专题六数列第十八讲数列的综合应用答案
第18讲 数列模型应用题
1 = (a b ) 2 n n 1 所以,数列{an bn } 是以为a1 b1 =1.8首项, 为公比的等比数列. 2 1
【回顾与反思】本题为数列,不等式型综合应用问题,难 点在于对题意的理解.
12/26
典例精析
例2某人计划年初向银行贷款10万元用于买房.他选择10 年期贷款,偿还贷款的方式为:分10次等额归还,每年 一次,并从借后次年年初开始归还,若10年期贷款的年 利率为4%,且每年利息均按复利计算(即本年的利息计 入次年的本金生息),问每年应还多少元?(精确到1元) ) ( 1 ) 【分析】作为解决这个问题的第一步,我们首先需要明确 的是:如果不考虑其他因素,同等款额的钱在不同时期的 价值是不同的.比如说,现在的10元钱,其价值应该大于1年 后的10元钱.原因在于现在的10元钱,在1年的时间内要产生 利息.
因此,我们只需从n=0开始验证,知道找到第一个使得
4 n 2 ( ) < 的自然数即为所求. 5 5 4 2 验证可知,当n = 0,1, 2,3, 4时,均有( )n > , 5 5 2 4 n 而当n=5时, ) = 0.32768 < ,由指数函数的单调性可知, ( 5 5
4 n 2 当n ≥ 5时,均有( ) < . 5 5
所以,从2008年底开始,5年后,即2013年底,全县 绿地面积才开始超过总面积的60%.
8/26
【回顾与反思】为了解决这些问题,我们可以根据题意, an 列出数列{ }的相邻项之间的函数关系,然后由此递推公 式出发,设法求出这个数列的通项公式.在(2)中,也可通 过估值的方法来确定n的值.
9/26
17/26
李先生家要购买一套商品房,计划贷款25万元,其中公 积金贷款10万元,分十二年还清,商业贷款15万元,分十五 年还清,每种贷款分别按月等额还款,问: (1)李先生家每月应还款多少元? (2)在第十二年底李先生家还清了公积金贷款,如果他 想把余下的商业贷款也一次性还清,那么他家在这个月的 还款总数是多少? (参考数据: 1.00445
最新高考数学第二轮专题复习- 数列的综合运用(含答案)
万件的月份是( )
A.5月、6月B.6月、7月C.7月、8月D.8月、9月
二. 填空题
7.数列 前n项和为__________.
8.设 是首项为1的正项数列,且 ,则它的
通项公式是 _________.
9.已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,求这个
A. B.
C. D.
4.若数列 前8项的值各异,且 对任意 都成立,则下列数列中可取遍
前8项值的数列为( )
A. B. C. D.
5.已知数列 ,那么“对任意的 ,点 都在直线 上”是“
为等差数列”的( )
A.必要而不充分条件B. 充分而不必要条件
C. 充要条件D. 既不充分也不必要条件
6.根据市场调查结果,预测某种家用商品从年初开始的n个月内累积的需求量 (万件)近似
数列的公比,项数为.
10.在各项均为正数的等比数列 中,若 则
.
三. 解答题
11.数列 的前n项和为 ,且 , 求
(1) , , 的值及数列 的通项公式;(2) 的值.
12. 有穷数列 的前n项和Sn=2n2+n, 现从中抽取某一项(不是首项和末项)后, 余下项的
平均值是79.(1)求数列 的通项;(2)求数列 的项数及抽取的项数.
常数项为0, 那么 一定是公差不为0的等差数列.
通项 与前n项和 之间的关系:
2.分析高考趋势
数列是初等数学与高等数学衔接和联系最密切的内容之一, 是进一步学习高等数学的基础, 数列的题目形态多变, 蕴含丰富的数学思想和数学方法, 是高考的热点之一. 在近几年新教材的高考试题中, 对数列的考查多以解答题的形式出现, 数列与函数, 数列与不等式等的综合知识, 在知识的交汇点处设计题目, 成为高考对能力和素质考查的重要方面. 在数列方面的考查, 对能力方面的要求, 呈现越来越高的趋势, 对知识考查的同时, 伴随着对数学思想方法的考查. 在近几年新教材的高考试题中, 数列约占 %左右, 考查的内容主要有: ①等差数列、等比数列的基本知识 (定义、通项公式、前n项和公式); ②等差数列、等比数列与其他知识点的综合运用, 及应用数列知识解决实际问题; ③ 函数和方程的思想, 化归思想, 分类讨论思想, 待定系数法等.
高三数学数列综合应用试题答案及解析
高三数学数列综合应用试题答案及解析1.已知数列满足:且.(1)求数列的通项公式;(2)令,数列的前项和为,求证:时,且【答案】(1);(2)详见解析.【解析】(1)由令,然后用迭加法求出数列的通项公式,最后求数列的通项公式;(2)由(1)知,写出及并化简,利用函数的思想解决与数列有关的不等式问题.解:(1)易知:,令得,若,则当时,也满足上式,故所以 6分(2)易知:8分先证不等式时,令,则∴在上单调递减,即同理:令,则∴在上单调递增,即,得证.取,得,所以14分【考点】1、数列的递推公式;2、函数思想在数列综合问题中的应用.2.已知数列,满足,,,数列的前项和为,.(1)求数列的通项公式;(2)求证:;(3)求证:当时,.【答案】(1),(2)详见解析,(3)详见解析.【解析】(1)求数列的通项公式,需先探究数列的递推关系,由,得,代入,得,∴,从而有,∵,∴是首项为1,公差为1的等差数列,∴,即.(2)∵,∴,,∴.(3)∵,∴.由(2)知,∴∵,所以解:(1)由,得,代入,得,∴,从而有,∵,∴是首项为1,公差为1的等差数列,∴,即.(2)∵,∴,,,∴.(3)∵,∴.由(2)知,∵,∴.【考点】求数列通项,数列不等式,已知,且对一切都3.设各项均为正数的数列的前n项和为Sn成立.(1)若λ=1,求数列的通项公式;(2)求λ的值,使数列是等差数列.【答案】(1);(2).【解析】(1)本题已知条件是,我们要从这个式子想办法得出与的简单关系式,变形为,这时我们联想到累乘法求数列通项公式的题型,因此首先由得,又,这个式子可化简为,这样就变成我们熟悉的已知条件,已知解法了;(2)这种类型问题,一种方法是从特殊到一般的方法,可由成等差数列,求出,然后把代入已知等式,得,,这个等式比第(1)题难度大点,把化为,有当n≥2时,,整理,得,特别是可变形为,这样与第(1)处理方法相同,可得,即,从而说不得是等差数列.试题解析:(1)若λ=1,则,.又∵,∴, 2分∴,化简,得.① 4分∴当时,.②②-①,得,∴(). 6分∵当n=1时,,∴n=1时上式也成立,∴数列{an }是首项为1,公比为2的等比数列,an=2n-1(). 8分(2)令n=1,得.令n=2,得. 10分要使数列是等差数列,必须有,解得λ=0. 11分当λ=0时,,且.当n≥2时,,整理,得,, 13分从而,化简,得,所以. 15分综上所述,(),所以λ=0时,数列是等差数列. 16分【考点】递推公式,累乘法,与的关系,等差数列.4.已知数列中,,,,则= .【答案】1306【解析】,,∴,所以=【考点】数列求和。
(完整版)高考复习:数列的综合运用含解析答案(教师版+学生版)
数列的综合运用考点一等差数列与等比数列的综合问题例 1、在等比数列 { a n}( n∈N * )中, a1>1,公比 q>0 ,设 b n= log 2a n,且 b1+ b3+b5=6,b1b3b5= 0.(1)求证:数列{ b n} 是等差数列;(2) 求{ b n} 的前n 项和S n及 { a n} 的通项a n.考点二等差数列与等比数列的实质应用例 2、一位少儿园老师给班上k(k≥3) 个小朋友分糖果.她发现糖果盒中原有糖果数为a0,就先从别处抓 2 块糖加入盒中,而后把盒内糖果的1分给第一个小朋友;再从别处抓22 块糖加入盒中,而后把盒内糖果的13 分给第二个小朋友;,此后她老是在分给一个小朋友后,就从别处抓 2 块糖放入盒中,而后把盒内糖果的1分给第n+ 1n( n= 1,2,3,, k)个小朋友,分给第 n 个小朋友后 (未加入 2 块糖果前 )盒内剩下的糖果数为a n.(1)当 k= 3, a0= 12 时,分别求 a1, a2, a3;(2)请用 a n-1表示 a n,并令 b n=(n+1)a n,求数列{ b n}的通项公式;(3)能否存在正整数 k(k≥ 3)和非负整数 a0,使得数列{ a n} (n≤ k)成等差数列?假如存在,恳求出全部的 k 和 a0;假如不存在,请说明原因.考点三数列与不等式例 3、设数列 { a n} 的前 n 项和为 S n,已知 a1= a2= 1, b n= nS n+(n+2)a n,数列 { b n} 是公差为 d 的等差数列, n∈N * .(1) 求 d 的值;(2)求数列 { a n} 的通项公式;22n+ 1★(3) 求证: (a1a2· ·a n) ·(S1S2· ·S n)<n+1 n+2 .考点四数列与函数例 4、已知函数 f(x)=( x-1)2,g(x)= 10(x- 1),数列 { a n} 知足 a1= 2,(a n+1- a n)g(a n)+ f(a n)= 0,9b n=10(n+ 2)(a n- 1).(1)求证:数列 { a n- 1} 是等比数列;(2)当 n 取何值时, b n取最大值?并求出最大值;★(3)若 t m< t m+1对随意 m∈ N *恒成立,务实数t 的取值范围.b m b m+ 1数列的综合运用 ( 作业 )1. 已知等差数列{ a n } 的公差为- 2,且 a 1, a 3, a 4 成等比数列,则 a 20= ________.2.设等差数列 { a n } 的公差 d ≠0,a 1= 4d ,若 a k 是 a 1 与 a 2k 的等比中项, 则 k 的值为 ________.3.设 S n 是等比数列 { a n } 的前 n 项和, S 3, S 9, S 6 成等差数列,且 a 2+ a 5= 2a m ,则 m =________.4.某住所小区计划植树许多于100 棵,若第一天植2 棵,此后每日植树的棵数是前一天的 2 倍,则需要的最少天数n(n ∈ N * )等于 ________.5.某公司在第 1 年初购置一台价值为 120 万元的设施M ,M 的价值在使用过程中逐年减 少.从第 2 年到第 6 年,每年初 M 的价值比上年初减少 10 万元;从第 7 年开始,每年初 M的价值为上年初的75%. 则第 n 年初 M 的价值 a n = ________.6.植树节某班 20 名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米.开始时需将树苗集中搁置在某一树坑旁边.使每位同学从各自树坑出发前来领取树苗往 返所走的行程总和最小,这个最小值为________米.7.设数列 { a } 中,若 a= a + a*),则称数列 { a } 为“凸数列”,已知数列 { b }(n ∈ Nnn +1nn +2nn为“凸数列”,且b 1= 1, b 2=- 2,则数列 { b n } 的前 2 013 项和为 ________.n2+n 的数列 { a n }1234 5n > a n + 1对 n ≥ 88.通项公式为 a = an,若知足 a <a <a < a < a ,且 a恒成立,则实数 a 的取值范围是 ________.9.将正偶数摆列以下表,此中第i 行第 j 个数表示为 a(i , j ∈ N ),比如 a = 18,若 aij*43ij= 2 014,则 i + j________.246810121416182010.三个互不相等的实数成等差数列,适合互换这三个数的地点后, 变为一个等比数列,则此等比数列的公比是 ________.11.设数列 { a n } 的前 n 项和为 S n,知足 a n+ S n= An2+ Bn+ 1(A≠ 0).(1) 若 a1=3, a2=9,求证数列 { a n-n} 是等比数列,并求数列{ a n} 的通项公式;24B- 1(2)已知数列 { a n} 是等差数列,求的值.A12.已知数列 { a n} 中,a1=2,a2= 4,a n+1= 3a n- 2a n-1(n≥ 2,n∈ N* ).(1) 证明数列 { a n+1- a n} 是等比数列,并求出数列{ a n } 的通项公式;2a n-1(2)记 b n=( n∈N * ),数列 { b n} 的前 n 项和为 S n,求使 S n>2 013 成立的 n 的最小值. a n13.已知数列{ a n} 的前n 项和为S n.(1) 若数列{ a n} 是等比数列,知足2a1+a3= 3a2,a3+ 2 是a2,a4的等差中项,求数列{ a n}的通项公式;(2)能否存在等差数列 { a n} ,使对随意 n∈N*,都有 a n·S n= 2n2(n+ 1)?若存在,恳求出全部知足条件的等差数列;若不存在,请说明原因.14.已知数列 { a n} 中, a1= 2,n∈ N*, a n> 0,数列 { a n} 的前 n 项和为 S n,且知足2.a n+1=S n+1+S n-2(1)求 { S n} 的通项公式.(2)设 { b k} 是数列 { S n} 中按从小到大次序构成的整数数列.①求 b3;②若存在 N(N∈N * ),当 n≤ N 时,使得在数列{ S n} 中,数列 { b k} 有且只有20 项,求 N 的取值范围.数列的综合运用考点一等差数列与等比数列的综合问题例 1、在等比数列 { a n}( n∈N * )中, a1>1,公比 q>0 ,设 b n= log 2a n,且 b1+ b3+b5=6,b1b3b5= 0.(1)求证:数列{ b n} 是等差数列;(2) 求{ b n} 的前n 项和S n及 { a n} 的通项a n.解: (1) 证明:∵b n= log 2a n,a n+1∴b n+1- b n= log 2a n= log 2q 为常数,∴数列{ b n} 为等差数列且公差2 d= log q.(2)设数列 { b n} 的公差为 d,∵b1+ b3+ b5= 6,∴b3= 2. ∵a1>1,∴b1= log 2a1>0.∵b1b3 b5= 0,∴b5= 0.b1+ 2d= 2,b1= 4,∴解得b + 4d=0,d=- 1.1n n- 1× (-1)=9n- n2n.∴S = 4n+22log2q=- 1,q=1 2,∵∴log2a1= 4, a = 16.1∴a n= 25-n(n∈N* ).考点二等差数列与等比数列的实质应用例 2、一位少儿园老师给班上k(k≥3) 个小朋友分糖果.她发现糖果盒中原有糖果数为a0,就先从别处抓 2 块糖加入盒中,而后把盒内糖果的12分给第一个小朋友;再从别处抓2 块糖加入盒中,而后把盒内糖果的1 分给第二个小朋友;,此后她老是在分给一个小朋友后,就3从别处抓 2 块糖放入盒中,而后把盒内糖果的1分给第n+ 1n( n= 1,2,3,, k)个小朋友,分给第 n 个小朋友后(未加入 2 块糖果前)盒内剩下的糖果数为a n.(1) 当k= 3, a0= 12 时,分别求a1, a2, a3;(2)请用 a n-1表示 a n,并令 b n=(n+1)a n,求数列{ b n}的通项公式;(3)能否存在正整数 k(k≥ 3)和非负整数 a0,使得数列{ a n} (n≤ k)成等差数列?假如存在,恳求出全部的 k 和 a0;假如不存在,请说明原因.解: (1)当 k= 3, a0=12 时,1a1= (a0+ 2)-2(a0+2) =7,1a2= (a1+ 2)-3(a1+2) =6,1a3= (a2+ 2)-4(a2+2) =6.(2)由题意知1n a n= (a n-1+2) -(a n-1+ 2)=n+ 1(a n-1+ 2),n+ 1即( n+ 1)a n= n(a n-1+ 2)= na n-1+ 2n.因为 b n= (n+ 1)a n,所以 b n- b n-1= 2n,b n-1- b n-2= 2n-2,b1- b0= 2.2+2n n累加得 b n- b0==n(n+1).2又 b0= a0,所以 b n=n( n+ 1)+ a0.a0(3) 由 b n= n(n+1)+ a0,得 a n= n+.n+ 1若存在正整数k(k≥ 3)和非负整数 a 0,使得数列 { a n}( n≤ k)成等差数列,则a1+ a3= 2a2,即(1 +a20)+3+a40= 2(2+a30 ),解得 a0= 0,当 a0= 0n=n,对随意正整数n时, a k(k≥ 3) ,有 { a }( n≤ k)成等差数列.[类题通法 ]解数列应用题的建模思路从实质出发,经过抽象归纳成立数学模型,经过对模型的分析,再返回实质中去,其思路框图为:考点三数列与不等式例 3、设数列 { a n } 的前 n 项和为 S n ,已知 a 1= a 2= 1, b n = nS n +(n +2)a n ,数列 { b n } 是公差为 d 的等差数列, n ∈N * .(1) 求 d 的值;(2) 求数列 { a n } 的通项公式;(3) 求证:22n +1(a 1a 2· ·a n ) ·(S 1S 2· ·S n )< n + 1 n + 2 .解: (1) 因为 a 1= a 2= 1,所以 b 1= S 1+ 3a 1=4, b 2= 2S 2+ 4a 2= 8,所以 d = b 2- b 1= 4.(2) 因为数列 { b n } 是等差数列,所以 b n = 4n , 所以 nS n + (n + 2)a n = 4n ,即 n + 2S n +n a n = 4.①n + 1当 n ≥ 2 时, S n -1+ a n - 1= 4. ② n - 1由①-②得 (S n)+ n + 2n + 1n -1n nn - 1- S a -a= 0.n - 1所以 a n + n + 2 n n + 1 n -1,即 a n = 1 nn =· .n - 1a n - 1 2n - 1则a 2= 1 2, a 3= 1 3, ,a n = 1 na 1 ··a n - 1· .2 1 a 2 2 2 2n - 1以上各式两边分别相乘,得a n=1·n.a 1 2n -1因为 a 1= 1,所以 a n =n.2n -1n + 2(3) 证明:因为 S n + n a n = 4, a n > 0, S n > 0,所以S n n +2 n S + n + 2n a= 2.nn· n a ≤2则 0< a n nn1 2 n1 2nn1× 2S ≤4·.所以 (a a · ·a ) ·(S S· ·S )≤4·.③n + 2n + 1 n +2因为 n = 1 时, S n n + 2≠ na,所以③式等号取不到.22 n +1则( a 1a 2· ·a n ) ·(S 1S 2· ·S n )< .n + 1 n + 2 [类题通法 ]数列与不等式相联合问题的办理方法解决数列与不等式的综合问题时,假如是证明题要灵巧选择不等式的证明方法,如比较法、综合法、剖析法、放缩法等;假如是解不等式问题要使用不等式的各样不一样解法,如列表法、因式分解法、穿根法等.总之解决这种问题把数列和不等式的知识奇妙联合起来综合办理就行了.考点四数列与函数例 4、已知函数 f(x)=( x -1)2 ,g(x)= 10(x - 1),数列 { a n } 知足 a 1= 2,(a n + 1- a n )g(a n )+ f(a n )= 0,9b n = 10(n + 2)(a n - 1).(1) 求证:数列 { a n - 1} 是等比数列;(2) 当 n 取何值时, b n 取最大值?并求出最大值;(3)若t m<t m +1对随意m ∈N * 恒成立,务实数 t 的取值范围.b m b m + 1解: (1) 证明:因为 (a n +1- a n )g( a n )+ f(a n )= 0,f(a n )= (a n -1) 2, g(a n )= 10(a n - 1),所以 10(a n+1- a n)(a n- 1)+ (a n- 1)2= 0,整理得 (a n- 1)[10( a n+1- a n)+ a n- 1]= 0,所以 a n= 1n+ 1nn-1=0② .①或 10(a- a )+ a由①得数列 { a n} 是各项为 1的常数列,而1n+ 1- 1)=a = 2,不合题意.由②整理得10(a9(a n- 1),又 a1- 1= 1,9所以 { a n- 1} 是首项为1,公比为10的等比数列.(2)由 (1)可知 a n- 1= ( 9)n-1, n∈N*,10所以 b n=109(n+ 2)(a n- 1)= (n+ 2)(109)n> 0,9 nb n+1n+ 3+ 11091所以b n=n+ 29 n=10(1+n+2).10当 n= 7 时,b= 1,即 b788=b ;b7当 n< 7 时,b n+1> 1,即 b n+1> b n;b nb当 n> 7 时,n+1< 1,即 b n+1nb n< b .所以当 n=7 或 8 时, b n获得最大值,最大值为8798 b=b =107.t m t m+11-10t<0.(*)<得 t m9 m+3(3) 由b m b m+1m+ 2由题意知, (*) 式对随意m∈N*恒成立.①当 t= 0时, (*) 式明显不行立,所以t= 0 不合题意;②当 t< 0时,由 1 -10t> 0可知 t m< 0(m∈N * ),m+29 m+ 3而当 m 为偶数时, t m > 0, 所以 t < 0 不合题意;③当 t > 0 时,由 t m > 0(m ∈N *)知,1-10t< 0,m + 2 9 m +39 m + 3所以 t >(m ∈N * ).10 m +29 m + 3令 h(m)=(m ∈N * ).10 m + 29 m + 4 9 m + 3因为 h(m + 1)- h(m)= -10 m + 3 10 m + 2 9< 0,=-10 m + 2 m + 3所以 h(1) > h(2)> h(3)> > h(m - 1)> h(m) ,6所以 h(m)的最大值为h(1) = 5.6所以实数 t 的取值范围是 (5,+ ∞ ).数列的综合运用 ( 作业 )1. 已知等差数列{ a n } 的公差为- 2,且 a 1, a 3, a 4 成等比数列,则 a 20= ____ -30____.分析: 设 {an} 的首项为 a ,则 a , a - 4, a - 6 成等比数列,则 (a - 4)2= a(a - 6),解得 a= 8.又公差 d =- 2,所以 a 20=a + 19d =8+ 19× (- 2)=- 30.2.设等差数列 { a n } 的公差 d ≠0,a 1= 4d ,若 a k 是 a 1 与 a 2k 的等比中项, 则 k 的值为 ________.分析:由条件知 a n = a 1+* 2(n - 1)d =4d + (n - 1)d = (n + 3)d ,即 a n = (n + 3)d(n ∈N ).又 a k =1 2k 22= 4d ·(2k + 3)d ,且 d ≠ 0,所以 (k + 3)2=4(2k + 3),即 k 2- 2k - 3=0,解a ·a ,所以 (k + 3) d得 k = 3 或 k =- 1(舍去 ).答案: 33.设 S 是等比数列n的前 n 项和, S , S , S 成等差数列,且a + a = 2a ,则 m =n39625m{ a }________.分析:设等比数列 { an}a1 1-q9a1 1- q3936得 2·=+的公比为 q,明显 q≠ 1.由 2S = S+ S1-q1- qa1 1- q611 4=2a1m-1,即,所以 2q9=q3+ q6,即 1+q3=2q625=2a m1- q.因为 a+ a,所以 a q+ a q q1+ q3= 2q m-2,所以 m- 2= 6,所以 m= 8.4.某住所小区计划植树许多于100 棵,若第一天植 2 棵,此后每日植树的棵数是前一天的 2 倍,则需要的最少天数n(n∈ N* )等于 ________.分析:设每日植树的棵数构成的数列为{ a n} ,由题意可知它是等比数列,且首项为2,公比为 2,2 1- 2n所以由题意可得≥ 100,即 2n≥ 51,1-2而 25= 32,26= 64,n∈N*,所以 n≥ 6.答案: 65.某公司在第 1 年初购置一台价值为120 万元的设施 M ,M 的价值在使用过程中逐年减少.从第 2 年到第 6 年,每年初 M 的价值比上年初减少 10 万元;从第7 年开始,每年初 M 的价值为上年初的75%. 则第 n 年初 M 的价值 a n= ________.分析:当 n≤ 6 时,数列 { a n } 是首项为120,公差为- 10 的等差数列,a n= 120- 10(n- 1)=130- 10n;当 n≥ 7 时,数列 { a n} 是以 a6为首项,34为公比的等比数列,又 a6= 70,所以 a n= 70×34n-6.130- 10n,n≤ 6,答案: a n=3-70×4n6, n≥ 76.植树节某班20 名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米.开始时需将树苗集中搁置在某一树坑旁边.使每位同学从各自树坑出发前来领取树苗往返所走的行程总和最小,这个最小值为________米.分析:当放在最左边坑时, 行程和为 2× (0+ 10+20++ 190);当放在左边第 2 个坑时,行程和为 2× (10+0+ 10+ 20+ + 180)(减少了 360 米 ) ;当放在左边第 3 个坑时,行程和为2× (20+ 10+ 0+ 10+ 20+ + 170)( 减少了 680 米 );挨次进行,明显当放在中间的第 10、11个坑时,行程和最小,为2× (90+ 80+ + 0+10+ 20+ + 100)= 2 000 米.7.设数列 { a } 中,若 a= a + a* ),则称数列 { a } 为“凸数列”,已知数列 { b }(n ∈ Nnn +1 nn +2nn为“凸数列”,且 b 1= 1, b 2=- 2,则数列 { b n } 的前 2 013 项和为 ________.分析: 由 “凸数列 ”的定义, 可知, b 1=1,b 2=- 2,b 3=- 3,b 4 =- 1,b 5= 2,b 6= 3,b 7= 1,b 8=- 2, ,故数列 { b n } 是周期为 6 的周期数列,又 b 1+ b 2+ b 3 + b 4+ b 5+ b 6= 0,故数列 { b n }的前 2013 2 013 1 23项和 S = b + b + b = 1- 2- 3=- 4.8.通项公式为 n 2+n 的数列 { a n } 12 345n> a n + 1 对 n ≥ 8 a = an,若知足 a <a <a < a < a ,且 a 恒成立,则实数 a 的取值范围是 ________.分析: 因为 a 1< a 2< a 3<a 4<a 5,即 a + 1<4a + 2<9a + 3< 16a + 4< 25a + 5,所以 a >- 1.9 因为 a n n + 1对 n ≥ 8 恒成立,即 an 2+ n > a(n + 1)2+ (n + 1),所以 a <-1> a因为 2n2n + 1+ 1≥ 17,所以-1 ≥-1112n + 117.要使得 a <- 2n +1对 n ≥8 恒成立,则 a<-17.1 1 综上,-9< a <- 17.11答案: (- 9,- 17)9.将正偶数摆列以下表,此中第i 行第 j 个数表示为 a ij (i , j ∈ N * ),比如 a 43= 18,若 a ij= 2 014,则 i + j________.2468101214161820分析: 正偶数数列 {2 n} ,则 a ij = 2 014 为正偶数数列的第 1 007 项,设 a ij 在第 i 行,前 ii i - 1i i + 1i i - 1< 1 007≤ i i +1-1 行共有2 个正偶数,前 i 行共有 2个正偶数,于是有2 2 ,i ∈N *,得 i =45,前 i - 1 行有 990 个数,则 a ij = 2 014 是第 45 行第 17 个数,即 j = 17,所以 i+ j = 62.10.三个互不相等的实数成等差数列,适合互换这三个数的地点后, 变为一个等比数列,则此等比数列的公比是________.分析: 设这三个数分别为 a - d , a , a + d(d ≠ 0),因为 d ≠ 0,所以 a - d , a ,a + d 或 a+ d ,a , a -d 不行能成等比数列.若a - d ,a + d ,a 或 a ,a + d ,a - d 成等比数列,则 (a +d)2= a(a - d),即 d =- 3a ,此时 q =a1或 q=a -3a=- =- 2;若 a ,a - d , a + d 或 aa - 3a 2 aa - 3aa+ d ,a - d ,a 成等比数列, 则 (a - d)2= a(a + d),即 d = 3a ,此时, q =a =- 2 或 q =a - 3a11=- 2.故 q =- 2 或- 2.nnnn2+Bn + 1(A ≠ 0).11. (2014 苏·州质检 )设数列 { a } 的前 n 项和为 S ,知足 a + S = An13, a 29,求证数列 { a n-n} 是等比数列,并求数列 n(1) 若 a =2= 4{ a } 的通项公式;(2) 已知数列 n是等差数列,求B - 1的值.{ a }A解: (1) 证明:分别令 n = 1,2,2a 1= A + B + 1,代入条件得2a 2+ a 1= 4A + 2B + 1.A = 1,又 a 1= 3, a 2 = 9,解得22 43B = 2.所以 a nn12+3①+ S = 2n 2n + 1,则 a n+1+ S n+1=1(n+1) 2+3(n+ 1)+ 1. ②22②-①得2a n+1- a n= n+ 2.1则 a n+1- (n+ 1)=2(a n- n).1≠ 0,因为 a1- 1=211所以数列 { a n- n} 是首项为2,公比为2的等比数列.11所以 a n- n=2n,则 a n= n+2n.(2) 因为数列 { a n} 是等差数列,所以设a n= dn+ c,则S n=n d+c+dn+c=dn2+c+dn.222所以 a n n d2+c+3d+ S =2n2 n+ c.d3d B-1所以 A=2, B= c+2, c= 1.所以A= 3.12.已知数列 { a n} 中,a1=2,a2= 4,a n+1= 3a n-2a n-1(n≥ 2,n∈ N *).(1) 证明数列{ a n+1- a n} 是等比数列,并求出数列{ a n } 的通项公式;2a n-1(2)记 b n=( n∈N * ),数列 { b n} 的前 n 项和为 S n,求使 S n>2 013 成立的 n 的最小值. a n解: (1) 证明∵a n+1= 3a n- 2a n-1(n≥ 2, n∈N* ),∴a n+1- a n= 2(a n- a n-1)(n≥ 2, n∈N *).∵a1= 2, a2= 4,∴a2- a1= 2≠ 0,∴a n- a n-1≠ 0(n≥ 2,n∈N* ) ,故数列 { a n+1- a n} 是首项为2,公比为 2 的等比数列,∴a n+1- a n= 2n,∴a n= ( a n- a n-1)+ (a n-1- a n-2)+ (a n-2- a n-3) ++(a2-a1)+a1=2n-1+2n-2+2n-3+ +21+ 2=2× 1-2n -1+ 2= 2n (n ≥ 2,n ∈N *),1- 2又 a 1= 2 也知足上式,∴ a n =2n ( n ∈N * ).2 a - 11 11(2) 由 (1)知 b n =n=2 1- a n = 2 1- 2n = 2- n -1( n ∈N *),a n21n1+ 11 +12+ + n11- 2n = 2n - 2 1- 1n1 1,∴S = 2n -2 22 -1= 2n -1 2 = 2n -2+ n-21- 2 由 S n >2 01311 2 015得, 2n - 2+ 2n -1>2 013,即 n +2n > 2 ,∵n ∈N *,∴n +1n 的值随 n 的增大而增大,2∴n 的最小值为 1 008.13. (2014 ·州模拟扬 )已知数列 { a n } 的前 n 项和为 S n .(1) 若数列 { a n } 是等比数列,知足 2a 1+a 3= 3a 2,a 3+ 2 是 a 2,a 4 的等差中项,求数列{ a n }的通项公式;(2) 能否存在等差数列 { a n } ,使对随意 n ∈N * ,都有 a n ·S n = 2n 2(n + 1)?若存在,恳求出全部知足条件的等差数列;若不存在,请说明原因.解: (1) 设等比数列 { a n } 的首项为 a 1 ,公比为 q ,2a 1+ a 3= 3a 2,依题意有a 2+ a 4= 2 a 3+ 2 ,a 1 2+ q 21 ①= 3a q ,即32+4.a 1q + q 1②= 2a q由①得 q 2- 3q + 2= 0,解得 q = 1 或 q = 2.当 q = 1 时,不合题意,舍去;当 q = 2 时,代入②得 a 1= 2,所以 a n = 2·2n - 1= 2n .(2) 假定存在知足条件的数列 { a n } ,设此数列的公差为d.法一: [a1+ (n- 1)d]n n-1= 2n2(n+ 1),a n+d12d2322312即2 n2+2a1d- d n +a1-2a1d+2d= 2n2+ 2n对任意 n ∈N*恒成立,则d22=2,3a1d- d2=2,22312a1-2a1d+2d= 0,解得d= 2,d=- 2,n或此时 a n= 2n=- 2n.a = 2 a =- 2.或 a11故存在等差数列{ a n } ,使对随意n∈N*,都有 a n·S n= 2n2(n+ 1),此中 a n=2n 或 a n=- 2n.法二:令 n= 1, a2= 4 得 a =±2,1121 2令 n= 2 得 a2-24= 0,+ a a①当 a1= 2 时, a2= 4 或 a2=- 6,若 a2= 4,则 d= 2, a n= 2n, S n= n(n+ 1),对随意 n∈N *,都有 a n·S n= 2n2 (n+ 1);若 a2=- 6,则 d=- 8,a3=- 14, S3=- 18,不知足 a3·S3= 2× 32× (3+ 1),舍去.②当 a1=- 2 时, a2=- 4 或 a2= 6,若 a2=- 4,则 d=- 2,a n=- 2n,S n=- n(n+ 1),对随意 n∈N*,都有 a n·S n= 2n2(n+1);若 a2= 6,则 d= 8, a3= 14, S3= 18,不知足 a3·S3= 2× 32× (3+ 1),舍去.综上所述,存在等差数列 { a n} ,使对随意 n∈N *,都有 a n·S n=2n2( n+ 1),此中 a n= 2n 或a n=- 2n.14.(2014 ·锡模拟无 )已知数列 { a n} 中,a1= 2,n∈N *,a n> 0,数列 { a n} 的前 n 项和为 S n,2且知足a n+1=S n+1+S n-2.(1)求 { S n} 的通项公式.(完好版)高考复习:数列的综合运用含分析答案(教师版+学生版)(2)设 { b k} 是数列 { S n} 中按从小到大次序构成的整数数列.①求 b3;②若存在 N(N∈N * ),当 n≤ N 时,使得在数列 { S n} 中,数列 { b k} 有且只有 20 项,求 N 的取值范围.解: (1) 因为 a n+1= S n+1-S n,所以 (S n+1- S n)( S n+1+ S n- 2)= 2,22即 S n+1n n+ 1n所以 (S n+1- 1)2- (S n- 1)2=2,且 (S1- 1)2= 1,所以 {( S n- 1)2} 是首项为 1,公差为 2 的等差数列,所以 S n= 1+2n- 1.(2)①当 n= 1 时, S1= 1+ 1=2= b1;当 n= 5 时, S5= 1+ 3=4= b2;当 n= 13 时, S13=1+ 5= 6= b3.②因为 2n- 1 是奇数, S n= 1+2n- 1为有理数,则 2n- 1=2k- 1,所以 n= 2k2- 2k+ 1.当 k= 20 时, n= 761;当 k= 21 时, n= 841.所以存在 N∈[761,840] (N∈N * ),当 n≤ N 时,使得在 { S n} 中,数列 { b k} 有且只有20 项.。
数列的应用之知识讲解、经典例题及答案
北京数学高考总复习:数列的应用之知识讲解、经典例题及答案知识网络:目标认知考试大纲要求:1.等差数列、等比数列公式、性质的综合及实际应用;2.掌握常见的求数列通项的一般方法;3.能综合应用等差、等比数列的公式和性质,并能解决简单的实际问题.4.用数列知识分析解决带有实际意义的或生活、工作中遇到的数学问题.重点:1.掌握常见的求数列通项的一般方法;3.用数列知识解决带有实际意义的或生活、工作中遇到的数学问题难点:用数列知识解决带有实际意义的或生活、工作中遇到的数学问题.知识要点梳理知识点一:通项与前n项和的关系任意数列的前n项和;注意:由前n项和求数列通项时,要分三步进行:(1)求,(2)求出当n≥2时的,(3)如果令n≥2时得出的中的n=1时有成立,则最后的通项公式可以统一写成一个形式,否则就只能写成分段的形式.知识点二:常见的由递推关系求数列通项的方法1.迭加累加法:,则,,…,2.迭乘累乘法:,则,,…,知识点三:数列应用问题1.数列应用问题的教学已成为中学数学教学与研究的一个重要内容,解答数学应用问题的核心是建立数学模型,有关平均增长率、利率(复利)以及等值增减等实际问题,需利用数列知识建立数学模型.2.建立数学模型的一般方法步骤.①认真审题,准确理解题意,达到如下要求:⑴明确问题属于哪类应用问题;⑵弄清题目中的主要已知事项;⑶明确所求的结论是什么.②抓住数量关系,联想数学知识和数学方法,恰当引入参数变量或适当建立坐标系,将文字语言翻译成数学语言,将数量关系用数学式子表达.③将实际问题抽象为数学问题,将已知与所求联系起来,据题意列出满足题意的数学关系式(如函数关系、方程、不等式).规律方法指导1.由特殊到一般及由一般到特殊的思想是解决数列问题的重要思想;2.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等.3.加强数列知识与函数、不等式、方程、对数、立体几何、三角等内容的综合.解决这些问题要注意:(1)通过知识间的相互转化,更好地掌握数学中的转化思想;(2)通过解数列与其他知识的综合问题,培养分析问题和解决问题的综合能力.经典例题精析类型一:迭加法求数列通项公式1.在数列中,,,求.解析:∵,当时,,,,将上面个式子相加得到:∴(),当时,符合上式故.总结升华:1. 在数列中,,若为常数,则数列是等差数列;若不是一个常数,而是关于的式子,则数列不是等差数列.2.当数列的递推公式是形如的解析式,而的和是可求的,则可用多式累(迭)加法得.举一反三:【变式1】已知数列,,,求.【答案】【变式2】数列中,,求通项公式.【答案】.类型二:迭乘法求数列通项公式2.设是首项为1的正项数列,且,求它的通项公式.解析:由题意∴∵,∴,∴,∴,又,∴当时,,当时,符合上式∴.总结升华:1. 在数列中,,若为常数且,则数列是等比数列;若不是一个常数,而是关于的式子,则数列不是等比数列.2.若数列有形如的解析关系,而的积是可求的,则可用多式累(迭)乘法求得.举一反三:【变式1】在数列中,,,求.【答案】【变式2】已知数列中,,,求通项公式.【答案】由得,∴,∴,∴当时,当时,符合上式∴类型三:倒数法求通项公式3.数列中,,,求.思路点拨:对两边同除以得即可.解析:∵,∴两边同除以得,∴成等差数列,公差为d=5,首项,∴,∴.总结升华:1.两边同时除以可使等式左边出现关于和的相同代数式的差,右边为一常数,这样把数列的每一项都取倒数,这又构成一个新的数列,而恰是等差数列.其通项易求,先求的通项,再求的通项.2.若数列有形如的关系,则可在等式两边同乘以,先求出,再求得.举一反三:【变式1】数列中,,,求.【答案】【变式2】数列中,,,求.【答案】.类型四:待定系数法求通项公式4.已知数列中,,,求.法一:设,解得即原式化为设,则数列为等比数列,且∴法二:∵①②由①-②得:设,则数列为等比数列∴∴∴法三:,,,……,,∴总结升华:1.一般地,对已知数列的项满足,(为常数,),则可设得,利用已知得即,从而将数列转化为求等比数列的通项.第二种方法利用了递推关系式作差,构造新的等比数列.这两种方法均是常用的方法.2.若数列有形如(k、b为常数)的线性递推关系,则可用待定系数法求得.举一反三:【变式1】已知数列中,,求【答案】令,则,∴,即∴,∴为等比数列,且首项为,公比,∴,故.【变式2】已知数列满足,而且,求这个数列的通项公式. 【答案】∵,∴设,则,即,∴数列是以为首项,3为公比的等比数列,∴,∴.∴.类型五:和的递推关系的应用5.已知数列中,是它的前n项和,并且, .(1)设,求证:数列是等比数列;(2)设,求证:数列是等差数列;(3)求数列的通项公式及前n项和.解析:(1)因为,所以以上两式等号两边分别相减,得即,变形得因为,所以由此可知,数列是公比为2的等比数列.由,,所以, 所以,所以.(2),所以将代入得由此可知,数列是公差为的等差数列,它的首项,故.(3),所以当n≥2时,∴由于也适合此公式,故所求的前n项和公式是.总结升华:该题是着眼于数列间的相互关系的问题,解题时,要注意利用题设的已知条件,通过合理转换,将非等差、等比数列转化为等差、等比数列,求得问题的解决利用等差(比)数列的概念,将已知关系式进行变形,变形成能做出判断的等差或等比数列,这是数列问题中的常见策略.举一反三:【变式1】设数列首项为1,前n项和满足.(1)求证:数列是等比数列;(2)设数列的公比为,作数列,使,,求的通项公式.【答案】(1),∴∴,又①-②∴,∴是一个首项为1公比为的等比数列;(2)∴∴是一个首项为1公比为的等差比数列∴【变式2】若, (),求.【答案】当n≥2时,将代入,∴,整理得两边同除以得(常数)∴是以为首项,公差d=2的等差数列,∴,∴.【变式3】等差数列中,前n项和,若.求数列的前n项和.【答案】∵为等差数列,公差设为,∴,∴,∴,若,则,∴.∵,∴,∴,∴,∴①②①-②得∴类型六:数列的应用题6.在一直线上共插13面小旗,相邻两面间距离为10m,在第一面小旗处有某人把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路最短,应集中到哪一面小旗的位置上?最短路程是多少?思路点拨:本题求走的总路程最短,是一个数列求和问题,而如何求和是关键,应先画一草图,研究他从第一面旗到另一面旗处走的路程,然后求和.解析:设将旗集中到第x面小旗处,则从第一面旗到第面旗处,共走路程为了,回到第二面处再到第面处是,回到第三面处再到第面处是,,从第面处到第面处取旗再回到第面处的路程为,从第面处到第面处取旗再回到第面处,路程为20×2,总的路程为:∵,∴时,有最小值答:将旗集中到第7面小旗处,所走路程最短.总结升华:本题属等差数列应用问题,应用等差数列前项和公式,在求和后,利用二次函数求最短路程.举一反三:【变式1】某企业2007年12月份的产值是这年1月份产值的倍,则该企业2007年年度产值的月平均增长率为()A.B.C.D.【答案】D;解析:从2月份到12月份共有11个月份比基数(1月份)有产值增长,设为,则【变式2】某人2006年1月31日存入若干万元人民币,年利率为,到2007年1月31日取款时被银行扣除利息税(税率为)共计元,则该人存款的本金为()A.1.5万元B.2万元C.3万元D.2.5万元【答案】B;解析:本金利息/利率,利息利息税/税率利息(元),本金(元)【变式3】根据市场调查结果,预测某种家用商品从年初开始的个月内累积的需求量(万件)近似地满足.按比例预测,在本年度内,需求量超过万件的月份是()A.5月、6月B.6月、7月C.7月、8月D.9月、10月【答案】C;解析:第个月份的需求量超过万件,则解不等式,得,即.【变式4】某种汽车购买时的费用为10万元,每年应交保险费、养路费及汽油费合计9千元,汽车的维修费平均为第一年2千元,第二年4千元,第三年6千元,依次成等差数列递增,问这种汽车使用多少年后报废最合算?(即年平均费用最少)【答案】设汽车使用年限为年,为使用该汽车平均费用.当且仅当,即(年)时等到号成立.因此该汽车使用10年报废最合算.【变式5】某市2006年底有住房面积1200万平方米,计划从2007年起,每年拆除20万平方米的旧住房.假定该市每年新建住房面积是上年年底住房面积的5%.(1)分别求2007年底和2008年底的住房面积;(2)求2026年底的住房面积.(计算结果以万平方米为单位,且精确到0.01)【答案】(1)2007年底的住房面积为1200(1+5%)-20=1240(万平方米),2008年底的住房面积为1200(1+5%)2-20(1+5%)-20=1282(万平方米),∴2007年底的住房面积为1240万平方米;2008年底的住房面积为1282万平方米.(2)2007年底的住房面积为[1200(1+5%)-20]万平方米,2008年底的住房面积为[1200(1+5%)2-20(1+5%)-20]万平方米,2009年底的住房面积为[1200(1+5%)3-20(1+5%)2-20(1+5%)-20]万平方米,…………2026年底的住房面积为[1200(1+5%)20―20(1+5%)19―……―20(1+5%)―20] 万平方米即1200(1+5%)20―20(1+5%)19―20(1+5%)18―……―20(1+5%)―20≈2522.64(万平方米),∴2026年底的住房面积约为2522.64万平方米.高考题萃1.(2008四川)设数列的前项和为.(Ⅰ)求;(Ⅱ)证明:是等比数列;(Ⅲ)求的通项公式.解析:(Ⅰ)因为,∴由知,得①所以,,∴(Ⅱ)由题设和①式知所以是首项为2,公比为2的等比数列.(Ⅲ)2.(2008全国II)设数列的前项和为.已知,,.(Ⅰ)设,求数列的通项公式;(Ⅱ)若,,求的取值范围.解析:(Ⅰ)依题意,,即,由此得.因此,所求通项公式为,.①(Ⅱ)由①知,,于是,当时,,,当时,.又.综上,所求的的取值范围是.3.(2008天津)已知数列中,,,且.(Ⅰ)设,证明是等比数列;(Ⅱ)求数列的通项公式;(Ⅲ)若是与的等差中项,求的值,并证明:对任意的,是与的等差中项.解析:(Ⅰ)由题设,得,即.又,,所以是首项为1,公比为的等比数列.(Ⅱ)由(Ⅰ),,,……,.将以上各式相加,得.所以当时,上式对显然成立.(Ⅲ)由(Ⅱ),当时,显然不是与的等差中项,故.由可得,由得①整理得,解得或(舍去),于是.另一方面,,.由①可得.所以对任意的,是与的等差中项.4.(2008陕西)已知数列的首项,,.(Ⅰ)求的通项公式;(Ⅱ)证明:对任意的,,;(Ⅲ)证明:.解析:(Ⅰ),,,又,是以为首项,为公比的等比数列.,.(Ⅱ)由(Ⅰ)知,,原不等式成立.另解:设,则,当时,;当时,,当时,取得最大值.原不等式成立.(Ⅲ)由(Ⅱ)知,对任意的,有.令,则,.原不等式成立.学习成果测评基础达标:1.若数列中,且(n是正整数),则数列的通项=____.2.对正整数n,设曲线在x=2处的切线与y轴交点的纵坐标为,则数列的前n项和的公式是____________.3. 设是等比数列,是等差数列,且,数列的前三项依次是,且,则数列的前10项和为____________.4. 如果函数满足:对于任意的实数,都有,且,则____________5.已知数列中,,(),求通项公式.6.已知数列中,,,,求的通项公式.7.已知各项均为正数的数列的前项和满足,且,,求的通项公式.8.设数列满足,.(Ⅰ)求数列的通项;(Ⅱ)设,求数列的前项和.能力提升:9.数列的前项和为,,.(Ⅰ)求数列的通项;(Ⅱ)求数列的前项和.10.数列的前n项和为, 已知是各项为正数的等比数列,试比较与的大小关系.11.某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为,以后每年交纳的数目均比上一年增加,因此,历年所交纳的储备金数目是一个公差为的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为,那么,在第年末,第一年所交纳的储备金就变为,第二年所交纳的储备金就变为,…….以表示到第年末所累计的储备金总额.(Ⅰ)写出与的递推关系式;(Ⅱ)求证:,其中是一个等比数列,是一个等差数列.12.2007年底某县的绿化面积占全县总面积的40%,从2008年开始,计划每年将非绿化面积的8%绿化,由于修路和盖房等用地,原有绿化面积的2%被非绿化.(1)设该县的总面积为1,2007年底绿化面积为,经过n年后绿化的面积为,试用表示;(2)求数列的第n+1项;(3)至少需要多少年的努力,才能使绿化率超过60%.(参考数据:lg2=0.3010,lg3=0.4771)综合探究:13.已知函数,设曲线在点处的切线与x轴的交点为,其中为正实数.(Ⅰ)用表示;(Ⅱ)若,记,证明数列成等比数列,并求数列的通项公式;(Ⅲ)若,,是数列的前n项和,证明.参考答案:基础达标:1.答案:解析:由题设的递推公式可得∴即,2.答案:2n+1-2解析:,曲线在x=2处的切线的斜率为,切点为(2,-2n), 所以切线方程为y+2n=k(x-2),令x=0得,令.数列的前n项和为2+22+23+…+2n=2n+1-23. 答案:9784. 答案:5.解析:将递推关系整理为两边同除以得当时,,,……,将上面个式子相加得到:,即,∴().当时,符合上式故.6.解析:由题设∴.所以数列是首项为,公比为的等比数列,∴,即的通项公式为,.7.解析:由,解得或,由假设,因此,又由,得,即或,因,故不成立,舍去.因此,从而是公差为,首项为的等差数列,故的通项为.8.解析:(Ⅰ),①∴当时,②①-②得,.在①中,令,得符合上式∴.(Ⅱ),∴.,③.④④-③得.即,.能力提升:9.解析:(Ⅰ),,又,数列是首项为,公比为的等比数列,∴.当时,,(Ⅱ),当时,;当时,,…………①,…………②得:..又也满足上式,.10.解析:∵为各项为正数的等比数列,设其首项为,公比为, 则有,,(),∴,即(1)当时,,,而,∴∴时,.(2)当时,,,∴①当时,,∴②当时,,∴③当时,,∴综上,(1)在时恒有(2)在时,①若则;②若则;③若则.11.解析:(Ⅰ).(Ⅱ),对反复使用上述关系式,得,①在①式两端同乘,得②②①,得.即.如果记,,则.其中是以为首项,以为公比的等比数列;是以为首项,为公差的等差数列.12.解析:(1)设2007年底非绿化面积为b1,经过n年后非绿化面积为.于是a1+b1=1,依题意,是由两部分组成:一部分是原有的绿化面积减去被非绿化部分后剩余面积,另一部分是新绿化的面积,∴.(2),.数列是公比为,首项的等比数列.∴.(3)由,得,,,∴至少需要7年的努力,才能使绿化率超过60%.综合探究:13.解析:(Ⅰ)由题可得.所以曲线在点处的切线方程是:.即.令,得,即.显然,∴.(Ⅱ)由,知,同理.故.从而,即.所以,数列成等比数列.故,即.从而,所以(Ⅲ)由(Ⅱ)知,∴∴当时,显然.当时,∴.综上,.。
数列的应用题解析
数列的应用题解析数列是高中数学中重要的概念之一,也是数学应用领域中常见的数学工具。
它在数学领域的应用非常广泛,如统计学、金融学、物理学等。
本文将从不同领域的应用中选取几个例子,分析数列的应用。
一、数列在经济学中的应用在经济学领域,数列常用于描述经济指标的变化规律。
比如,以GDP的年增长率为例。
假设某国GDP的初始值为1000万元,每年增长10%。
我们可以使用递推公式来描述这个增长过程:G(n+1) = G(n) + 0.1G(n)其中,G(n)表示第n年的GDP,G(n+1)表示第n+1年的GDP。
这个递推公式可以化简为:G(n) = 1000 * 1.1^n通过这个递推公式,我们可以算出每一年的GDP值。
这样,我们就可以通过数列的方法来预测未来的GDP情况,为经济决策提供参考。
二、数列在物理学中的应用数列在物理学领域也有着广泛的应用。
其中,最经典的例子就是牛顿的运动定律。
根据运动定律,物体在匀加速直线运动中的位移与时间的关系可以用数列来描述。
假设某物体的初始位移为S(0),初始速度为V(0),加速度为a,则物体在第n秒的位移可以通过递推公式来计算:S(n) = S(0) + V(0)n + 0.5an^2其中,S(n)表示第n秒时物体的位移。
通过这个递推公式,我们可以计算出物体在任意时刻的位移情况,进而在物理实验中进行观测和验证。
三、数列在统计学中的应用在统计学中,数列常用于描述数据的变化趋势。
比如,我们可以用数列来描述人口增长的规律。
假设某城市的初始人口为P(0),每年人口增长率为r%,则该城市第n年的人口可以用数列的方法来描述:P(n) = P(0) * (1 + r/100)^n通过这个递推公式,我们可以计算出每一年的人口情况。
同时,我们还可以通过数列的方法来预测未来的人口情况,为城市规划和社会发展提供参考。
综上所述,数列在不同领域中都有着广泛的应用。
无论是经济学、物理学还是统计学,数列都是一种常用的数学工具,能够帮助我们揭示事物的变化规律,进行数据的预测和分析。
高一数学数列综合应用试题答案及解析
高一数学数列综合应用试题答案及解析1.数列1,-3,5,-7,9,……的一个通项公式为()A.B.C.D.【答案】B【解析】本题分两部分看,一看数的变化,都是正奇数,表示为 2n-1,二看符号,分别在偶数位置出现负号,表示为,和在一起,整理,即得.故选B.【考点】归纳法求通项公式.2.已知数列的各项均为正整数,对于,有,若存在,当且为奇数时,恒为常数,则的值为 .【答案】1或5【解析】设当且为奇数,由题意有,即,又数列的各项均为正整数,因此的值为1或5.【考点】递推数列的性质3.已知数列通项为,则 .【答案】-1008【解析】由于的周期,所以数列的前4项和0-2+0+4=2,计算下去,发现每一个周期的和为2,,所以.【考点】数列的周期性的应用.4.已知数列{an }的通项公式an=,若前n项和为6,则n=_________.【答案】48【解析】试题分析:,;令,解得.【考点】数列的前项和.5.已知数列满足:(m为正整数),若,则m所有可能的取值为________。
【答案】4或5或32【解析】由题意知,有①②两种情况:①a3=1,a2=2,a1=4,即m=4;②a3=8,a 2=16,有③④两种情况:③a1=5,即m=5;④a1=32,即m=32.故答案为:4,5,32.【考点】数列递推式.6.给定函数的图像如下列图中,经过原点和(1,1),且对任意,由关系式得到数列{},满足,则该函数的图像为()【答案】A【解析】由题意,知:,即在图中应该是满足的所有点,只有A选项正确.【考点】数列的基本概念.7.已知首项为正数的等差数列{an }的前n项和为Sn,若a1 006和a1 007是方程x2-2 012x-2 011=0的两根,则使Sn>0成立的正整数n的最大值是().A.1006B.1007C.2011D.2012【答案】C【解析】根据题意,利用根与系数的关系可知,又因为该等差数列的首项为正数,所以该数列是首项为正数的递减数列,且,,即该数列从第1007项开始为负数.所以有,则要求使成立的最大正整数的值,就是求使成立得最大正整数的值.根据等差数列的性质:当时,有.显然此时,可得.【考点】二次方程根与系数的关系;等差数列性质当时,有的使用.8.已知数列前项和,(1)求其通项;(2)若它的第项满足,求的值。
玩转高中数学研讨 第18讲 数列的综合应用
专题六 数列第十八讲 数列的综合应用2020年1.(2020•全国2卷)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A. 3699块B. 3474块C. 3402块D. 3339块【答案】C【解析】第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列, 设n S 为{}n a 的前n 项和,由题意可得322729n n n n S S S S -=-+,解方程即可得到n ,进一步得到3n S . 【详解】设第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n =+-⨯=, 设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分别为232,,n n n n n S S S S S --,因为下层比中层多729块,所以322729n n n n S S S S -=-+,即3(927)2(918)2(918)(99)7292222n n n n n n n n ++++-=-+即29729n =,解得9n =,所以32727(9927)34022n S S +⨯===. 故选:C【点晴】本题主要考查等差数列前n 项和有关的计算问题,考查学生数学运算能力,是一道容易题. 2.(2020•全国2卷)0-1周期序列在通信技术中有着重要应用.若序列12na a a 满足{0,1}(1,2,)i a i ∈=,且存在正整数m ,使得(1,2,)i m i a a i +==成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i +==的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12na a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( )A. 11010B. 11011C. 10001D. 11001【答案】C【解析】根据新定义,逐一检验即可【详解】由i m i a a +=知,序列i a 的周期为m ,由已知,5m =,511(),1,2,3,45i i k i C k a a k +===∑,对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a +===++++=++++=≤∑52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;故选:C【点晴】本题考查数列的新定义问题,涉及到周期数列,考查学生对新定义的理解能力以及数学运算能力,是一道中档题.3.(2020•江苏卷)已知数列{}*()∈n a n N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111kk kn n n SS a λ++-=成立,则称此数列为“λ–k ”数列.(1)若等差数列{}n a 是“λ–1”数列,求λ的值;(2)若数列{}n a 2”数列,且a n >0,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ–3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由, 【答案】(1)1(2)21,134,2n n n a n -=⎧=⎨⋅≥⎩(3)01λ<<【解析】(1)根据定义得+11n n n S S a λ+-=,再根据和项与通项关系化简得11n n a a λ++=,最后根据数列不为零数列得结果;(2)根据定义得111222+1+1)3n n n n S S S S -=-,根据平方差公式化简得+1=4n n S S ,求得n S ,即得n a ; (3)根据定义得111333+11n n n SS a λ+-=,利用立方差公式化简得两个方程,再根据方程解的个数确定参数满足的条件,解得结果【详解】(1)+111111101n n n n n n S S a a a a a λλλ++++-=∴==∴≡∴=/(2)11221100n n n n n a S S S S ++>∴>∴->,111222+1+1)n nn n S S S S -=- 1111112222222+1+1+11()()()3n n n n n n S S S S S S ∴-=-+1111111222222+1+1+1+11()=2=443n n nn n n n n n n S S S S S S S S S -∴-=+∴∴∴= 111S a ==,14n n S -=,1224434,2n n n n a n ---∴=-=⋅≥21,134,2n n n a n -=⎧∴=⎨⋅≥⎩(3)假设存在三个不同的数列{}n a 为"3"λ-数列.111113333333+11+1+1()()n n n n n n n S S a S S S S λλ+-=∴-=- 1133+1n n S S ∴=或11221123333333+1+1+1()()n n n n n n S S S S S S λ-=+++1n n S S ∴=或22113333333+1+1(1)(1)(2)0n n n n S S S S λλλ-+-++=∵对于给定的λ,存在三个不同的数列{}n a 为"3"λ-数列,且0n a ≥1,10,2n n a n =⎧∴=⎨≥⎩或()22113333333+1+1(1)(1)(2)01n n n n S S S S λλλλ-+-++=≠有两个不等的正根.()22113333333+1+1(1)(1)(2)01n n n n S S S S λλλλ-+-++=≠可转化为()2133333+1+12133(1)(2)(1)01n n nnS S S S λλλλ-++-+=≠,不妨设()1310n n S x x S +⎛⎫=> ⎪⎝⎭,则()3233(1)(2)(1)01x x λλλλ-+++-=≠有两个不等正根,设()()3233(1)(2)(1)01f x x x λλλλ=-+++-=≠.① 当1λ<时,32323(2)4(1)004λλλ∆=+-->⇒<<,即01λ<<,此时()3010f λ=-<,33(2)02(1)x λλ+=->-对,满足题意.② 当1λ>时,32323(2)4(1)004λλλ∆=+-->⇒<<,即1λ<<此时()3010f λ=->,33(2)02(1)x λλ+=-<-对,此情况有两个不等负根,不满足题意舍去. 综上,01λ<<【点睛】本题考查数列新定义、由和项求通项、一元二次方程实根分步,考查综合分析求解能力,属难题. 4.(2020•上海卷)有限数列{}n a ,若满足12131||||...||m a a a a a a -≤-≤≤-,m 是项数,则称{}n a 满足性质p .(1) 判断数列3,2,5,1和4,3,2,5,1是否具有性质p ,请说明理由.(2) 若11a =,公比为q 的等比数列,项数为10,具有性质p ,求q 的取值范围.(3) 若n a 是1,2,...,m 的一个排列1(4),(1,2...1),{},{}k k n n m b a k m a b +≥==-都具有性质p ,求所有满足条件的{}n a .【答案】(1)对于第一个数列有|23|1,|53|2,|13|2-=-=-=,满足题意,该数列满足性质p对于第二个数列有|34|1,|24|2,|54|1-=-=-=不满足题意,该数列不满足性质p .(2)由题意可得,{}111,2,3,...,9n n q q n ---∈≥ 两边平方得:2-2-1212+1n nn n q q q q -+-≥ 整理得:()11(1)120n n q q q q --⎡⎤-+-⎣⎦≥当1q ≥时,得1(1)20n qq -+-≥,此时关于n 恒成立,所以等价于2n =时(1)20q q +-≥,所以(2)(1)0q q +-≥, 所以q ≤-2或者q ≥l ,所以取q ≥1.当01q <≤时,得1(1)2n q q -+-≤0, 此时关于n 恒成立, 所以等价于2n =时(1)20q q +-≤,所以(2)(1)0q q +-≤, 所以21q -≤≤,所以取01q <≤。
专题六 数列 第十八讲 数列的综合应用
②设 m 为正整数,若存在“M-数列”{cn} (n N* ) ,对任意正整数 k,当 k≤m 时,都有
ck剟bk ck+1 成立,求 m 的最大值.
4(. 2019 北京理 20)已知数列an ,从中选取第 i1 项、第 i2 项、…、第 im 项 (i1 i2 im ) , 若 ai1 ai2 L aim ,则称新数列 ai1 ai2 L aim 为 an 的长度为 m 的递增子列。规定:数列 an 的任意一项都是an 的长度为 1 的递增子列。
专题六 数列
第十八讲 数列的综合应用
2019 年
1.(2019 浙江 10)设 a,b∈R,数列{an}中 an=a,an+1=an2+b, n N ,则
A.当
b=
1 2
时,a10>10
C.当 b=-2 时,a10>10
B.当
b=
1 4
时,a10>10
D.当 b=-4 时,a10>10
2.(2019 浙江 20)设等差数列{an} 的前 n 项和为 Sn , a3 = 4 , a4 = S3 ,数列{bn} 满足:
二、填空题
B. I2 I1 I3
C. I1 I3 I2
D. I3 I2 I1
6.(2018 江苏)已知集合 A = {x | x = 2n −1, n N*} ,B = {x | x = 2n , n N*} .将 A U B 的所有元
素 从 小 到 大 依 次 排 列 构 成 一 个 数 列 {an} . 记 Sn 为 数 列 {an} 的 前 n 项 和 , 则 使 得
成等比数列,则 S8 = _____ .
10.(2011 江苏)设1 a1 a2 a7 ,其中 a1, a3 , a5 , a7 成公比为 q 的等比数列,
高三数学数列综合应用试题答案及解析
高三数学数列综合应用试题答案及解析1.某企业为加大对新产品的推销力度,决定从今年起每年投入100万元进行广告宣传,以增加新产品的销售收入.已知今年的销售收入为250万元,经市场调查,预测第n年与第n-1年销售收入an 与an-1(单位:万元)满足关系式:a n=a n-1+-100.(1)设今年为第1年,求第n年的销售收入an;(2)依上述预测,该企业前几年的销售收入总和Sn最大.【答案】(1)an=500--100(n-1)(2)前5年【解析】解:(1)由题意可知an -an-1=-100(n≥2),an-1-a n-2=-100,…a 3-a2=-100,a 2-a1=-100,a1=250=.以上各式相加得,an=500(++…+)-100(n-1)=500·-100(n-1)=500--100(n-1).(2)要求销售收入总和Sn的最大值,即求年销售收入大于零的所有年销售收入的和.∵an=500--100(n-1),∴要使an≥0,即500--100(n-1)≥0,也就是+≤1.令bn=+,则bn -bn-1=+--=-,显然,当n≥3时,bn >bn-1,而b5<1,b6>1,∴a5>0,a6<0.∴该企业前5年的销售收入总和最大.2.设数列{an }的前n项和Sn满足=3n-2.(1)求数列{an}的通项公式;(2)设bn =,Tn是数列{bn}的前n项和,求使得Tn<对所有n∈N*都成立的最小正整数m.【答案】(1)an=6n-5(n∈N*)(2)10【解析】解:(1)由=3n-2,得Sn=3n2-2n.当n≥2时,an =Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5;当n=1时,a1=S1=3×1-2=6-5=1.所以an=6n-5(n∈N*).(2)由(1)得bn=== (-),故Tn= [(1-)+(-)+…+(-)]= (1-).因此,使得(1-)< (n∈N*)成立的m必须满足≤,即m≥10,故满足要求的最小正整数m为10.3.(14分)(2011•广东)设b>0,数列{an}满足a1=b,an=(n≥2)(1)求数列{an}的通项公式;(2)证明:对于一切正整数n,2an≤b n+1+1.【答案】(1)(2)见解析【解析】(1)由题设形式可以看出,题设中给出了关于数列an的面的一个方程,即一个递推关系,所以应该对此递推关系进行变形整理以发现其中所蕴含的规律,观察发现若对方程两边取倒数则可以得到一个类似等差数列的形式,对其中参数进行讨论,分类求其通项即可.(2)由于本题中条件较少,解题思路不宜用综合法直接分析出,故求解本题可以采取分析法的思路,由结论探究其成立的条件,再证明此条件成立,即可达到证明不等式的目的.解:(1)∵(n≥2),∴(n≥2),当b=1时,(n≥2),∴数列{}是以为首项,以1为公差的等差数列,∴=1+(n﹣1)×1=n,即an=1,当b>0,且b≠1时,(n≥2),即数列{}是以=为首项,公比为的等比数列,∴=×=,即an=,∴数列{an}的通项公式是(2)证明:当b=1时,不等式显然成立当b>0,且b≠1时,an =,要证对于一切正整数n,2an≤b n+1+1,只需证2×≤b n+1+1,即证∵==(b n+1+1)×(b n﹣1+b n﹣2+…+b+1)=(b2n+b2n﹣1+…+b n+2+b n+1)+(b n﹣1+b n﹣2+…+b+1)=b n[(b n+b n﹣1+…+b2+b)+(++…+)]≥b n(2+2+…+2)=2nb n所以不等式成立,综上所述,对于一切正整数n,有2an≤b n+1+1,点评:本题考点是数列的递推式,考查根据数列的递推公式求数列的通项,研究数列的性质的能力,本题中递推关系的形式适合用取倒数法将所给的递推关系转化为有规律的形式,两边取倒数,条件许可的情况下,使用此技巧可以使得解题思路呈现出来.数列中有请多成熟的规律,做题时要注意积累这些小技巧,在合适的情况下利用相关的技巧,可以简化做题.在(2)的证明中,采取了分析法的来探究解题的思路,通过本题希望能进一步熟悉分析法证明问题的技巧.4.已知数列,,2,,…,则2在这个数列中的项数为()A.6B.7C.19D.11【答案】B【解析】设,,,,…形成的数列为{an },被开方数形成的数列为{bn},从形式上讲,每一项都有二次根号,被开方数为2,5,8,11…,易归纳出数列{bn }的一个通项公式为bn=3n-1,所以an=,2==,解得n=7,所以2是这个数列的第7项.5.已知数列,对任意的,当时,;当时,,那么该数列中的第10个2是该数列的第项.【答案】39366()【解析】由题意,,,由此可得,,故第10个2应该是,即第项.【考点】数列的通项公式与数列的项.6.一个三角形数表按如下方式构成(如图:其中项数):第一行是以4为首项,4为公差的等差数列,从第二行起,每一个数是其肩上两个数的和,例如:;为数表中第行的第个数.(1)求第2行和第3行的通项公式和;(2)证明:数表中除最后2行外每一行的数都依次成等差数列;(3)求关于()的表达式.【答案】(1),;(2)证明见解析,;(3).【解析】(1)根据定义,,因此,;(2)由于第行的数依赖于第的数,因此我们可用数学归纳法证明;(3)设第行的公差为,,而,从而,即,于是有,由此可求得数列是公差为1的等差数列,而,由等差数列通项公式得,从而有.试题解析:(1).(4分)(2)由已知,第一行是等差数列,假设第行是以为公差的等差数列,则由(常数) 知第行的数也依次成等差数列,且其公差为.综上可得,数表中除最后2行以外每一行都成等差数列. (9分) (3)由于,所以, (11分) 所以, 由得, (13分) 于是,即, (15分)又因为,所以,数列是以2为首项,1为公差的等差数列, 所以,,所以(). (18分)【考点】(1)等差数列的通项公式;(2)等差数列的判定;(3)由递推公式求通项公式.7. 已知数列{a n }的前n 项和为S n ,对一切正整数n ,点P n (n ,S n )都在函数f(x)=x 2+2x 的图象上,且在点P n (n ,S n )处的切线的斜率为k n . (1)求数列{a n }的通项公式;(2)若b n =2k n a n ,求数列{b n }的前n 项和T n . 【答案】(1)a n =2n +1(2)T n =·4n +2-【解析】(1)∵点P n (n ,S n )在函数f(x)=x 2+2x 的图象上,∴S n =n 2+2n(n ∈N *),当n≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=3满足上式,所以数列{a n }的通项公式为a n =2n +1. (2)由f(x)=x 2+2x ,求导得f′(x)=2x +2. ∵在点P n (n ,S n )处的切线的斜率为k n , ∴k n =2n +2,∴b n =2k n a n =4·(2n +1)·4n , ∴T n =4×3×4+4×5×42+4×7×43+…+4×(2n +1)×4n ,用错位相减法可求得T n =·4n +2-.8. 已知数列{a n }的前n 项和为S n ,满足log 2(1+S n )=n +1,则{a n }的通项公式为__________. 【答案】a n =【解析】由log 2(1+S n )=n +1,得S n =2n +1-1. n =1时,a 1=S 1=3.n≥2时,a n =S n -S n -1=2n . 当n =1时a 1=3不符合上式,∴a n =9. 已知S n 是数列{a n }的前n 项和,且a n =S n -1+2(n ≥2),a 1=2. (1)求数列{a n }的通项公式. (2)设b n =,T n =b n +1+b n +2+…+b 2n ,是否存在最大的正整数k ,使得对于任意的正整数n ,有T n >恒成立?若存在,求出k 的值;若不存在,说明理由.【答案】(1)2n (2)存在【解析】(1)由已知a n =S n -1+2, ① 得a n +1=S n +2. ②②-①,得a n +1-a n =S n -S n -1(n ≥2), ∴a n +1=2a n (n ≥2).又a 1=2,∴a 2=a 1+2=4=2a 1, ∴a n +1=2a n (n =1,2,3,…),∴数列{a n }是一个以2为首项,2为公比的等比数列, ∴a n =2·2n -1=2n ,n ∈N *. (2)b n ===,∴T n =b n +1+b n +2+…+b 2n =++…+,T n +1=b n +2+b n +3+…+b 2(n +1)=++…+++. ∴T n +1-T n =+-==.∵n 是正整数,∴T n +1-T n >0,即T n +1>T n .∴数列{T n }是一个单调递增数列.又T 1=b 2=,∴T n ≥T 1=, 要使T n >恒成立,则>,即k <6.又k 是正整数,故存在最大正整数k =5使T n >恒成立. 10. 若,则___________ .【答案】【解析】由,可得,所以.【考点】代数式的处理11. 数列的首项为,为等差数列且 .若则,,则( )A .0B .3C .8D .11【答案】B 【解析】由为等差数列且,,则,所以,故,累加得,所以.【考点】1、等差数列的通项公式;2、累加法.12. 已知数列是等差数列,且,;又若是各项为正数的等比数列,且满足,其前项和为,. (1)分别求数列,的通项公式,; (2)设数列的前项和为,求的表达式,并求的最小值. 【答案】(1),;(2),.【解析】(1)首先设出公差和公比,根据已知条件及等比数列和等差数列的性质,列方程组解方程组,求得公差和公比,写出各自的通项公式;(2)因为取偶数和奇数时,数列的项数会有变化,所以对分取偶数和奇数两种情况进行讨论,根据等差数列和等比数列的前项和公式,求出的表达式,根据前后两项的变化确定的单调性,求得每种情况下的最小值,比较一下,取两个最小值中的较小者. 试题解析:(1)设数列的公差是,的公比为,由已知得,解得,所以; 2分又,解得或(舍去),所以; .4分(2)当为偶数时,,当为奇数时. .10分当为偶数时,,所以先减后增,当时,,所以;当时,,所以;所以当为偶数时,最小值是. 12分当为奇数时,,所以先减后增,当时,,所以,当时,,所以,所以当为奇数时,最小值是.比较一下这两种情况下的的最小值,可知的最小值是. .14分【考点】1、等差数列与等比数列的前项和公式;2、数列与函数单调性的综合应用;3、数列与求函数最值的综合运用;4、数列的函数特性.13.已知二次函数的图象经过坐标原点,其导函数为,数列的前项和为,点均在函数的图像上.(1)求的解析式;(2)求数列的通项公式;(3)设,是数列的前n项和,求使得对所有都成立的最小正整数.【答案】(1)(2)(3)10【解析】(1)利用导函数及待定系数法求解;(2)利用与的关系求通项公式,要注意对进行讨论;(3)数列求和的方法由数列的通项公式决定.常用的方法有:公式求和法、倒序相加法、错位相减法、裂项相消法、分组转化法等。
专题:数列的综合应用(含答案)
专题:数列的综合应用【知识概要】1.数列求和的常用方法(1)公式法:适用于等差、等比数列或可转化为等差、等比数列的数列;(2)裂项相消法:适用于⎭⎬⎫⎩⎨⎧+1n n a a c 其中{ n a }是各项不为0的等差数列,c 为常数;部分无理数列、含阶乘的数列等;(3)错位相减法:适用于{}n n b a 其中{ n a }是等差数列,{}n b 是各项不为0的等比数列。
(4)倒序相加法:类似于等差数列前n 项和公式的推导方法.(5)分组求和法(6)累加(乘)法等。
2.常用结论(1)1nk k ==∑ 1+2+3+...+n =2)1(+n n (2)1(21)n k k =-=∑1+3+5+...+(2n-1) =2n(3)31nk k ==∑2333)1(2121⎥⎦⎤⎢⎣⎡+=+++n n n(4)21nk k ==∑)12)(1(613212222++=++++n n n n (5)111)1(1+-=+n n n n)211(21)2(1+-=+n n n n (6))()11(11q p qp p q pq <--= 3.高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地 方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
【例题精讲】【题型1】数列创新题例1、 设正项等比数列{}n a 的首项211=a ,前n 项和为n S ,且0)12(21020103010=++-S S S 。
(Ⅰ)求{}n a 的通项;(Ⅱ)求{}n nS 的前n 项和n T 。
解:(Ⅰ)由 0)12(21020103010=++-S S S 得 ,)(21020203010S S S S -=-即,)(220121*********a a a a a a +++=+++ 可得.)(22012112012111010a a a a a a q +++=+++⋅ 因为0>n a ,所以 ,121010=q 解得21=q ,因而 .,2,1,2111 ===-n qa a n n n (Ⅱ)因为}{n a 是首项211=a 、公比21=q 的等比数列,故 .2,21121)211(21n n n n n n n nS S -=-=--= 则数列}{n nS 的前n 项和 ),22221()21(2n n n n T +++-+++= ).2212221()21(212132++-+++-+++=n n n nn n T 前两式相减,得122)212121()21(212+++++-+++=n n n nn T 12211)211(214)1(++---+=n n n n n 即 .22212)1(1-+++=-n n nn n n T 例2、数列{}n a 的前n 项和为n S ,已知()211,1,1,2,2n n a S n a n n n ==--=鬃 (Ⅰ)写出n S 与1n S -的递推关系式()2n ³,并求n S 关于n 的表达式;(Ⅱ)设()1n n n n b S x x R n +=,求数列{}n b 的前n 项和n T 。
高一数学数列综合应用试题答案及解析
高一数学数列综合应用试题答案及解析1.若数列满足为常数,则称数列为“调和数列”,若正项数列为“调和数列”,且,则的最大值是()A.10B.100C.200D.400【答案】B【解析】由于正项数列为“调和数列”,,为等差数列,,.的最大值为100.【考点】等差数列的性质和基本不等式的应用.2.数列满足,则 .【答案】.【解析】当时,,;当时,由于,,两式相减得,不满足.【考点】由得.3.已知数列中,,则数列通项公式=______________.【答案】【解析】由,得,得所以得.【考点】等比数列.4.已知数列的各项均为正整数,对于,有,若存在,当且为奇数时,恒为常数,则的值为 .【答案】1或5【解析】设当且为奇数,由题意有,即,又数列的各项均为正整数,因此的值为1或5.【考点】递推数列的性质5.已知数列满足,,则的值为_______.【答案】-3【解析】由递推式观察可知,式子并不好转化为新的数列形式.故可尝试计算几项并寻找规律.,故此数列为以4为周期的周期数列.,则【考点】计算数列值.6.设数列的前n项和,则的值为( ).A.15B.16C.49D.64【答案】A.【解析】因为,所以选A.【考点】数列中与的关系:.7.若数列中,则其前项和取最大值时,__________.【答案】或【解析】令,则,又∵,∴当时,,,当时,,∴当取最大值时,或.【考点】数列的性质.8.已知数列满足,,则()A.2B.C.D.【答案】B.【解析】∵,,∴,,,,而,∴.【考点】数列的通项公式.9.在数列中,若,,则.【答案】.【解析】由变形为,即有,令,则有,说明与互为倒数关系,而由有,则,同理……,因此有,所以,故.【考点】运用数列特殊递推关系解决问题,本题要注意构造新数列进行归纳寻求相应规律,从而解决问题.10.给定函数的图像如下列图中,经过原点和(1,1),且对任意,由关系式得到数列{},满足,则该函数的图像为()【答案】A【解析】由题意,知:,即在图中应该是满足的所有点,只有A选项正确.【考点】数列的基本概念.11.已知数列前项和,(1)求其通项;(2)若它的第项满足,求的值。
数学高考总复习:数列的应用之知识讲解、经典例题及答案
14
( 1)分别求 2007 年底和 2008 年底的住房面积; ( 2)求 2026 年底的住房面积 .(计算结果以万平方米为单位,
且精确到 0.01)
【答案】 ( 1) 2007 年底的住房面积为 1200(1+5%) -20=1240 (万平方米),
2008 年底的住房面积为 1200(1+5%) 2- 20(1+5%) -20=1282 (万平方米), ∴ 2007 年底的住房面积为 1240 万平方米; 2008 年底的住房面积为 1282 万平方米 . ( 2) 2007 年底的住房面积为 [1200(1+5%) - 20]万平方米, 2008 年底的住房面积为 [1200(1+5%) 2- 20(1+5%) - 20]万平方米, 2009 年底的住房面积为 [1200(1+5%) 3- 20(1+5%) 2- 20(1+5%) - 20]万平方米, ………… 2026 年底的住房面积为 [1200(1+5%) 20― 20(1+5%) 19―……― 20(1+5%) ― 20]万平方米 即 1200(1+5%) 20― 20(1+5%) 19― 20(1+5%) 18―……― 20(1+5%) ― 20
,
( 2)求出当 n≥2时的 ,
( 3)如果令 n≥2时得出的 中的 n=1 时有 一个形式, 否则就只能写成分段的形式 .
成立, 则最后的通项公式可以统一写成
1
知识点二:常见的由递推关系求数列通项的方法 1.迭加累加法:
,
则
,
, …,
2.迭乘累乘法: ,
则
,
专题六 数列 第十八讲 数列的综合应用答案
专题六 数列 第十八讲 数列的综合应用答案部分1.B 【解析】解法一 因为ln 1x x -≤(0x >),所以1234123ln()a a a a a a a +++=++1231a a a ++-≤,所以41a -≤,又11a >,所以等比数列的公比0q <.若1q -≤,则212341(1)(10a a a a a q q +++=++)≤, 而12311a a a a ++>≥,所以123ln()0a a a ++>, 与1231234ln()0a a a a a a a ++=+++≤矛盾,所以10q -<<,所以2131(1)0a a a q -=->,2241(1)0a a a q q -=-<, 所以13a a >,24a a <,故选B .解法二 因为1xe x +≥,1234123ln()a a a a a a a +++=++, 所以123412312341a a a a e a a a a a a a +++=++++++≥,则41a -≤,又11a >,所以等比数列的公比0q <.若1q -≤,则212341(1)(10a a a a a q q +++=++)≤, 而12311a a a a ++>≥,所以123ln()0a a a ++> 与1231234ln()0a a a a a a a ++=+++≤矛盾,所以10q -<<,所以2131(1)0a a a q -=->,2241(1)0a a a q q -=-<, 所以13a a >,24a a <,故选B . 2.A 【解析】对命题p :12,,,n a a a 成等比数列,则公比)3(1≥=-n a a q n n且0≠n a ; 对命题q ,①当0=n a 时,22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++成立;②当0≠n a 时,根据柯西不等式,等式22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++成立,则nn a a a a a a 13221-=⋅⋅⋅==,所以12,,,n a a a 成等比数列, 所以p 是q 的充分条件,但不是q 的必要条件.3.A 【解析】2a ,4a ,8a 成等比数列,∴2428a a a =⋅,即2111(6)(2)(14)a a a +=++,解得12a =,所以(1)n S n n =+.4.B 【解析】∵21)(x x f =在[0,1]上单调递增,可得1110()()0f a f a ->,1211()()0f a f a ->,…,199198()()0f a f a ->,∴111101211199198|()()||()()||()()|I f a f a f a f a f a f a =-+-+⋅⋅⋅+-1110121119919819910()()+()()()()=()()f a f a f a f a f a f a f a f a --+⋅⋅⋅+--=299-0=199() ∵),(2)(22x x x f -=在490]99[,上单调递增,在50[,1]99单调递减 ∴2120()()0f a f a ->,…,249248()()0f a f a ->,250249()()0f a f a -=,251250()()0f a f a -<,…,299298()()0f a f a -<∴221202221299298|()()||()()||()()|I f a f a f a f a f a f a =-+-+⋅⋅⋅+- =24920299250()()[()()]f a f a f a f a ---=250202992()()()f a f a f a --=505098004(1)199999801⨯⨯-=< ∵|2sin |31)(3x x f π=在24[0,]99,5074[,]9999上单调递增,在2549[,]9999,75[,1]99上单调递减,可得33253493742492()2()2(=(2sin sin )39999I f a f a f a ππ=-+-)252(2sin sin )1312123ππ>-==> 因此312I I I <<.5.27【解析】所有的正奇数和2n(*n ∈N )按照从小到大的顺序排列构成{}n a ,在数列{}n a中,52前面有16个正奇数,即5212a =,6382a =.当1n =时,1211224S a =<=,不符合题意;当2n =时,2331236S a =<=,不符合题意;当3n =时,3461248S a =<=,不符合题意;当4n =时,45101260S a =<=,不符合题意;……;当26n =时,52621(141)2(12)212S ⨯+⨯-=+-= 441 +62= 503<2712516a =,不符合题意;当27n =时,52722(143)2(12)212S ⨯+⨯-=+-=484 +62=546>2812a =540,符合题意.故使得112n n S a +>成立的n 的最小值为27.6.2,13-【解析】由题可得,2111(2)()(6)a d a d a d +=++,故有1320a d +=,又因为1221a a +=,即131a d +=,所以121,3d a =-=.7.64【解析】由11a =且125,,a a a 成等比数列,得2111(4)()a a d a d +=+,解得2d =,故81878642S a d ⨯=+=.8.【解析】设2a t =,则23112t q t q t q ++≤≤≤≤≤≤,由于1t ≥,所以max{q t ≥,故q因此*k N ∈,所以4k =.9.【解析】(1)由条件知:(1)n a n d =-,12n n b -=.因为1||n n a b b -≤对n =1,2,3,4均成立, 即1|(1)2|1n n d ---≤对n =1,2,3,4均成立,即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得7532d ≤≤. 因此,d 的取值范围为75[,]32. (2)由条件知:1(1)n a b n d =+-,11n n b b q-=.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立, 即1111|(1)|n b n d b q b -+--≤(n =2,3,···,m +1), 即当2,3,,1n m =+时,d 满足1111211n n q q b d b n n ---≤≤--.因为q ∈,则112n m q q -<≤≤,从而11201n q b n --≤-,1101n q b n ->-,对2,3,,1n m =+均成立. 因此,取d =0时,1||n n a b b -≤对2,3,,1n m =+均成立.下面讨论数列12{}1n q n ---的最大值和数列1{}1n q n --的最小值(2,3,,1n m =+). ①当2n m ≤≤时,111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---, 当112mq <≤时,有2n m q q ≤≤,从而1() 20n n n n q q q ---+>.因此,当21n m ≤≤+时,数列12{}1n q n ---单调递增,故数列12{}1n q n ---的最大值为2m q m-. ②设()()21x f x x =-,当0x >时,ln 21(0(n )l 22)x f x x '=--<, 所以()f x 单调递减,从而()(0)1f x f <=.当2n m ≤≤时,111112111()()()nn n q q n n f q n n n n --=≤-=<-, 因此,当21n m ≤≤+时,数列1{}1n q n --单调递减,故数列1{}1n q n --的最小值为mq m. 因此,d 的取值范围为11(2)[,]m mb q b q m m-. 10.【解析】(Ⅰ)用数学归纳法证明:0n x >当1n =时,110x => 假设n k =时,0k x >,那么1n k =+时,若10k x +≤,则110ln(1)0k k k x x x ++<=++≤,矛盾,故10k x +>. 因此0n x >()n ∈*N所以111ln(1)n n n n x x x x +++=++> 因此10n n x x +<<()n ∈*N(Ⅱ)由111ln(1)n n n n x x x x +++=++>得2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥函数()f x 在[0,)+∞上单调递增,所以()(0)f x f ≥=0, 因此2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥ 故112(N )2n n n n x x x x n *++-∈≤ (Ⅲ)因为11111ln(1)2n n n n n n x x x x x x +++++=+++=≤所以112n n x -≥得 由1122n n n n x x x x ++-≥得 111112()022n n x x +-->≥ 所以12111111112()2()2222n n n n x x x -----⋅⋅⋅-=≥≥≥ 故212n n x -≤综上,1211(N )22n n n x n *--∈≤≤ .11.【解析】证明:(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d =+-,从而,当n 4≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以n n n n n n n a a a a a a a ---+++++=321123+++6, 因此等差数列{}n a 是“(3)P 数列”.(2)数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,因此, 当3n ≥时,n n n n n a a a a a --+++++=21124,①当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.② 由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥, 所以345,,,a a a 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以122a a d'=-, 所以数列{}n a 是等差数列.12.【解析】(Ⅰ)由已知,1211,1,n n n n S qS S qS +++=+=+ 两式相减得到21,1n n a qa n ++=?.又由211S qS =+得到21a qa =,故1n n a qa +=对所有1n ³都成立. 所以,数列{}n a 是首项为1,公比为q 的等比数列. 从而1=n n a q -.由2323+a a a a ,,成等差数列,可得32232=a a a a ++,所以32=2,a a ,故=2q . 所以1*2()n n a n -=?N .(Ⅱ)由(Ⅰ)可知,1n n a q -=.所以双曲线2221ny x a -=的离心率n e =由22e =解得q =所以,22222(1)12222(1)2(11)(1+)[1]1[1]11(31).2n n n n ne e e q q q n q q n q n --++鬃?=+++鬃?+-=+++鬃?=+-=+-13.【解析】(1)由题意得:1221421a a a a +=⎧⎨=+⎩,则1213a a =⎧⎨=⎩,又当2n ≥时,由11(21)(21)2n n n n n a a S S a +--=+-+=,得13n n a a +=,所以,数列{}n a 的通项公式为1*3,n n a n N -=∈. (2)设1|32|n n b n -=--,*n N ∈,122,1b b ==. 当3n ≥时,由于132n n ->+,故132,3n n b n n -=--≥. 设数列{}n b 的前n 项和为n T ,则122,3T T ==.当3n ≥时,229(13)(7)(2)351131322n n n n n n n T --+---+=+-=-, 所以,2*2,13511,2,2n n n T n n n n N =⎧⎪=⎨--+≥∈⎪⎩. 14.【解析】(Ⅰ)设{}n a 的公差为d ,则由已知条件得1132922,3,22a d a d ´+=+=化简得11322,,2a d a d +=+= 解得11a =,12d =.故通项公式1=1+2n n a -,即+1=2n n a .(Ⅱ)由(Ⅰ)得141515+1=1==82b b a =,. 设{}n b 的公比为q ,则3418b q b ==,从而2q =. 故{}n b 的前n 项和 1(1)1(12)21112n n n n b q T q -?===---.15.【解析】(Ⅰ)设数列{}n a 的公比为q ,数列{}n b 的公差为d ,由题意0q >,由已知,有24232,310,q d q d ⎧-=⎨-=⎩ 消去d ,整数得42280q q --=,又因为q >0,解得2,2q d ==,所以{}n a 的通项公式为12,n n a n -*=∈N ,数列{}n b 的通项公式为21,n b n n *=-∈N . (Ⅱ)解:由(Ⅰ)有()1212n n c n -=- ,设{}n c 的前n 项和为n S ,则()121123252212n n S n -=⨯+⨯+⨯++-⨯,()1232123252212n n S n =⨯+⨯+⨯++-⨯,两式相减得()()2312222122323n n n n S n n -=++++--⨯=--⨯-,所以()2323nn S n =-+.16.【解析】(Ⅰ) 由已知12n n S a a =-,有1n n n a S S -=-=122n n a a --(n ≥2),即12n n a a -=(n ≥2),从而212a a =,32124a a a ==.又因为1a ,2a +1,3a 成等差数列,即1a +3a =2(2a +1), 所以1a +41a =2(21a +1),解得1a =2.所以,数列{}n a 是首项为2,公比为2的等比数列,故2n n a =. (Ⅱ)由(Ⅰ)得112n n a =, 所以n T =211[1()]111122 (11222212)n n n-+++==--. 17.【解析】(Ⅰ)由题意有,111045100,2,a d a d +=⎧⎨=⎩ 即112920,2,a d a d +=⎧⎨=⎩,解得11,2,a d =⎧⎨=⎩ 或19,2.9a d =⎧⎪⎨=⎪⎩ 故121,2.n n n a n b -=-⎧⎪⎨=⎪⎩或11(279),929().9n n n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩(Ⅱ)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=,于是 2341357921122222n n n T L --=++++++, ① 2345113579212222222n n n T L -=++++++. ② ①-②可得221111212323222222n n n nn n T L --+=++++-=-, 故n T 12362n n -+=-.18.【解析】(Ⅰ),64,2,,2141211d a S d a S a S d +=+===4122421,,S S S S S S =∴成等比解得12,11-=∴=n a a n (Ⅱ))121121()1(4)1(111++--=-=-+-n n a a n b n n n n n ,当n 为偶数时11111(1)()()33557n T =+-+++-1111()()23212121n n n n ++-+---+ 1221211+=+-=∴n nn T n11111(1)()()33557n n T =+-+++--当为奇数时, 1111()()23212121n n n n +++---+12221211++=++=∴n n n T n⎪⎪⎩⎪⎪⎨⎧+++=∴为奇数为偶数n n n n n nT n ,1222,122.19.【解析】(Ⅰ)由题意,()()*∈=N n a a a nb n 221 ,326b b-=,知3238b b a -==,又由12a =,得公比2q =(2q =-舍去), 所以数列{}n a 的通项公式为2()n n a n N *=∈, 所以()()1121232n n n n n a a a a ++==,故数列{}n b 的通项公式为,()1()n b n n n N *=+∈; (Ⅱ)(i )由(Ⅰ)知,11111()21n n n n c n N a b n n *⎛⎫=-=--∈ ⎪+⎝⎭, 所以11()12n n S n N n *=-∈+; (ii )因为12340,0,0,0c c c c =>>>;当5n ≥时,()()11112n nn n c n n +⎡⎤=-⎢⎥+⎣⎦, 而()()()()()11112120222n n n n n n n n n ++++++--=>, 得()()51551122n n n ++≤<, 所以当5n ≥时,0n c <,综上对任意n N *∈恒有4n S S ≥,故4k =.20.【解析】(I )因为{}n a 是递增数列,所以11nn n n n a a a a p ++-=-=。
专题六第十八讲 数列的综合应用及答案
(Ⅱ)设双曲线 x2
y2 an2
1的离心率为 en ,且 e2
5 3
,证明: e1 e2
en
4n 3n 3n1
.
16.(2015 湖北)设等差数列{an} 的公差为 d,前 n 项和为 Sn ,等比数列{bn} 的公比为 q.已知 b1 a1 , b2 2 ,
q d , S10 100 .
项是 20 , 21 , 22 ,依此类推.求满足如下条件的最小整数 N : N 100 且该数列的前 N 项和为 2 的整数
幂.那么该款软件的激活码是
A.440
B.330
C.220
D.110
2.(2016 年全国Ⅲ)定义“规范 01 数列”{an} 如下:{an} 共有 2m 项,其中 m 项为 0,m 项为 1,且对任意 k 2m , a1, a2 ,, ak 中 0 的个数不少于 1 的个数.若 m =4,则不同的“规范 01 数列”共有
并求 d 的取值范围(用 b1, m, q 表示). 13.(2017 天津)已知{an} 为等差数列,前 n 项和为 Sn (n N ) ,{bn} 是首项为 2 的等比数列,且公比大于 0,
b2 b3 12 , b3 a4 2a1 , S11 11b4 .
(Ⅰ)求{an} 和{bn} 的通项公式; (Ⅱ)求数列{a2nb2n1} 的前 n 项和 (n N ) . 14.(2017 浙江)已知数列{xn} 满足: x1 1 , xn xn1 ln(1 xn1) (n N*) .
(Ⅰ)求数列{an} ,{bn} 的通项公式;
(Ⅱ)当 d
1 时,记 cn
an bn
,求数列 {cn} 的前
n
项和 Tn
.
专题六 数列 第十八讲 数列的综合应用
2.(2016年全国Ⅲ)定义“规范01数列” 如下: 共有 项,其中 项为0, 项为1,且对任意 , 中0的个数不少于1的个数.若 =4,则不同的“规范01数列”共有
(A)18个(B)16个(C)14个(D)12个
3.(2015湖北)设 , .若p: 成等比数列;q: ,则
其中表 ( =1,2,3 )有 行,第1行的 个数是1,3,5, 2 -1,从第2行起,每行中的每个数都等于它肩上的两数之和.
(Ⅰ)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表 (n≥3)(不要求证明);
(Ⅱ)每个数列中最后一行都只有一个数,它们构成数列1,4,12 ,记此数列为
(Ⅰ)求数列 的通项公式;
(Ⅱ)对任意的 ,将数列 中落入区间 内的项的个数为 ,求数列 的前 项和 .
32.(2012江苏)已知各项均为正数的两个数列 和 满足: .
(Ⅰ)设 ,求证:数列 是等差数列;
(Ⅱ)设 ,且 是等比数列,求 和 的值.
33.(2011天津)已知数列 满足 ,
.
(Ⅰ)求 的值;
(Ⅰ)证明: ;
(Ⅱ)求数列 的通项公式;
(Ⅲ)证明:对一切正整数 ,有 .
26.(2013湖北)已知 是等比数列 的前 项和, , , 成等差数列,
且 .
(Ⅰ)求数列 的通项公式;
(Ⅱ)是否存在正整数 ,使得 ?若存在,求出符合条件的所有 的集合;
若不存在,说明理由.
27.(2013江苏)设 是首项为 ,公差为 的等差数列 , 是其前 项和.
(Ⅲ)设无穷数列 的各项均为正整数,且任意两项均不相等,若 的长度为s的递增子列末项的最小值为2s-1,且长度为s末项为2s-1的递增子列恰有 个(s=1,2,…),求数列 的通项公式.