,可以近似看作一个点时,这样的力称为集中力。
如果改变了力的三要素中的任一要素,也就改变了力对物体的作用效应。
既然力是有大小和方向的量,所以力是矢量。
可以用一带箭头的线段来表示,如图2-1所示,线段AB长度按一定的比例尺表示力F的大小,线段的方位和箭头的指向表示力的方向。
线段的起点A或终点B表示力的作用点。
线段AB的延长线(图中虚线)表示力的作用线。
图2-1本教材中,用黑体字母表示矢量,用对应字母表示矢量的大小。
黑龙江水利专科学校建工系力学教研室一般来说,作用在刚体上的力不止一个,我们把作用于物体上的一群力称为力系。
建筑力学课件 第二章 静力学基础
2.1 静力学公理
公理二、力的平行四边形法则 内容:作用于物体同一点的两
个力,可以合成为一个合力 ,合力也作用于该点,合力 的大小和方向由以两个分力 为邻边的平行四边形的对角 线表示,即合力矢等于这两 个分力矢的矢量和。 如图所示,其矢量表达式为 F1 + F2 = FR (2—1)
2.1 静力学公理
2.1 静力学公理 在这里,要区别二力平衡公理和作用 力与反作用力公理之间的关系:有相 同点,也注意不同点。 同样是等值、反向、共线,前者是对 一个物体而言,而后者则是对两个物 体之间而言。 显然,由于作用力与反作用力是分别 作用在两个不同的物体上,不能构成 平衡关系。
2.1 静力学公理
公理四、加减平衡力系公理 内容:在作用于刚体上的已知力系上,加上或减
2.1 静力学公理
平行四边形法则的逆定理
利用力的平行四边形法则,也可以把 作用在物体上的一个力,分解为相交 的两个分力,分力与合力作用于同一 点。
但是,由于具有相同对角线的平行四 边形可以画任意个,因此,要唯一确 定这两个分力,必须有相应的附加条 件。
2.1 静力学公理
实际计算中,常把一个力分解为方向已知的两个 (平面)或三个(空间)分力。如图即为把一个 任意力分解为方向已知且相互垂直的两个(平面 )或三个(空间)分力。这种分解称为正交分解 ,所得的分力称为正交分力
例如柔索,当受到两个等值、反向、共线 的压力作用时,会产生变形(被揉成一 团),因此就不能平衡。
2.1 静力学公理
二力平衡公理的应用:判别二力杆 在两个力作用下并且处于平衡的物体称为二力体 ;若为杆件,则称为二力杆。根据二力平衡公理 可知,作用在二力体上的两个力,它们必通过两 个力作用点的连线(与杆件的形状无关),且等 值、反向,如图2-5所示。
流体力学第02章流体静力学
于质量力只有重力的同一种连续介质。对不连续液体或
一个水平面穿过了两种不同介质,位于同一水平面上的
各点压强并不相等。
二 气体压强的分布(不讲) (不讲就不考)
三 压强的度量--绝对压强与相对压强
1、 绝对压强
设想没有大气存在的绝对真空状态作为零点计量的压 强,称为绝对压强。总是正的。
2、 相对压强
解:相对静水压强:
p pabs pa p0 gh pa
代入已知值后可算得
h ( p p0 pa ) (9.8 85 98) / 9.8 2.33m
g
例: 如图,一封闭水箱,其自由面上气体压强为
25kN/m2,试问水箱中 A、B两点的静水压强何处为大?
已知h1为5m,h2为2m。 解:A、B两点的绝对静水
因水箱和测压管内是互相连通的同种液体故和水箱自由表面同高程的测压管内n点应与自由表面位于同一等压面上其压强应等于自由表面上的大气压强即ghgh11测压管测压管若欲测容器中若欲测容器中aa点的液体压强点的液体压强可在容器上设置一开口细管可在容器上设置一开口细管
第二章 流体静力学
流体静力学的任务:是研究液体平衡的规律及其
p
g
p0
g
得出静止液体中任意点的静水压强计算公式:
p p0 gh
式中
h z0 z :表示该点在自由面以下的淹没
深度。
p0 :自由面上的气体压强。
静止液体内任意点的静水压强有两部分组
成:一部分是自由面上的气体压强P0,另一部分 相当于单位面积上高度为h的水柱重量。
(a)
(b)
(c)
淹没深度相同的各点静水压强相等,只适用
pA gLsin
当被测点压强很大时:所需测压管很长,这时可以改 用U形水银测压计。
第二章-流体静力学
例2-3 用复式压差计测量两条气体管道的压差。两个U形管的工作液体为水银,密度
为 2 ,其连接管充以酒精,密度为 1 为 z 1 、z 2 、z 3 、z 4 。求压差 p A p B 。如果水银面的高度读数
解 界面1的压强 界面2的压强 界面3的压强
上式反映了液体的压强与高度的函数关系。由此式可以看出以下几点:
[1] 当z为常数时,压强也是一个常值,因此,等压面是一个水平面。这个结论对
任何一种不可压缩流体都适用。但是,对于不同的流体,由于它们的密度不同, 因此上式的常数c不相同。
[2] 在同一种液体中,压强p随高度z的增加而变小。
[3] 设液面上的压强为
由于 h D 2 4 h d 2 4 故
p a p g 1 d D h
2
取水银的密度 13600 kg m 3
代入数据,得真空压强为 26939 Pa
2-5 静止大气压的压强分布 国际标准大气
大气层中的压强与密度、温度的变化有关,而且受到季节、时间、气候诸 因素的影响。世界各地的大气压强分布不同的。为了便于科技资源的交流, 根据各国气象的统计数据,国际上约定一种大气压强、密度和温度随海拔 高度变化的规律,这就是国际标准大气。 国际标准大气取海平面为基准面,在基准面上的大气参数为
3
10 Pa 0 . 986 10 Pa
5 5
3 当绝对压强 p 117 . 7 10 Pa
时,表压 p g 19 . 1kPa
当绝对压强 p 68 . 5 10
Hale Waihona Puke 3Pa时,真空压强 p v 30 . 1kPa 或柱高 3.069mmH2O
流体力学第二章
对于液面与上边线平齐的矩形平面而言,压力中心坐标为
yD
=yC
+ JC = yCA
l+ bl3/12 = 2 (l/2)bl
2 3l
根据合力矩定理,对 o点取矩可得
Pl=P1
l1 3
-P2
l2 3
=P13sHin1α-P23sHin2α
代入已知数据可解得 l=2.54m
这就是作用在闸门上的总压力的作用点距闸门下端的距离。
— 5—
蔡增基《流体力学》考点精讲及复习思路
解 作用在闸门上的总压力为左右两边液体总压力之差,即 P =P1 -P2。 因为 hC1 =H1/2,A1 =bH1/sinα, hC2 =H2/2,A2 =bl2 =bH2/sinα, 所以 P =ρghC1A1 -ρghC2A2
=ρgH21bsHin1α-ρgH22bsHin2α =97030N。
槡P2x +P2y +P2z
总压力的大小为:P =Pxi+Pyj+Pzk (2)压力体 压力体是由受力曲面、液体自由表面(或其延长面)以及两者间
∫ 的铅垂面所围成的封闭体积。压力体是从积分 AhdAz得到的一个体
积,是一个纯数学的概念,与体积内有无液体无关。
— 6—
实压力体 如果压力体与形成压力的液体在曲面的同侧,则称这样的压力体为实压力体,用(+)来表示,其 方向垂直向下。 虚压力体 如果压力体与形成压力的液体在曲面的异侧,则称这样的压力体为虚压力体,用(-)来表示,其 方向垂直向上。 需要注意的是:以上的两个压力体给人的感觉是实压力体就是内部充满液体的压力体,虚压力体 就是内部没有液体的压力体。其实压力体的虚实与其内部是否充满液体无关 压力体的合成
0.075m处,试求该正方形平板的上缘在液面下的深度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章静力学基础
基本要求与重点
1. 理解并熟练掌握静力学公理应用
重点是区分各公理的适用对象与适用条件。
2. 理解约束和约束力的概念,掌握并熟练应用P29-30工程常见约束性质表。
3.掌握正确的绘制受力图的方法。
(1)合格受力图的标准
完整准确地表示出研究对象:是研究对象的,一定要出现在图上;不是研究对象,不能出现在图上;如果用通辑八戒,该用哪张图?
(a)(b)(c)
(a)正确
(b)小心师傅带着悟空、悟净和你打名肖像权和誉权的官司:
(c)呢?,对已经把老猪的特点描绘出来了,但前提是大家对它都很熟悉。
哪为什么要画呢?以后会说明什么样的名人可以不画。
完整准确地表示出研究对象受到的外力,受力图不是授力图。
整体不能代替个体。
当你画出的是整体时,就只能是整体的受力图,内部个体之间的相互作用力不应画出。
同样,它也不能代表某一个局部;因为,对整体而言不能画的力,对个体而言是外力,必须要画。
(2)作受力图步骤
找二力杆(体)——这样的名人不单独作研究对象。
解除约束研究对象照原样抄,已知力照原样抄。
(如果你是土豪,可以把教材中的原图复印下来,然后把研究对象和上面的已知力剪下来粘贴到杯子上)。
和二力体相关的外力,一般按二力体画。
其它约束按P29~30的表抄。
主要内容
1.静力学的基本理论
5个公理、二力杆、力的可传性原理、三力平衡汇交定理。
2.约束
约束的定义:限制其它物体运动的物体。
常见约束类型:柔索、光滑接触面、光滑铰链、固定铰支座、活动铰支座、固定端、定向支座。
约束反力。
3.受力分析
确定研究对象受力情况的过程,这一过程一般不涉及计算,更不涉及力的具体大小。
4.受力图
表示研究对象受力情况的图形。
表示研究对象受力情况的图形。
表示研究对象受力情况的图形。
思考题与习题
2-1. 说明下列式子的意义:
(1)F1=F2 ;(2)F1=F2;(3)F1=-F2;
答:1说明力F1与F2大小相等方
向相同。
2说明力F1与F2大小相等。
3说明力F1与F2大小相等方向相
反。
2-2.哪几条公理或推理只适用于刚体?
答:二力平衡公理和加减平衡力系公理。
2-3.二力平衡公理和作用力与反作用力公理中,都说是二力等值、反向、共线,其区别在哪里?
答:1. 二力平衡公理只适用于刚体,作用与反作用力公理适用与任意物体;二力平衡公理中,二力作用于同一刚体,作用与反作用力公理中两力分别作用在不同物体;作用与反作用力公理中两力性质相同,二力平衡公理中对二力的性质没有要求。
2-4.判断下列说法是否正确,为什么?
(1)刚体是指在外力作用下变形很小的物体;
答:错误。
刚体是在外力作用下不会变形的物体,只有当物体的变形不影响所研究问题时,才能看成是刚体。
(2)凡是两端用铰链连接的直杆都是二力杆;
答:错误.二力杆要求杆的中间不受力。
(3)如果作用在刚体上的三个力共面且汇交于一点,则刚体一定平衡;
答:错误。
交于同一点的三个力还需要合力矢量等于零,才能平衡。
(4)如果作用在刚体上的三个力共面,但不汇交于一点,则刚体不能平衡。
答:错误。
如三个力没有交点也可能平衡。
(平行力系)
2-5.如图,曲杆AB不计自重,若在上面的A、B两点各施一力,能否使它处于平衡状态?
答:有可能。
只要两力的作用线都在AB的连线上,且等值反向。
2-6. 图示三种结构,构件的自重不计,接触面为光滑, = 60o,如果B处都作用有相同的水平力F,问支座A处的反力是否相同?
答:不相同。
各自受力情况如下图所示。
【说明】1.图(a)AB、CD为一整体,否则不能平衡(如考虑摩擦,则有可能平衡)。
教材中的画法并没有错误;但是,建议用下法两种之一的画法。
2.图(c)中,D处是固定面。
即,固定端约束。
3.以上三个图中A处的约束反力的方向都是利用三力平衡汇交定理确定的。
(a )中A F 沿着AB 只是由于D 、B 两点的作用力的交线在AB 上;当其它力发生变化时,
A F 的作用线完全可能改变。
(b )图中CD 是二力杆。
(c )图中,C 处是光滑接触表面约束。
2-7. 图示各物体,设所有接触面都是光滑的,图中未标出自重的物体,自重不计,它们的受力图是否有错误?若有,说明如何改正。
答:除了(a )可以勉强算对,其它各图都有错误。
正确的如下:
【说明】
(a ) 从平衡角度看,A 点的力为0;但按图中在A 处画上约束反力也不完全算错,因为A 处为光滑接触面,可能提供图示反力。
这里“可能提供”是指,只看约束可能提供反力,但实际反力为零;这时可以画上。
但约束能提供的反力方向有很多(如铰链),这时就不能随意指定一个“确定的”方向。
简单地讲,能用一般代替特殊;而不能用特殊代替一般。
就是实际是特殊的,可按一般画;实际是一般的,不能按特殊画。
(b)A光滑接触面。
反力沿公共法线,从圆周找。
(c)关键是B处,这种画法的活动铰支座,反力的作用线与链杆轴线重合。
另,可以用三力平衡汇交定理确定A的反力作用线。
实际上两种画法都算对。
(d)不能用三力平衡汇交定理。
M是力偶(由两个大小相等、方向相反、作用不重合的力组成的特殊力系)。
2-8. 画出如图所示各物体的受力图。
所有的接触面都为光滑接触面,未注明者,自重均不计。
2-9. 画出如图所示各物体的受力图。
所有的接触面都为光滑接触面,未注明者,自重均不计。
a)b)c)
d)e)f)
2
2-10. 选取图示梁的计算简图。
图2-35
2-11.图示为一工业厂房中的钢筋混凝土T形吊车梁,梁上铺设钢轨,吊车的最大轮压是F P1和F P2,试画出其计算简图。
图2-36
补充与拓展
今天聊聊学习方法之——如何看待典型题目
在很多课程的学习中,我们都有通过掌握典型题目,进而学会该课程,这样一种学习习惯。
可能因为掌握并应用了这种学习方法,才使我们能有今天的学习成就;但同时,也恰恰是始终使用这种方法,才使我们只能达到今天的水平。
而且你可能已经体会到了力学课程似乎不能这样学。
这种学习方法过时了吗?既没有过时,也过时了。
它很你问我在电脑上安装WindowsXP、Windows7、Windows10哪个版本好一样;当你还在使用Pentium II、Pentium III、Pentium 4的CPU时,WindowsXP是唯一的选择;如果你使用的是酷睿、酷睿2,WINXP是比较好的选择;当然,酷睿2也可以使用Win7。
如果你的CPU是I3、I5甚至是I7二代而仍然在使用XP那只能说是浪费。
,。