人教版高中数学各章知识点总结

合集下载

高三数学知识点全部汇总人教版

高三数学知识点全部汇总人教版

高三数学知识点全部汇总人教版高三数学知识点全部汇总一、函数与方程1. 函数概念及性质函数是描述两个变量之间相互关系的工具。

具有定义域、值域和对应关系等性质。

2. 一元二次函数一元二次函数是形如y=ax^2+bx+c的函数,其中a≠0。

3. 三角函数三角函数包括正弦函数、余弦函数和正切函数等。

4. 指数函数与对数函数指数函数是以底数为常数的幂函数,对数函数是指数函数的反函数。

5. 解方程与不等式解方程是求出使等式成立的未知数值,解不等式是求出使不等式成立的未知数值范围。

二、数列与数列求和1. 等差数列等差数列是具有相同公差的数列,常用通项公式an=a1+(n-1)d来表示。

2. 等比数列等比数列是相邻两项的比值相等的数列,常用通项公式an=a1*q^(n-1)来表示。

3. 递推数列递推数列是通过前一项和递推关系得到后一项的数列。

4. 数列求和数列求和是指对数列中的所有项进行加和运算,有等差数列求和公式和等比数列求和公式。

三、平面几何1. 平面图形的性质平面图形包括点、线、角、三角形、四边形、圆等,具有特定的性质和定理。

2. 三角形三角形是由三条边和三个内角组成的图形,有特殊的三边关系、三角形的性质和定理。

3. 圆与圆的相交关系圆与圆之间可以相离、相切或相交,并有相应的关系和定理。

四、空间几何1. 空间图形的性质空间图形包括点、线、面、体等,在三维空间中有特定的性质和定理。

2. 平行与垂直平行是指两条直线在同一平面内永不相交,垂直是指两条直线相交成直角。

3. 球与球的相交关系球与球之间可以相离、相切或相交,并有相应的关系和定理。

五、概率与统计1. 概率基本概念概率是用来描述事件发生可能性的大小,包括样本空间、事件、概率的概念。

2. 样本空间与事件样本空间是指随机试验的所有可能结果的集合,事件是样本空间的子集。

3. 随机变量与概率分布随机变量是随机试验结果的数值描述,概率分布用来描述随机变量取值的概率。

人教版高中 数学选修二 全册知识点 归纳总结3篇

人教版高中 数学选修二 全册知识点 归纳总结3篇

人教版高中数学选修二全册知识点归纳总结第一篇:数学选修二必修内容详解第一章函数及其应用1.函数及其概念:定义域、值域、图象、单调性、奇偶性、周期性、对称性等2.函数的运算:加法、减法、乘法、除法、复合函数、反函数等3.函数的应用:函数模型、函数方程、函数关系、函数表示、函数求值等第二章三角函数1.三角函数的基本概念:正弦、余弦、正切、余切、正割、余割2.三角函数的相互关系:借助单位圆解释正弦、余弦函数,借助正切函数解释余割、正割函数3.三角函数的简单运算:倍角公式、半角公式、和差公式、化简公式、合并公式、差积定理等4.三角函数的应用:角度关系、角度测量、三角函数图像、三角函数方程、三角函数求解等第三章解析几何1.二维平面直角坐标系的基本概念:点、直线、圆等2.二维坐标系中的直线方程:斜截式、截距式、一般式、交点式等3.圆的相关概念:圆的标准方程、圆的一般方程、圆心、半径、切线等4.解析几何的应用:确定方程、矢量运算、空间几何、曲线分析等第四章微积分1.导数及其基本概念:导数定义、导数运算、高阶导数、柯西—罗尔定理等2.微积分基本定理:牛顿—莱布尼茨公式、区分反函数、定积分、不定积分等3.微积分应用:函数极值、函数图像分析、相关变化率、微分方程、微积分定理等以上是数学选修二的必修内容,掌握这些知识点,能够帮助学生扎实掌握高中数学基本概念和方法,为进一步发展数学能力打下基础。

第二篇:数学选修二选修内容详解第五章数列及其应用1.数列的概念:等差数列、等比数列等2.数列的性质:通项公式、求和公式、收敛性、发散性等3.数列的应用:数学归纳法、数列问题的解答、计算器计算数列等第六章概率论与数理统计1.随机事件及其概率:基本概念、事件关系、样本空间等2.概率分布及其函数:二项分布、泊松分布、正态分布、指数分布等3.抽样分布及其统计推论:抽样中心极限定理、参数估计、假设检验等4.应用:概率模型、统计图表、数据分析、随机模拟等第七章矩阵论与线性代数1.基本知识:矩阵基本运算、行列式、逆矩阵、秩等2.线性方程组:高斯消元法、矩阵表示、特解、齐次线性方程组、基础解系等3.特征值和特征向量:特征方程、特征值、特征向量、对角化、相似变换等4.应用:向量分析、投影、方程求解、几何变换、矩阵算法等以上是数学选修二的选修内容,掌握这些知识点,能够帮助学生进一步拓展数学领域,学会使用不同的数学方法解决实际问题。

人教版高中数学知识点汇总(全册版)

人教版高中数学知识点汇总(全册版)
(3)求函数的定义域时,一般遵循以下原则:
① f (x) 是整式时,定义域是全体实数. ② f ( x) 是分式函数时,定义域是使分母不为零的一切实数. ③ f ( x) 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于 1.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个 最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是
提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.
②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数 的值域或最值.
对象 a 与集合 M 的关系是 a M ,或者 a M ,两者必居其一.
(4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.
③描述法:{ x | x 具有的性质},其中 x 为集合的代表元素.
④图示法:用数轴或韦恩图来表示集合. (5)集合的分类
人教版高中数学知识点(必修+选修)
高中数学 必修 1 知识点
第一章 集合与函数概念 【1.1.1】集合的含义与表示
(1)集合的概念 集合中的元素具有确定性、互异性和无序性.
(2)常用数集及其记法
N 表示自然数集, N 或 N 表示正整数集, Z 表示整数集, Q 表示有理数集, R 表示实数集.

人教版高一数学知识点总结

人教版高一数学知识点总结

人教版高一数学知识点总结一、集合与函数1.集合的概念及表示方法,包括集合元素的特点和集合关系的运算。

2.不等式解集的概念、表示及应用。

3.函数的概念及表示方法,包括函数的定义域、值域、图像和性质。

4.复合函数与反函数的概念及相关性质,包括复合函数的性质和反函数的求法。

5.函数的运算及函数方程的应用,包括函数的加、减、乘、除、求逆等运算,以及函数方程的解法。

二、数列与数学归纳法1.数列的概念及表示方法,包括等差数列、等比数列和锐角三角函数数列的性质与应用。

2.数列的通项公式及相关性质,包括等差数列通项公式、等差数列前n项和公式、等差数列求和等,以及等比数列通项公式和前n项和公式。

3.数学归纳法的原理及应用,包括数学归纳法的基本原理和应用题的解题思路。

三、函数的极限与连续1.函数的极限的概念、性质与运算法则,包括函数极限的定义、极限运算法则、无穷小量与无穷大量等。

2.无穷极限的概念、性质与运算法则,包括无穷大量的性质、无穷大量的运算法则等。

3.函数的连续性的概念、判定条件与性质,包括函数连续性的定义、连续性的判定条件及连续函数的性质等。

四、导数与函数的应用1.导数的概念、运算法则及几何意义,包括导数的定义、导数的四则运算法则、导数的几何意义等。

2.函数的导数及导数的应用,包括函数的导数、函数单调性、函数极值、函数图像等。

3.特殊函数的导数及应用,包括幂函数的导数、指数函数的导数、对数函数的导数、三角函数等的导数。

4.中值定理与泰勒公式的概念和应用,包括罗尔中值定理、拉格朗日中值定理、柯西中值定理和泰勒公式等。

五、平面向量1.平面向量的概念、表示方法及运算法则,包括平面向量的定义、向量的运算法则(加法、数乘等)。

2.向量的线性相关与线性无关的概念与判定方法,包括向量组的线性相关与线性无关的定义、方法与判定法则。

3.平面向量的数量积的概念、性质及相关运算法则,包括向量的数量积的定义、性质和运算法则,如数量积的坐标表示、数量积的几何意义等。

高中数学(新人教版)必修一知识点归纳

高中数学(新人教版)必修一知识点归纳

高中数学(新人教版)必修一知识点归纳
本文将归纳高中数学(新人教版)必修一的主要知识点。

以下是
各个主题的简要概述:
1. 数与式
- 数的分类:自然数、整数、有理数、实数等。

- 代数式:基本概念、多项式、公式等。

- 幂与乘方:指数、乘方、幂等运算。

- 整式的加减法:同类项、整式的加减法规则。

- 分式:基本概念、分式的性质与化简等。

2. 一元一次方程与不等式
- 一元一次方程:基本概念、解方程的方法、应用问题等。

- 一元一次不等式:基本概念、解不等式的方法、应用问题等。

3. 函数及其图像
- 函数与自变量、函数与因变量的关系。

- 函数的表示与性质:映射、函数图像、奇偶性等。

- 一次函数:定义、性质、图像、方程等。

- 反函数与复合函数:定义、性质、求反函数、求复合函数等。

4. 等差数列
- 等差数列的定义与性质。

- 等差数列的前n项和与通项公式。

- 应用问题:等差数列应用于数学与生活中的实际问题。

5. 平面向量
- 向量的基本概念与表示法。

- 向量的运算:加法、数乘等。

- 向量共线与共面的判定。

- 向量的数量积与模的概念与性质。

6. 不等式与线性规划
- 不等式的基本性质与解法。

- 一元一次不等式组:基本概念、解法、应用问题等。

- 线性规划的基本概念与常见问题。

以上是高中数学(新人教版)必修一的主要知识点的简要归纳。

详细内容可以参考相关教材或课堂讲义。

希望这份归纳对你有帮助!。

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。

作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。

高中数学知识点全总结目录人教版

高中数学知识点全总结目录人教版

高中数学知识点全总结目录人教版高中数学知识点全总结(人教版)一、函数与导数1. 函数的概念与性质- 定义域与值域- 函数的奇偶性- 反函数- 基本初等函数(线性函数、二次函数、幂函数、指数函数、对数函数、三角函数)2. 函数的运算- 函数的四则运算- 复合函数- 反函数的求法3. 导数与微分- 导数的定义与几何意义- 常见函数的导数- 链式法则、乘积法则、商法则- 高阶导数- 微分的概念与应用4. 函数的极值与最值- 极值的定义与判定- 最值问题- 应用题5. 导数在几何上的应用- 曲线的切线与法线- 函数图像的凹凸性与拐点 - 渐近线二、三角函数与解三角形1. 三角函数的基本概念- 正弦、余弦、正切函数- 三角函数的图像与性质- 三角函数的基本关系式2. 三角恒等变换- 同角三角函数的关系- 恒等变换公式3. 解三角形- 正弦定理与余弦定理- 三角形的面积公式- 应用题三、数列与数学归纳法1. 等差数列与等比数列- 通项公式与求和公式- 等差数列与等比数列的性质2. 数列的极限- 数列极限的概念- 极限的四则运算3. 数学归纳法- 原理与步骤- 证明方法四、解析几何1. 平面直角坐标系- 点的坐标- 距离公式与中点公式2. 直线与圆的方程- 直线的斜率与方程- 圆的标准方程与一般方程3. 圆锥曲线- 椭圆、双曲线、抛物线的方程与性质 - 圆锥曲线的切线与法线4. 空间几何- 空间直角坐标系- 空间直线与平面的方程- 空间几何体的体积与表面积五、概率与统计1. 概率的基本概念- 随机事件与概率的定义- 条件概率与独立事件2. 随机变量及其分布- 离散型与连续型随机变量- 概率分布与概率密度函数3. 统计量与抽样分布- 常见的统计量(均值、方差、标准差)- 抽样分布与正态分布4. 参数估计- 点估计与区间估计- 置信区间的概念与计算六、数学思维与方法1. 逻辑推理与证明- 演绎推理与归纳推理- 证明方法(直接证明、间接证明、数学归纳法)2. 数学建模与应用- 数学建模的基本步骤- 数学在实际问题中的应用3. 数学思想方法- 函数与方程的思想- 转化与化归的思想- 极限与无穷的思想结语高中数学的学习不仅是对数学知识的掌握,更重要的是培养数学思维和解决问题的能力。

高中数学必修一知识点整理【史上最全】---人教版

高中数学必修一知识点整理【史上最全】---人教版

高中数学必修一知识点整理【史上最全】
---人教版
1. 数的性质与运算
- 自然数、整数、有理数、实数、复数的定义和性质
- 加法、减法、乘法、除法的运算法则及性质
- 乘方、开方、指数运算的基本概念和性质
2. 一元一次方程与一元一次不等式
- 一元一次方程的定义、解的概念及解法
- 一元一次不等式的定义、解的概念及解法
- 一元一次方程与一元一次不等式的应用
3. 二次根式与二次方程
- 二次根式的概念、性质及化简
- 二次方程的定义、解的概念及解法
- 二次方程与二次根式的应用
4. 几何图形的认识与性质
- 点、线、面的基本概念及性质
- 一些常见几何图形的性质,如线段、角、三角形、四边形等5. 平面向量
- 向量的定义、线性运算及性质
- 平面向量坐标与位移、相等、共线的判定
- 平面向量的加减乘法及其应用
6. 相交与平行
- 相交直线的判定
- 平行线的判定和性质
- 平行四边形的性质及判定
7. 图形的相似性和尺度
- 图形的相似性的定义和性质
- 相似三角形的判定及性质
- 尺度的概念及应用
8. 三角函数与周期性
- 三角函数的定义及常用公式
- 三角函数的图像和性质
- 三角函数的周期性和简单应用
9. 数据处理与统计
- 统计调查的基本概念和方法
- 平均数、中位数、众数的计算及应用
- 统计图的绘制和数据的分析
以上是高中数学必修一的知识点整理,希望对您有所帮助。

*以上信息为简要总结,具体内容请参考教材或课本。

新课标人教版高中数学全册考点及题型归纳总结

新课标人教版高中数学全册考点及题型归纳总结

新课标人教版高中数学全册考点及题型归纳总结新课标人教版高中数学全册的考点及题型如下:一、函数与方程1.函数的基本概念和性质:定义域、值域、图像、增减性、奇偶性等。

2.一次函数:函数的表示方式及性质、函数的图像与应用、函数的图像性质与参数关系。

3.二次函数:函数的表示方式及性质、函数的图像与应用、函数的图像性质与参数关系。

4.指数函数:函数的表示方式及性质、函数的图像与应用、指数函数的性质与指数关系。

5.对数函数:函数的表示方式及性质、函数的图像与应用、对数函数的性质与底数关系。

6.三角函数:函数的表示方式及性质、函数的图像与应用、三角函数的性质与周期关系。

二、数列与数学归纳法1.数列的基本概念与表示:公式、通项、前n项和、数列的性质等。

2.等差数列:公差、前n项和、等差数列的性质及应用。

3.等比数列:公比、前n项和、等比数列的性质及应用。

4.通项公式及求和公式的推导与应用。

5.数学归纳法的基本概念和使用。

三、三角函数基本关系式与证明1.正弦函数与余弦函数的关系。

2.正切函数与余切函数的关系。

3.正割函数与余割函数的关系。

4.辅助角公式及证明。

5.万能角公式及证明。

6.统一化问题的求解及应用。

四、解析几何基本定理与推理1.重矢量的定义与性质。

2.数量积的基本性质与运算规则。

3.向量的线性相关性与线性独立性。

4.解析几何定理的证明与推理。

五、概率与统计1.基本概念与方法:样本空间、随机事件、概率、频率、统计量等。

2.概率的基本性质:加法原理、乘法原理、条件概率等。

3.随机变量和概率分布的基本概念与性质。

4.离散型随机变量与连续型随机变量的概率分布。

5.正态分布的基本性质和应用。

以上是新课标人教版高中数学全册的考点及题型的总结,希望对你有帮助。

最新人教版高中数学知识点总结

最新人教版高中数学知识点总结

最新人教版高中数学知识点总结Sets and Concepts高中数学知识点总结第一章集合与函数概念一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。

把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。

2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。

a、列举法:将集合中的元素一一列举出来{a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{x∈R| x-3>2} ,{x| x-3>2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合。

4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集Z有理数集Q实数集R6、集合间的基本关系(1).“包含”关系(1)—子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。

记作:BA⊆(或B⊇A)注意:BA⊆有两种可能(1)A是B的一部分;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A ⊆/B或B⊇/A(2).“包含”关系(2)—真子集如果集合BA⊆,但存在元素x∈B且x¢A,则集合A是集合B的真子集如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)读作A真含与B(3).“相等”关系:A=B“元素相同则两集合相等”如果A⊆B 同时 B⊆A 那么A=B(4). 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

高中数学必修4知识点总结归纳(人教版最全)

高中数学必修4知识点总结归纳(人教版最全)

高中数学必修4知识点汇总第一章:三角函数1、任意角①正角:按逆时针方向旋转形成的角 ②负角:按顺时针方向旋转形成的角 ③零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在区域.5、长度等于半径长的弧所对的圆心角叫做1弧度6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lr α=.7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭.8、若扇形的圆心角为α(α为弧度制),半径为r ,弧长为l ,周长为C ,面积为S则αr l =,l r C +=2,22121r lr S α==9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:一全正,二正弦,三正切,四余弦.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .12、同角三角函数的基本关系:()221sin cos 1αα+=;()sin 2tan cos ααα=; 13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=.()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2πα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.14、要由sin y x =的图像得到sin()y A x φ=+的图像主要有下列两种方法:sin sin()sin()sin()y x y x y x y A x φωφωφ=−−−→=+−−−→=+−−−→=+相位周期振幅变换变换变换sin sin sin()sin()y x y x y x y x ωωφωφ=−−−→=−−−→=+−−−→=+周期相位振幅变换变换变换注:第二种φωω+→x x 的情况需要平移ωφ个单位 函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ; ④相位:x ωϕ+;⑤初相:ϕ.α) A α)(1)(2)15、正弦函数、余弦函数和正切函数的图象与性质:sin y x = cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数 偶函数 奇函数单调性 在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在 32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心 ()(),0k k π∈Z 对称轴 ()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭ 对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴函 数 性质第二章:平面向量1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 2、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则),(AB 1212y y x x --=4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.5、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.baC BAa b C C -=A -AB =B设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭. 8、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;22a a a a ⋅==或a a a =⋅.③a b a b ⋅≤. ⑶运算律:①a b b a ⋅=⋅;②()()()a b a b a b λλλ⋅=⋅=⋅;③()a b c a c b c +⋅=⋅+⋅. ⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+. 若(),a x y =,则222a x y =+,或2a x y =+ 设()11,a x y =,()22,b x y =,则12120a b x x y y ⊥⇔+=.设a 、b 都是非零向量,()11,a x y =,()22,b x y =,θ是a 与b 的夹角,则121cos a b a bx θ⋅==+.第三章:三角恒等变换1、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=-(()()tan tan tan 1tan tan αβαβαβ+=+-).2、二倍角的正弦、余弦和正切公式: ⑴sin22sin cos ααα=.⑵2222cos2cos sin 2cos 112sin ααααα=-=-=- (2cos 21cos 2αα+=,21cos 2sin 2αα-=). ⑶22tan tan 21tan ααα=-.3、()sin cos αααϕA +B =+,其中tan ϕB =A.。

高中数学教材人教版知识点总结

高中数学教材人教版知识点总结

高中数学教材人教版知识点总结高中数学教材人教版知识点总结必修1第一章集合与函数概念1.1.1 集合集合是由一些元素组成的总体,元素是研究对象的统称。

集合具有确定性、互异性和无序性。

两个集合中的元素相同,则这两个集合相等。

常见的集合有正整数集合、整数集合、有理数集合和实数集合。

集合可以用列举法和描述法表示。

1.1.2 集合间的基本关系对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的子集,记作A⊆B。

如果集合A是集合B的子集,但存在一个元素x属于B而不属于A,则称集合A是集合B的真子集,记作A⊂B。

空集是不含任何元素的集合,记作∅,是任何集合的子集。

如果集合A 中含有n个元素,则集合A有2^n个子集。

1.1.3 集合间的基本运算集合A与B的并集是由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B。

集合A与B的交集是由所有属于集合A且属于集合B的元素所组成的集合,记作A∩B。

全集是指包含所有元素的集合,补集是指一个集合中不属于另一个集合的元素组成的集合。

集合的运算可以用XXX示。

1.2.1 函数的概念函数是两个非空数集之间的一种对应关系,对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)与之对应。

函数可以用解析式、图像和映射表示。

函数的定义域、值域和象集是函数的重要概念。

函数的基本性质有奇偶性、单调性、周期性和分段定义。

x) (a>0,a≠1)相关性质:⑴对数函数y=loga(x)的定义域为(0,+∞),值域为(-∞,+∞);⑵y=loga(x)与y=logb(x)的图象在x轴上的交点为x=a^1/(loga(b));⑶对数函数y=loga(x)的反函数为y=a^x;⑷对数函数y=loga(x)的导数为y'=(1/x)ln(a)。

2.3.1、幂函数及其性质1、记住图象:y=x^a (a为常数)相关性质:⑴当a>0时,幂函数y=x^a的定义域为(0,+∞),值域为(0,+∞);⑵当a<0时,幂函数y=x^a的定义域为(0,+∞),值域为(0,1/∞)U(1,+∞);⑶幂函数y=x^a的导数为y'=ax^(a-1)。

人教版高中数学选修1-1知识点总结

人教版高中数学选修1-1知识点总结

高中数学选修1—1知识点总结第一章 简单逻辑用语● 命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.● “若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. ● 原命题:“若p ,则q ” 逆命题: “若q ,则p ”否命题:“若p ⌝,则q ⌝" 逆否命题:“若q ⌝,则p ⌝” ● 四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. ● 若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件.若p q ⇔,则p 是q 的充要条件(充分必要条件). 利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件; 若A =B ,则A 是B 的充要条件;● 逻辑联结词:⑴且:命题形式p q ∧; ⑵或:命题形式p q ∨; ⑶非:命题形式p ⌝.● ⑴全称量词--“所有的”、“任意一个"等,用“∀”表示.全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃. ⑵存在量词——“存在一个”、“至少有一个"等,用“∃”表示. 特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀.第二章 圆锥曲线● 平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.即:|)|2(,2||||2121F F a a MF MF >=+.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. ● 椭圆的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b+=>> 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率 ()22101c b e e a a==-<<● 平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距. ● 双曲线的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210,0x y a b a b -=>> ()222210,0y x a b a b-=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率()2211c b e e a a==+>渐近线方程b y x a=±a y x b=±● 实轴和虚轴等长的双曲线称为等轴双曲线.● 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线. ● 抛物线的几何性质:标准方程22y px =()0p >22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形顶点()0,0对称轴x 轴y 轴焦点,02p F ⎛⎫⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程2px =-2p x =2p y =-2p y =离心率1e =范围0x ≥ 0x ≤ 0y ≥ 0y ≤● 过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. ● 焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02p F x P =+; 若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02p F y P =+;第三章 导数及其应用● 函数()f x 从1x 到2x 的平均变化率:()()2121f x f x x x --● 导数定义:()f x 在点0x 处的导数记作xx f x x f x f y x x x ∆-∆+='='→∆=)()(lim)(00000.● 函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率.● 常见函数的导数公式:①'C 0=; ②1')(-=n n nxx ;③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a xx ln )('=; ⑥xx e e =')(; ⑦ax x a ln 1)(log '=; ⑧x x 1)(ln '=● 导数运算法则:()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦; ()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦;()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦.● 在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增;若()0f x '<,则函数()y f x =在这个区间内单调递减.● 求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.求函数()y f x =在[],a b 上的最大值与最小值的步骤是:()1求函数()y f x =在(),a b 内的极值;()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.。

人教版高中数学知识点提纲

人教版高中数学知识点提纲

人教版高中数学知识点提纲一.集合与函数 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你熟练地掌握了函数单调性的证明吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。

若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?二.不等式18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.三.数列24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

人教版高中数学知识点总结(二篇)

人教版高中数学知识点总结(二篇)

人教版高中数学知识点总结一、函数与方程1. 函数的定义与性质:函数的概念、关系与函数、函数的特性、函数的分类、函数的运算、函数的图象。

2. 一次函数:函数的表达式与图象、函数的增减性与单调性、零点与根的概念、函数的解与方程。

3. 二次函数:函数的表达式与图象、函数的增减性与单调性、函数的最值与极值、函数的解与方程。

4. 幂函数与指数函数:函数的定义域与值域、函数的图象与性质、函数的运算与应用。

二、数列与数列的表示方法1. 等差数列:等差数列的概念与特性、等差数列的通项公式、等差数列的前n项和、等差数列的应用。

2. 等比数列:等比数列的概念与特性、等比数列的通项公式、等比数列的前n项和、等比数列的应用。

3. 通项公式与通项公式的逆向推导:等差数列与等比数列的通项公式的推导与应用。

三、平面坐标系与直线1. 平面直角坐标系:直角坐标系的概念、直角坐标系的运用及常用定理。

2. 直线的方程:直线的一般方程、直线的斜截式方程、直线的截距式方程、两直线的位置关系。

四、图形的变换1. 平移:图形的平移规律、平移的定义与性质、平移的向量表示。

2. 旋转:图形的旋转规律、旋转的定义与性质、旋转的向量表示。

3. 对称:图形的对称规律、对称的定义与性质、对称的向量表示。

五、三角函数1. 角与弧度:角的度量与单位、角的标准位置、弧度制与角度制的换算。

2. 正弦函数:正弦函数的定义与性质、正弦函数的图象与性质、正弦函数的应用。

3. 余弦函数:余弦函数的定义与性质、余弦函数的图象与性质、余弦函数的应用。

4. 正切函数:正切函数的定义与性质、正切函数的图象与性质、正切函数的应用。

六、解析几何1. 平面与空间几何:平面的点坐标与方程、平面的性质及应用、空间几何的概念与基本性质。

2. 平面图形:平面图形的概念与性质、平面图形的参数方程、平面图形的拟合。

3. 空间图形:立体图形的概念与性质、立体图形的参数方程、立体图形的拟合。

七、立体几何1. 空间中的位置关系:直线的位置关系、平面的位置关系、直线与平面的位置关系。

人教版:高中数学必修+选修全部知识点精华归纳总结

人教版:高中数学必修+选修全部知识点精华归纳总结

必修1数学知识点第一章:集合与函数概念§1.1.1、集合1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。

集合三要素:确定性、互异性、无序性。

2、只要构成两个集合的元素是一样的,就称这两个集合相等。

3、常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法.§1.1.2、集合间的基本关系1、一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。

记作B A ⊆.2、如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、如果集合A 中含有n 个元素,则集合A 有n2个子集,21n-个真子集.§1.1.3、集合间的基本运算1、一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A .2、一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A .3、全集、补集?{|,}U C A x x U x U =∈∉且§1.2.1、函数的概念1、设A、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.§1.2.2、函数的表示法1、函数的三种表示方法:解析法、图象法、列表法.§1.3.1、单调性与最大(小)值1、注意函数单调性的证明方法:(1)定义法:设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.步骤:取值—作差—变形—定号—判断格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…(2)导数法:设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.§1.3.2、奇偶性1、一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称.知识链接:函数与导数1、函数)(x f y =在点0x 处的导数的几何意义:函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.2、几种常见函数的导数①'C 0=;②1')(-=n n nxx ;③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(;⑦a x x a ln 1)(log '=;⑧xx 1)(ln '=3、导数的运算法则(1)'''()u v u v ±=±.(2)'''()uv u v uv =+.(3)'''2((0)u u v uv v v v -=≠.4、复合函数求导法则复合函数(())y f g x =的导数和函数(),()y f u u g x ==的导数间的关系为x u x y y u '''=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.解题步骤:分层—层层求导—作积还原.5、函数的极值(1)极值定义:极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值;极值是在0x 附近所有的点,都有)(x f >)(0x f ,则)(0x f 是函数)(x f 的极小值.(2)判别方法:①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值;②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.6、求函数的最值(1)求()y f x =在(,)a b 内的极值(极大或者极小值)(2)将()y f x =的各极值点与(),()f a f b 比较,其中最大的一个为最大值,最小的一个为极小值。

高一人教版数学必备知识点

高一人教版数学必备知识点

高一人教版数学必备知识点一、函数与方程1. 概念和性质- 函数的定义和记号- 定义域、值域和像- 奇偶性与周期性- 单调性和最值2. 一次函数与二次函数- 一次函数的定义、图像和性质- 二次函数的定义、图像和性质- 一次函数与二次函数的应用3. 反函数和复合函数- 反函数的定义和性质- 复合函数的定义和性质- 反函数与复合函数的关系4. 方程与不等式- 一元一次方程与一元二次方程 - 绝对值方程与不等式- 分式方程与不等式的解法- 二次不等式的解法二、平面几何1. 平面图形的性质- 点、线、线段和角的概念- 等角、相似和全等图形- 圆的概念与性质2. 三角形与四边形- 三角形的分类与性质- 三角形的相似和全等判定- 四边形的分类和性质- 正方形、矩形、菱形和平行四边形的性质3. 圆的性质与应用- 切线与弦的关系与性质- 弧度制与弧长的计算- 扇形与扇形面积的计算- 圆的内切与外切问题4. 直线与曲线- 直线的方程与性质- 垂线、平行线与角平分线- 椭圆、双曲线和抛物线的基本性质三、立体几何1. 空间几何体的性质- 点、线、面、体的概念- 体的集合与交集的问题- 多棱柱、多棱锥和棱台的性质- 圆柱、圆锥和球的性质2. 空间图形的投影- 平行投影和中心投影的概念- 正交投影与斜投影的应用- 三视图与轴测图的绘制3. 空间坐标与矢量- 空间直角坐标系的建立- 点、向量与向量运算的定义- 空间矢量的模、方向与共线关系 - 空间中直线与平面的相交判定4. 立体几何中的体积与表面积- 立体几何体的体积公式及计算方法- 立体几何体的表面积公式及计算方法- 空间图形的切割与组合的应用随着高中数学学习的深入,以上所列的知识点仅是高一人教版数学课程中的必备知识点,并不是全部内容。

学生在学习过程中,还需要结合教材中的例题和习题进行理解和掌握。

通过逐步学习和不断练习,高中生可以建立起扎实的数学基础,为后续的学习打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修3知识点第一章算法初步1.1.1算法的概念算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。

2、框图一般按从上到下、从左到右的方向画。

3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。

判断框具有超过一个退出点的唯一符号。

4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。

5、在图形符号内描述的语言要非常简练清楚。

(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。

如在示意图中,A 框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B 框所指定的操作。

2、条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结构。

条件P 是否成立而选择执行A 框或B 框。

无论P 条件是否成立,只能执行A 框或B 框之一,不可能同时执行A 框和B 框,也不可能A 框、B 框都不执行。

一个判断结构可以有多个判断框。

3、循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。

循环结构又称重复结构,循环结构可细分为两类:(1)、一类是当型循环结构,如下左图所示,它的功能是当给定的条件P 成立时,执行A 框,A 框执行完毕后,再判断条件P 是否成立,如果仍然成立,再执行A 框,如此反复执行A 框,直到某一次条件P 不成立为止,此时不再执行A 框,离开循环结构。

(2)、另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件P 是否成立,如果P 仍然不成立,则继续执行A 框,直到某一次给定的条件P 成立为止,此时不再执行A 框,离开循环结构。

当型循环结构 直到型循环结构注意:1循环结构要在某个条件下终止循环,这就需要条件结构来判断。

因此,循环结构中一定包含条件结构,但不允许“死循环”。

2在循环结构中都有一个计数变量和累加变量。

计数变量用于记录循环次数,累加变量用于输出结果。

计数变量和累加变量一般是同步执行的,累加一次,计数一次。

1.2.1 输入、输出语句和赋值语句3、赋值语句(1)赋值语句的一般格式(2)赋值语句的作用是将表达式所代表的值赋给变量;(3)赋值语句中的“=”称作赋值号,与数学中的等号的意义是不同的。

赋值号的左右两边不能对换,它将赋值号右边的表达式的值赋给赋值号左边的变量;(4)赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或算式;(5)对于一个变量可以多次赋值。

注意:①赋值号左边只能是变量名字,而不能是表达式。

如:2=X 是错误的。

②赋值号左右不能对换。

如“A=B ”“B=A ”的含义运行结果是不同的。

③不能利用赋值语句进行代数式的演算。

(如化简、因式分解、解方程等)④赋值号“=”与数学中的等号意义不同。

分析:在IF —THEN —ELSE 语句中,“条件”表示判断的条件,“语句1”表示满足条件时执行的操作内容;“语句2”表示不满足条件时执行的操作内容;END IF 表示条件语句的结束。

计算机在执行时,首先对IF 后的条件进行判断,如果条件符合,则执行THEN 后面的语句1;若条件不符合,则执行ELSE 后面的语句21.3.1辗转相除法与更相减损术1、辗转相除法。

也叫欧几里德算法,用辗转相除法求最大公约数的步骤如下:(1):用较大的数m 除以较小的数n 得到一个商0S 和一个余数0R ;(2):若0R =0,则n 为m ,n 的最大公约数;若0R ≠0,则用除数n 除以余数0R 得到一个商1S 和一个余数1R ;(3):若1R =0,则1R 为m ,n 的最大公约数;若1R ≠0,则用除数0R 除以余数1R 得到一个商2S 和一个余数2R ;…… 依次计算直至n R =0,此时所得到的1n R -即为所求的最大公约数。

2、更相减损术我国早期也有求最大公约数问题的算法,就是更相减损术。

在《九章算术》中有更相减损术求最大公约数的步骤:可半者半之,不可半者,副置分母•子之数,以少减多,更相减损,求其等也,以等数约之。

翻译为:(1):任意给出两个正数;判断它们是否都是偶数。

若是,用2约简;若不是,执行第二步。

(2):以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。

继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。

例2 用更相减损术求98与63的最大公约数.分析:(略)3、辗转相除法与更相减损术的区别:(1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。

(2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到1.3.2秦九韶算法与排序1、秦九韶算法概念:f(x)=a n x n+a n-1x n-1+….+a1x+a0求值问题f(x)=a n x n+a n-1x n-1+….+a1x+a0=( a n x n-1+a n-1x n-2+….+a1)x+a0 =(( a n x n-2+a n-1x n-3+….+a2)x+a1)x+a0=......=(...( a n x+a n-1)x+a n-2)x+...+a1)x+a0求多项式的值时,首先计算最内层括号内依次多项式的值,即v1=a n x+a n-1然后由内向外逐层计算一次多项式的值,即v2=v1x+a n-2 v3=v2x+a n-3 ......v n=v n-1x+a0这样,把n次多项式的求值问题转化成求n个一次多项式的值的问题。

第二章统计2.1.1简单随机抽样1.总体和样本在统计学中 , 把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样,也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

3.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

4.抽签法:(1)给调查对象群体中的每一个对象编号;(2)准备抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查例:请调查你所在的学校的学生做喜欢的体育活动情况。

5.随机数表法:例:利用随机数表在所在的班级中抽取10位同学参加某项活动。

2.1.2系统抽样1.系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。

第一个样本采用简单随机抽样的办法抽取。

K(抽样距离)=N(总体规模)/n(样本规模)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。

可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。

如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。

2.系统抽样,即等距抽样是实际中最为常用的抽样方法之一。

因为它对抽样框的要求较低,实施也比较简单。

更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。

2.1.3分层抽样1.分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

两种方法:1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

分层标准:(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

(3)以那些有明显分层区分的变量作为分层变量。

3.分层的比例问题:(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。

如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。

2.2.2用样本的数字特征估计总体的数字特征1、本均值:nx x x x n +++= 21 2、.样本标准差:nx x x x x x s s n 222212)()()(-++-+-== 3.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。

相关文档
最新文档