分段函数和映射详解
8分段函数及映射.docx
![8分段函数及映射.docx](https://img.taocdn.com/s3/m/691ee81c51e79b89680226e8.png)
1. 2. 2分段函数及映射教学目标:1、通过具体实例,了解简单的分段函数,|并能简单应用;2、纠正认为“y二f(x)”就是函数的解析式的片而错误认识;5、了解映射的概念。
教学重点:分段函数的概念和图像。
教学难点:分段函数图彖的画法以及映射的概念。
教学过程(一)自主学习1、分段函数例5的定义域为______________ ,值域为_____________ ;例6的定义域为 _____________, 值域为_____________ 。
像例5、例6的函数称为分段函数,其定义域是各段口变量取值范围的______________ (交集或者并集)。
2、映射与函数的比较映射函数表示符号「A T B集合要求A为集合B为集合A为集合B为集合兀素对应要求A中一个元索,按照对应关系在B中都有…个元素与之对应一A中一个元素,按照对应关系在B中都有一个元素与之对应。
(二)合作探讨例1、某市郊空调公共汽车的票价按下列规则制定:(1)乘坐汽车5公里以内,票价2元;(2) 5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算). 己知两个相邻的公共汽车站间相距约为1公里,如來沿途(包括起点站和终点站)设20个汽午站,请根据题意,写出票价与里程之间的函数解析式,并画出函数 的图象.• 分析:本例是个实际问题,冇具体的实际意义.根据实际情况公共汽乍到站才 能停午,[所以行车里程只能取整数值.解:设票价为y 兀,里程为x 公里,根据题意,如果某空调汽车运行路线小设20个汽车站(包括起点站和终点站),那么汽 车行驶的里程约为19公里,所以门变量x 的収值范围是{xWNlxW19}.rh 空调汽车票价制定的规定,可得到以下函数解析式:0 < x < 55 < x < 10 10<x<15 15<x<19根据这个函数解析式,可画出函数图象,如下图所示:y|5 _ 4 - 3 -2 .. ................ 1 - 05101519 x注意:(1)本例具有实际背景,所以解题时应考虑其实际意义:(2)本题可否用列表法表示函数,如果可以,应怎样列表?说明:象上面例3中的函数,称为分段函数.注意:分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同 的表达式并用一个左大扌舌号扌舌起來,并分别注明各部分的白变量的取 值情况.(三)巩固练习1>作出下列函数的图像,并求函数的值域。
人教A版数学必修一1.2.2.2分段函数及映射
![人教A版数学必修一1.2.2.2分段函数及映射](https://img.taocdn.com/s3/m/51f15a1fe2bd960590c6774a.png)
思考
你能说出函数与映射之间的异同吗?
(1)函数是特殊的映射,映射不一定是函数,映射是函数 的推广;
(2)函数是非空数集A到非空数集B的映射,而对于映射, A和B不一定是数集。
回顾本节课你有什么收获 解析式
图像
分段函数的概念
映射的 概念
核心概念
分段函数 的函数值
昨天是已经走过的,明天是即将走过的, 惟有今天正在走过……
1.已知
f
(x)
x
f
3 [ f (x
4)]
(x 9) (x 9)
求的f 值15.,f 7
解: f 15 12,f 7 6
v/cm·s-1 2.某质点在30s内运动速度vcm/s 30
是时间t的函数,它的图象如右图,
用解析式表示出这个函数. 10
t+10,(0≤t<5)
例2画出函数图像y.
x 1, 2
x 2
y
y x2 4x 4
x
O
2
y x 1
2
3.求分段函数的解析式 例3某市“招手即停”公共汽车的票价按下列规则制定: (1)5公里以内(含5公里),票价2元; (2)5公里以上,每增加5公里,票价增加1元(不足5公里 的按5公里计算). 如果某条线路的总里程为20公里,请根据题意, 写出票价与里程之间的函数解析式,并画出函数的图象.
x+2,(x≤-1);
例1已知函数f(x)=
x2,(-1<x<2);
2x,(x≥2).
((f21))3若求 f的6f,(f值x3)12;=,3f,14求12,fx,的f5值5.3
解:(1)
课件5:1.2.2 第2课时 分段函数及映射
![课件5:1.2.2 第2课时 分段函数及映射](https://img.taocdn.com/s3/m/e443ef6c657d27284b73f242336c1eb91b37335f.png)
[错因分析] 以上解法的错误之处在于误解了映射的定 义.a4=10或a2+3a=10都有可能,因而要分类讨论.
[思路分析] 对于A映射f:A→B,A中的元素x的象可能是 B中的任意一个元素,故在解此类题时要将问题考虑全面.
[正解] ∵B 中的元素 y=3x+1 与 A 中的元素 x 对应, ∴A 中的元素 1,2,3,对应 B 中的元素 4,7,10. ∴a34k=+110=,a2+3a 或a32k++31a==a14.0. ∵a,k∈N, ∴ak==52., 这就是所求 a,k 的值.
[分析] 判断一个对应 f 是否为从 A 到 B 的映射,主要从 映射的定义入手,看集合 A 中的任意一个元素,在对应关系 f 下在集合 B 中是否有唯一的对应元素.
[解析] 对于(1),集合A中的元素在集合B中都有唯一的对 应元素,因而能构成映射;对于(2),集合A中的任一元素x在对 应关系f下在B中都有唯一元素与之对应,因而能构成映射;对 于(3),由于当x=3时,f(3)=2×3-1=5,在集合B中无对应元 素,因而不满足映射的定义,从而不能构成映射;对于(4),满 足映射的定义,能构成映射.
第一章 1.2.2 函数的表示法
第二课时 分段函数及映射
1.分段函数 所谓分段函数,是指在定义域的不同部分,有不同的_ _对__应__关__系__的函数. [知识点拨] 分段函数是一个函数,不要把它误认为是几 个函数.分段函数的定义域是各段定义域的并集,值域是各段 值域的并集.
2.映射 (1)定义:一般地,设A,B是两个非空的集合,如果按某 一个确定的对应关系f,使对于集合A中的__任__意__一__个__元素x,在 集合B中都有__唯__一__确__定__的元素y与之对应,那么就称对应f: A→B为从集合__A__到集合__B__的一个映射. [知识点拨] 满足下列条件的对应f:A→B为映射: (1)A,B为非空集合; (2)有对应法则f; (3)集合A中的每一个元素在集合B中均有唯一元素与之对 应.
2019-2020学年人教a版数学必修1课件:1.2.2 第2课时分段函数与映射
![2019-2020学年人教a版数学必修1课件:1.2.2 第2课时分段函数与映射](https://img.taocdn.com/s3/m/473f690ba0116c175e0e4869.png)
(n∈N*,n≥3).
求 f(3),f(4),f[f(4)]的值. 【解析】由题意可知 f(1)=1,f(2)=2,则
f(3)=f(2)+f(1)=2+1=3,
f(4)=f(3)+f(2)=3+2=5,
f[f(4)]=f(5)=f(4)+f(3)=5+3=8.
分段函数的图象及应用 【例 2】已知函数 f(x)=1+|x|-2 x(-2<x≤2). (1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域. 【 解 题 探 究 】 讨论x的取值范围 → 化简fx的解析式
•1.2 函数及其表示
1.2.2 函数的表示法
第2课时 分段函数与映射
目标定位
1.掌握简单的分段函数, 并能简单应用. 2.了解映射概念及它与函 数的联系.
重点难点
重点:分段函数的应用及 映射的判断. 难点:分段函数的应用.
• 1.分段函数
• 在函数的定义域内,对于自变量x的不同取值区间, 有 数着. 不对应同关的系_________,这样的函数通常叫做分段函
2a=4a,所以a=2.
• 5.某单位为鼓励职工节约用水,作出了如下规定: 每位职工每月用水不超过10立方米的,按每立方米 m元收费;用水超过10立方米的,超过部分按每立 方米2m元收费.某职工某月缴水费16m元,求该职 工这个月实际用水量.
【解析】该单位职工每月应缴水费y与实际用水量x满足的
关系式为y=m2mx,x-0≤ 10xm≤,1x0>,10.
映射的概念及应用
• 【例3】判断下列对应是不是从集合A到集合B的映 射.
• (1)A=N*,B=N*,对应关系f:x→|x-3|; • (2)A={平面内的圆},B={平面内的矩形},对应关
第9课时:分段函数与映射【课件】(1)(1)(1)
![第9课时:分段函数与映射【课件】(1)(1)(1)](https://img.taocdn.com/s3/m/9d8f5574227916888486d7c1.png)
重难点
重点:分段函数的概念及解析式、映射的概念. 难点:分段函数的图象性质及其应用.
创设情境
已知某地出租车收费方法如下:起步价6元,可行3 km(含 3 km),3 km后到10 km(含10km)每走1 km加价0.5元,10 km 后每走1 km加价0.8元.若某人坐出租车走了12 km,则他应付 费多少?
x 0.
0
B.0
x为有理数; x为无理数.
则f
(
g
(π))
______
C. 1
Dπ.
(2)
设函数f
(
x)
x2
2
2x
x 2;若f x 2.
(x0 )
8, 则x0
______
练习1、若f
(x)
x
x
2
x 0;若f (a) 4,则实数a _______ x 0.
A.3
B.6
C.8
D.9
(3) 若A {a1, a2 , a3}, B {b1, b2}, 则从A到B可以建立多少个映射
小结
1.分段函数求值,一定要先找所给值的范围,再代 入相应的解析式求值.
2.对含绝对值的函数,要作出其图象,首先根据绝 对值的意义去掉绝对值符号,将函数转化为分段 函数再求解.
3.映射是一种特殊的对应,它具有: (1)方向性(2)唯一性
分段函数
一个函数的定义域分成了若干个子区间,而每个子区间的 解析式不同,这种函数称为分段函数.分段函数是一个函数,其 定义域是各段自变量取值集合的并集,其值域是各段函数值集 合的并集.
探究一、分段函数的求值问题
最全分段函数概念及映射完整版.doc
![最全分段函数概念及映射完整版.doc](https://img.taocdn.com/s3/m/f1a08ff302d276a201292e00.png)
第2课时 分段函数及映射[学习目标] 1.掌握简单的分段函数,并能简单应用.2.了解映射概念及它与函数的联系.知识点一 分段函数在函数的定义域内,对于自变量x 的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.思考 分段函数对于自变量x 的不同取值区间对应关系不同,那么分段函数是一个函数还是几个函数?分段函数的定义域和值域分别是什么?答 分段函数是一个函数,而不是几个,各段定义域的并集即为分段函数的定义域,各段值域的并集即为分段函数的值域.知识点二 映射映射的定义:设A 、B 是两个___的集合,如果按某一个确定的对应关系f ,使对于集合A 中的_______元素x ,在集合B 中都有_______的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射. 思考 函数与映射有何区别与联系?题型一 分段函数求值例1 已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2.(1)求f (-5),f (-3),f [f (-52)]的值; (2)若f (a )=3,求实数a 的值.跟踪训练1 (1)若f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x ,x <0,则f [f (-2)]等于( )A.2B.3C.4D.5(2)已知函数f (x )=⎩⎪⎨⎪⎧3x +1,x ≤1,-x ,x >1,若f (x )=2,则x =________.题型二 分段函数的图象及应用例2 已知f (x )=⎩⎪⎨⎪⎧x 2, -1≤x ≤1,1, x >1或x <-1,(1)画出f (x )的图象; (2)求f (x )的定义域和值域.跟踪训练2 作出y =⎩⎪⎨⎪⎧-7,x ∈(-∞,-2],2x -3,x ∈(-2,5],7,x ∈(5,+∞)的图象,并求y 的值域.跟踪训练3 设x ∈(-∞,+∞),求函数y =2|x -1|-3|x |的最大值.题型三 映射的概念例3 判断下列对应是不是映射?(1)A ={x |0≤x ≤3},B ={y |0≤y ≤1},f :y =13x ,x ∈A ,y ∈B ;(2)A =N ,B =N *,f :y =|x -1|,x ∈A ,y ∈B ;(3)A ={x |0<x ≤1},B ={y |y ≥1},f :y =1x ,x ∈A ,y ∈B ;(4)A =R ,B ={y |y ∈R ,y ≥0},f :y =|x |,x ∈A ,y ∈B . 跟踪训练4 下列对应是从集合M 到集合N 的映射的是( )①M =N =R ,f :x →y =1x ,x ∈M ,y ∈N ;②M =N =R ,f :x →y =x 2,x ∈M ,y ∈N ;③M =N =R ,f :x →y =1|x |+x ,x ∈M ,y ∈N ;④M =N =R ,f :x →y =x 3,x ∈M ,y ∈N .A.①②B.②③C.①④D.②④ 题型四 求某一映射中的像或原像例4 设f :A →B 是A 到B 的一个映射,其中A =B ={(x ,y )|x ,y ∈R },f :(x ,y )→(x -y ,x +y ).(1)求A 中元素(-1,2)的像;(2)求B 中元素(-1,2)的原像.跟踪训练5 设集合A 、B 都是坐标平面上的点集{(x ,y )|x ∈R ,y ∈R },映射f :A →B 使集合A 中的元素(x ,y )映射成集合B 中的元素(x +y ,x -y ),则在f 作用下,像(2,1)的原像是( ) A.(3,1) B.⎝⎛⎭⎫32,12 C.⎝⎛⎭⎫32,-12 D.(1,3)题型五 映射的个数问题例5 已知A ={a ,b ,c },B ={-1,2}. (1)从A 到B 可以建立多少个不同的映射?(2)若f (a )+f (b )+f (c )=0,则从A 到B 的映射中满足条件的映射有几个?跟踪训练5 设集合A ={a ,b },B ={0,1},则从A 到B 的映射共有( ) A.2个 B.3个 C.4个 D.5个 题型六 分段函数与不等式(组)综合应用2232,1,6.()()223,1,x x x f x f x x x x⎧-≥=<⎨-+<⎩例已知函数求使的值得集合.题型七 分段函数的实际应用例7 为了节约用水,某市打算出台一项水费政策,规定每季度每人用水量不超过5吨时,每吨水的水费为1.2元,若超过5吨而不超过6吨时,超过部分的水费按原价的200%收费,若超过6吨而不超过7吨时,超过部分的水费按原价的400%收费.如果某人本季度实际用水量为(7)x x ≤吨,试计算本季度他应交的水费y(单位:元).1.已知函数f (x )=⎩⎪⎨⎪⎧1x +1,x <1,x -1,x >1,则f (2)等于( )A.0B.13 C.1 D.22.下列集合A 到集合B 的对应中,构成映射的是( )3.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤12x ,x >1,则f (f (3))等于( ) A.15 B.3 C.23 D.1394.如图所示,函数图象是由两条射线及抛物线的一部分组成,则函数的解析式为_____________.24||34.x m m x -+=5.若方程有个互不相等的实数根,求的取值范围1.对映射的定义,应注意以下几点:(1)集合A 和B 必须是非空集合,它们可以是数集、点集,也可以是其他集合. (2)映射是一种特殊的对应,对应关系可以用图示或文字描述的方法来表达. 2.理解分段函数应注意的问题:(1)分段函数是一个函数,其定义域是各段“定义域”的并集,其值域是各段“值域”的并集.写定义域时,区间的端点需不重不漏.(2)求分段函数的函数值时,自变量的取值属于哪一段,就用哪一段的解析式.(3)研究分段函数时,应根据“先分后合”的原则,尤其是作分段函数的图象时,可先将各段的图象分别画出来,从而得到整个函数的图象.一、选择题 1.以下几个论断①从映射角度看,函数是其定义域到值域的映射; ②函数y =x -1,x ∈Z 且x ∈[-3,3)的图象是一条线段;③分段函数的定义域是各段定义域的并集,值域是各段值域的并集; ④若D 1,D 2分别是分段函数的两个不同对应关系的值域,则D 1∩D 2=∅. 其中正确的论断有( )A.0个B.1个C.2个D.3个2.已知f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,则f [f (-7)]的值为( )A.100B.10C.-10D.-1003.已知集合A 中元素(x ,y )在映射f 下对应B 中元素(x +y ,x -y ),则B 中元素(4,-2)在A 中对应的元素为( ) A.(1,3) B.(1,6) C.(2,4)D.(2,6)4.已知集合A =[0,4],B =[0,2],按照对应关系f 不能成为从集合A 到集合B 的一个映射的是( )A.f :x →y =12xB.f :x →y =x -2C.f :x →y =xD.f :x →y =|x -2|5.已知函数f (x )=⎩⎨⎧x +2,x ≤0,x 2,0<x ≤3,若f (x )=3,则x 的值是( )A. 3B.9C.-1或1D.-3或 3二、填空题7.已知f (x )=⎩⎪⎨⎪⎧x 2-1,x ≥1,1x ,x <1,则f (f (13))=________.8.设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0.若f (f (a ))=2,则a =________.9.设f :x →ax -1为从集合A 到B 的映射,若f (2)=3,则f (3)=________.10.函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,2-x ,-2≤x <0的值域是________.三、解答题11.已知函数y =|x -1|+|x +2|.(1)作出函数的图象; (2)写出函数的定义域和值域.12.如图所示,在边长为4的正方形ABCD 边上有一点P ,由点B (起点)沿着折线BCDA ,向点A (终点)运动.设点P 运动的路程为x ,△APB 的面积为y ,求y 与x 之间的函数解析式.2,1,(1)13.()()141,x x f x f x x x ⎧<+⎪=≥⎨≥⎪⎩设函数求使的自变量的取值集合。
分段函数及映射 课件
![分段函数及映射 课件](https://img.taocdn.com/s3/m/3381755689eb172dec63b738.png)
3.若函数f(x)=
x, x 0, x2, x 0,
则f(-2)=______.
【解析】∵-2<0,∴f(-2)=(-2)2=4.
答案:4
1.对分段函数的三点认识 (1)分段是针对定义域而言的,将定义域分成几段,各段的对 应关系不一样. (2)一般而言,分段函数的定义域部分是各不相交的,这是由 函数定义中的唯一性决定的. (3)分段函数的图象应分段来作,它可以是一条平滑的曲线, 也可以是一些点、一段曲线、一些线段或曲线段等.作图时, 要特别注意各段两端点是用实点还是用空心圈表示.
(1)解题过程中,当字母参数的取值有多种可能时,
题
启
要分类讨论,求出参数的值后要注意验证.
示
(2)审题要细,考虑问题要全面,避免不必要的失误.
【规范训练】(12分)已知函数
f
x
4x
x
2
x x
0,若f(m)=16, 0,
求m的值.
【解题设问】(1)此题需要分类讨论吗?_需__要__
(2)m与0的大小关系是m__<__0_或__m__≥_0
分段函数的图象和综合应用 【技法点拨】
1.作分段函数图象的注意点 求作分段函数的图象时,定义域分界点处的函数取值情况决定 着图象在分界点(关键点)处的断开或连接,断开时要分清断开 处是实点还是空心圈. 2.利用分段函数求解实际应用题的策略 (1)首要条件:把文字语言转换为数学语言; (2)解题关键:建立恰当的分段函数模型; (3)思想方法:解题过程中运用分类讨论的思想方法.
【解题指导】
【规范解答】∵A中的元素x与B中的元素y=3x+1对应,……1分
∴A中的元素1,2,3,k对应B中的元素4,7,10,3k+1. ……3分
考点04 分段函数(解析版)
![考点04 分段函数(解析版)](https://img.taocdn.com/s3/m/52af5796a98271fe900ef9a1.png)
考点4 分段函数以及应用一、 知识储备汇总与命题规律展望1.知识储备汇总:(1)分段函数概念:若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数定义域与值域:分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.(3)分段函数的图像:分段函数有几段它的图像就由几条曲线组成,作图的关键就是根据每段函数的定义区间和表达式在同一坐标系中作出其图像,作图时要注意每段曲线端点的虚实,而且横坐标相同之处不可有两个以上的点。
(4)分段函数的求值:先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止.(5)分段函数的奇偶性:先看定义域是否关于原点对称,不对称就不是奇(偶)函数,再由x >0,x -<0 ,分别代入各段函数式计算)(x f 与)(x f -的值,若有)(x f =)(x f --,当x =0有定义时0)0(=f ,则)(x f 是奇函数;若有f(x)=)(x f -,则)(x f 是偶函数.(6)分段函数的单调性:分别判断出各段函数在其定义区间的单调性结合图象处理分段函数的问题.(7)分段函数的周期性:对分段函数的周期性问题,利用周期函数定义、性质或图像进行判定或解决.(8)分段函数求值:先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止.(9)分段函数的最值:先求出每段函数的最值,再求这几个最值的最值,或利用图像求最值.(10)求分段函数某条件下自变量的范围:先假设所求的解在分段函数定义域的各段上,然后相应求出在各段定义域上的范围,再求它们并集即可.(11)分段函数的不等式问题:利用分类整合思想,化为若干个不等式组问题,解出各个不等式组的解集,其并集就是所求不等式的解集.(12)分段函数的解析式:利用待定系数法,求出各段对应函数的解析式,写成分段函数形式,每个解析式后边标上对应的范围.2.命题规律展望:分段函数是高考考查的重点和热点,主要考查分段函数求值、分段函数值域与最值、分段函数的图像与性质、分段函数方程、分段函数不等式等,考查分类整合、转化与化归、函数与方程、数形结合等数学思想与方法,考题多为选择填空题,难度为容易或中档题.将本考点近五年内的命题规律从题型、考题类型、难度、分值等方面作以总结,对今后考题规律作以展望.二、题型与相关高考题解读 1.分段函数求值1.1考题展示与解读例1.(2017山东文9)设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭( ) A. 2 B. 4 C. 6 D. 8【命题意图探究】本题考查了分段函数求值及分类整合思想是中档试题. 【答案】C【解析】由1x ≥时()()21f x x =-是增函数可知,若1a ≥,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a =+-,解得14a =,则1(4)2(41)6f f a ⎛⎫==-= ⎪⎝⎭,故选C. 【解题能力要求】分析问题能力、分类整合思想【方法技巧归纳】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围. 1.2【典型考题变式】1.【变式1:改编条件】已知函数)(x f =⎩⎨⎧≥+-<<+2,8220,2x x x x x ,若)2()(+=a f a f ,则)1(a f =( )A.165 B. 2 C.6 D.217【答案】B【解析】由2x ≥时()28f x x =-+是减函数可知,若2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭,故选B.2. 【变式2:改编结论】设()()121,1x f x x x <<=-≥⎪⎩,若()12f a =,则a = ( )B.41 B. 45 C. 41或45D. 2【答案】C【解析】由题意知,⎪⎩⎪⎨⎧=<<2110a a 或⎪⎩⎪⎨⎧=-≥21)1(21a a ,解得14a =或45=a ,故选C【变式3:改编问法】已知f (x )是R 上的奇函数,且f (x )=,则f (﹣)=( )A .B .C .1D .﹣1【答案】C .【解析】∵f (x )是R 上的奇函数,且f (x )=,则f (﹣)=﹣f ()=﹣f ()=﹣log 2=1,故选C .【变式4:函数迭代】已知a ∈R ,函数()24,2,3, 2.x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则a = . 【答案】2【分析】由题意结合函数的解析式得到关于a 的方程,解方程可得a 的值.【解析】()()642233f ff f a ⎡⎤=-==-+=⎣⎦,故2a =,故答案为:2. 2.分段函数的最值与值域2.1考题展示与解读例2【2016年高考北京理数】设函数33,()2,x x x a f x x x a⎧-≤=⎨->⎩.①若0a =,则()f x 的最大值为______________; ②若()f x 无最大值,则实数a 的取值范围是________.【命题意图探究】本题主要考查分段函数的最值及分类整合思想、数形结合思想. 【答案】2,(,1)-∞-.【解析】如图作出函数3()3g x x x =-与直线2y x =-的图象,它们的交点是(1,2)A -,(0,0)O ,(1,2)B -,由2'()33g x x =-,知1x =-是函数()g x 的极大值点,①当0a =时,33,0()2,0x x x f x x x ⎧-≤=⎨->⎩,因此()f x 的最大值是(1)2f -=;②由图象知当1a ≥-时,()f x 有最大值是(1)2f -=;只有当1a <-时,由332a a a -<-,因此()f x 无最大值,∴所求a 的范围是(,1)-∞-,故填:2,(,1)-∞-.【解题能力要求】分类整合思想、数形结合思想、运算求解能力.【方法技巧归纳】先根据各段函数的图象与性质求出各段函数在相应区段上的值域,这些值域的并集就是函数的值域. 2.2【典型考题变式】 【变式1:改编条件】设函数的最小值是1,则实数a 的取值范围是( )A .(﹣∞,4]B .[4,+∞)C .(﹣∞,5]D .[5,+∞) 【答案】B【解析】由题知,当x <1时,f (x )=x 2﹣4x+a=(x ﹣2)2+a ﹣4,且为减函数,可得f (x )>f (1)=a ﹣3,由x≥1时,f (x )递增,可得f (x )的最小值为f (1)=1,由题意可得a ﹣3≥1,即a≥4,故选B .【变式2:改编结论】设函数33,()2,x x x a f x x x a⎧-≤=⎨->⎩,讨论)(x f 的值域.【答案】当1-<a 时,函数)(x f 的值域为)2,(a --∞; 当21≤≤-a 时,所以函数)(x f 的值域为]2,(-∞; 当2>a 时,所以函数)(x f 的值域为]3,(3a a --∞.【解析】如图作出函数3()3h x x x =-与直线2y x =-的图象,它们的交点是(1,2)A -,(0,0)O ,(1,2)B -,由2'()33h x x =-,知1x =-是函数()h x 的极大值点,1=x 是函数()h x 的极小值点,当1-<a 时,函数x x y 33-=在],(a -∞上的值域为]3,(3a a --∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为)2(33a a a --- =0)1)(1(<-+a a a ,所以a a a 233-<-,所以函数)(x f 的值域为)2,(a --∞;当21≤≤-a 时,函数x x y 33-=在],(a -∞上的值域为]2,(-∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为22≤-a ,所以函数)(x f 的值域为]2,(-∞;当2>a 时,函数x x y 33-=在],(a -∞上的值域为]3,(3a a --∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为a a a 323-<-,所以函数)(x f 的值域为]3,(3a a --∞;综上所述,当1-<a 时,函数)(x f 的值域为)2,(a --∞; 当21≤≤-a 时,所以函数)(x f 的值域为]2,(-∞; 当2>a 时,所以函数)(x f 的值域为]3,(3a a --∞.【变式3:改编问法】已知函数f (x )=,函数g (x )=asin (x )﹣2a+2(a >0),若存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,则实数a 的取值范围是( ) A .[﹣,1] B .[,] C .[,] D .[,2] 【答案】B【解析】当x ∈[0,]时,y=﹣x ,值域是[0,];x ∈(,1]时,y=,y′=>0恒成立,故为增函数,值域为(,1].则x ∈[0,1]时,f (x )的值域为[0,1],当x ∈[0,1]时,g (x )=asin (x )﹣2a+2(a >0),为增函数,值域是[2﹣2a ,2﹣],∵存在x 1、x 2∈[0,1]使得f (x 1)=g (x 2)成立,∴[0,1]∩[2﹣2a ,2﹣]≠∅,若[0,1]∩[2﹣2a ,2﹣]=∅,则2﹣2a >1或2﹣<0,即a <,或a >.∴a 的取值范围是[,],故选B .3.分段函数的解析式3.1考题展示与解读例3.(2021年高考天津卷9)设a ∈R ,函数()()()22cos 22,,215,x a x a f x x a x a x aπ-π<⎧⎪=⎨-+++≥⎪⎩,若函数()f x 在区间()0,+∞内恰有6个零点,则a 的取值范围是 ( )A .95112,,424⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦ B .7511,2,424⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦ C .9112,,344⎛⎤⎡⎫ ⎪⎥⎢⎝⎦⎣⎭ D .711,2,344⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭【解题能力要求】本题主要考查分段函数、函数零点、数形结合思想、转化与化归思想,是难题. 【答案】A【分析】由()222150x a x a -+++=最多有2个根,可得()cos 220x a π-π=至少有4个根,分别讨论当x a <和x a ≥时两个函数零点个数情况,再结合考虑即可得出. 【解析】()222150x a x a -+++=最多有2个根,()cos 220x a ∴π-π=至少有4个根,由22,2x a k k ππ-π=+π∈Z 可得1,24k x a k =++∈Z ,由1024k a a <++<可得11222a k --<<-. (1)x a <时,当15242a -≤--<-时,()f x 有4个零点,即7944a <≤;当16252a -≤--<-,()f x 有5个零点,即91144a <≤;当17262a -≤--<-,()f x 有6个零点,即111344a <≤.(2)当x a ≥时,()()22215f x x a x a =-+++,()()()22Δ414582a a a =+-+=-,当2a <时,∆<0,()f x 无零点;当2a =时,0∆=,()f x 有1个零点; 当2a >时,令()()22215250f a a a a a a =-+++=-+≥,则522a <≤,此时()f x 有2个零点;∴若52a >时,()f x 有1个零点.综上,要使()f x 在区间()0,+∞内恰有6个零点,则应满足7944522a a ⎧<≤⎪⎪⎨⎪<≤⎪⎩或91144522a a a ⎧<≤⎪⎪⎨⎪=>⎪⎩或或1113442a a ⎧<≤⎪⎨⎪<⎩,则可解得a 的取值范围是95112,,424⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦.【点睛】关键点睛:解决本题的关键是分x a <和x a ≥两种情况分别讨论两个函数的零点个数情况. 【方法技巧归纳】较复杂的函数零点个数问题,常转化为对应方程解得个数问题,再通过移项、局部分离等方法转化为两边都是熟悉函数的方程解得个数问题,再转化为这两个函数的交点个数问题,画出对应函数的函数的图象,利用数形结合思想求解. 3.2【典型考题变式】【变式1:改变条件】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是( ) (A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫⎪⎝⎭【答案】D【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知724b <<.【变式2:改编条件】已知函数f(x)=,函数g(x)=f(1﹣x)﹣kx+k恰有三个不同的零点,则k的取值范围是()A.(﹣2]∪{}B.(﹣2+,0]∪{}C.(﹣2]∪{}D.(﹣2+,0]∪{}【答案】D【解答】函数f(x)=,可得f(1﹣x)=,函数g(x)=f(1﹣x)﹣kx+k恰有三个不同的零点,即为f(1﹣x)=kx﹣k+有三个不同的实根,作出y=f(1﹣x)和y=kx﹣k+的图象,当直线y=kx﹣k+与曲线y=(x≤1)相切于原点时,即k=时,两图象恰有三个交点;当直线y=kx﹣k+与曲线y=(x﹣2)2(1<x<2)相切,设切点为(m,n),可得切线的斜率为k=2(m﹣2),且km﹣k+=(m﹣2)2,解得m=1+,k=﹣2,即﹣2<k≤0时,两图象恰有三个交点;综上可得,k的范围是(﹣2,0]∪{},故选D.【变式3:改编结论】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若方程()()=0f x g x - 恰有2个不同的解,则b 的取值范围是( ) (A )()72,{}4+∞⋃ (B )()2,+∞ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫ ⎪⎝⎭【答案】A【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()(2)0f x f x b +--=有2个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知2b >或47=b ,故选.A.【变式4:改编问法】已知)(x f 是定义在R 上的奇函数,当0≥x 时,)(x f =x x 42-,则方程2)(-=x x f 解的个数为 . 【答案】3【解析】当0<x 时,0>-x ,所以x x x f 4)()(2+-=-,因为)(x f 是定义在R 上的奇函数,所以)()(x f x f -=-=x x 42+,所以x x x f 4)(2--=,所以⎪⎩⎪⎨⎧≥-<--=0,404)(22x x x x x x x f ,,所以2)()(+-=x x f x g =⎪⎩⎪⎨⎧≥+-<+--0,250,2522x x x x x x ,由)(x g y =的图象知,)(x g y =有3个零点,所以方程2)(-=x x f 解的个数为3.4.分段函数图像4.1考题展示与解读例4.(2021高考上海卷14)已知参数方程[]334,1,12x t t t y ⎧=-⎪∈-⎨=⎪⎩,下列选项的图中,符合该方程的是 ( )【答案】B【解析】当0,0,0,t x y ===∴过原点,排除A ;当1t =时1,0x y =-=,排除C 和D ;当31230,340,0,,22x t t t t t =-===-=时,1230,,22y y y ==-=,故选B . 4.2【典型考题变式】【变式1:改编条件】已知函数f (x )=,g (x )=f (x )+x +a .若g (x )存在2个零点,则a的取值范围是( ) A .[﹣1,0)B .[0,+∞)C .[﹣1,+∞)D .[1,+∞)【命题意图探究】本题主要考查利用分段函数图像解含参数函数零点问题,是难题. 【答案】C【解析】由g (x )=0得f (x )=﹣x ﹣a ,作出函数f (x )和y =﹣x ﹣a 的图象如图,当直线y =﹣x ﹣a 的截距﹣a ≤1,即a ≥﹣1时,两个函数的图象都有2个交点,即函数g (x )存在2个零点,故实数a 的取值范围是[﹣1,+∞),故选C .【解题能力要求】数形结合思想、转化思想、分类整合思想、运算求解能力【方法技巧归纳】一般不等式恒成立求参数1.可以选择参变分离的方法,转化为求函数最值的问题;2.也可以画出两边的函数图象,根据临界值求参数取值范围;3.也可转化为()0F x >的问题,转化讨论求函数的最值求参数的取值范围.【变式2:改编条件】已知函数()22,0,{ ,0x x f x x x ≤=>,若函数()()()1g x f x k x =--恰有两个零点,则实数k 的取值范围是A. ()(),14,-∞-⋃+∞B. ][(),14,-∞-⋃+∞ C. [)()1,04,-⋃+∞ D. [)[)1,04,-⋃+∞【答案】C【解析】()()()1g x f x k x =--恰有两个零点,等价于()y f x =与()1y k x =-有两个交点,同一坐标系,画出()y f x =与()1y k x =-的图象,直线过()0,1时, 1k =-,直线与()20y xx =≥,相切时4k =,由图知, [)()1,04,k ∈-⋃+∞时,两图象有两交点,即k 的取值范围是[)()1,04,-⋃+∞,故选C.【变式3:改编结论】已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩,则函数||)(x x f y -=零点个数为 ( ) (A )0 (B )1 (C )2 (D )3 【答案】A【解析】函数||)(x x f y -=零点个数,即为方程||)(x x f =解得个数,即为函数)(x f y =与函数||x y =交点个数,画出函数()f x 的图象与函数||x y =,由图像知,函数)(x f y =与函数||x y =交点个数0, 所以函数||)(x x f y -=零点个数为0,故选A.【变式4:改编问法】已知函数,则函数f (x )的图象是( )A .B .C .D .【答案】D 【解析】函数,当x <0时,函数是二次函数,开口向下,对称轴为x=﹣1,排除选项B ,C ;当x≥0时,是指数函数向下平移1单位,排除选项A ,故选D .5.分段函数性质5.1考题展示与解读例5【2016高考天津理数】已知函数f (x )=2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( )(A )(0,23] (B )[23,34] (C )[13,23]{34}(D )[13,23){34}【命题意图探究】本题主要考查分段函数的性质及函数方程解的个数问题,考查数形结合思想、运算求解能力,是中档题. 【答案】C【解析】由()f x 在R 上递减可知43020131a a a -⎧-≥⎪⎪<<⎨⎪≥⎪⎩,解得1334a ≤≤,由方程|()|2f x x =-恰好有两个不相等的实数解,可知132,12a a ≤-≤,1233a ≤≤,又∵34a =时,抛物线2(43)3y x a x a =+-+与直线2y x =-相切,也符合题意,∴实数a 的去范围是123[,]{}334,故选C.【解题能力要求】数形结合思想、分类整合思想、运算求解能力. 【方法技巧归纳】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 5.2【典型考题变式】【变式1:改编条件】已知函数f (x )=在定义域(﹣∞,+∞)上是单调增函数,则实数a 的取值范围是( ) A .(﹣∞,] B .[,+∞)C .[,]D .(,)【答案】C【解析】由于函数f (x )=在定义域(﹣∞,+∞)上是单调增函数,2a≥e ﹣a ,解得a≥.排除A ,D ,当a=2时,x=1可得e x ﹣2x 2=e ﹣2;2a+lnx=4>e ﹣2,显然不成立,排除B ,故选C .【变式2:改编结论】已知()2243,0,23,0,x x x f x x x x ⎧-+≤=⎨--+>⎩不等式()()2f x a f a x +>-在上恒成立,则实数的取值范围是( ) A. B.C.D.【答案】A【解析】二次函数243x x -+的对称轴是2x =,所以该函数在(],0-∞上单调递减; 2433x x ∴-+≥,同样可知函数223x x --+, 2233x x ∴--+<,在()0,+∞上单调递减, ()f x ∴在R 上单调递减,;,所以由()()2f x a f a x +>-得到2x a a x +<-,即2x a < , 2x a ∴<在[],1a a +上恒成立,()21;2a a a ∴+<∴<-,所以实数a 的取值范围是(),2-∞-,故选A.【变式3:改编问法】已知函数则下列结论错误的是( )A .f (x )不是周期函数B .f (x )在上是增函数C .f (x )的值域为[﹣1,+∞)D .f (x )的图象上存在不同的两点关于原点对称 【答案】D 【解析】函数的图象如图所示,则f (x )不为周期函数,A 正确;f (x )在[﹣,+∞)递增,B 正确;f (x )的最小值为﹣1,无最大值,则C 正确;由于x <0时,f (x )=sinx ,与原点对称的函数为y=sinx (x >0),而sinx=x 在x >0无交点,则D 不正确,故选D .6.分段函数的综合应用6.1考题展示与解读例2【2018全国卷Ⅰ】设函数2,0()1,0-⎧=⎨>⎩≤x x f x x ,则满足(1)(2)+<f x f x 的x 的取值范围是( )A .(,1]-∞-B .(0,)+∞C .(1,0)-D .(,0)-∞【命题意图探究】本题主要考查分段函数不等式及分类整合思想,是中档题. 【答案】D【解析】当0x ≤时,函数()2xf x -=是减函数,则()(0)1f x f =≥,作出()f x 的大致图象如图所示,结合图象可知,要使(1)(2)+<f x f x ,则需102021x x x x +<⎧⎪<⎨⎪<+⎩或1020x x +⎧⎨<⎩≥,所以0x <,故选D .【解题能力要求】分类整合思想、运算求解能力.【方法技巧归纳】分段函数的不等式问题:利用分类整合思想,化为若干个不等式组问题,解出各个不等式组的解集,其并集就是所求不等式的解集.6.2【典型考题变式】【变式1:改编条件】已知函数f (x )=,则不等式f (x+2)<f (x 2+2x )的解集是( )A .(﹣2,1)B .(0,1)C .(﹣∞,﹣2)∪(1,+∞)D .(1,+∞)【答案】C【解析】函数f (x )=,可得x≥0,f (x )递增;x <0时,f (x )递增;且x=0时函数连续,则f (x )在R 上递增,不等式f (x+2)<f (x 2+2x ),可化为x+2<x 2+2x ,即x 2+x ﹣2>0,解得x >1或x <﹣2,则原不等式的解集为(﹣∞,﹣2)∪(1,+∞),故选C .【变式2:改编结论】.已知函数(),0{2,lnx x e f x lnx x e<≤=->,若正实数,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围为( )A. ()2,e eB. ()21,e C. 1,e e ⎛⎫ ⎪⎝⎭ D. 21,e e⎛⎫ ⎪⎝⎭【答案】A【解析】作出)(x f 的图像,不妨设c b a <<,由图知,201a b e c e <<<<<<,由题知,|ln ||ln |b a =,即b a ln ln =-,所以0)ln(ln ln ==+ab b a ,所以ab =1,则c abc =),(2e e ∈,故选A.【变式3:改编问法】已知函数f (x )=,函数y=f (x )﹣a 有四个不同的零点,从小到大依次为x 1,x 2,x 3,x 4,则x 1x 2+x 3x 4的取值范围为( ) A .[4,5) B .(4,5] C .[4,+∞) D .(﹣∞,4]【答案】A【解析】当x >0时,f (x )=x+﹣3≥2﹣3=1,可得f (x )在x >2递增,在0<x <2处递减,由f(x )=e,x≤0,当x <﹣1时,f (x )递减;﹣1<x <0时,f (x )递增,可得x=﹣1处取得极小值1,作出f (x )的图象,以及直线y=a ,可得e=e=x 3+﹣3=x 4+﹣3,即有x 1+1+x 2+1=0,可得x 1=﹣2﹣x 2,﹣1<x 2≤0,x 3﹣x 4=﹣=,可得x 3x 4=4,x 1x 2+x 3x 4=4﹣2x 2﹣x 22=﹣(x 2+1)2+5,在﹣1<x 2≤0递减,可得所求范围为[4,5),故选A .三、课本试题探源必修1 P39页习题1.3 A 第6题:已知函数)(x f 是定义域在R 上的奇函数,当0≥x 时,)(x f =)1(x x +.画出函数)(x f 的图象,并求出函数的解析式.【解析】当0<x 时,0>-x ,所以)1()(x x x f --=-, 因为函数)(x f 是定义域在R 上的奇函数, 所以)1()()(x x x f x f --=-=-, 所以)1()(x x x f -=, 所以函数的解析式⎩⎨⎧≥+<-=0),1(0),1()(x x x x x x x f ,函数图象如下图所示:四.典例高考试题演练一、单选题1.(2021·四川成都零模(文))已知函数2log (2),1()e ,1xx x f x x -<⎧=⎨≥⎩则(2)(ln 4)f f -+=( ) A .2 B .4C .6D .8【答案】C 【分析】分别求出()2f -和()ln 4f 的值再求它们的和,从而可得正确的选项. 【详解】()22log 42f -==,()ln4ln 44f e ==,故(2)(ln 4)6f f -+=,故选:C. 【点睛】易错点睛:本题考查分段函数的函数值的计算,注意根据自变量的大小选择合适的解析式来计算,本题属于基础题.2.(2021·四川射洪模拟(理))定义函数()[[]]f x x x =,其中[]x 表示不超过x 的最大整数,例如:[1.3]1=,[ 1.5]2-=-,[2]2=.当*[))0,(x n n N ∈∈时,()f x 的值域为n A .记集合n A 中元素的个数为n a ,则2020211i i a =-∑的值为( ) A .40402021B .20192021C .20192020D .20191010【答案】D【分析】先根据条件分析出当[)0,x n ∈时,集合n A 中的元素个数为222n n n a -+=,进而可得111211n a n n ⎛⎫=- ⎪--⎝⎭,再结合裂项相消法进行求和可得结果. 【详解】因为[][)[)[)[)0,0,11,1,22,2,3......1,1,x x x x n x n n ⎧∈⎪∈⎪⎪=∈⎨⎪⎪-∈-⎪⎩,所以[][)[)[)()[)0,0,1,1,22,2,3......1,1,x x x x x x x n x x n n ⎧∈⎪∈⎪⎪=∈⎨⎪⎪-∈-⎪⎩,所以[]x x 在各个区间中的元素个数分别为:1,1,2,3,4,......,1n -,所以当[)*0,,x n n N ∈∈时,()f x 的值域为n A ,集合n A 中元素个数为:()()2121123 (1122)n n n n n a n --+=+++++-=+=,所以()1112211n n a n n ⎛⎫=-≥ ⎪--⎝⎭, 所以2020211111112019212...22112232019202020201010i ia =⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭∑,故选:D. 3.(2021·山东高三其他模拟)已知函数1,(1)()(2)3,(1)x a x f x a x a x -⎧<=⎨-+≥⎩,满足对任意12x x ≠,都有1212()()0f x f x x x -<-成立,则a 的取值范围是( )A .()0,1a ∈B .3,14a ⎡⎫∈⎪⎢⎣⎭C .30,4a ⎛⎤∈ ⎥⎝⎦D .3,24a ⎡⎫∈⎪⎢⎣⎭【答案】C 【分析】 将条件()()12120f x f x x x -<-等价于函数函数()f x 为定义域上的单调减函数,由分段函数的单调性要求,结合指数函数、一次函数的单调性得到关于a 的不等式组,求解即得. 【详解】由题意,函数()f x 对任意的12x x ≠都有()()12120f x f x x x -<-成立,即函数1,(1)()(2)3,(1)x a x f x a x a x -⎧<=⎨-+≥⎩为R 上的减函数,可得0120,123a a a a<<⎧⎪-<⎨⎪≥-+⎩解得304a <≤,故选:C.4.(2021·江苏南京模拟(理))我们知道,任何一个正实数N 都可以表示成10110,()n N a a n Z =⨯≤<∈.定义:(),00,0N n W N N n ≥⎧⎨<⎩的整数部分的位数=的非有效数字的个数,如()()()2211.2103,(1.2310)2,3102, 3.001101W W W W --⨯=⨯=⨯=⨯=,则下列说法错误的是( )A .当1,1M N >>时,()()()W M N W M W N ⋅=+B .当0n <时,()W N n =-C .当0,()1n W N n >=+D .若1002,lg 20.301N ≈=,则()31W N = 【答案】A【分析】A .理解()W N 的含义,举例分析即可;B .根据0n <分析所表示数的特点,由此可得()W N 的结果;C .根据0n >分析所表示数的特点,由此可得()W N 的结果;D .先将N 化为10110,()n N a a n Z =⨯≤<∈的形式,然后计算出()W N 的值.【详解】当[)0,100N ∈时,N 的整数部分位数为2,当[)100,1000N ∈,N 的整数部分位数为3,一般地,)()110,100,1,2,3,4,......n n N n +⎡∈=⎣时,N 的整数部分位数为1n +; 当[)0.1,1N ∈时,N 的非有效数字0的个数为1,当[)0.01,0.1N ∈时,N 的非有效数字0的个数为2,一般地,)()110,101,2,3,4,5,......n n N n +⎡∈=-----⎣时,N 的非有效数字0的个数为n -,A .取210,10M N ==,所以()()()()33,2,104W M W N W M N W ==⋅==,()()325W M W N +=+=,所以()()()W M N W M W N ⋅≠+,故错误;B .当0n <时,)11010,10n n n N a +⎡=⨯∈⎣,N 的非有效数字0的个数为n -,所以()W N n =-,故正确;C .当0n >时,)11010,10n n n N a +⎡=⨯∈⎣,N 整数部分位数为1n +,所以()1W N n =+,故正确; D .因为1002N =,所以lg =100lg230.1N ≈,所以30.110N ≈,所以)303110,10N ⎡∈⎣,所以()30131W N =+=,故正确,故选:A.【点睛】关键点点睛:解答本题的关键在于理解()W N 的含义以及计算的方法, 通过对10n N a =⨯的分析,首先判断n 与0的关系,然后决定采用哪一种计算方法(类似分段函数).5.(2021·安徽皖江名校联考)已知函数()()21log ,112,1a x x f x x a x ⎧+≤-⎪=⎨++>-⎪⎩,方程()10f x -=有两解,则a 的取值范围是( ) A .1(,1)2B .1(0,)2C .(0,1)D .()1,+∞【答案】B【分析】根据已知条件对a 进行分类讨论:01a <<、1a >,然后分别考虑每段函数的单调性以及取值范围,确定出方程()10f x -=有两解时a 所满足的不等式,由此求解出a 的取值范围. 【详解】因为()()21log ,112,1a x x f x x a x ⎧+≤-⎪=⎨++>-⎪⎩,所以0a >且1a ≠, 当01a <<时,()f x 在(,1]x ∈-∞-时单调递增,所以()()max 11f x f =-=; 又()f x 在()1,x ∈-+∞时单调递增,且()()12f x f a >-=, 因为方程()10f x -=有两解,所以21a <,所以102a <<; 当1a >时,()f x 在(,1]x ∈-∞-时单调递减,()()min 11f x f =-=; 又()f x 在()1,x ∈-+∞时单调递增,()()12f x f a >-=, 因为方程()10f x -=要有两解,所以21a <,此时不成立. 综上可得10,2a ⎛⎫∈ ⎪⎝⎭,故选:B.【点睛】方法点睛:根据方程解的个数求解参数范围的常见方法:方法(1):将方程解的个数问题转化为函数的图象的交点个数问题,通过图象直观解答问题;方法(2):若方程中有指、对数式且底数为未知数,则需要对底数进行分类讨论,然后分析()f x 的单调性并求解出其值域,由此列出关于参数的不等式,求解出参数范围.6.(2021·山东济南模拟)若函数()()()2,232ln 1,2ax x f x a x x -≤⎧=⎨-->⎩在R 上单调递增,则实数a 的取值范围是( ) A .(]0,1 B .(]0,2C .30,2⎛⎫ ⎪⎝⎭D .31,2⎡⎫⎪⎢⎣⎭【答案】A 【分析】由分段函数单调递增的特性结合单调增函数的图象特征列出不等式组求解即得. 【详解】因函数()()()2,232ln 1,2ax x f x a x x -≤⎧=⎨-->⎩在R 上单调递增,则有2y ax =-在(,2]-∞上递增,()()32ln 1y a x =--在(2,)+∞上也递增, 根据增函数图象特征知,点(2,22)a -不能在点(2,0)上方,于是得0320220a a a >⎧⎪->⎨⎪-≤⎩ ,解得01a <≤,所以实数a 的取值范围是(]0,1. 故选:A7.(2021·山西名校联考)已知函数()cos ()ln f x x g x x ==,用max{,}a b 表示a ,b 中的最大值,则函数{}()max (),()(0)h x f x g x x =>的零点个数为( ) A .0 B .1C .2D .3【答案】C 【分析】分1x >,1x =,01x <<三种情况讨论可得结果. 【详解】 分三种情况讨论:① 当1x >时,()ln 0g x x =>,所以()()0h x g x ≥>,故()h x 无零点;② 当1x =时,(1)cos110f =-<,(1)0g =,所以(1)0h =,故1x =是()h x 的零点;③ 当01x <<时,()ln 0g x x =<,所以()f x 的零点就是()h x 的零点.显然,()cos f x x =(0,1)上单调递减,且(0)10=>f ,(1)cos110f =-<, 故()f x 在(0,1)内有唯一零点,即()g x 在(0,1)内有唯一零点. 综上可知,函数()h x 在0x >时有2个零点. 故选:C. 【点睛】关键点点睛:本题的关键点是:分1x >,1x =,01x <<三种情况讨论.8.(2021·北京市十一学校高三其他模拟)已知函数()22,0313,0x x f x x x ⎧≤⎪=⎨--+>⎪⎩,若存在唯一的整数x ,使得()10f x x a->-成立,则满足条件的整数a 的个数为( ) A .2 B .3C .4D .无数【答案】C 【分析】作出f (x )的函数图象,利用直线的斜率,根据不等式只有1整数解得出a 的范围. 【详解】作出f (x )的函数图象如图所示:()1f x x a--表示点(,())x f x 和点(,1)a 所在直线的斜率,即曲线上只有一个点(,())x f x 且x 是整数和点(,1)a 所在直线的斜率大于零.如图所示,动点(,1)a 在直线1y =上运动.因为(0)0,(1)3,(2)0f f f ===,当[1,0]a ∈-时,只有点(1,3)这个点满足()10f x x a ->-,当[1,2]a ∈时,只有点(0,0)这个点满足()10f x x a->-. 所以a ∈][1,01,2⎡⎤-⋃⎣⎦.所以满足条件的整数a 有4个.故选:C.【点睛】关键点睛:本题主要考查函数的图像,考查直线的斜率,关键在于考查学生对这些知识的掌握水平和数形结合分析推理能力. 二、多选题9.(2021·重庆高三三模)()f x 是定义在R 上周期为4的函数,且()(](]1,112,1,3x f x x x ⎧∈-⎪=⎨--∈⎪⎩,则下列说法中正确的是( ) A .f ()x 的值域为[]0,2B .当(]3,5x ∈时,()f x =C .()f x 图象的对称轴为直线4,x k k Z =∈D .方程3f x x 恰有5个实数解【答案】ABD 【分析】画出()f x 的部分图象结合图形分析每一个选项即可. 【详解】根据周期性,画出()f x 的部分图象如下图所示,由图可知,选项A ,D 正确,C 不正确;根据周期为4,当(3,5]x ∈时,()(4)f x f x =-==B 正确.故选:ABD.10.(2021·辽宁铁岭二模)设函数()21,0,cos ,0.x x f x x x ⎧+≥=⎨<⎩则( )A .()f x 是偶函数B .()f x 值域为[)1,-+∞C .存在00x <,使得()()00f x f =D .()f x 与()f x -具有相同的单调区间【答案】BC【分析】根据函数奇偶性的定义判断A ,由分段函数求值域确定B ,由余弦函数性质确定C ,由二次函数及余弦函数的单调性确定D.【详解】因为()21,0,cos ,0.x x f x x x ⎧+≤-=⎨>⎩.所以()()f x f x -≠,()f x 不是偶函数,故选项A 错误. 当0x ≥时,211x +≥,当0x <时,cos [1,1]x ∈-,所以()f x 值域为[)1,-+∞,故B 正确; 因为()01f =,()21f π-=,选项C 正确.因为()f x 具有单调性的区间与()f x -具有单调性的区间不同,是数轴上关于原点对称的,选项D 错误(由()f x -表达式也可以看出).故选:BC 。
高一函数知识点分段函数
![高一函数知识点分段函数](https://img.taocdn.com/s3/m/9fb8a334f342336c1eb91a37f111f18583d00c89.png)
高一函数知识点分段函数高一函数知识点:分段函数一、概念介绍分段函数是指在定义域上根据不同区间的取值范围,使用不同的函数表达式定义的函数。
分段函数通常由若干段不同的函数组成,每一段函数可以有不同的表达式。
二、分段函数的表示方式分段函数可以用以下两种表示方式来呈现:1. 显性表示法:即明确给出每个区间上的函数表达式。
例如:当x ≤ a 时,f(x) = g(x)当a ≤ x ≤ b 时,f(x) = h(x)当 x > b 时,f(x) = i(x)2. 隐式表示法:即通过给出条件来定义每个区间上的函数表达式。
例如:当x ≤ a 时,f(x) 满足某个条件当a ≤ x ≤ b 时,f(x) 满足另一个条件当 x > b 时,f(x) 满足另一个条件三、分段函数的图像特点分段函数的图像通常表现出不连续性,即在不同的区间上存在跳变的情况。
在每个区间上,函数的图像可能是线性的、二次的、指数的等等,根据具体的函数表达式而定。
四、分段函数的求值和应用求解分段函数的值时,需要根据给定的定义域范围和不同的函数表达式来进行判断。
对于不同的自变量取值,根据定义域上的条件进行判断,选择相应的函数表达式进行计算。
分段函数在实际应用中有广泛的用途,例如在经济学中表示不同收入范围对应的税率,或者在物理学中表示不同速度范围下的物体运动规律。
通过分段函数的定义,我们能够更好地描述和解决实际问题。
五、分段函数的求导与积分对于分段函数的求导和积分,需要分别对每个区间上的函数表达式进行求导和积分操作,然后整合得到整个定义域范围上的结果。
求导和积分的过程需要注意每个区间的不连续点,以及在不同区间上函数表达式发生变化的情况。
六、例题解析以下是一个简单的分段函数例题解析:已知分段函数 f(x) 如下:当x ≤ 0 时,f(x) = x当 x > 0 时,f(x) = x + 1根据定义,我们可以将函数 f(x) 分为两个区间:1. 当x ≤ 0 时,f(x) = x2. 当 x > 0 时,f(x) = x + 1根据定义域的范围和不同的函数表达式,我们可以计算任意自变量在定义域上的函数值。
分段函数及映射课件新人教A版必修
![分段函数及映射课件新人教A版必修](https://img.taocdn.com/s3/m/5a42ad5df8c75fbfc67db217.png)
1.通过具体实例,了解简 1.分段函数求值.(重
单的分段函数,并能简单 点)
应用.
2.对映射概念的理解
2.了解映射的概念.
.(难点)
•1.若f(2x+1)=x2+1,则f(x)=________.
•解析: (1)此函数图象是直线y=x的一部分.
•(2)此函数的定义域为{-2,-1,0,1,2},所以 其图象由五个点组成,这些点都在直线y=1- x上.(这样的点叫做整点)
多的情况.只能是“多对一”或“一对一”形 式.
•【错解】 (1)、(2)、(3)、(4)
•(2)如图所示.
•在函数y=3x+5的图象上截取x≤0的部分, •在函数y=x+5的图象上截取0<x≤1的部分, •在函数y=-2x+8的图象上截取x>1的部分 . •图中实线组成的图形就是函数f(x)的图象. •(3)由函数图象可知,当x=1时,f(x)取最大值 为6.
•[题后感悟] (1)分段函数求值,一定要注意 所给自变量的值所在的范围,代入相应的解析 式求得. •(2)若题目是含有多层“f”的问题,要按照“由 里到外”的顺序,层层处理.
•①令每个绝对值符号内的式子等于0,求出 对应的x值,设为x1,x2; •②把求出的x值标在x轴上,如图. •③根据x值把实轴所分的部分进行讨论,分 x≤x1,x1<x≤x2,x≥x2.
•(2)对含有绝对值的函数,要作出其图象,首 先应根据绝对值的意义去掉绝对值符号,将函 数转化为分段函数,然后分段作出函数图象. 由于分段函数在定义域的不同区间内解析式不 一样,因此画图时要特别注意区间端点处对应 点的实虚之分.
•4.设M={x|0≤x≤3},N={y|0≤y≤3},给出4个 图形,其中能表示从集合M到集合N的映射关 系的有( )
高中数学第一章集合与函数概念1.2函数及其表示1.2.2函数的表示法第2课时分段函数与映射课件
![高中数学第一章集合与函数概念1.2函数及其表示1.2.2函数的表示法第2课时分段函数与映射课件](https://img.taocdn.com/s3/m/584f030a24c52cc58bd63186bceb19e8b8f6ecc7.png)
A.0
B.π
C.π2 D.9
解析:f(f(-3))=f(0)=π.
答案:B
||
2.函数 f(x)=x+ 的图象是(
||
解析:f(x)=x+
答案:C
)
)
+ 1, > 0,
=
是分段函数.
-1, < 0
当堂检测
探究一
探究二
探究三
探究四
思想方法
当堂检测
3.已知A=R,B={x|x≥1},映射f:A→B,且A中元素x与B中元素y=x2+1
解:(1)函数 y=
探究一
探究二
探究三
探究四
思想方法
当堂检测
反思感悟 1.因为分段函数在定义域的不同区间内解析式不一样,
所以它的图象也由几部分构成,有的可以是光滑的曲线段,有的也
可以是一些孤立的点或几段线段,画图时要特别注意区间端点处对
应点的实虚之分.
2.对含有绝对值的函数,要作出其图象,第一根据绝对值的意义去
通过图象得出实数根的个数.但要注意这种方法一般只求根的个数,
不需知道实数根的具体数值.
探究一
探究二
探究三
探究四
思想方法
当堂检测
变式训练 讨论关于x的方程|x2-4x+3|=a(a∈R)的实数解的个数.
解:作函数y=|x2-4x+3|及y=a的图象如图所示,
方程|x2-4x+3|=a的实数解就是两个函数图象的交点(纵坐标相等)
自己的身高;
③A={非负实数},B=R,f:x→y= 3 .
A.0个 B.1个 C.2个D.3个
分段函数与映射
![分段函数与映射](https://img.taocdn.com/s3/m/3bb59892da38376bae1fae36.png)
分段函数与映射知识点一 分段函数在函数的定义域内,对于自变量x 的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.(1)分段函数虽然由几部分构成,但它仍是一个函数而不是几个函数.(2)分段函数的“段”可以是等长的,也可以是不等长的.如y =⎩⎨⎧1,-2≤x ≤0,x ,0<x ≤3,其“段”是不等长的.知识点二 映射设A 、B 是两个非空集合,如果按某一个确定的对应关系,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.,映射由三要素组成,集合A ,B 以及A 到B 的对应关系,集合A ,B 可以是非空的数集,也可以是点集或其他集合. [小试身手]1.判断(正确的打“√”,错误的打“×”)(1)映射中的两个非空集合并不一定是数集.( ) (2)分段函数由几个函数构成.( )2|x|≤1,2|x|>1,1 2B.413f f n+5,n∵f⎝⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-判断自变量的取值范围,代入相应的解析式求解. 方法归纳(1)分段函数求值,一定要注意所给自变量的值所在的范围,代入相应的解析式求得.(2)像本题中含有多层“f ”的问题,要按照“由里到外”的顺序,层层处理.(3)已知函数值求相应的自变量值时,应在各段中分别求解.跟踪训练1已知f (x )=⎩⎪⎨⎪⎧x +1 x >0,πx =0,0x <0,求f (-1),f (f (-1)),f (f (f (-1))).解析:∵-1<0,∴f (-1)=0, ∴f (f (-1))=f (0)=π, ∴f (f (f (-1)))=f (π)=π+1.根据不同的取值代入不同的解析式.类型二 分段函数的图象及应用例 2 (1)如图为一分段函数的图象,则该函数的定义域为________,值域为________;x|-x(-2<x≤2).2①用分段函数的形式表示该函数;。
分段函数及映射 课件
![分段函数及映射 课件](https://img.taocdn.com/s3/m/efc543ae05a1b0717fd5360cba1aa81144318f28.png)
类型三 映射的概念及应用
【典例3】(1)(2022·重庆高一检测)设集合
A={x|1≤x≤2},B={y|1≤y≤4},则下述对应关系f中,
不能构成A到B的映射的是 ( )
A.f:x→y=x2
B.f:x→y=3x-2
C.f:x→y=-x+4
D.f:x→y=4-x2
(2)(2022·吉安高一检测)已知集合A=B=R,x∈A, y∈B,f:x→y=ax+b,若6和9在f作用下分别与4和10对应, 则19在f作用下与________对应.
【方法总结】 1.求分段函数值的方法 先确定要求值的自变量属于哪一段,然后代入该段的解 析式求值,直到求出值为止.特别地,当出现f(f(x0))的 形式时,应从内到外依次求值.
2.已知函数值求字母的值的四个步骤 (1)讨论:对字母的取值范围分类讨论. (2)代入:由不同取值范围,代入对应的解析式中. (3)求解:通过解方程求出字母的值. (4)检验:检验所求的值是否在所讨论的区间内.
f
1
3
1 3
.
所以
f(
f
1
3
)
f( 1) 3
1 (1 )2 3
8. 9
答案:8
9
【延伸探究】 1.本例条件不变,求f(a)的值. 【解析】当a≤1时,f(a)=1-a2, 当a>1时,f(a)=a2-a-3.
2.本例若增加条件f(a)+f(-1)=3,求a的值. 【解析】因为-1<1,所以f(-1)=1-(-1)2=0,当a≤1 时,f(a)+f(-1)=1-a2=3,无解. 当a>1时,f(a)+f(-1)=a2-a-3=3, 即a2-a-6=0,所以a=3或a=-2(舍). 所以a=3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析: (1)A,B,D符合映射定义,C中x∈[0,2) 时,每一个x都有两个元素与之对应,故不是映 射. (2)C中,b元素无对应元素,且a元素有两个元素 与之对应. 答案: (1)C (2)C
工具
必修1 第一章 集合与函数概念
栏目导引
分段函数
x+2x<0 已知函数 f(x)=x20≤x<2 ,
工具
必修1 第一章 集合与函数概念
栏目导引
[思路点拨] 根据映射的定义,判断一个对应是 否为映射,只要检验对A中的任何元素,按对应 关系f,是否在B中都有唯一元素与之对应.
工具
必修1 第一章 集合与函数概念
栏目导引
(1)不是.当 x=2∈A 时, |x-2|=0∉B, 即 A 中的元素 2 在 B 中没有元素和它对应, 所以(1)不是映射. (2)是.∵y=x2-2x+3=(x-1)2+2≥2, ∴对任意的 x,总有 y≥2. 又当 x∈N 时,x2-2x+3 必为整数,即 y∈Z. ∴当 x∈A 时,x2-2x+3∈B. ∴对 A 中每一个元素 x,在 B 中都有唯一的 y 与 之对应.故(2)是映射.
工具
必修1 第一章 集合与函数概念
栏目导引
2.(1)已知 f(x)=2xx2,,xx≥<00 ,若 f(x)=16,则 x
的值为________.
x,x≤-2
(2)函数 f(x)=x+1,-2<x<4 3x,x≥4
,若 f(a)<-3,则
a 的取值范围是________.
工具
必修1 第一章 集合与函数概念
工具
必修1 第一章 集合与函数概念
栏目导引
1.(1)设 A={x|0≤x≤2},B={y|1≤y≤2},在图 中不能表示从集合 A 到集合 B 的映射的是( )
(2)已知集合 A={a,b},B={0,1},则下列对应不 是从 A 到 B 的映射的是( )
工具
必修1 第一章 集合与函数概念
栏目导引
第2课时 分段函数和映射
工具
必修1 第一章 集合与函数概念
栏目导引
映射的概念
下列对应是不是从 A 到 B 的映射? (1)A=B=N*,f:x→|x-2|; (2)A={x|x≥2,x∈N},B={y|y≥0,y∈Z}, f:x→y=x2-2x+3; (3)A={平面内的圆},B={平面内的矩形},对应 关系 f:作圆的内接矩形; (4)A={高一·一班的男生},B={男生的身高},对 应关系 f:每个男生对应自己的身高.
工具
必修1 第一章 集合与函数概念
栏目导引
(3)因为一个圆有无数个内接矩形,即集合A中任 何一个元素在集合B中有无数个元素与之对应, 故不是映射. (4)对A中任何一个元素,按照对应关系f,在B中 都有唯一一个元素与之对应,符合映射定义, 是映射.
工具
必修1 第一章 集合与函数概念
栏目导引
判断对应关系f:A→B是否为集合A到集合B的映 射的方法 (1)明确集合A、B中的元素. (2)判断A的每一个元素是否在集合B中有唯一元 素与之相对应.若进一步判断是否为一一映射, 还需注意B中的每一个元素在A中都有元素与之对 应,集合A中的不同元素对应的元素不相同.
栏目导引
解析: (1)当 x<0 时,2x=16,无解;当 x≥0 时,x2=16,解得 x=4. (2)当 a≤-2 时,f(a)=a<-3,此时不等式的解 集为 a<-3. 当-2<a<4 时,f(a)=a+1<-3,此时不等式无解. 当 a≥4 时,f(a)=3a<-3,此时不等式无解. 所以,a 的取值范围是(-∞,-3).
工具
必修1 第一章 集合与函数概念
栏目导引
(1)f-12=-12+2=32.2 分 ∴ff-12=f32=322=94,4 分 ∴fff-21=f94=12×94=98.6 分 (2)当 f(x)=x+2=2 时,x=0,不符合 x<0. 当 f(x)=x2=2 时,x=± 2,其中 x= 2符合 0≤x<2. 8分
当 f(x)=12x=2 时,x=4,符合 x≥210 分 综上,x 的值是 2或 4.12 分
工具
必修1 第一章 集合与函数概念
栏目导引
解析: (1)当 x<0 时,y=-2(x -1)+3x =x+2; 当 0≤x<1 时,y=-2(x-1)-3x =-5x+2; 当 x≥1 时,y=2(x-1)-3x=-x -2.
x+2, x<0,
因此 y=-5x+2, 0≤x<1, -x-2, x≥1.
工具
必修1 第一章 集合与函数概念
栏目导引
(1)分段函数求值,一定要注意所给自变量的值 所在的范围,代入相应的解析式求得. (2)多层“f ”的问题,要按照“由里到外”的顺 序,层层处理. (3)已知分段函数的函数值求相对应的自变量的 值,可分段利用函数解析式求得自变量的值, 但应注意检验分段解析式的适用范围,也可先 判断每一段上的函数值的范围,确定解析式再 求解.
12xx≥2 (1)求 fff-21的值, (2)若 f(x)=2,求 x 的值.
工具
必修1 第一章 集合与函数概念
栏目导引
[思路点拨] 分段考虑求值即可. (1)先求 f-12,再求 ff-21,最后求 fff-12; (2)分别令 x+2=2,x2=2,12x=2,分段验证求 x.
工具
必修1 第一章 集合与函数概念
依上述解析式作出图象,如图. (2)由图象可以看出:所求值域为(-∞,2].
工具
必修1 第一章 集合与函数概念
栏目导引
(1)分段函数的解析式因其特点可以分成两个或两 个以上的不同部分,所以它的图象也由几部分构 成,有的可以是光滑的曲线段,有的也可以是一 些孤立的点或几段线段,而分段函数的定义域与 值域的最好求法也是“图象法”. (2)对含有绝对值的函数,要作其图象,首先根据 绝对值的意义去掉绝对值符号,将函数转化为分 段函数来画图象.
答案: (1)4 (2)(-∞,-3)
工具
必修1 第一章 集合与函数概念
栏目导引
分段函数的图象
已知函数f(x)=2|x-1|-3|x|,x∈R. (1)画出函数f(x)的图象; (2)求函数f(x)的值域. [思路点拨] 本题为含有绝对值的函数,应先用 零点分段讨论法去掉绝对值符号,再画出分段函 数的图象,然后解之.