第六章连续操作反应器
反应器(化工设备操作维护课件)
![反应器(化工设备操作维护课件)](https://img.taocdn.com/s3/m/a5ca610d3868011ca300a6c30c2259010302f36b.png)
上一内容 下一内容 回主目录
2023/10/13
表 釜式反应器常见故障与处理方法
故障 搅拌轴转数降 低或停止转动
搪瓷搅拌器脱 落 出料不畅
产生原因 皮带打滑 皮带损坏 电机故障 被介质腐蚀
出料管堵塞 压料管损坏
处理方法
调整皮带 更换皮带 修理或更换电机 更换搪瓷轴或修 补 清理出料管 修理或更换配管
2、特点:反应过程伴有传热、传质和反应物的流动过程。 物理与化学过程相互渗透影响,反应过程复杂化。
上一内容 下一内容 回主目录
2023/10/13
§1-2 反应器的类型
• 反应器的类型: 釜式反应器 管式反应器
操作方式 材料 操作压力 绝热管式
换热管式
上一内容 下一内容 回主目录
2023/10/13
2023/10/13
b. 机械密封
机械密封 结构较复 杂,但密 封效果甚 佳。
上一内容 下一内容 回主目录
2023/10/13
4、换热装置
换热装置是用来加热或冷却反应物料,使之符合工艺 要求的温度条件的设备。
其结构型式主要有夹套式、蛇管式、列管式、外部循 环式等,也可用回流冷凝式、直接火焰或电感加热。
上一内容 下一内容 回主目录
2023/10/13
第六章 反应器
第二节 釜式反应器
上一内容 下一内容 回主目录
2023/10/13
§2-1 反应釜基本结构
(一)基本结构:
壳体 密封装置 换热装置 传动装置
上一内容 下一内容 回主目录
2023/10/13
1、搅拌釜式反应器的壳体结构
壳体结构:一般为碳钢材 料,筒体皆为圆筒型。釜 式反应器壳体部分的结构 包括筒体、底、盖(或称 封头)、手孔或人孔、视 镜、安全装置及各种工艺 接管口等。
间歇釜式反应器连续釜式反应器管式反应器
![间歇釜式反应器连续釜式反应器管式反应器](https://img.taocdn.com/s3/m/88915dbefad6195f302ba60c.png)
可常压操作也可加压操作,常用于对温度不 敏感的快速反应。常见型式有水平、立式、盘 管、U型管等
6
一、水平管式反应器
图6-1 水平管式反应器
7
二 、 立 管 式 反 应 器
图6-2几种立式管式反应器
8
三、盘管式反应器
将管式反应器做成盘管的形式,设备紧凑,节省
(1)先规定流体的Re(>104),据此确定管径d,再计
算管长L
由 Re
=
du
其中
u
=
4FV 0
d 2
所以 d
=
4FV 0 Re
;L
=
4VR
d 2
(2)先规定流体流速u,据此确定管径d,再计算 管长L,再检验Re是否>104
L=u
;d
=
( 4VR
1
)2
L
(3)根据标准管材规格确定管径d,再计算管长L,
解:反应物的体积流量FV0=FVA+FVB=0.56m3
密度ρ=(FVAρA+FVB ρB)/(FVA+FVB)=948.0kg/m3
反应器任意位置,CA=CA0(1-xA)
CB=CB0-2CA0xA,所以
rA=kCACB=CA0(1-xA)(CB0-2CA0xA)
∫ VR
FV C0 A0
xA 0
nA0(1 (xA dxA)) FV 0CA0(1- (xA dxA))
反应量:
rAdVR
于是
FV 0CA0 (1- xA ) FV 0CA0 (1- (xA dxA )) rAdVR
nA0 (1 xA) nA0 (1 (xA dxA) rAdVR
气液反应和反应器
![气液反应和反应器](https://img.taocdn.com/s3/m/0cc2c91fb7360b4c2e3f6432.png)
M ;η = th M a
L
1 , 很小,反应既在液膜,又扩散 很小,反应既在液膜, M th M
至液相主体中进行. 至液相主体中进行.
6-7
一级不可逆反应
aM 1 ;η = , β= a M M +1 a M M +1
L L L
③缓慢反应( M << 1 ) 缓慢反应(
Vk ∵a M = k
1
(6(6-46)
6-8
不可逆瞬间反应
2,临界浓度 (C BL ) C :
(C ) :反应面为界面时的 C ,即吸收速率最大时的 C
BL C
BL
BL
当CBL 当 CBL
反应面趋向于界面, ↑ 时,δ ↓ δ ↑ ),反应面趋向于界面,β ↑ ;N ↑ (
1 2
A
反应面到达界面, 反应面到达界面, ↑ 至δ = (δ = δ )时, 0
界面上吸收速率(扩散速率): 界面上吸收速率(扩散速率):
N
A
= D
AL
dC dx
A x=0
6-7
1,
一级不可逆反应
kC β =N =
L Ai A
kC
L
Ai
M [ M (a 1) + th M ] 6-36) ( 36) (a 1) Mth M +1
L L
β =
A
M [ M ( a 1) + th M ] ( a 1) M th M + 1
i i
0
i
(6-6)
p H = M E
i
(6 7) ;
i
6-1 气液相平衡
的关系: 2,E , H 与 T, P的关系:
第六章 生物反应器结构与设计计算
![第六章 生物反应器结构与设计计算](https://img.taocdn.com/s3/m/34b002a1f524ccbff12184aa.png)
第六章生物反应器结构与设计计算由生物细胞或生物体组成参与的生产过程可统称为生物反应过程,利用生物催化剂进行反应的生物反应器在生产过程中,具有重要的作用,是实现生物技术产品产业化的关键设备,是连接原料和产物的桥梁。
在生物反应过程中,若采用活细胞(包括微生物、动植物细胞)为生物催化剂,称为发酵过程或细胞培养过程。
采用游离或固定化酶,则称为酶反应过程。
按照生物反应过程所使用的生物催化剂不同,生物反应器可分为酶反应器和细胞生物反应器。
根据反应器所需的能量的输入方式,微生物细胞反应器可以分为:通过机械搅拌输入能量的机械式、利用气体喷射动能的气生式和利用泵对液体的喷射作用而使液体循环的生物反应器等。
自上一世纪四十年代,青霉素大规模生产以来,出现了结构多异,性能和用途不同的多类生物反应器。
为配合生物加工过程,工艺条件需要对生物反应器的结构进行设计和计算,以获得较高的产率和规模化生产。
一个良好的生物反应器应满足下列要求:1)结构严密,经得起蒸汽的反复灭菌,内壁光滑,耐腐蚀性能好,以利于灭菌彻底和减小金属离子对生物反应的影响;2)有良好的气-液-固接触和混合性能和高效的热量、质量、动量传递性能;3)在保持生物反应要求的前提下,降低能耗;4)有良好的热量交换性能,以维持生物反应最适温度;5)有可行的管路比例和仪表控制,适用于灭菌操作和自动化控制。
第一节机械搅拌式生物反应器机械搅拌式生物反应器是发酵工厂最常用的类型之一。
它是利用机械搅拌器的作用,使空气和醪液充分混合,促使氧在醪液中溶解,以保证供给微生物生长繁殖、发酵和代谢产物所需要的氧气。
一、机械搅拌式生物反应器的结构机械搅拌通风发酵罐主要有罐体、搅拌器、挡板、轴封、空气分布器、传动装置、冷却管、消泡器、人孔、视镜等。
下面做简要的介绍。
1.罐体罐体由圆筒体和椭圆形或碟形封头焊接而成,材料以不锈钢为好。
为满足工艺要求,罐体必须能承受一定压力和温度,通常要求耐受130℃和0.25MPa(绝压)。
化学反应工程备课-第六章
![化学反应工程备课-第六章](https://img.taocdn.com/s3/m/93136cebe009581b6bd9eb50.png)
如H2S与ZnO的反应。
单孔模型
①反应物由多孔固体构成,圆柱形孔径相同、均匀分布且相互 平行,孔壁在初始状态时由固相反应物所构成 ②扩散沿孔的轴向进行,产物层在孔壁上形成,反应气体在产 物与未反应固相之间的界面上与无孔的固相反应物发生反应; ③在孔内反应气体的浓度只沿轴向变化,不沿径向变化; ④反应程度由入口沿轴向逐渐降低; ⑤由于固相产物形成在孔壁上,对于固相产物体积增大的反应 会产生“闭口”现象。
松程度而定,但由于颗粒细小,即使存在产物层内扩散过程阻 力,其影响也较小,液体与固体颗粒间接触表面积大,反应温 度较高,以上因素都促使这些反应器内的宏观反应速率较大, 但由于反应本身的性质,有些反应釜的间歇操作反应时间长达 4—6h,如硫酸与磷矿石反应制磷酸。
气-固相高温反应
煤的气化和硫铁矿焙烧: 煤的气化是用蒸汽、氧(纯氧或空气中的氧)对煤进行高温
(1)反应的第一阶段——反应在整个颗粒内进行,与气-固
相催化反应相同;
(2)反应的第二阶段——颗粒内靠外表面的部分先形成产物 层,即无反应的区域。
有限厚度反应区模型
以缩芯模型为基础并且吸收 了整体反应模型关于反应区的 特征,主要特征是气相反应物 能够超过缩芯模型中的“反应 界面”向固相反应物扩散一小 段距离,即反应不是发生在产 物层与固相反应物的界面上, 而是在固相反应物内具有一定
是要导致失效的。
(2) “热态”试验——半工业规模的扩大试验,从中获取更 接近实际水平的设计参数;并对反应动力学和“冷模”试验结 果加以检验。
流—固相非催化反应的模型
根据固相的不同结构,数学模型根据物理模型的特征而异。
——收缩未反应芯模型 ——整体反应模型 ——有限厚度反应区模型 ——微粒模型 ——单孔模型 ——破裂芯模型
第六章生物反应器中的传质过程
![第六章生物反应器中的传质过程](https://img.taocdn.com/s3/m/1f75bb22daef5ef7bb0d3c3d.png)
(2)在气液界面上,两相的浓度总是相互平衡(空气中 氧的浓度与溶解在液体中的氧的浓度处于平衡状态), 即界面上不存在氧传递阻力。
(3)在两膜以外的气液两相的主流中,由于流体充分 流动,氧的浓度基本上是均匀的,也就是无任何传 质阻力,因此,氧由气相主体到液相主体所遇到阻 力仅存在于两层滞流膜中。
气液界面附近氧分压与浓度的变化如图6—3所示。
发酵过程中,有的微生物以菌丝团(或絮状物)的 形式生长繁殖,这时,基质必须通过扩散进入 菌丝团内,基质的扩散与利用是同步进行的。 当菌丝团内的基质浓度低于主体发酵液中的, 且反应速度与基质浓度呈正比时,产物的生成 速度和菌体的生成速度都将低于悬浮单一细胞 的相应速度。为克服发酵过程中的扩散限制, 可通过减小菌丝团尺寸的方法来解决。
利用氧电极进行kLa的测量有多种方法,动态法是常用 的方法之一。通风培养液中氧的物料衡算为:
有多种经验方程来描述非牛顿型流体的流变特性, 其中最简单的形式是指数律方程。
6.1.2 发酵液的流变学特性
发酵液中的主要成分是菌体,因此,发酵 液流变学特性受菌体的大小和形状的 影 响。一些稀薄的细菌发酵液,以水解糖 或糖蜜为原料培养酵母的醪液,为噬菌 体侵害的发酵液等为牛顿型流体。丝状 菌(霉菌或放线菌)悬浮液不同于细菌和酵 母菌悬浮液,菌丝呈丝状或团状。
另外,发酵液黏度的改变会影响液体的湍 动性、界面张力或液膜阻力等。图6—1 是黏度对不同过程影响的示意图。由图 6—1可知,了解发酵液流变学特性的变 化(特别是黏度变化),对掌握生物反应过 程传质与混合特点,进而改进发酵过程 控制工艺条件及生物反应器设计都有重 要意义。
6.1.1 流体的流变学特性
微小颗粒(如菌体)悬浮液的黏度是多种因素的函 数,除依赖菌体颗粒的浓度外,还受颗粒的形 状、大小、颗粒的变形度、表面特性等因素影 响。在霉菌或放线菌等的发酵中,发酵液的流 动特性常出现大幅度变化。例如,青霉素发酵 液的屈服应力与刚性系数都随发酵时间的增加 而增大。发酵后期与前期相比,刚性系数可增 加近百倍,表观黏度明显增加。
反应第六章
![反应第六章](https://img.taocdn.com/s3/m/98d4ce7227284b73f3425008.png)
第六章如何理解活化能的工程意义是反应速率对反应温度敏感程度的一种度量? 答:反应速率表达式为12()()i i r f T f c = ∵10()exp()cg E f T k k R T==- ∴1ln /c E k T ∝∂∂ 即1ln /c i E r T∝∂∂反应活化能直接决定了反应速率常数对温度的相对变化率大小,因此,活化能的工程意义是反应速率对反应温度敏感程度的一种度量。
简述间歇反应器?简述脉冲示踪法测停留时间分布密度的实验方法及其对应曲线?答:脉冲示踪法是在定常态操作的连续流动系统的入口处在t=0的瞬间输入一定量M 克的示踪剂A ,并同时在出口处记录出口物料中示踪剂的浓度随时间的变化。
(4分)对应的曲线为E(t)曲线,0()()()c t E t c t dt∞=⎰。
用作图法求解理想管式反应器体积? 答:反应空时可由下图求得则由0r V V τ=可求得反应器体积。
24225C H H O C H OH 是可逆放热反应,如何优化管式反应器温度?答:该反应是一个可逆放热反应,提高温度可以提高正方向反应速率,但降低了平衡常数,从而减小了可能达到的最大收率,降低了原料的利用率。
因此,在反应器进口处,由于反应气体组成远离平衡,为提高反应速率,采用较高的温度是有利的;在反应器出口处应降低温度,以提高所能达到的平衡转化率。
整个反应器温度采用前高后低序列。
试描述催化剂在催化反应中的作用? 什么是拟一级反应,有什么作用?答:拟一级反应是指在双组分二级反应中,其中一个组分浓度相对与另一个组分浓度很高,则高浓度组分在整个反应过程中浓度可以近似看作不变,则反应可以看作低浓度组分的一级反应,称为拟一级反应。
拟一级反应在降低二级反应后期反应时间,降低相同转化率所需时间。
简述扩散模型基本假设试用作图法说明如何优化自催化反应反应器,使其反应器体积最小?答:如图所示,自催化反应器可采用全混流反应器串联管式反应器,使整个反应器体积最小。
连续操作釜式反应器(CSTR)的计算
![连续操作釜式反应器(CSTR)的计算](https://img.taocdn.com/s3/m/31f5e890caaedd3382c4d363.png)
VR CA0 CA CA0 xAf
V0 (rA ) f (rA ) f
第六章 离婚制度
二、离婚制度的历史沿革
(一)外国离婚制度的历史沿革
1.禁止离婚主义 2.许可离婚主义
(1)专权离婚主义 (2)限制离婚主义 (3)自由离婚主义
பைடு நூலகம்
第一,有责离婚主义 第二,无责离婚主义
二、离婚制度的历史沿革
(二)我国离婚制度的历史沿革
1.我国古代的离婚制度
(1)七出 (2)和离 (3)义绝 (4)诉离
2.我国近代的离婚制度
(1)两愿离婚 (2)判决离婚
3.我国现代的离婚制度
第二节
协议离婚
一、协议离婚的概述
(一)协议离婚又称为登记离婚或自愿离婚,是指夫妻双 方在协商一致的基础上,按照行政程序解除婚姻关系的 离婚方式。
反应器内,物 料的浓度和温度处 处相等,且等于反 应器流出物料的浓 度和温度。
CA CA,in
time
CA, out
0
CA CA,O
t tresidence time
position
CA, out
0
t
x
一、单个连续操作釜式反应器的计算(1- CSTR)
基础设计式
取整个反应器为衡算对象
0
流入量 = 流出量 + 反应量 + 累积量
CA0 xA kCA0 (1 xA)
xA k(1 xA)
CA0 xA kCA02 (1 xA)2
xA kCA0 (1
xA ) 2
二、多个串联连续操作釜式反应器 (N-CSTR)
为什么要采用N-CSTR代替1-CSTR? 由于1-CSTR存在严重的返混,降低了反应
第六章 连续式操作反应器
![第六章 连续式操作反应器](https://img.taocdn.com/s3/m/5e91b4f0f90f76c661371a42.png)
一、单级CSTR的生化反应特征 单级CSTR的生化反应特征 CSTR
1、酶促反应的单级CSTR的反应方程 对均相的酶促反应,且反应符合M-M的动力学方程,则:
τm =
CS 0 − CS CS 0 − CS = rmax ⋅ CS rS K m + CS
CS 0 − CS rmax ⋅τ m = (CS 0 − CS ) + K m CS
dC P dC P VR = V0 ⋅ C P 0 − V0 ⋅ C P + VR dt dt 生成
dC P =0 dt
上一内容 下一内容 回主目录
返回
2011-7-10
第6章 >> 6.2 连续完全返混型反应器(CSTR) 连续完全返混型反应器(CSTR)
XS CS 0 2 rmax ⋅τ m = CS 0 ⋅ X S + K m + XS − XS 1− X S KI
P163式6-9
2
(
)
上一内容
下一内容
回主目录
返回
2011-7-10
第6章 >> >> 6.2 连续完全返混型反应器(CSTR) 连续完全返混型反应器(CSTR)
一、单级CSTR的生化反应特征 单级CSTR的生化反应特征 CSTR
V R = V L + VS
τ m = τ L +τ S
回主目录
τ L = ε Lτ m
返回
2011-7-10
上一内容
下一内容
第6章 >> >> 6.2 连续完全返混型反应器(CSTR) 连续完全返混型反应器(CSTR)
第6章 生物反应器
![第6章 生物反应器](https://img.taocdn.com/s3/m/70e1164ec850ad02de804141.png)
第6章生物反应器生物反应器就是指提供适宜细胞生长和产物形成的各种条件,促进细胞的新陈代谢,在低消耗下获得高产量的一种反应设备。
一个优良的发酵罐应具备的条件:1)结构简单;2)不易染菌;3)良好的液体混合性能;4)较高的传质传热速率;5)单位时间单位体积的生产能力高;6)同时还应具有配套而又可靠的检测和控制仪表。
工业生产用的发酵罐趋向大型化和自动化。
6.1 通风发酵罐一、通用式发酵罐又称机械搅拌通气式发酵罐,使之既有机械搅拌装置,又有压缩空气分布装置的发酵罐。
1、工作原理是利用机械搅拌器的作用,使空气和发酵液充分混合,提高发酵液的溶解氧。
一个好的通用式发酵罐的基本条件:1)具有适宜的径高比;通常H/D = 2~4,罐身长有利于氧的溶解2)能承受一定压力;水压试验压力为工作压力的1.5倍,即0.38MPa3)搅拌通风装置要能使气泡分散细碎,气液充分混合,保证发酵液必须的溶解氧,提高氧的利用率4)具有足够的冷却面积;5)罐内应抛光,尽量减少死角,使灭菌彻底,避免染菌;6)搅拌器的轴封应严密,尽量减少泄漏。
2、结构特点发酵罐主要部件包括罐身、搅拌器、轴封、消泡器、联轴器、空气分布器、挡板、冷却装置、人孔及视镜等。
1) 罐体罐体由圆柱体及椭圆形或碟形封头焊接而成,材料为碳钢或不锈钢2) 搅拌器和搅拌轴其作用一是打碎空气气泡,增加气-液接触界面,以提高气-液间的传质速率;二是为了使发酵液充分混和,液体中的固形物料保持悬浮状态。
3) 挡板其作用是为防止发酵液随搅拌器运转而产生旋涡,以提高混合效果。
4) 空气分布器其作用是将无菌空气引入到发酵液中同时初步分散气泡。
5) 冷却装置在发酵过程中,细胞呼吸和机械搅拌都将产生一定热量,为了保证发酵在一定温度下进行,必须将这些热量及时移去,因此需要设置冷却装置。
6) 消泡器分耙式消泡器和半封闭涡轮消泡器二、机械搅拌自吸式发酵罐利用机械搅拌的高速旋转而吸入空气的一种发酵罐。
高等反应工程第六章PPT
![高等反应工程第六章PPT](https://img.taocdn.com/s3/m/73ca317ca22d7375a417866fb84ae45c3a35c267.png)
原料在反应器内循环流动。
反应器性能评价
01
02
03
04
转化率
转化率是衡量原料在反应过程 中被转化的程度,通常以百分
比表示。
选择性
选择性是衡量产物中所需产物 的比例,通常以百分比表示。
收率
收率是实际获得的产物量与理 论可获得的最大产物量之间的 比值,通常以百分比表示。
06 本章小结
主要内容回顾
重点讲述了反应工程中的化学反应动力学和传 递过程,包括反应速率方程、反应机理、反应
动力学参数的确定方法等。
介绍了反应工程中的热力学基础,包括热力学第一定 律、热力学第二定律和平衡常数等。
介绍了反应工程的定义、发展历程和反应工程 的核心问题。
讨论了反应器类型和设计,包括釜式反应器、管 式反应器、塔式反应器等,以及反应器的优化和 放大。
自适应控制
鲁棒控制
随着反应过程的进行,不断更新控制策略 以适应变化的情况。
设计控制器,使其在存在不确定性和干扰 的情况下仍能保持良好的控制性能。
优化与控制的案例分析
案例一
某化学反应过程的优化与控制:介绍如何应用上述策略和方法对 某具体化学反应过程进行优化和控制。
案例二
某生物反应过程的优化与控制:介绍如何应用上述策略和方法对 某具体生物反应过程进行优化和控制。
反应器集成技术
将多个反应步骤集成在一个反应器中,实现多步骤反应的连续化、 高效化,降低能耗和物耗。
反应过程强化技术
超声波强化技术
利用超声波的振动和空化作用,强化反应物料的混合、传热和传 质,提高反应速度和产物收率。
微波强化技术
利用微波的电磁场作用,促进分子间的振动和摩擦,加速化学反应 的进行,提高反应速度和选择性。
第六章 流化床反应器
![第六章 流化床反应器](https://img.taocdn.com/s3/m/54dc01f94693daef5ef73d84.png)
当: Rep 2 10 时 CD 0.43 500
5
这样,可得到ut计算式:
当Rep 0.4时 ut
2 gd p ( s f )
18
0.5 ep
2d p ( s f ) gR 当0.4 Rep 500时 ut 15 f
流化床反应器的缺点
由于流态化技术的固有特性以及流化过程影响因素的 多样性,对于反应器来说,流化床又存在粉明显的局限性: ①由于固体颗粒和气泡在连续流动过程中的剧烈循环和搅动, 无论气相或固相都存在着相当广的停留时间分布,物料的 流动更接近于理想混合流,返混较严重。导致不适当的产 品分布,降低了目的产物的收率;为了限制返混,常采用 多层流化床或在床内设置内部构件。反应器体积比固定床 反应器大,并且结构复杂。对设备精度要求较高; ②反应物以气泡形式通过床层,减少了气-固相之间的接触机 会,降低了反应转化率; ③由于固体催化剂在流动过程中的剧烈撞击和摩擦,使催化 剂加速粉化,加上床层顶部气泡的爆裂和高速运动、大量 细粒催化剂的带出,造成明显的催化剂流失; ④床层内的复杂流体力学、传递现象,使过程处于非定常条 件下,难以揭示其统一的规律,也难以脱离经验放大、经 验操作。
式中:Lmf—临界流化床高;εmf—临界流化床的空隙率;
ρp和ρg—分别为颗粒及流体的密度
二、特征流速
1、临界流化速度 也称起始流化速度、最低流化速度, 是指刚刚能够使颗粒流化起来的气体空床流速(也叫表观速 度)。也即颗粒层由固定床转为流化床时流体的气体空床流 速,用umf表示。实际操作速度常取临界流化速度的倍数(又 称流化数)来表示。临界流化速度对流化床的研究、计算与 操作都是一个重要参数,确定其大小是很有必要的。确定临 界流化速度最好是用实验测定,也可用经验公式计算。
第六章酶反应器案例
![第六章酶反应器案例](https://img.taocdn.com/s3/m/b8f889898ad63186bceb19e8b8f67c1cfad6eedb.png)
固定化酶膜式应器
(4)中空纤维膜反应器
4 ❖特点:可承受较高的操作压力,表面积
膜
大,但易发生浓度极化或孔堵塞。
反
应
器
❖中空纤维酶膜反应器连续制备异麦芽低聚糖
❖ 以淀粉为原料(木薯淀粉或玉米淀粉)。采用中空纤维酶 膜反应器,
❖ 先用α-淀粉酶和异淀粉酶糖化制备麦芽低聚糖; ❖ 后用α-葡萄糖苷酸和真菌淀粉酶转苷制得异麦芽低聚糖。 ❖ 本发明大大缩短糖化、转苷的反应周期,酶用量省,产品质量
器 ❖ 操作:游离酶、固定化酶放入反应器内,底物与气体从底部
的 类
通入。气体经过分散板得到充分分散,气泡提供混合作用。
型 ❖ 优点:适用于有气体吸收的生物反应。
及
特
点
❖啤酒连续发酵塔型固定化活菌体反应器
5.喷射式反应器
❖特点:利用高压蒸汽的喷射作用,实现酶与底物的混
合,进行高温短时催化反应的反应器。 ❖ 催化反应速度快,效率高,可在短时间完成催化反应。
特
下一批反应。
点
连续流式搅拌罐式反应器:
向反应器中投入固定化酶和底物溶液,不断 搅拌,反应平衡后,以恒定流速连续流入底物, 以相同流速输出产物。
1、搅拌罐式反应器
6.1 ❖优点:结构简单,易操作;酶与底物混合充分均
酶 匀;传质速度快,反应能迅速达到稳态;能处理
反 应
胶体状底物、不溶性底物。
器 的
❖ 缺点:反应效率低,搅拌动力消耗;由于搅拌剪
固定化酶膜式反应器
(4)中空纤维酶膜反应器
4 ❖结构:由外壳和数以千计的醋酸纤
膜
维制成的中空纤维组成。中空纤维:
反
内层紧密、光滑,可截留大分子物
应
第六章固定化酶反应器08
![第六章固定化酶反应器08](https://img.taocdn.com/s3/m/d42d9a60ddccda38376baf0a.png)
4、膜反应器(Membrane reactor or 、膜反应器 Hollow fiber reactor)
酶连接于膜表面和以特定形式存在于膜内分隔空 间,可用较大孔径的膜,因为溶质与固定化酶的 大小差别,远大于溶质与可溶酶的差异,这样, 溶质可容易通过膜,不易被堵塞。 有许多种类的膜反应器,一个普通的形式为,使 用半透膜的中空纤维,浸没于反应混合物中,该 反应器可分批也可连续。
25
26
酶反应器的发展
1、含有辅助因子再生的酶反应器 问题由来: 许多酶反应都需要辅因子的协助,如辅酶、辅基、能 量供给体等。这些辅因子价格昂贵,需再生循环使用 才能降低成本,因而发展了辅因子再生酶反应器。 例:利用固定化脱氢酶可将固定化NADH再生为NAD。依 靠半透膜能将固定化NAD保留在反应器内,实现了NAD 的再生与循环使用。 辅因子再生方法: (1)两种酶反应偶联、两种底物偶联 (2)电化学方法(生物传感器) (3)化学方法(氧化剂)
5
2、活塞流反应器或填充床反应器 、 (Plug flow reactor,PFR; or Packed bed reactor, PBR) 把颗粒状或片状等固定化酶填充于固定床 (填充床)内,底物按一定方向以恒定的速 度通过反应床。它是一种单位体积催化剂负 荷量最大,效率高的反应器。反应器水平或 垂直放置,底物用泵从底部或顶部打入(上 流比下流好,因不易阻塞,液流更均匀)。
12
连续搅拌罐反应器
产物 过滤器
固定化酶
底物
13
CSTR与PBR的比较: 与 的比较: 的比较
(1)在CSTR中,所有酶暴露在相对低的底物浓度和 相对高的产物浓度中,效率因子η下降,反应器中酶 未被有效利用。 在PBR中,反应器的初始部分在高底物浓度下操作, 仅在最后部分,底物浓度较低,产物浓度较高,因此 仅在最后部分效率因子η下降,这意味着在CSTR中比 PBR可能需更多的酶。 在实际中,在CSTR中很容易得到紊流,可消弱扩 散限制作用,而在PBR中,使用层流,更容易遇到扩 散限制情况,因此CSTR可得到与PBR一样好的性能, 而监控PH、温度相对容易。
化学反应工程 第六章 气-液反应及反应器
![化学反应工程 第六章 气-液反应及反应器](https://img.taocdn.com/s3/m/c45ccf19bceb19e8b9f6ba2f.png)
电流过程与双膜传质过程的类似
Ci Hpi
U1
U2
G
L
I U1 U2 U2 U3
R1
R2
U1 U2 U1 U2
R1 R2
R0
R0 R1 R2
U3
pG
Ci
pi
CL
GL
N pG pi Ci CL pG pi Ci CL
G / DG L / DL 1/ kG
M H(a或φ)准数数值大小的含义:
Ci pG
δg
δL
pi
GL
G
L
M (H或a φ)准数 数值大小的含义:
M或φ数值越大,反 应越快于传质,浓 CL 度分布越显著。
M H(a或φ)准数数值大小的含义:
Ci pG
δg
δL
pi
GL
G
L
M (H或a φ)准数 数值大小的含义:
M或φ数值越大,反 应越快于传质,浓 CL 度分布越显著。
三、M准数的判据
M准数:液膜中化学反应与传递之间相对速率的大小
条 件 反应类别 反应进行情况
M 0 反应可忽略 液膜液相的反应均可忽略
M 1 慢反应
反应在液相主体中进行
M 1 中速反应 反应在液膜和液相中进行
M 1 快反应
反应在液膜中进行完毕
M 瞬间反应 反应在膜内某处进行完毕
瞬
快
间
反
反
应
假设:扩散组分在气-液界面处达到气液相平衡。
双膜理论
Ci pG
δg
δL
pi
GL
G
L
CL
JG
DG
连续操作釜式反应器课件
![连续操作釜式反应器课件](https://img.taocdn.com/s3/m/2e94446bae45b307e87101f69e3143323868f517.png)
对于可能发生的突发情况,应制定相应的应急处理措施,并进行定期 演练,以确保操作人员在关键时刻能够迅速、准确地应对。
危险化学品管理
化学品分类
对连续操作釜式反应器涉及的化学品进行分类,明确各类化学品 的危险性,为后续的管理提供依据。
化学品储存
化学品应存放在专门的储存区域,确保储存环境符合化学品的要求, 防止因储存不当导致的安全事故。
反应器内温度异常会影响反应效 果和产品质量,通过温度传感器 实时监测,并结合反应过程数据
进行诊断。
搅拌不均匀
搅拌系统故障会导致反应物混合 不均匀,通过观察搅拌电流、搅 拌桨转速等参数,以及反应物取
样分析进行诊断。
故障预防措施
01
02
03
定期检查
定期对连续操作釜式反应 器及其附属设备进行检查, 确保设备处于良好状态。
易于控制
通过调节进料速率、温度、压 力等操作参数,实现对连续操 作釜式反应器的灵活控制。
适合于大规模生产
连续操作釜式反应器适用于工 业化生产,满足大批量生产需求。
连续操作釜式反应器的应用领域
化工领域
连续操作釜式反应器广泛应用于合成 气、合成氨、合成甲醇等化工生产过 程中。
医药领域
在医药领域,连续操作釜式反应器可 用于合成抗生素、维生素等药物的生 产。
02 03
技术创新
为适应新能源材料制备的需求,连续操作釜式反应器在结 构、材质和控制系统等方面进行了多项创新。例如,采用 新型陶瓷材料增强设备的耐腐蚀性,设计特殊结构的电极 以提高电化学反应效率等。
应用前景
随着新能源产业的快速发展,连续操作釜式反应器在新能 源材料制备领域的应用前景日益广阔。例如,可用于锂离 子电池正极材料的合成、燃料电池催化剂的制备以及太阳 能电池材料的生产等。
第六章酶反应器
![第六章酶反应器](https://img.taocdn.com/s3/m/79a157fb0875f46527d3240c844769eae009a31d.png)
第六章酶反应器内容提要:本章介绍酶反应器的主要类型与酶反应器有关的基本工程概念;均相酶反应器与固定化酶反应器的反应与传递特性;选择酶反应器所需考虑的主因素以及酶反应器在使用过程中需注意的问题。
以酶或固定化酶作为催化剂进行酶促反应的装置称为酶反应器(Enzyme reactor)。
酶反应器的作用在于为酶提供适当环境(即酶反应过程的工艺条件),以达到生物化学转化的目的,使底物生成为所需要的中间产物或最终产品。
酶反应器研究的中心问题是合理应用酶,降低产品成本,提高产物的质量。
酶反应器不同于化学反应器,它是在低温、低压下发挥作用,反应时的耗能和产能比较少。
酶反应器也不同于发酵反应器,因为它不表现自催化方式,即细胞的连续再生。
但是酶反应器与其它反应器一样,都是根据它的产率和专一性来进行评价。
第一节酶反应器的类型与基本工程概念本节主要介绍各种典型的酶反应器、酶反应器的基本工程概念和反应器设计的基本原理。
一.酶反应器的类型酶反应器类型很多,一般可按反应器几何形状和结构、操作方式进行分类。
按几何形状分类,有罐型和塔型。
膜式反应器是将酶固定于不同形状的膜,如平板、螺旋圈、罐型、中空纤维和圆盘等,装配在封闭的耐压容器中,通入底物溶液进行酶促反应。
按操作方式分类,有间歇式和连续式。
最常用的是间歇式搅拌罐,先把酶的底物溶液一次装入反应器,在适当的温度和pH条件下开始反应,经一定时间,将全部反应物取出,称间歇式操作。
间歇式操作具有较大的灵活性,适用于小批量、多品种的生产。
在制药工业、食品工业、生化工业普遍采用。
间歇式操作反应器结构简单,温度和pH较易控制,如杂菌污染时处理也较方便。
但间歇式操作劳动强度大,每批操作的反应条件与产品质量不易控制。
间歇式操作的反应器具有下列特点:①反应器内反应物均匀分布,反应器内浓度和温度相同,反应速率不随空间位置而变化;②反应器底物的浓度随反应的进程而递减,因而反应速率随时间而变化。
显然,反应时间可作为衡量间歇反应器性能的一个参数。
第六章 气液固三相反应器和反应器分析
![第六章 气液固三相反应器和反应器分析](https://img.taocdn.com/s3/m/f789b349e45c3b3567ec8bec.png)
(5)均相副反应量越大。
2.气-液-固悬浮三相反应器 固体在气液混合物中呈悬浮状态,这样操作状态的反应器为气-液-固 悬浮反应器。气-液-固悬浮反应器可以按有无机械搅拌、流体流向、颗粒
运动状态等进行分类。大体可以分为:
(1)机械搅拌的气-液-固悬浮反应器; (2)不带机械搅拌的鼓泡三相淤浆反应器; (3)不带机械搅拌的两流体并流向上的流化床反应器;
效率因子低下; (4)当催化剂由于积炭,中毒而失活时,更换催化剂不方便。
图7.1(b)适应于当气相反应物浓度较低,而又要求气相组分达到
较高转化率时的情况,逆流操作有利于增大过程的推动力。但同时
会增加气相流动阻力,当气液两相的流速较大时,还可能出现液泛。
图7.1(c)为气液并流向上的填料鼓泡塔反应器,持液量大,液相 和气相在反应器中混合好,液固间的传热性能好,适用于反应热效
7.2 气-液-固反应的宏观动力学
7.2.1 过程分析 气液固催化反应过程是传质与反应诸过程共同作用,互相影响的三 相反应过程,由多个步骤组成的过程。对于组分通过气液相的传递过程, 本节采用双膜模型,设气相反应组分A与液相反应组分B,在固体催化剂 作用下,反应如下:
A( g ) bB 产物
7.1.3 气-液-固反应过程研究所涉及的模型和参数
气液固反应过程,同样涉及到化学动力学,各相的流动
与混合状况,相间的质量、热量、动量传递等。由于相的增
加,物料流动与混合、质量、热量、力量传递过程要比两相 复杂,它涉及更多的参数。
1.流动模型及相关参数 (1)反应器的流动模型决定了三相间的传递特性,决定
1
(7.10)
1 1 RQ (cQs cQLi ) k a k a Qs p QL K LSQ (cQs cQLi ) qk p (1 f ) cAs
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
( pX )max DoptcX ,opt YX /Smax cS0 KS KS
DCri
max
cS 0 KS cS0
如果cs0>>KS,则: Dc≈Dopt ≈μmax cX,opt ≈YX/SCS0 (Px)max ≈ DcYX/SCS0
d (cSVR ) dt
V0 (cS 0
cS
)
rSVR
0
m
1 VR D V0
cS0 cS rS
(cS 0 cS )YX / S (KS cS ) maxcS cX
6.2.2.3 底物抑制时的操作特性
Dc
max
cS 0
KS
1
cS 0 K SI
cS0
6.2.2.4 产物生成与抑制时的操作特性
dcx dt
D(cx0
cx ) rx
dcx dt
D(cx0
cx ) ( kd )cx
dcx dt
Dcx0
( kd
D)cx
cx0 0, 稳态, 则: ( kd D)cx 0 D kd 或 kd D
对底物衡算式为
在稳态条件下
max
cS KS
cS
cS
KS (D kd ) max kd
假定CSTR中进行等温均相反应,反应器有效体积恒定不变,基 本设计方程为
流入速率=流出速率十反应消耗速率十累积量 对底物s的物料衡算式为
6.2 连续操作搅拌槽式反应器(CSTR)
6.1.1 酶反应时的单级SCTR
如果为固定化酶反应,由于有液固两相和内扩散的影响存在,底物的物 料平衡式为:
6.2.2 细胞反应时的单级CSTR
6.2.2.1 单级CSTR的通用衡算模型
对单级CSTR的连续培养,假定培养液混合均匀,则通用衡算方程为 细胞:累积=流入+生长-流出(=流入-流出+生长) 底物:累积=流入-消耗-流出(=流入-流出-消耗) 产物:累积=流入+生成-流出(=流入-流出+生成) 因此有以下衡算方程组:
D(cS 0 cS ) rS
dcP dt
D(cP0
cP ) rP
6.2.2.2 简单反应时CSTR的操作特性
dcx dt
( D)cx
当稳态时
dcx 0 dt
( D)cx 0
D
max
cS KS
cS
cS
KsD max D
cX YX / S (cS 0 cS )
cX
YX
/
归纳起来.对Monod动力学的恒化器有下述关系:
max
cS KS
cS
cS
cS0
1 YX / S
cX
D
max
cS 0
1 YX / S
cX
KS
cS0
1 YX / S
cX
cS 0
m
ax
1 YX /
S
cX KSD max D
D1 YX / S
cX
由上式可求得为达到一定的细胞浓度cX所要求加入培养基中的底物浓度cS0 平均停留时间τm为:
cX
YX / S D D kd mYX / S
cS
0
KS (D kd ) max kd
6.2.2.6 固定化细胞培养时的操作特性
6.2.3 带细胞循环的单级CSTR
6.1.2 理想流动反应器的模型方程
• 根据连续操作反应器中物料的流动情况, 可建立两种理想流动反应器模型,即全混 流反应器(CSTR)和平推流反应器(CPFR)。
• 前者是连续操作的机械搅拌槽式反应器的 理想模型。
• 后者的实际反应器型式有连续操作的管式 反应器、管式固定床反应器和气体搅拌的 塔式反应器等。
对培养过程中的产物生成、可由对产物的质量平衡进行衡算,即
V0cP0
rPVR
V0cP
VR
dcP dt
一般情况下,cp0=0,在稳定态时,
rP
V0 VR
cP
DcP
Байду номын сангаас
cP
rP D
1 D
YP
/
X
c
X
qPcX D
或cP
YP /S (cS 0
cS )
YP /S
cS 0
KS D maxD
6.2.2.5 考虑维持代谢或死亡的操作特性
d (cxVR ) dt
V0 (cx0
cx )
rxVR
d (cSVR ) dt
V0 (cS 0
cS
)
rSVR
d (cPVR ) dt
V0 (cP0
cP )
rPVR
连续培养在稳定态操作时一般体积不发生变化,即
dVR 0 dt
于是上述各式可变为
dcx dt
D(cx0
cx ) rx
dcS dt
6 连续式操作反应器
6.1 概述
6.1.1 连续操作的特点
连续操作在以下各点表现其优越性:
• 连续操作有利于过程的研究和分析; • 对连续反应可进行高效的过程控制; • 连续操作的产品质量稳定; • 连续操作的生产效率较高。
连续操作也存在一些缺点。
➢它对细胞生长时同步产生的代谢副产物的生成不能控制; ➢操作周期过长,容易受到杂菌污染; ➢需要使用费用较高的检测手段和控制设备等。
S
(cS 0
KsD max D
)
对有些CSTR的细胞连续培养,过程优化的目标函数为 单位时间单位体积的细胞产量Px最大,Px一般称为细 胞产率。
PX
DcX
DYX / S (cS 0
KsD ) max D
dPX 0 dD
Dopt max(1
Ks ) Ks cS0
此时反应器中细胞质量浓度为