余角和补角练习题汇编
余角和补角练习题
![余角和补角练习题](https://img.taocdn.com/s3/m/41b0db8b27fff705cc1755270722192e453658bd.png)
余角和补角练习题一、选择题1. 若一个角的度数是30°,则它的余角的度数是()A. 30°B. 60°C. 150°D. 120°2. 若一个角的度数是135°,则它的补角的度数是()A. 45°B. 135°C. 45°D. 135°3. 下列哪个角的余角是直角?()A. 30°B. 60°C. 90°D. 120°4. 下列哪个角的补角是周角?()A. 90°B. 180°C. 270°D. 360°二、填空题1. 一个角的度数是50°,它的余角是______°,补角是______°。
2. 若一个角的补角比它的余角大60°,则这个角的度数是______°。
3. 两个互为余角的角分别是25°和______°。
4. 两个互为补角的角分别是x°和(180 x)°,若x = 100,则另一个角的度数是______°。
三、判断题1. 一个角的余角和补角的和是180°。
()2. 所有锐角的补角都是钝角。
()3. 若两个角的和是90°,则这两个角互为补角。
()4. 若两个角的和是180°,则这两个角互为余角。
()四、解答题1. 已知一个角的度数是80°,求它的余角和补角的度数。
2. 设一个角的度数是x°,求它的余角和补角的度数。
3. 在一个三角形中,若一个内角的度数是70°,求其余两个内角的补角的度数。
4. 若两个角的和是360°,这两个角互为余角还是补角?为什么?5. 在一个四边形中,若四个内角的度数之和是360°,求其中任意两个相邻内角的补角的度数。
(完整版)余角和补角练习题大全及答案
![(完整版)余角和补角练习题大全及答案](https://img.taocdn.com/s3/m/591ddce53968011ca2009101.png)
余角与补角练习题及答案A 卷:基础题一、选择题1.如图1所示,直线 AB, CD 相交于点O, OEIAB 那么下列结论错误的是( )A . / AOC 与/ COES 为余角B . / BOD 与/ COES 为余角C . / COE 与/ BOES 为补角D . / AOC 与/ BOD 是对顶角3.下列说法正确的是( )二、填空题如图4所示,直线 AB, CD 相交于点 0, 0M 丄AB ?若/ COB=?135? ?则/ MOD 三三、解答题10.如图所示,直线 AB, CD 相交于点O,/ BOE=90,若/ COE=55 , ?求/ BOD 的度数.2.如图所示,/1与/2是对顶角的是(A .锐角一定等于它的余角 .钝角大于它的补角 C .锐角不小于它的补角 .直角小于它的补角 4.如图2所示,AOL OC BOL DO 则下列结论正确的是(B . / 2=/3 CD . / 仁/2=/ 3* :伞已知/ 1与/ 2互余,且/1=35 ,则/ 2的补角的度数为如图3所示,直线a 丄b ,垂足为OL 是过点0的直线,/ 1=40°,则/ 2=三条直线相交于一点,共有对对顶角.9. 如图5所示,AB 丄CD 于点C, CE1CE 则图中共有对互余的角.BDa11.如图所示,直线 AB 与CD 相交于点 0, 0E 平分/ AOD / AOC=?120?.求/ B0D / A0E 的度数.二、知识交叉题一、七彩题1.(一题多解题)B 卷:提高题如图所示,三条直线 AB CD, EF 相交于点0,/ A0F=3/ F0B/ A0C=90 , 求/ E0C 的度数.2.(科内交叉题) 一个角的补角与这个角的余角的和比平角少 10°,求这个角.3.(科外交叉题) 如图所示,当光线从空气射入水中时,光线的传播方向发生了改变,这就度.C是光的折射现象.若/1=42则/ 1与/ 2的关系一定成立的是(参考答案点拨:因为/ COE 与/ DOE 互为补角,所以 C 错误,故选C.2.所以/ AOC=90 ,/ BOD=90 ,4.点拨:因为 AOL 0C BOL DO 即/ 3+/ 2=90,/ 2+ / 1=90°,三、实际应用题4.如图所示是一个经过改造的台球桌面的示意图,图中4个角上的阴影部分分别表示 4个入球袋.如果一个球按图中所示的方向被击出(?假设用足够的力气击出, 使球可以经过多次反射),那么该球最后落入哪个球袋?在图上画出被击的球所走路程.1号球袋2号球袋3四、经典中考题5. (2007,济南,4分)已知:如图所示,AB 丄CD 垂足为点 0, EF 为过点0?的一条直线,6. A.相等 B .互余 C .互补.互为对顶角(2008,南通,3分)已知/ A=40°则/ A 的余角等于1.根据同角的余角相等可得/ 1 = / 3,故选C.125 ° 点拨:因为/ 1与/ 2互余,所以/ 1+/ 2=90 °,所以/ MOD / BOD=90 , 所以/ MOD=90 - / BOD又因为/ BOD=180 - / COB=180 -135 ° =45 °, 所以/ MOD=90 -45 ° =45°.6 点拨:如图所示,直线 AB, CD EF 相交于点 O,/ AOD 与/ BOC / AOE 与/ BOF / DOE 与/ COF / DOBWZ COA / EOB 与/ FOA / EOC 与/ FOD?匀分别构成对顶角, 共有 6对对顶角.由CE 丄CF ,可得/ ECD 与/ DCF 互余,又由于/ 所以/ ACE 与/ BCF 互余,共有 4对.10.解:因为/ BOE 与/ AOE 互补,/ BOE=90 ,所以/ AOE=180 - / BOE=?180 -90 ° =90°,即/ COE / COA=90 , 又/ COE=55,所以/ COA=90 - / COE=90 -?55 ° =35 ° , 因为直线 AB, CD 相交于点 O,所以/ BOD / COA=35 .11.解:因为直线 AB 与CD 相交于点 O 所以/ BOD / AOC=120 ,因为/ AOC+/ AOD=180,所以/ AOD=180 -120 ° =60 ° , 因为 OE 平分/ AOD 所以/ AOE=~ / AOD 二 X 60° =30°.2 25. 6. 7. 又因为/ 1=35°, ?所以/所以 180° - / 2=180° -55 50° 点拨:由已知可得/ / 2=90° - / 1=90° -?40 2=90 ° -35=55=125°,即/ 2?的补角的度数是125°.1 + / 2=180° -90 ° =90=5045° 点拨:因为 OML AB,9. 4 点拨:由AB 丄CD 可得/ ACE 与/ ECD 互余,/ DCF 与/ FCB 互余.ACB 为平角,点拨:由/ BOD与/ AOC是对顶角,可得/ BOD的度数.由/ AOC与/ AOD互补,?可得/ AOD 勺度数,又由 OE 平分/ AOD 可得/ AOB 的度数.解法一:因为/ FOB+Z AOF=180 , / AOF=3/ FOB (已知),所以/ FOB+3?/ FOB=180 (等量代换),所以/ FOB=45 , 所以/ AOE 玄FOB=45 (对顶角相等),因为/ AOC=9O , 所以/ EOC=/ AOC ■/ AOE=90 -45 ° =45 ° . 解法二:因为/ FOB+/ AOF=180 , / AOF=3/ FOB 所以/ FOB+3/ FOB=180 , ?所以/ FOB=45 , 所以/ AOF=3/ FOB=3< 45 ° =135 BOE / AOF=135 .又因为/ AOC=90 ,列出方程.点拨:此题应与实际相联系, 球被击中后在桌面上走的路线与台球桌面的边缘构成的角 等于反弹后走的路线与台球桌面的边缘构成的角. 四、1. 所以/所以/ BOC=180 - / AOC=180 -90 =90 所以/ EOC / BOE-/ BOC=?135 -90=45°2. 解:设这个角为 x ,则其补角为180-x ,余角为90 ° -X ,根据题意,得(?180-X ) + ( 90 ° -X ) =180 ° -10 °,解得 x=50 ° ,所以这个角的度数为 50点拨:本题是互余, 互补及平角的概念的一个交叉综合题,要理清各种关系, 才能正确3. 14点拨:本题是对顶角的性质在物理学中的应用.4. 解:落入2号球袋,如图所示.3号球袋5. B 点拨:因为AB丄CD于点O,所以/ BOC=90 .又CD与EF相交于点O, ?所以/ COE2 2,所以/ 1 + / 2=/ 1 + / COE2 BOC=90,即/ 1 与/ 2 互余,故选B.6. 50°点拨:/ A 的余角为90° - / A=90° -40 ° =50。
4.3.3余角与补角同步课时训练卷
![4.3.3余角与补角同步课时训练卷](https://img.taocdn.com/s3/m/24e82a48854769eae009581b6bd97f192279bf2e.png)
4.3.3余角与补角同步课时训练卷一、单选题(在下列各题的四个选项中,只有一项是符合题意的.本题共8个小题) 1.一个角的余角是44°,这个角的补角是( )A .134°B .136°C .156°D .146° 2.已知∠A 与∠B 互余,∠B 与∠C 互补,若∠A =50°,则∠C 的度数是() A .40° B .50° C .130° D .140° 3.一个角的补角是124°,则它的余角是()A .56°B .44°C .34°D .36° 4.如果一个角的余角是30°,那么这个角的补角的度数是()A .30°B .60°C .90°D .120° 5.已知:如图, AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠与2∠的关系一定成立的是( )A .相等B .互补C .互余D .互为对顶角 6.一个角与它的补角之差是20º,则这个角的大小是.A .160°B .70°C .100°D .80° 7.下列说法中正确的是()A .如果7x =,那么x 一定是7B .a -表示的数一定是负数C .射线AB 和射线BA 是同一条射线D .一个锐角的补角比这个角的余角大90° 8.如图:已知AOB ∠与BOD ∠为余角,OC 是BOD ∠的角平分线, 29.66AOB ∠=︒,COD ∠的度数是()A .'3017︒B .3067︒C .'''301012︒D .'3010︒二、填空题 9.∠1和∠2互余,∠2和∠3互补,∠1=63°,∠3=_________。
10.一个角的余角比这个角的补角的一半小40°,则这个角为_____度.11.一个角的5倍等于71°4′30″,这个角的余角是_________.12.如图,点O 在直线DB 上,已知∠1=15°,∠AOC =90°,则∠2的度数为__________.13.如图,直线AB 、CD 相交于点O ,射线OM 平分AOC ∠,90MON ∠=︒若35MOC ∠=︒,则BON ∠的度数为__________.14.如图,AOC ∠和DOB ∠都是直角,如果DOC 26∠=,那么AOB ∠的度数是______. 15.一个角的余角是这个角的4倍,则这个角的度数是_____.16.若∠α的余角为38o ,∠α的补角是____.三、解答题17.一个锐角的补角等于这个锐角的余角的3倍,求这个锐角?18.一个角的补角比它的余角的2倍大40º,求这个角的度数.19.将一幅三角板的直角顶点重合,写出图中与∠COA 相等的角,并证明.20.如图,O 为直线AB 上一点,OD 平分AOC ∠,90DOE ∠=︒.(1)若50AOC ∠=︒,求COE ∠和∠BOE 的度数;(2)猜想:OE 是否平分BOC ∠?请直接写出你猜想的结论;(3)与COD ∠互余的角有:______.21.如图,直线ED 上有一点O ,∠AOC =∠BOD =90°,射线OP 是∠AOD 的平分线, (1)说明射线OP 是∠COB 的平分线;(2)写出图中与∠COD 互为余角的角.22.直线AB,CD交于点O,将一个三角板的直角顶点放置于点O处,使其两条直角边OE,OF,分别位于OC的两侧.若OC平分∠BOF,OE平分∠COB.(1)求∠BOE的度数;(2)写出图中∠BOE的补角,并说明理由.。
(完整版)余角和补角的练习题
![(完整版)余角和补角的练习题](https://img.taocdn.com/s3/m/0d7299c4c850ad02df804164.png)
2.1 余角与补角一、选择题1.如图1所示,直线AB ,CD 相交于点O ,OE ⊥AB ,那么下列结论错误的是( )A .∠AOC 与∠COE 互为余角B .∠BOD 与∠COE 互为余角C .∠COE 与∠BOE 互为补角D .∠AOC 与∠BOD 是对顶角2.如图所示,∠1与∠2是对顶角的是( ) 图13.下列说法正确的是( ) A .锐角一定等于它的余角 B .钝角大于它的补角C .锐角不小于它的补角D .直角小于它的补角4.如图2所示,AO ⊥OC ,BO ⊥DO ,则下列结论正确的是( )A .∠1=∠2B .∠2=∠3C .∠1=∠3D .∠1=∠2=∠3图2 图3 图4 图5二、填空题5.已知∠1与∠2互余,且∠1=35°,则∠2的补角的度数为 .6.如图3所示,直线a ⊥b ,垂足为O ,L 是过点O 的直线,∠1=40°,则∠2= .7.如图4所示,直线AB ,CD 相交于点O ,OM ⊥AB ,•若∠COB=•135•,•则∠MOD= .8.三条直线相交于一点,共有 对对顶角.9.如图5所示,AB ⊥CD 于点C ,CE ⊥CF ,则图中共有 对互余的角.三、解答题10.如图所示,直线AB ,CD 相交于点O ,∠BOE=90°,若∠COE=55°,•求∠BOD 的度数.C O E DB A11.如图所示,直线AB与CD相交于点O,OE平分∠AOD,∠AOC=•120•°.求∠BOD,∠AOE的度数.一、七彩题1.(一题多解题)如图所示,三条直线AB,CD,EF相交于点O,∠AOF=3∠FOB,∠AOC=90°,求∠EOC的度数.二、知识交叉题2.(科内交叉题)一个角的补角与这个角的余角的和比平角少10°,求这个角.3.(科外交叉题)如图所示,当光线从空气射入水中时,光线的传播方向发生了改变,这就是光的折射现象.若∠1=42°,∠2=•28•°,则光的传播方向改变了______度.三、实际应用题4.如图所示是一个经过改造的台球桌面的示意图,图中4个角上的阴影部分分别表示4个入球袋.如果一个球按图中所示的方向被击出(•假设用足够的力气击出,使球可以经过多次反射),那么该球最后落入哪个球袋?在图上画出被击的球所走路程.四、经典中考题5.(2007,济南,4分)已知:如图所示,AB⊥CD,垂足为点O,EF为过点O•的一条直线,则∠1与∠2的关系一定成立的是()A.相等B.互余C.互补D.互为对顶角6.(2008,南通,3分)已知∠A=40°,则∠A的余角等于______.参考答案A卷一、1.C 点拨:因为∠COE与∠DOE互为补角,所以C错误,故选C.2.D 3.B4.C 点拨:因为AO⊥OC,BO⊥DO,所以∠AOC=90°,∠BOD=90°,即∠3+∠2=90°,∠2+∠1=90°,根据同角的余角相等可得∠1=∠3,故选C.二、5.125°点拨:因为∠1与∠2互余,所以∠1+∠2=90°,又因为∠1=35°,•所以∠2=90°-35=55°,所以180°-∠2=180°-55°=125°,即∠2•的补角的度数是125°.6.50°点拨:由已知可得∠1+∠2=180°-90°=90°,∠2=90°-∠1=90°-•40°=50°.7.45°点拨:因为OM⊥AB,所以∠MOD+∠BOD=90°,所以∠MOD=90°-∠BOD,又因为∠BOD=180°-∠COB=180°-135°=45°,所以∠MOD=90°-45°=45°.8.6 点拨:如图所示,直线AB,CD,EF相交于点O,∠AOD与∠BOC,∠AOE与∠BOF,∠DOE与∠COF,∠DOB与∠COA,∠EOB与∠FOA,∠EOC与∠FOD•均分别构成对顶角,共有6对对顶角.9.4 点拨:由AB⊥CD,可得∠ACE与∠ECD互余,∠DCF与∠FCB互余.由CE⊥CF,可得∠ECD与∠DCF互余,又由于∠ACB为平角,所以∠ACE与∠BCF互余,共有4对.三、10.解:因为∠BOE与∠AOE互补,∠BOE=90°,所以∠AOE=180°-∠BOE=•180°-90°=90°,即∠COE+∠COA=90°,又∠COE=55°,所以∠COA=90°-∠COE=90°-•55°=35°,因为直线AB,CD相交于点O,所以∠BOD=∠COA=35°.11.解:因为直线AB与CD相交于点O,所以∠BOD=∠AOC=120°,因为∠AOC+•∠AOD=180°,所以∠AOD=180°-120°=60°,因为OE平分∠AOD,所以∠AOE=12∠AOD=12×60°=30°.点拨:由∠BOD与∠AOC是对顶角,可得∠BOD的度数.由∠AOC与∠AOD 互补,•可得∠AOD的度数,又由OE平分∠AOD,可得∠AOE的度数.B卷一、1.解法一:因为∠FOB+∠AOF=180°,∠AOF=3∠FOB(已知),所以∠FOB+3•∠FOB=180°(等量代换),所以∠FOB=45°,所以∠AOE=∠FOB=45°(对顶角相等),因为∠AOC=90°,所以∠EOC=∠AOC-∠AOE=90°-45°=45°.解法二:因为∠FOB+∠AOF=180°,∠AOF=3∠FOB,所以∠FOB+3∠FOB=180°,•所以∠FOB=45°,所以∠AOF=3∠FOB=3×45°=135°,所以∠BOE=∠AOF=135°.又因为∠AOC=90°,所以∠BOC=180°-∠AOC=180°-90°=90°,所以∠EOC=∠BOE-∠BOC=•135°-90°=45°.二、2.解:设这个角为x,则其补角为180°-x,余角为90°-x,根据题意,得(•180°-x)+(90°-x)=180°-10°,解得x=50°,所以这个角的度数为50°.点拨:本题是互余,互补及平角的概念的一个交叉综合题,要理清各种关系,才能正确列出方程.3.14 点拨:本题是对顶角的性质在物理学中的应用.三、4.解:落入2号球袋,如图所示.点拨:此题应与实际相联系,球被击中后在桌面上走的路线与台球桌面的边缘构成的角等于反弹后走的路线与台球桌面的边缘构成的角.四、5.B 点拨:因为AB⊥CD于点O,所以∠BOC=90°.又CD与EF相交于点O,•所以∠COE=∠2,所以∠1+∠2=∠1+∠COE=∠BOC=90°,即∠1与∠2互余,故选B.6.50°点拨:∠A的余角为90°-∠A=90°-40°=50°.。
余角和补角专项练习30题(有答案)ok
![余角和补角专项练习30题(有答案)ok](https://img.taocdn.com/s3/m/389eba1e700abb68a882fb7a.png)
余角和补角专项练习30题(有答案)1.若Z a=40\则Z a的余角是 _______________ ・2.已知一个角的补角比这个角的余角的3倍大10。
,求这个角的度数.3・已知一个角的补角等于这个角的余角的4倍,求这个角的度数.4•-个角的余角比它的补角的护少2。
,求这个角.5・一个角的补角是123°24/16//,则这个角的余角是多少.6. 一个角的补角是它的3倍,这个角是多少度7.如图,Z AOC和ZBOD都是直角,如果Z AOB=150°,求Z COD的度数.& <e.已知Z a和Z B互余,且Z a比Z B小25%求Z a --lz p的度数.510. 一个角的补角是它的余角的10倍,求这个角.已知一个角的补角比这个角小30。
,求这个角的度数.12・已知Z a与ZB互为补角,并且Z a的两倍比ZB大60%求Z a、Z p.13・已知Z a=2Z p, Z a的余角的3倍等于Z B的补角,求Z cu Z B的度数. 13・若与Z2互余,上3与上1互补,Z 2=27°18\求Z 3的度数.14.如图,A、0、B 在同一条直线上,Z AOD=Z DOB=Z COE=90°.(1)图中Z 2的余角有 __________ , Z1的余角有______________(2)请写出图中相等的锐角,并说明为什么(3)Z1的补角是什么Z 2有补角吗若有.请写出.15・若一个角的余角与这个角的补角之比是2: 7,求这个角的邻补角.迢-个角的补角与它的余角的2倍的差是平角的寺求这个角.17・已知互余两角的差为20。
,求这两个角的度数.18.如图,OC是Z AOB的平分线,且ZAOD二90°.(1)图中Z COD的余角是____________ :(2)如果Z COD=24°45\ 求Z BOD 的度数.则与Z BOC 相等的角有谁图中共有多少对互为余角请写出来.19.如图,OD 平分Z BOC, OE 平分Z AOC,若Z BOC=70°, Z AOC=50°,请求出Z AOB 与Z DOE 的大小,并判断它 们是否互补.20. 一个角的余角比它的2倍角的补角还少15。
余角和补角练习题大全与答案
![余角和补角练习题大全与答案](https://img.taocdn.com/s3/m/ae66511c81c758f5f71f67ac.png)
余角与补角练习题及答案A卷:基础题一.选择題1. 如图1所示.直线A3 CD相交于点Q OELAB那么下列结论错误的是()A • ZAOChiZCO曰E为余角B . ZBOD l jZ COPI为余角C • Z COE4Z BOEK为补角D . ZAOC与ZBOD是对顶角2.如图所示.Z 1与Z2是对顶角的是()(A B W 7C D3.下列说法正确的是(〉A •锐角一定等于它的余角B・钝角大于它的补角C .锐角不小于它的补角D •直角小于它的补角4.如图2所示.AQL OC BQL DO则下列结论正确的是(A Z 仁Z2B • Z2=Z3C • Z 仁Z3D • Z 仁Z2=Z3b :二.填空题5. 已知Z 4与Z 2互余.且Z仁35・,则Z 2的补角的度数为__________ •6. 如图3所示,直线a丄b,垂足为O L是过点O的直线,Z 1=40° ,则Z 2=—7. 如图4所示,直线AB, CD相交于点Q OML AB ?若ZCOB=?135? ?则Z MOD=&三条直线相交于一点.共有______________ 对对顶角.9. ____________________________________________________ 如图5所示,ABLCD于点G CELCE则图中共有 _____________________ 对互余的角.图2三.解答題10. 如图所示,直线AB CD相交于点Q Z BOE-90・若Z COE=55 • ?求Z BODfi勺度数.11. 如图所示.直线AB与CD相交于点O 0E平分Z AOD Z AOC=?120?.求ZBOD z AOSTJ度数.B卷:提高题一.七彩题1. (一題乡解遼)如图所示.三条直线AB CD EF相交于点Q Z AOF=3/ FOBZA0090 •求Z EOCfi<J度数.二、知识交叉题2. (科内交叉题)一个角的补角与这个角的余角的和比平角少3. (科外交叉题)如图所示,十光线从空气射入水中时,光线的传播方向发生了改变.这就是光的折射现象.若Z 1=42- • Z 2=?28?°•则光的传播方向改变了_______________ 度. AB 、10°•求这个B三. 实际应用题4.如图所示是一个经过改造的台球桌面的示意图.图中4个角上的阴影部分分别表示 4个 入球袋.如果一个球按图中所示的方向被击岀 (?假设用足够的力气击出,使球可以经过多次反射)•那么该球最后落入哪个球袋?在图上Hi 出被击的球所走路程.四、经典中考题5. (2007,济南,4分)已知:如图所示,AB 丄CD 垂足为点 O EF 为过点O 湖一条直线, 则Z1与Z 2的关系一定成立的是( )A 相等B •互余C •互补D .互为对顶角参考答案A 卷■1. C 点拨:因为Z COE 与ZDO 包为补角,所以 C 错误,故选C.2. D 3 ・ B4. C 点拨:因为 AQLOC BQL DO所以Z AOC=9C ・ Z BOD=90 ,即Z 3*Z 2=90° ・ Z 2+Z 仁90° ,根据同角的余角相等可得z 1=Z3-故选C.6. (2008.南通. 3分)已知Z A=40°•则Z A 的余2号球袋5. 125°点拨:因为Z 1与Z2互余.所以Z 1*Z2=90° ,又因为Z 仁35° , ?所以Z 2=90° -35=55 °・所以180°・Z2=180°・55・=125-,即Z 2?的补侑的度数是125-・6. 50* 点拨:由已知可得Z 1+Z2=180°・90・=90°・2 2=90°・Z 仁9CF ・?40° =50° .7. 45°点拨:因为OMLAB所以Z MOD艺BOD=90 .所以N MOD-90 - ZBOD又因为Z BOD=180 ・ ZCOB=180 -135* =45° ,所以Z MOD=90 -45 ° =45°・8. 6 点拨:如图所示,直线AB. CD EF相交于点Q ZAOD与ZBOC Z AOE与Z BOF? ZDOE*JZ COE ZDOB»jZ COA ZEOB'jZ FOA ZEOC'jZFOD韵分别构成对顶角. 共有6对对顶角.9. 4 点拨:由ABr CD可得Z ACE与N ECD互余,Z DCF与Z FCB互余.由CE±CF,可得Z ECD与ZDCF互余,又由于Z ACB为平角,所以Z ACE与ZBCF互余,共有4对.10. 解:因为Z BOE1 JZ AOE5补,Z BOE=9Q .所以Z A0E=18CT ・ ZBOE=?180 ・90 ° =90°・即/ COE-teT COA=90 ,又Z COE=55,所以Z COA=90 ・ ZCOE=90 -?55 ° =35° ,闵为直线AB, CD相交于点Q 所以Z BOD^COA=35・11. W:因为直线AB与CD相交于点O所以Z BODNA00120 ,因为Z AOC+?/ AOD=180 ・所以Z AOD=180 -120° =60°・因为OE平分Z AOD所以Z Z AOD丄X 60° =30° .2 2点拨:由Z BOD与ZAOC是对顶角,可得Z BOD的度数.由Z AOC与ZAOD互补,?可得ZAOD 的度数.又由 OE 平分Z AOD 可得Z AO 日为度数. B 卷 一 % 1.解法一:因为Z FOB 幺AOF=180・ZAOF=MFOB (已知)・ 所以Z FOB+3?ZFOB=18a (等虽代换),所以Z FOB=45・ 所以Z AOE^T FOB=45 (对顶角相等),因为Z AOC=90 , 所以Z EOC^T AOC^ AOE=90 -45 ° =45° ・ 解法二:因为Z FOBt/ AOF=180 ・ Z AOF=3^ FOB 所以N FOB+3/ FOB^180 , ?所以N FOB-45 , 所以Z AOF=3/ FOB=^< 45° =135° ・ 所以Z BOE=^AOF=135 •又因为Z AOC=90 , 所以Z BOC=180 ・ ZAOC=180 ・90 ° =90° , 所以Z E0CNB0E2B0C=?135 ・90° =45° . 2. 解:设这个角为 x,则其补角为180° -x,余角为90* -x , 根据题意,得(?480° -x) + (90- -x ) =180° ・10・,解得 x=50° , 所以这个角的度数为 50°・ 点拨:本题是互余.互补及平角的槪念的一个交叉综合题,要理清各种关系, 列出方程.3. 14点拨:本題是对顶角的性质在物理学中的应用.4. 解:落入2号球袋,如图所示.点拨:此趙应与实际相联系• 球被击中后在桌面上迟的路线与台球桌面的边缘构成的角 等于反弹后走的路线与台球桌面的边缘构成的角. 5. B 点拨:因为AB1 CD 于点Q 所以Z BOC=90 •又CD 与EF 相交于点 a ?所以Z COEN 2,所以Z 1 + Z2=Z1+ZCOE^BOC=90 ,即Z 1 与Z2 互余,故选 B.才能正确 1蚪球袋 2号球袋!6. 50°点拨^ Z A的余角为90° - ZA=90° -40° =50° .。
余角和补角典型题(带答案)
![余角和补角典型题(带答案)](https://img.taocdn.com/s3/m/c893c9ddf12d2af90342e644.png)
A卷:基础题一、选择题1.如图1所示,直线AB,CD相交于点O,OE⊥AB,那么下列结论错误的是()A.∠AOC与∠COE互为余角 B.∠BOD与∠COE互为余角C.∠COE与∠BOE互为补角 D.∠AOC与∠BOD是对顶角2.如图所示,∠1与∠2是对顶角的是()图13.下列说法正确的是()A.锐角一定等于它的余角 B.钝角大于它的补角C.锐角不小于它的补角 D.直角小于它的补角4.如图2所示,AO⊥OC,BO⊥DO,则下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠3 D.∠1=∠2=∠3图2 图3 图4 图5二、填空题5.已知∠1与∠2互余,且∠1=35°,则∠2的补角的度数为.6.如图3所示,直线a⊥b,垂足为O,L是过点O的直线,∠1=40°,则∠2=.7.如图4所示,直线AB,CD相交于点O,OM⊥AB,•若∠COB=•135•,•则∠MOD=.8.三条直线相交于一点,共有对对顶角.9.如图5所示,AB⊥CD于点C,CE⊥CF,则图中共有对互余的角.三、解答题10.如图所示,直线AB,CD相交于点O,∠BOE=90°,若∠COE=55°,•求∠BOD的度数.COEDBA11.如图所示,直线AB与CD相交于点O,OE平分∠AOD,∠AOC=•120•°.求∠BOD,∠AOE的度数.B卷:提高题一、七彩题1.(一题多解题)如图所示,三条直线AB,CD,EF相交于点O,∠AOF=3∠FOB,∠AOC=90°,求∠EOC的度数.二、知识交叉题2.(科内交叉题)一个角的补角与这个角的余角的和比平角少10°,求这个角.3.(科外交叉题)如图所示,当光线从空气射入水中时,光线的传播方向发生了改变,这就是光的折射现象.若∠1=42°,∠2=•28•°,则光的传播方向改变了______度.三、实际应用题4.如图所示是一个经过改造的台球桌面的示意图,图中4个角上的阴影部分分别表示4个入球袋.如果一个球按图中所示的方向被击出(•假设用足够的力气击出,使球可以经过多次反射),那么该球最后落入哪个球袋?在图上画出被击的球所走路程.四、经典中考题5.(2007,济南,4分)已知:如图所示,AB⊥CD,垂足为点O,EF为过点O•的一条直线,则∠1与∠2的关系一定成立的是()A.相等 B.互余 C.互补 D.互为对顶角6.(2008,南通,3分)已知∠A=40°,则∠A的余角等于______.参考答案A卷一、1.C 点拨:因为∠COE与∠DOE互为补角,所以C错误,故选C.2.D 3.B4.C 点拨:因为AO⊥OC,BO⊥DO,所以∠AOC=90°,∠BOD=90°,即∠3+∠2=90°,∠2+∠1=90°,根据同角的余角相等可得∠1=∠3,故选C.二、5.125°点拨:因为∠1与∠2互余,所以∠1+∠2=90°,又因为∠1=35°,•所以∠2=90°-35=55°,所以180°-∠2=180°-55°=125°,即∠2•的补角的度数是125°.6.50°点拨:由已知可得∠1+∠2=180°-90°=90°,∠2=90°-∠1=90°-•40°=50°.7.45°点拨:因为OM⊥AB,所以∠MOD+∠BOD=90°,所以∠MOD=90°-∠BOD,又因为∠BOD=180°-∠COB=180°-135°=45°,所以∠MOD=90°-45°=45°.8.6 点拨:如图所示,直线AB,CD,EF相交于点O,∠AOD与∠BOC,∠AOE与∠BOF,∠DOE与∠COF,∠DOB与∠COA,∠EOB与∠FOA,∠EOC与∠FOD•均分别构成对顶角,共有6对对顶角.9.4 点拨:由AB⊥CD,可得∠ACE与∠ECD互余,∠DCF与∠FCB互余.由CE⊥CF,可得∠ECD与∠DCF互余,又由于∠ACB为平角,所以∠ACE与∠BCF互余,共有4对.三、10.解:因为∠BOE与∠AOE互补,∠BOE=90°,所以∠AOE=180°-∠BOE=•180°-90°=90°,即∠COE+∠COA=90°,又∠COE=55°,所以∠COA=90°-∠COE=90°-•55°=35°,因为直线AB,CD相交于点O,所以∠BOD=∠COA=35°.11.解:因为直线AB与CD相交于点O,所以∠BOD=∠AOC=120°,因为∠AOC+•∠AOD=180°,所以∠AOD=180°-120°=60°,因为OE平分∠AOD,所以∠AOE=12∠AOD=12×60°=30°.点拨:由∠BOD与∠AOC是对顶角,可得∠BOD的度数.由∠AOC与∠AOD互补,•可得∠AOD的度数,又由OE平分∠AOD,可得∠AOE的度数.B卷一、1.解法一:因为∠FOB+∠AOF=180°,∠AOF=3∠FOB(已知),所以∠FOB+3•∠FOB=180°(等量代换),所以∠FOB=45°,所以∠AOE=∠FOB=45°(对顶角相等),因为∠AOC=90°,所以∠EOC=∠AOC-∠AOE=90°-45°=45°.解法二:因为∠FOB+∠AOF=180°,∠AOF=3∠FOB,所以∠FOB+3∠FOB=180°,•所以∠FOB=45°,所以∠AOF=3∠FOB=3×45°=135°,所以∠BOE=∠AOF=135°.又因为∠AOC=90°,所以∠BOC=180°-∠AOC=180°-90°=90°,所以∠EOC=∠BOE-∠BOC=•135°-90°=45°.二、2.解:设这个角为x,则其补角为180°-x,余角为90°-x,根据题意,得(•180°-x)+(90°-x)=180°-10°,解得x=50°,所以这个角的度数为50°.点拨:本题是互余,互补及平角的概念的一个交叉综合题,要理清各种关系,才能正确列出方程.3.14 点拨:本题是对顶角的性质在物理学中的应用.三、4.解:落入2号球袋,如图所示.点拨:此题应与实际相联系,球被击中后在桌面上走的路线与台球桌面的边缘构成的角等于反弹后走的路线与台球桌面的边缘构成的角.四、5.B 点拨:因为AB⊥CD于点O,所以∠BOC=90°.又CD与EF相交于点O,•所以∠COE=∠2,所以∠1+∠2=∠1+∠COE=∠BOC=90°,即∠1与∠2互余,故选B.6.50°点拨:∠A的余角为90°-∠A=90°-40°=50°.最新文件仅供参考已改成word文本。
最新余角和补角练习题大全及答案
![最新余角和补角练习题大全及答案](https://img.taocdn.com/s3/m/8127a8012b160b4e767fcfc1.png)
精品文档余角与补角练习题及答案A卷:基础题一、选择题1.如图1所示,直线AB,CD相交于点O,OE⊥AB,那么下列结论错误的是()COE互为余角.∠BOD与∠ A.∠AOC与∠COE互为余角 B 是对顶角AOC与∠BOD.∠.∠COE与∠BOE互为补角 D C1图) 2.如图所示,∠1与∠2是对顶角的是(.下列说法正确的是()3 .锐角一定等于它的余角 B.钝角大于它的补角 A .锐角不小于它的补角 D.直角小于它的补角 C ),BO⊥DO,则下列结论正确的是(4.如图2所示,AO⊥OC3∠2=3 D.∠1=∠∠2 B.∠2=∠3 C.∠1=∠A.∠1=5 图图2 图3 图4二、填空题互余,且∠1=35°,则∠2的补角的度数为.5.已知∠1与∠2 2=°,则∠.O3所示,直线a⊥b,垂足为,L是过点O的直线,∠1=406.如图则∠?若∠COB=?135?,?MOD=.⊥相交于点所示,直线7.如图4AB,CDO,OMAB, 8.三条直线相交于一点,共有对对顶角.对互余的角.CFCAB.如图5所示,⊥CD于点,CE⊥,则图中共有 9三、解答题 COE=55BOE=90OCDAB10.如图所示,直线,相交于点,∠°,若∠°,BOD求∠?的度数.精品文档.精品文档AOCDBE. °,∠AOC=?120?,OE平分∠AOD相交于点11.如图所示,直线AB与CDO AOE的度数.求∠BOD,∠B卷:提高题一、七彩题,∠FOB相交于点,EFO,∠AOF=3,1.(一题多解题)如图所示,三条直线ABCD EOC的度数.∠AOC=90°,求∠二、知识交叉题°,求这个角..(科内交叉题)一个角的补角与这个角的余角的和比平角少102(科外交叉题)如图所示,当光线从空气射入水中时,光线的传播方向发生了改变,这就3.度.______2=?28?1=42是光的折射现象.若∠°,∠°,则光的传播方向改变了精品文档.精品文档三、实际应用题4.如图所示是一个经过改造的台球桌面的示意图,图中4个角上的阴影部分分别表示4个入球袋.如果一个球按图中所示的方向被击出(?假设用足够的力气击出,使球可以经过多次反射),那么该球最后落入哪个球袋?在图上画出被击的球所走路程.四、经典中考题的一条直线,O?EFO,为过点,济南,4分)已知:如图所示,AB⊥CD,垂足为点5.(2007 )2的关系一定成立的是(则∠1与∠.互为对顶角.互补 D CA.相等B.互余.的余角等于A=40°,则∠A______(6.2008,南通,3分)已知∠参考答案卷A 一、错误,故选C.点拨:因为∠COE与∠DOE互为补角,所以CC 1.BD 3.2.⊥DO,BOAO4.C 点拨:因为⊥OC,°,BOD=90所以∠AOC=90°,∠ 1=902+2=903+即∠∠°,∠∠°,精品文档.精品文档根据同角的余角相等可得∠1=∠3,故选C.二、5.125°点拨:因为∠1与∠2互余,所以∠1+∠2=90°,又因为∠1=35°,?所以∠2=90°-35=55°,所以180°-∠2=180°-55°=125°,即∠2?的补角的度数是125°.6.50°点拨:由已知可得∠1+∠2=180°-90°=90°,∠2=90°-∠1=90°-?40°=50°.7.45°点拨:因为OM⊥AB,所以∠MOD+∠BOD=90°,所以∠MOD=90°-∠BOD,又因为∠BOD=180°-∠COB=180°-135°=45°,所以∠MOD=90°-45°=45°.8.6 点拨:如图所示,直线AB,CD,EF相交于点O,∠AOD与∠BOC,∠AOE与∠BOF,∠DOE 与∠COF,∠DOB与∠COA,∠EOB与∠FOA,∠EOC与∠FOD?均分别构成对顶角,共有6对对顶角.互余.与∠FCB与∠ECD互余,∠DCFCD9.4 点拨:由AB⊥,可得∠ACE ACB为平角,ECD,可得∠与∠DCF互余,又由于∠由CE⊥CF 4对.ACE与∠BCF互余,共有所以∠三、 BOE=90°,与∠AOE互补,∠10.解:因为∠BOE °,COE+∠COA=90°∠BOE=?180-90°=90°,即∠所以∠AOE=180°- °,°=35∠°-COE=90°-?55又∠COE=55°,所以∠COA=90 COA=35°.∠相交于点O,所以∠BOD=因为直线AB,CD AOC=120°,,所以∠BOD=∠CD11.解:因为直线AB与相交于点O °,°=60-120AOC+?∠AOD=180°,所以∠AOD=180°因为∠11°.60°=30AOD因为OE平分∠,所以∠AOE=AOD=∠×22可得?AODAOCBODAOCBOD点拨:由∠与∠是对顶角,可得∠的度数.由∠与∠互补,精品文档.精品文档∠AOD的度数,又由OE平分∠AOD,可得∠AOE的度数.B卷一、1.解法一:因为∠FOB+∠AOF=180°,∠AOF=3∠FOB(已知),所以∠FOB+3?∠FOB=180°(等量代换),所以∠FOB=45°,所以∠AOE=∠FOB=45°(对顶角相等),因为∠AOC=90°,所以∠EOC=∠AOC-∠AOE=90°-45°=45°.解法二:因为∠FOB+∠AOF=180°,∠AOF=3∠FOB,所以∠FOB+3∠FOB=180°,?所以∠FOB=45°,所以∠AOF=3∠FOB=3×45°=135°,所以∠BOE=∠AOF=135°.又因为∠AOC=90°,所以∠BOC=180°-∠AOC=180°-90°=90°,所以∠EOC=∠BOE-∠BOC=?135°-90°=45°.二、2.解:设这个角为x,则其补角为180°-x,余角为90°-x,根据题意,得(?180°-x)+(90°-x)=180°-10°,解得x=50°,所以这个角的度数为50°.点拨:本题是互余,互补及平角的概念的一个交叉综合题,要理清各种关系,才能正确列出方程.3.14 点拨:本题是对顶角的性质在物理学中的应用.三、4.解:落入2号球袋,如图所示.精品文档.精品文档球被击中后在桌面上走的路线与台球桌面的边缘构成的角此题应与实际相联系,点拨:等于反弹后走的路线与台球桌面的边缘构成的角.四、BOC=90°.于点⊥CDO,所以∠5.B 点拨:因为AB,COE=所以∠∠2CD又与EF相交于点O,? B.1°,即∠与∠2互余,故选COE=2=所以∠1+∠∠1+∠∠BOC=90 °.-40°=50°∠°的余角为点拨:∠°.650 A90-A=90精品文档.。
余角和补角练习题大全及答案
![余角和补角练习题大全及答案](https://img.taocdn.com/s3/m/cdd6c4457c1cfad6195fa7f7.png)
余角与补角练习题及答案A 卷:基础题、选择题1如图1所示,直线 AB, CD 相交于点0, OEL AB 那么下列结论错误的是()A ./ A0C 与/ C0E 互为余角B ./ B0D 与/ C0E 互为余角C . Z C0E 与/ B0E 互为补角D . Z A0C 与/ B0D 是对顶角2•如图所示,/ 1与Z 2是对顶角的是() 二、填空题5. 已知Z 1与Z 2互余,且Z 1=35°,则Z 2的补角的度数为 __________ .6. 如图3所示,直线a 丄b ,垂足为0 L 是过点0的直线,Z 1=40°,则Z 2=_7. 如图4所示,直线 AB, CD 相交于点 0, 0M L AB ?若/ C0B=?135? ?则/ M0D=&三条直线相交于一点,共有 ____________ 对对顶角.9. __________________________________________________ 如图5所示,AB 丄CD 于点C,CE L CF,则图中共有 _______________________________________ 对互余的角.三、解答题A BCD 3.卜列说法止确的是() A .锐角一定等于它的余角B .钝角大于它的补角C •锐角不小于它的补角D .直角小于它的补角4 .如图2所示,AC L 0C BC L D0则下列结论正确的是( A.Z 1 = Z 2 B . Z 2=Z 3 C . Z 1 = Z 3 1 = Z 2=Z 3图I DDB10. 如图所示,直线AB, CD相交于点0,Z B0E=90,若Z C0E=55 , ?求Z B0D的度数.2 / 511. 如图所示,直线AB 与CD相交于点0, 0E平分/ AOD / AOC=?120?求/ BOD / AOE的度数.B卷:提高题一、七彩题1. (一题多解题)如图所示,三条直线A B CD, EF相交于点O,/ AOF=3/ FOB/ AOC=90 ,求/ EOC的度数.二、知识交叉题2. (科内交叉题)一个角的补角与这个角的余角的和比平角少10°,求这个角.3. (科外交叉题)如图所示,当光线从空气射入水中时,光线的传播方向发生了改变,这就三、实际应用题4•如图所示是一个经过改造的台球桌面的示意图,图中4个角上的阴影部分分别表示4个入球袋.如果一个球按图中所示的方向被击出(?假设用足够的力气击出,使球可以经过多次反射),那么该球最后落入哪个球袋?在图上画出被击的球所走路程.四、经典中考题是光的折射现象.若/ 1=42_____ 度.1号球裝2号球袋3号球袋4号球袋5. (2007,济南,4分)已知:如图所示,AB丄CD垂足为点O, EF为过点O?的一条直线, 则/1与/ 2的关系一定成立的是()A.相等B .互余C .互补D .互为对顶角6. (2008,南通,3分)已知/ A=40°,则/ A的余角等于_________参考答案A卷1. C点拨:因为/ COE与/ DOE S为补角,所以C错误,故选C.2. D 3 . B4. C 点拨:因为AOL OC BOL DQ所以/ AOC=90,/ BOD=90 ,即/ 3+/ 2=90°,/ 2+ / 仁90°,根据同角的余角相等可得/ 仁/3,故选C.5. 125 ° 点拨:因为/ 1与/ 2互余,所以/ 1+/ 2=90 °,又因为/ 1=35°, ?所以/ 2=90° -35=55 ° ,所以180° - / 2=180° -55 ° =125°,即/ 2?的补角的度数是125°.6. 50°点拨:由已知可得/ 1 + / 2=180° -90 ° =90 °,/ 2=90° - / 仁90° -?40 ° =50 °.7. 45°点拨:因为OM L AB,所以/ MOD/ BOD=90 ,所以/ MOD=90 - / BOD又因为/ BOD=180 - / COB=180 -135 ° =45 °,所以/ MOD=90 -45 ° =45°.& 6 点拨:如图所示,直线AB, CD EF相交于点O,/ AOD与/ BOC / AOE与/ BOF /4 / 5DOE与/ COF / DOB与/ COA Z EOB与/ FOA / EOC与/ FOD?匀分别构成对顶角,6对对顶角.9. 4 点拨:由AB丄CD 可得Z ACE与Z ECD互余,Z DCF与Z FCB互余.由CE丄CF,可得Z ECD与Z DCF互余,又由于Z ACB为平角,所以Z ACE与Z BCF互余,共有4对.三、10. 解:因为Z BOE与Z AOE互补,Z BOE=90 ,所以Z AOE=180 - Z BOE=?180 -90 ° =90°,即Z COE Z COA=90 ,又Z COE=55,所以Z COA=90 - Z COE=90 -?55 ° =35°,因为直线AB, CD相交于点O,所以Z BOD Z COA=35 .11. 解:因为直线AB与CD相交于点Q所以Z BOD Z AOC=120 ,因为Z AOC+Z AOD=180,所以Z AOD=180 -120 ° =60 °,1 1因为OE平分Z AOD 所以Z AOE—Z AOD^ X 60° =30°.2 2点拨:由Z BOD与Z AOC是对顶角,可得Z BOD的度数.由Z AOC与Z AOD互补,Z AOD的度数,又由OE平分Z AOD可得Z AOE的度数.B卷、1. 解法一:因为Z FOB+Z AOF=180 , Z AOF=3/ FOB (已知),所以Z FOB+3?Z FOB=180 (等量代换),所以Z FOB=45 ,所以Z AOE=/ FOB=45 (对顶角相等),因为Z AOC=90 ,所以Z EOC Z AOC Z AOE=90 -45 ° =45 ° .解法二:因为Z FOB+Z AOF=180 , Z AOF=Z FOB所以Z FOB+3/ FOB=180 , ?所以Z FOB=45 ,所以Z AOF=3/ FOB=X 45 ° =135 ° ,所以Z BOE Z AOF=135 .又因为Z AOC=90 ,所以Z BOC=180 - Z AOC=180 -90 ° =90 °,所以Z EOC Z BOE-Z BOC=?135 -90 ° =45°.共有?可得2. 解:设这个角为x,则其补角为180° -x,余角为90° -x ,根据题意,得(?180 ° -x) + ( 90° -x) =180° -10 °,解得x=50°,所以这个角的度数为50°.点拨:本题是互余,互补及平角的概念的一个交叉综合题,要理清各种关系,才能正确列出方程.3. 14点拨:本题是对顶角的性质在物理学中的应用.三、4 •解:落入2号球袋,如图所示.1号球袋勺号球袋4号松2号球錢点拨:此题应与实际相联系,球被击中后在桌面上走的路线与台球桌面的边缘构成的角等于反弹后走的路线与台球桌面的边缘构成的角.四、5. B 点拨:因为AB丄CD于点0,所以/ BOC=90 .又CD与EF相交于点0, ?所以/ C0E2 2,所以/ 1 + / 2=Z 1 + Z C0E2 BOC=90,即/ 1 与/ 2 互余,故选 B.6. 50°点拨:/ A 的余角为90° - / A=90° -40 ° =50° .6 / 5。
(完整版)余角和补角练习题
![(完整版)余角和补角练习题](https://img.taocdn.com/s3/m/d25c7dacbcd126fff6050b64.png)
8.7 余角和补角[基础训练]1、下列说法错误的是 ( )A 、同角或等角的余角相等B 、同角或等角的补角相等C 、两个锐角的余角相等D 、两个直角的补角相等2、如果两个锐角的和是 ,则这两个角互为余角,如果两个角的和是 ,则这两个角互为补角。
3、若∠α=50º,则它的余角是 ,它的补角是 。
4、若∠β=110º,则它的补角是 ,它的补角的余角是 。
5、如图,∠ACB=∠CDB=90º,图中∠ACD 的余角有 个。
6、若∠1与∠2互余,∠3和∠2互补,且∠3=120º,那么∠1= 。
[综合提高] 一、选择题:1、一个角的补角是 ( ) A 、锐角 B 、直角 C 、钝角 D 、以上三种情况都有可能2、一个锐角的补角比这个角的余角大 ( ) A 、30º B 、45º C 、60º D 、90º3、如图,∠AOD=∠DOB=∠COE=90º,其中共有互余的角( )A 、2对B 、3对C 、4对D 、6对 4、若∠1与∠2互补,∠3与∠1互余,∠2+∠3=240º,由∠2是∠1的 ( )A 、251倍 B 、5倍 C 、11倍 D 、无法确定倍数5、若∠1与∠2互为补角,且∠1<∠2,则∠1的余角是 ( )A 、∠1B 、∠1+∠2C 、21(∠1+∠2)D 、21(∠2-∠1)二、填空题6、32º28’的余角为 ,137º45’的补角是 。
7、∠1与∠2互余,∠1=(6x+8)º,∠2=(4x-8)º,则∠1= ,∠2= 。
8、如图,O 是直线AB 一点,∠BOD=∠COE=90º, 则(1)如果∠1=30º,那么∠2= ,∠3= 。
(2)和∠1互为余角的有 。
和∠1相等的角有 。
9、如图,O 是直线BD 上一点,∠BOC=36º,∠AOB=108º,则与∠AOB 互补的角有 。
《余角和补角》练习题
![《余角和补角》练习题](https://img.taocdn.com/s3/m/0d1ca98cdaef5ef7bb0d3c0a.png)
4.3 角(3)余角和补角1.如果90αβ∠+∠=︒,而β∠与γ∠互余,那么α∠与γ∠的关系是( )A .互余B .互补C .相等D .不能确定2.下列说法中,错误的是( )A .两个互余的角都是锐角B .钝角的平分线把钝角分为两个锐角C .互为补角的两个角不可能都是钝角D .两个锐角的和必定是直角或钝角3.如果一个锐角和它的余角之比是5∶4,那么这个锐角的补角的度数是( )A .100°B .120°C .130°D .140°4.在海上,灯塔位于一艘轮船的北偏东40°方向,那么这艘轮船位于这个灯塔的()A .北偏东50°方向B .南偏西50°方向C .南偏西40°方向D .北偏东40°方向5.如图所示,甲从A 点出发向北偏东70°方向走50m 至点B ,乙从A 出发向南偏西15°方向走80m 至点C ,则∠BAC 的度数是( )A.85°B.160°C.125°D.105°6.若一个角的补角是130︒,则这个角的余角是 度.7.如图所示,点A 在O 的北偏东 °,点B 在O 的 °,点C 在O 的 °,点D 在O 的 °.8.若互为余角的两个角的比1:2 ,则这两个角分别是多少?9.一个角的余角的补角比这个角的补角的一半大90°,求这个角的度数.10.把角铁弯成如图的铁架时截去的缺口应是多少度(不考虑角铁厚度)?参考答案1.C .2.D .3.C .4.C .5.C.6.40°.7.30°,东南,南偏西75°,北偏西75°.8.30°和60°. 9.解:设这个角的余角为∠A ,则这个角的为90°-∠A , 这个角的补角为180°-(90°-∠A )=90°+∠A ,则180°-∠A=12(90°+∠A )+90°, 解得∠A=30°.所以90°-∠A=60°,答:这个角为60°.10.截去的部分,正好与145°角构成平角,因而在角钢上截去的缺口(图①中的虚线)应为180-145=35°.在角钢上截去的缺口(图①中的虚线)应为35°.。
余角和补角专题训练
![余角和补角专题训练](https://img.taocdn.com/s3/m/6758900ce2bd960590c677d0.png)
专题: 余角和补角的复习[基础训练]1、如果两个锐角的和是 (即 °),则这两个角互为余角,如果两个角的和是 即( °),则这两个角互为补角。
2、⑴∵1∠和2∠互余,∴=∠+∠21_____(或2_____1∠-=∠) ⑵∵1∠和2∠互补,∴=∠+∠21_____(或2_____1∠-=∠) 3、若∠α=50º,则它的余角是 ,它的补角是 。
4、7150'︒=∠α,则它的余角等于________;β∠的补角是2183102'''︒,则β∠=_______5.如果∠α=39°31’,∠α的余角∠β =_____,∠α的补角∠γ=_____,∠α-∠β=___.一个角的补角比余角大 °6、若∠β=120º,则它的补角是 ,它的补角的余角是 。
7.已知∠1=200,∠2=300,∠3=600,∠4=1500,则∠2是____的余角,_____是∠4的补角.8.若∠1+∠2=90°,∠3+∠2=90°,∠1=40°,则∠3=____°, 依据是_______ 。
余角与补角的性质7、如果∠1+∠2=90 º,∠2+∠3=90 º,则∠1与∠3的关系为________,其理由是__________如果∠1+∠2=180 º,∠2+∠3=180 º,则∠1与∠3的关系为________,其理由是_________如果∠1+∠2=90 º,∠2=∠3,∠3+∠4=90 º则∠1与∠3的关系为________,其理由是__________如果∠1+∠2=180 º,∠2=∠3,∠3+∠4=180 º,则∠1与∠3的关系为________,其理由是__________对顶角对顶角的性质:8、如图,其中共有________对对顶角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
余角和补角练习
一、选择题
1.下列结论中,正确的个数有 ( )(1)一个角的补角比这个角的余角大900
(2)互余的两个角的比是4:6,这两个角分别是360和540(3)小于平角的角是钝角
(4)两个角互补,必定一个锐角,另一个钝角.
A.0个 B.1个 C.2个 D.3个
2.一个锐角的余角加上900,就等于 ( )
A.这个锐角的余角 B.这个锐角的补角
C.这个锐角的2倍 D.这个锐角的3倍
3.一个角的余角比它本身小,这个角是( )
A.大于450 B.小于450 C.大于00小于450 D.大于450小于900 4.下列说法中正确的是 ( )
A.一个角的补角只有一个 B.一个角的补角必大于这个角
C.若不相等的两个角互补,则这两个角一个是锐角,一个是钝角
D.互余的两个角一定相等
5.如果一个角等于360,那么它的余角等于 ( )
A. 640
B. 540
C. 1440
D. 360
6.∠α=∠β,且∠α与∠β互余,则( )
A. ∠α=900
B.∠β=450
C.∠β=600
D.∠α=300
7.下列说法正确的是( )
A.一个锐角的余角是一个锐角 B.一个锐角的补角是一个锐角
C.一个锐角的补角不是一个钝角 D.一个锐角的余角是一个直角
8.A看B的方向是北偏东190,那么B看A的方向是 ( )
A.南偏东710 B.南偏西710 C.南偏东190 D.南偏西190
9.如图,已知∠ACB= 900,∠l=∠B,∠2=∠A,那么下列说法错误的是( )
A.∠l与∠2是互为余角 B.∠A与∠B不是互为余角
C.∠1与∠A是互为余角 D.∠2与∠B是互为余角
10. OA表示南偏西400方向的一条射线,则OA的方向还可以
表示为 ( )
A.北偏西400 B.西偏南500 C.西偏南400 D.北偏东400
二、填空题
11.若∠α与∠β都是_______角,则∠α与∠β互补,若∠α与∠β互补,∠α是锐角,则∠β是______角.
12. 如图,OA与OB的夹角为______0,OC的方向为________.
13.如图,直线AB、CD相交于O,∠BOE=900,若∠3=450,则∠1=______0,∠4=_____0.
∠1和∠2叫做互为____角,∠3和∠4互为_____角.
14. 一个角的补角是这个角的5倍,则这个角的余角为_______0
15. 一个角的余角是55047/25//,则这个角是__________.
16.如图,∠AOC=∠COB=900,OE平分∠AOC,OD平分∠COB,则∠COD的余角有_____个,是______________________.
17.若两角之和是1800,我们说这两个角互补.∠1与∠2互补,∠3与∠4互补,如果∠l=∠2,则∠2=____0,∠1+∠2+∠3+∠4=_______0.
18.互补两角之比是2:3,则这两个角分别是______________.
19.已知∠a= 35019/,则∠a的余角等于________.20一个角的余角比它的补角的1
2
少200,
则这个角为______0
三、解答题
21.如图,已知AOB为直线,OC平分∠AOD,∠BOD=300,求∠AOC的度数.
图中与∠DOE互余的角有哪些?与∠DOE互补的角有哪些?。