潍坊2014二模数学试题文科及理科

合集下载

高一数学试题答案及解析

高一数学试题答案及解析

高一数学试题答案及解析1.(2015•洛阳一模)已知i为虚数单位,复数z1=3﹣ai,z2=1+2i,若复平面内对应的点在第四象限,则实数a的取值范围为()A.{a|a<﹣6}B.{a|﹣6<a<C.{a|a<}D.{a|a<﹣6或a>【答案】B【解析】求出复数的表达式,根据题意列出不等式组,求出a的取值范围.解:∵复数z1=3﹣ai,z2=1+2i,∴===﹣i;∴,解得﹣6<a<,∴实数a的取值范围{a|﹣6<a<}.故选:B.点评:本题考查了复数的代数运算问题,解题时应注意虚数单位i2=﹣1,是基础题.2.(2014•重庆)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.解:∵复数Z=i(1﹣2i)=2+i∵复数Z的实部2>0,虚部1>0∴复数Z在复平面内对应的点位于第一象限故选A点评:本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z化为a=bi(a,b∈R)的形式,是解答本题的关键.3.(2014•重庆)实部为﹣2,虚部为1的复数所对应的点位于复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】根据复数的几何意义,即可得到结论.解:实部为﹣2,虚部为1的复数所对应的点的坐标为(﹣2,1),位于第二象限,故选:B.点评:本题主要考查复数的几何意义,比较基础.4.(2015•河南一模)设复数z1=1﹣i,z2=2+i,其中i为虚数单位,则z1•z2的虚部为()A.﹣1B.1C.﹣i D.i【答案】A【解析】利用复数的运算法则即可得出.解:∵复数z1=1﹣i,z2=2+i,z 1•z2=(1﹣i)(2+i)=3﹣i.其虚部为﹣1.故选:A.点评:本题考查了复数的运算法则,属于基础题.5.(2015•惠州模拟)复数Z=(其中i为虚数单位)的虚部是()A.﹣B.i C.D.﹣i【答案】C【解析】先化简复数,由虚部的定义可得答案.解:复数Z===,则虚部为,故选:C.点评:本题考查复数的基本概念,属基础题.6.(2015•红河州一模)||=()A.0B.1C.2D.【答案】D【解析】首先将复数进行分母实数化,然后利用模的概念求解.解:因为===﹣1﹣i;所以||=|﹣1﹣i|=;故选D.点评:本题考查了复数的化简以及求复数的模,属于基础题.7.(2015•武昌区模拟)i为虚数单位,若,则|z|=()A.1B.C.D.2【答案】A【解析】利用复数模的运算性质,将已知关系式等号两端取模,即可即可求得答案解:∵,∴|||z|=||,即2|z|=2,∴|z|=1,故选:A.点评:本题考查了复数求模、熟练应用模的运算性质是关键,属于基础题.8.(2015•沈阳一模)设复数z满足(1﹣i)z=2i,则z=()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i【答案】A【解析】根据所给的等式两边同时除以1﹣i,得到z的表示式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成最简形式,得到结果.解:∵复数z满足z(1﹣i)=2i,∴z==﹣1+i故选A.点评:本题考查代数形式的除法运算,是一个基础题,这种题目若出现一定是一个送分题目,注意数字的运算.9.(2015•德阳模拟)如果复数(其中i为虚数单位,b为实数)的实部和虚部互为相反数,那么b等于()A.B.C.﹣D.2【答案】C【解析】复数分子、分母同乘分母的共轭复数,化简为a+bi(a,b∈R)的形式,利用实部和虚部互为相反数,求出b.解:==+i由=﹣得b=﹣.故选C.点评:本题考查复数的基本概念,复数代数形式的乘除运算,考查计算能力,是基础题.10.(2014•银川模拟)复数在复平面内的对应点到原点的距离为()A.B.C.1D.【答案】B【解析】先利用两个复数的除法法则,求出复数的化简结果,并求出此复数在复平面内的对应点的坐标,利用两点间的距离公式求出此点到原点的距离.解:∵,对应点为(,),此点到原点的距离为=,故选 B.点评:本题考查两个复数的除法法则的应用,复数对应点的坐标,以及两点间的距离公式的应用.11.(2011•辽宁)i为虚数单位,=()A.0B.2i C.﹣2i D.4i【答案】A【解析】直接利用i的幂运算,化简表达式即可得到结果.解:==0故选A.点评:本题是基础题,考查复数的基本运算,i的幂的运算性质,考查计算能力,常考题型.12.(2011•揭阳一模)集合,则()A.i∈A B.i2∈A C.i3∈A D.i4∉A【答案】B【解析】化简集合A={﹣1,0,1}.再利用虚数单位i的性质,判断各选项.解:集合={﹣1,0,1}.易知i∉A,i3=﹣i∉A,所以A,C错误.i2=﹣1∈A,C对.i4=1∈A,D错.故选B.点评:本题考查集合的表示方法,虚数单位i的性质,元素与集合的关系.属于基础题.13.(2015•株洲一模)阅读下面程序框图,则输出结果s的值为()A.B.C.﹣D.0【答案】D【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,进而根据正弦函数的图象和性质得到答案.解:由已知中的程序框图可知:该程序的功能是:利用循环结构计算并输出变量S=+++…+的值;由y=是周期为6的周期函数,且+++…+=0,∴S=+++…+=336×(+++…+)﹣=0﹣0=0,故选:D点评:本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.14.(2015•邢台模拟)执行如图所示的程序框图,若输出的值是13,则判断框内应为()A.k<6?B.k≤6?C.k<7?D.k≤7?【答案】A【解析】执行程序框图,依次写出每次循环得到的k,c,a,b的值,当c=13时,k=6,此时应该不满足条件,退出循环,输出c的值为13,故判断框内应为k<6?.解:执行程序框图,有a=1,b=1,k=0k=1,满足条件,c=2,a=1,b=2k=2,满足条件,c=3,a=2,b=3k=3,满足条件,c=5,a=3,b=5k=4,满足条件,c=8,a=5,b=8k=5,满足条件,c=13,a=8,b=13k=6,此时应该不满足条件,退出循环,输出c的值为13,故判断框内应为k<6?故选:A.点评:本题主要考查了程序框图和算法,属于基本知识的考查.15.(2014•福建)阅读如图所示的程序框图,运行相应的程序,输出的n的值为()A.1B.2C.3D.4【答案】B【解析】根据框图的流程模拟运行程序,直到不满足条件2n>n2,跳出循环,确定输出的n值.解:由程序框图知:第一次循环n=1,21>1;第二次循环n=2,22=4.不满足条件2n>n2,跳出循环,输出n=2.故选:B.点评:本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.16.下列判断不正确的是()A.画工序流程图类似于算法的流程图,要先把每一个工序逐步细化,按自上向下或自左到右的顺序B.在工序流程图中可以出现循环回路,这一点不同于算法流程图C.工序流程图中的流程线表示相邻两工序之间的衔接关系D.工序流程图中的流程线都是有方向的指向线【答案】B【解析】本题考查的流程图和结构图的基本概念,只要根据工序流程图和算法流程图的相关概念逐一进行分析,即可求解.解:因为每个工序是不能重复执行.∴在工序流程图中不能出现循环回路.故答案B不正确.故选B.点评:流程图和结构图源处生产和生活实际,经过数学加工后又要应用于生产和生活实际,因此对流程图和结构图概念的剖析,要坚持理论联系实际的原则.注意:在程序框图内允许有闭合回路,而在工序流程图内不允许出现闭合回路.17.下列关于工序流程图的说法正确的是()A.流程图内每一道工序,可以用矩形表示也可用平行四边形表示B.流程线是一条标有箭头的线段,可以是单向的也可以是双向的C.流程图中每一道工序是不可以再分的D.在工序流程图上不允许出现几道工序首尾相接的圈图或循环回路【答案】B【解析】根据工序流程图中各框图的功能,对答案逐一进行判断可得结论.解:流程图内每一道工序,可以用矩形表示,故A错误;流程线是一条标有箭头的线段,可以是单向的也可以是双向的,故B正确;流程图中每一道工序是可以再分为详细的子工序,故C错误;在工序流程图上允许出现几道工序首尾相接的圈图或循环回路,故D错误;故选B点评:本题考查的知识点是工序流程图,熟练掌握各框图的功能是解答的关键.18.已知某一项工程的工序流程图如图所示,其中时间单位为“天”,根据这张图就能算出工程的工期,这个工程的工期为天.【答案】10【解析】仔细观察工序流程图,寻找关键路线,注意利用优选法对重复的供需选择用时较多的.进而问题即可获得解答.解:由题意可知:工序①→工序④工时数为2,工序④→工序⑥工时数为2,工序⑥→工序⑦工时数为5,工序⑦→工序⑧工时数为1,所以所用工程总时数为:2+2+5+1=10天.故答案为:10.点评:本题考查流程图的作用,解题时要仔细观察工序流程图,寻找关键路线,属于基础题.19.小宁中午放学回家自己煮面条吃.有下面几道工序:①洗锅盛水2分钟;②洗菜6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条和菜共3分钟.以上各道工序,除④之外,一次只能进行一道工序.小宁要将面条煮好,最少用分钟.【答案】15【解析】根据统筹方法,烧开水时可洗菜和准备面条及佐料,这样可以节省时间,所以小明所用时间最少为①、④、⑤步时间之和.解:第一步,洗锅盛水花2分钟;第二步,用锅把水烧开10分钟,同时洗菜6分钟,准备面条及佐料2分钟,总计10分钟;第三步,用烧开的水煮面条和菜要3分钟.总计共用2+10+3=15分钟.故答案为:15点评:解决问题的关键是读懂题意,采用统筹方法是生活中常用的有效节省时间的方法,本题将数学知识与生活相结合,是一道好题.20.(2014•潍坊三模)已知函数f(x)定义域为D,若∀a,b,c∈D,f(a),f(b),f(c)都是某一三角形的三边,则称f(x)为定义在D上的“保三角形函数”,以下说法正确的个数有()①f(x)=1(x∈R)不是R上的“保三角形函数”②若定义在R上的函数f(x)的值域为[,2],则f(x)一定是R上的“保三角形函数”③f(x)=是其定义域上的“保三角形函数”④当t>1时,函数f(x)=e x+t一定是[0,1]上的“保三角形函数”A.1个B.2个C.3个D.4个【答案】B【解析】由题目已知中,根据“可构造三角形函数”的定义对四个选项进行判断即可得出正确选项.解:对于①,由题设所给的定义知,∀a,b,c∈R,f(a),f(b),f(c)都是某一正三角形的三边长,是“可构造三角形函数”,故①错误;对于②,若函数f(x)的值域为[,2],由2>2,故f(x)一定是“可构造三角形函数”,故②正确;对于③,当a=0,b=3,c=3时,f(a)=1>f(b)+f(c)=,不构成三角形,故③错误;对于④,由于函数f(x)=e x+t一定是[0,1]上的最小值为1+t,最大值为e+t,若t>1,则2(1+t)>e+t,故f(x)一定是“可构造三角形函数”,故④正确;故选:B.点评:本题考查综合法推理及函数的值域,三角形的性质,理解新定义是解答的关键.21.(2014•陕西模拟)已知[x]表示不超过实数x的最大整数(x∈R),如:[﹣1.3]=﹣2,[0.8]=0,[3.4]=3.定义{x}=x﹣[x],求{}+{}+{}+…+{}=()A.1006B.1007C.1008D.2014【答案】B【解析】利用新定义,代入计算可得结论.解:,,∴指数为奇次幂时,值为,为偶次幂时,值为∴原式=1007,故选:B.点评:本题考查简单的合情推理,考查新定义,考查学生的计算能力,比较基础.22.已知两个相关变量x,y的回归方程是=﹣2x+10,下列说法正确的是()A.当x的值增加1时,y的值一定减少2B.当x的值增加1时,y的值大约增加2C.当x=3时,y的准确值为4D.当x=3时,y的估计值为4【答案】D【解析】根据所给的线性回归方程,把x的值代入线性回归方程,得到对应的y的值,这里所得的y的值是一个估计值.解:当x=3时,=﹣2x+10=4,即当x=3时,y的估计值为4.故选:D.点评:本题考查线性回归方程,考查用线性回归方程估计或者说预报y的值,23.在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是()A.总偏差平方和B.残差平方和C.回归平方和D.相关指数【答案】B【解析】本题考查的回归分析的基本概念,根据拟合效果好坏的判断方法我们可得,数据点和它在回归直线上相应位置的差异是通过残差的平方和来体现的.解:∵拟合效果好坏的是由残差的平方和来体现的,而拟合效果即数据点和它在回归直线上相应位置的差异故据点和它在回归直线上相应位置的差异是通过残差的平方和来体现的.故选B点评:拟合效果好坏的是由残差的平方和来体现的,也可以理解为拟合效果即数据点和它在回归直线上相应位置的差异,故据点和它在回归直线上相应位置的差异是通过残差的平方和来体现的.24.实验测得四组(x,y)的值分别为(1,2),(2,3),(3,4),(4,4),则y与x间的线性回归方程是()A.y=﹣1+x B.y=1+x C.y=1.5+0.7x D.y=1+2x【答案】C【解析】根据所给的四对数据,算出y与x的平均数,把所求的平均数代入求b的公式,算出b的值,再把它代入求a的式子,求出a的值,写出线性回归方程即可.解:根据题意得:==2.5,==3.25,b==0.7,a=﹣b=3.25﹣0.7×2.5=1.5,∴y与x间的线性回归方程是y=1.5+0.7x.故选:C.点评:本题考查线性回归方程的求法,在一组具有相关关系的变量的数据间,利用最小二乘法做出线性回归方程的系数,再代入样本中心点求出a的值,本题是一个基础题.25.(2014•江西二模)设两个独立事件A,B都不发生的概率为.则A与B都发生的概率值可能为()A.B.C.D.【答案】D【解析】不妨设A不发生的概率为x,B不发生的概率为y,则xy=,A与B都发生的概率=(1﹣x)(1﹣y)=﹣(x+y)≤,即可得出结论.解:因为AB是独立事件,不妨设A不发生的概率为x,B不发生的概率为y,则xy=.因为x,y的范围是0<x,y≤1,x+y=x+≥,所以A与B都发生的概率=(1﹣x)(1﹣y)=﹣(x+y)≤故选:D.点评:本题考查相互独立事件的概率乘法公式,开车基本不等式的运用,属于基础题.26.(2013•江西一模)甲、乙两名棋手比赛正在进行中,甲必须再胜2盘才最后获胜,乙必须再胜3盘才最后获胜,若甲、乙两人每盘取胜的概率都是,则甲最后获胜的概率是()A.B.C.D.【答案】B【解析】分别求出甲乙再打2局,甲获胜的概率、甲乙再打3局,甲获胜的概率、甲乙再打4局,甲获胜的概率,相加,即得所求.解:甲乙再打2局,甲获胜的概率为=,甲乙再打3局,甲获胜的概率为(1﹣)××=,甲乙再打4局,甲获胜的概率为••=,故甲最后获胜的概率是为+=,故选:B.点评:本题主要考查相互独立事件的概率乘法公式,所求的事件与它的对立事件概率间的关系,体现了分类讨论的数学思想,属于中档题.27.(2014•唐山二模)用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率为()A.B.C.D.【答案】B【解析】依据简单随机抽样方式,总体中的每个个体被抽到的概率都是一样的,再结合容量为5,可以看成是抽5次,从而可求得概率.解:一个总体含有100个个体,某个个体被抽到的概率为,∴以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为×5=.故选:B点评:不论用哪种抽样方法,不论是“逐个地抽取”,还是“一次性地抽取”,总体中的每个个体被抽到的概率都是一样的,体现了抽样方法具有客观公平性.28.(2007•武汉模拟)为了了解某校高三调考学生成绩,用简单随机抽样的方法从中抽取了100名学生的成绩进行统计分析,在这个问题中,100被称为()A.总体B.个体C.从总体中抽取的一个样本D.样本容量【答案】D【解析】本题的考查的对象是:某校高三调考学生成绩,总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,从而得到结论.解:总体指的是某校高三调考学生成绩100名学生的成绩是样本其中100为样本容量故选D.点评:正确理解总体,个体,样本、样本容量的含义是解决本题的关键.29.从10个篮球中任取一个,检验其质量,则应采用的抽样方法为()A.简单随机抽样B.系统抽样C.分层抽样D.放回抽样【答案】A【解析】由于是从10个篮球中任取一个,个体数较少,总体的个体没有明显的层次.从所给的四个选项里观察,得到不是系统抽样、分层抽样,也不是放回抽样,是简单随机抽样.解:从10个篮球中任取一个,检验其质量,因为总体的个体没有明显的层次,且个体数较少,则应采用的抽样方法为是简单随机抽样.故选A.点评:本题考查简单随机抽样,考查分层抽样,考查系统抽样,是一个涉及到所学的所有抽样的问题,注意方向各种抽样的特点,分析清楚抽样的区别.30.一个总体中共有10个个体,用简单随机抽样的方法从中抽取一个容量为3的样本,则某特定个体入样的概率是()A.B.C.D.【答案】C【解析】根据在简单随机抽样过程中每个个体被抽到的概率相等,被抽到的概率都等于要抽取的样本容量除以总体的个数.解:用简单随机抽样法从中抽取,∴每个个体被抽到的概率都相同,为,故选C.点评:简单随机抽样是一种最简单、最基本的抽样方法.常用的简单随机抽样方法有抽签法和随机数法.抽签法的优点是简单易行,缺点是当总体的容量非常大时,.随机数表法的优点与抽签法相同,缺点是当总体容量较大时,仍然不是很方便.。

【2014安庆市二模】安徽省安庆市2014届高三高考模拟考试(二)(数学文)扫描版

【2014安庆市二模】安徽省安庆市2014届高三高考模拟考试(二)(数学文)扫描版

2014年安庆市高三模拟考试(二模) 数学试题(文科) 参考答案及评分标准一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 题号 1 2 3 4 5 6 7 8 9 10 答案DBCACBBCBD1、解析:21a i i--i a a i a i )22(22)1(2-+-=+-=是实数,则022=-a ,故4=a 选D.2、解析:=B {x |2x =23-x }{}2,1=,(){}0,1-=⋂∴B C A U ,选B.3、解析:特称命题的否定是全称命题, 选C.4、解析:从C 学校中应抽取的人数为10609027018090=⨯++,选A.5、解析:从5个点中取3个点,列举得ABC,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE 共有10个基本事件,而其中ACE, BCD 两种情况三点共线,其余8个均符合题意,故能构成三角形的概率为54108=.选C.6、解析:双曲线C 的离心率为2,对于A 答案,其离心率为2,不符合题意;对于B 答案,其离心率为3,符合题意;对于C 答案,其离心率为26,不符合题意;对 于D 答案,其离心率为3,不符合题意.选B.7、解析:由三视图可知该几何体是底面为直角梯形(梯形上底为1,下底为2,直角腰为 1),高为1的直棱柱,故其表面积为27212121)21(21211+=⨯+⨯+⨯⨯+⨯+⨯⨯. 选B. 8、解析:在21a a a n n +=+中,令,1=n 则0,1212=+=a a a a ,令2=n ,则1,22223===a a a ,于是11=-+n n a a ,故数列{}n a 是首项为0,公差为1的等差数列,201310072201320142014⨯=⨯=∴S . 选C.9、解析:由正弦定理得C B A sin sin 5sin =①,又C B A cos cos 5cos =②,②-①得,A CBC B C B A A cos 5)cos(5)sin sin cos (cos 5sin cos -=+=-=-, A A cos 6sin =,6tan =∴A . 选B.10、解析:代入检验,当0m =时,()0()1f x f x ==或,()0f x =有2个不同实根,1)(=x f 有4个不同实根,不符合题意;当6=m 时,9)(4)(==x f x f 或,4)(=x f有3个不同实根,9)(=x f 有2个不同实根,不符合题意;当2m =时,()1()4f x f x ==或,作出函数()f x 的图象,得到1)(=x f 有4个不同实根,()4f x =有3个不同实根,符合题意. 选D. 二、填空题:(本大题共5小题,每小题5分,共25分.) 11、23 12、5 13、2π14、2 15、②③⑤ 11、解析:执行程序框图,依次得到;5,2==y x ;11,5==y x 23,11==y x ,符合条件,输出y ,其值为23.12、解析:作出可行域,得到当P 位于)4,3(时,||OP 最大,其值为5. 13、解析:由力的平衡可知021=++G F F ,G F F-=+21,两边平方, 可得2212221)(2G F F F F -=⋅++,由条件得021=⋅F F ,故1F 与2F 的夹角θ的大小为2π.(或利用向量加法的平行四边形法则来求) 14、解析:求导得32)(--='x x f ,所以在点),(2-a a 处的切线方程为)(232a x a a y --=---.令0x =得,;32-=a y 令0y =得,.23a x =所以切线与两条坐标轴围成的三角形的面积3233212=⨯⨯-a a ,43=a (舍去负值),2log 23=∴a .15、解析:对于①,其值域为]0,1[-,不符合,故①舍去;对于②,其值域为⎥⎦⎤⎢⎣⎡2,0π, 故②正确;对于③,23()33f x x '=-,于是)(3x f 在)1,2(--上单调递增,在()1,1-上 单调递减,在()2,1上单调递增,其值域为[]2,2-,故③正确;对于④,411()10x f x x x-'=-=≥,24()ln ,1,f x x x x e ⎡⎤=-∈⎣⎦单调递增,其值域为21,2e ⎡⎤-⎣⎦, 不符合题意,故④舍去;对于⑤,0)0(5=f ,当0>x 时,520()211f x x x <=≤+-(当且仅当1=x 时,等号成立),其值域为]2,0[,故⑤正确.于是填②③⑤. 三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16、(本小题满分12分)解:(Ⅰ)x x x x b a x f 2cos 232sin 2162sin 32sin )(-=⎪⎭⎫⎝⎛-+-=⋅=π ⎪⎭⎫ ⎝⎛-=32sin πx .…………..4分故函数)(x f 的最小值为1-,此时2232πππ-=-k x ,于是)(12Z k k x ∈-=ππ,故使)(x f 取得最小值的x 的集合为⎭⎬⎫⎩⎨⎧∈-=)(12|Z k k x x ππ. ……………..7分(Ⅱ)由条件可得⎪⎭⎫⎝⎛--=322sin )(πϕx x g ,因为其图象关于y 轴对称,所以232πππϕ+=+k ,)(122Z k k ∈+=ππϕ,又0>ϕ,故当0=k 时,ϕ取得最小值12π,于是至少向右平移12π个单位长度,才能使得到的函数)(x g 的图象关于y 轴对称.……………..12分17、(本小题满分12分)解:(Ⅰ)由抽样调查阅读莫言作品在50篇以上的频率为100795050101513121811=++++++,据此估计该校学生阅读莫言作品超过50篇的概率约为=P 10079………..5分(Ⅱ)………..8分根据列联表数据得()323.1010.1455550502520253010022<≈⨯⨯⨯⨯-⨯⨯=K ,所以没有75%的把握认为对莫言作品的非常了解与性别有关. ………..12分18、(本小题满分12分)解:(Ⅰ)求导得)cos sin ()(221x x a a a x f n n n +--='++,由()00='f 可得221++=n n n a a a ,又0>n a ,故数列{}n a 为等比数列,且公比0>q .……………..3分由16,151==a a 得2,164==q q ,所以通项公式为)(21*-∈=N n a n n . ………..6分 (Ⅱ)21122322n n S n -=+⨯+⨯++⋅L ①231222232(1)22n n n S n n -=+⨯+⨯++-⋅+⋅L ②①-②得,2112222n nn S n --=++++-⋅L n nn 22121⋅---=n n n 212⋅--= 12)1(+⋅-=∴n n n S……………..12分19、(本小题满分13分)证明:(Ⅰ)2,4,AC BC AB ===Q ,222AB BC AC =+∴BC AC ⊥∴又因平面⊥PAC 平面ABC ,平面⋂PAC 平面ABC ⊥∴=BC AC ,平面PAC ,PA ⊂Q 平面PAC ,PA BC ⊥∴.……………..6分解:(Ⅱ)作PC AD ⊥于点D .由(Ⅰ)知⊥BC 平面PAC ,PC BC AD BC ⊥⊥∴, 又PM ∥BC ,且,42==PM BC∴四边形BCPM 是上、下底分别为2、4,高为2的直角梯形,其面积为6.又C PC BC =⋂,⊥∴AD 平面BCPM ,3=AD . 故多面体PMBCA 的体积为32363131=⨯⨯=⨯⨯AD S BCPM . ……………..13分20、(本小题满分13分)解:(Ⅰ)函数的定义域为R .求导得xex x a x f )2()(2-='………..3分 当0>a 时,令0)(>'x f ,解得20<<x ,此时函数)(x f 的单调递增区间为()2,0;………..5分当0<a 时,令0)(>'x f ,解得20><x x 或,此时函数)(x f 的单调递增区间为()0,∞-,()+∞,2.………..7分(Ⅱ)由(Ⅰ)可知,当0>a 时,函数)(x f 在区间()()+∞∞-,2,0,上单调递减,在()2,0上单调递增,于是当2=x 时,函数)(x f 取到极大值,极大值为ee a 142=, 故a 的值为4e.………..13分21、(本小题满分13分)解:(Ⅰ)由题意可知1=b ,又1212±=∴=+t t . 又10=∴>t t .……..2分在AFB Rt ∆中,22222)1()1(2,||||||c c AF FB AB +=++∴=+,2,1==∴a c故椭圆的标准方程为:2212x y += ………..6分(Ⅱ)设1122012012(,),(,),3,3,3M x y N x y OP OM ON x x x y y y =+∴=+=+uu u r uuu r uuu rQ∵M 、N 在椭圆上,∴22,2222222121=+=+y x y x又直线OM 与ON 的斜率之积为12-,∴121220x x y y +=, 于是22222200112211222(69)2(69)x y x x x x y y y y +=+++++20)2(9)2(6)2(222221212121=+++++=y x y y x x y x . 故22002x y +为定值.………..13分。

高考数学高三模拟考试试卷压轴题第02节 一元二次不等式及解法

高考数学高三模拟考试试卷压轴题第02节 一元二次不等式及解法

高考数学高三模拟考试试卷压轴题第02节 一元二次不等式及解法一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1. 【·湖北八校联考】不等式4x -2≤x -2的解集是( )A .(-∞,0]∪(2,4]B .[0,2)∪[4,+∞)C .[2,4)D .(-∞,2]∪(4,+∞)2.【·潍坊质检】“01a <<”是“2210ax ax >++的解集是实数集R ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3. 关于x 的不等式x2-(a +1)x +a <0的解集中,恰有3个整数,则a 的取值范围是( )A .(4,5)B .(-3,-2)∪(4,5)C .(4,5]D .[-3,-2)∪(4,5]4. 若函数f(x)=(a2+4a -5)x2-4(a -1)x +3的图像恒在x 轴上方,则a 的取值范围是( )A .[1,19]B .(1,19)C .[1,19)D .(1,19]5. 如果关于x 的不等式250x a ≤-的正整数解是1,2,3,4,那么实数a 的取值范围是( )A .80≤a<125B .80<a<125C .a<80D .a>1256.【厦门模拟】不等式(x2-2)log2x>0的解集是( )A .(0,1)∪(2,+∞)B .(-2,1)∪(2,+∞)C .(2,+∞)D .(-2,2)7.【莆田二模】若不等式20ax bx c >++的解集是(-4,1),则不等式2()(13)0b x a x c >-+++的解集为( )A.⎝ ⎛⎭⎪⎫-43,1B .(-∞,-1)∪⎝ ⎛⎭⎪⎫43,+∞ C .(-1,4)D .(-∞,-2)∪(1,+∞)8. 若不等式201x ax a ≤-+≤有唯一解,则a 的取值为( ) A. 0B. 2C. 4D. 69. 设2()1f x x bx =++,且(1)(3),f f -=则()0f x >的解集是 ( ) A.(,1)(3,)-∞-⋃+∞ B.R C.{}|1x x ≠ D.{}|1x x =10. 设奇函数()f x 在[]1,1-上是增函数,且()11f -=-,若函数()221f x t at ≤-+对所有的[]1,1x ∈-,[]1,1a ∈-都成立,则t 的取值范围是( )A .22t -≤≤B .1122t -≤≤ C .12t ≤-或0t =或12t ≥ D .2t ≤-或0t =或2t ≥11.【北京市房山区周口店中学高三上学期期中考试】已知一元二次不等式()<0f x 的解集为{}1|<-1>2x x x 或,则(10)>0x f 的解集为( )A .{}|<-1>lg2x x x 或B .{}|-1<<lg2x xC .{}|>-lg2x xD .{}|<-lg2x x12.【南昌二中高三上学期第三次考试】不等式2162a bx x b a+<+对任意,(0,)a b ∈+∞恒成立,则实数x 的取值范围是A .(2,0)-B .(,2)(0,)-∞-+∞C .(4,2)-D .(,4)(2,)-∞-+∞二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.) 13.若关于x 的不等式1420x x a ≥+--在[1,2]上恒成立,则实数a 的取值范围为________.14.已知不等式222xy ax y ≤+,若对任意[]2,1∈x 且[]3,2∈y ,该不等式恒成立,则实数a 的取值范围是.15.已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式(2)(2)5x x f x ++⋅+≤的解集是 .16.【绍兴市一中高三9月回头考数学】已知关于x 的不等式220x ax a -+<的解集为A ,若A 中恰有两个整数,则实数a 的取值范围为三、解答题 (本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.【日照模拟】已知函数2f(x)=21ax ax ++的定义域为R.(1)求a 的取值范围; (2)若函数f(x)的最小值为22,解关于x 的不等式220x x a a <---. 18.已知集合{}2|230,,A x x x x R =--≤∈{}22|240,,B x x mx m x R m R =-+-≤∈∈ (1)若[]0,3AB =,求实数m 的值;(2)若⊆A B C R ,求实数m 的取值范围. 19.已知不等式012<--mx mx .(1)若对R x ∈∀不等式恒成立,求实数m 的取值范围; (2)若对]3,1[∈∀x 不等式恒成立,求实数m 的取值范围;(3)若对满足2||≤m 的一切m 的值不等式恒成立,求实数x 的取值范围.20.【定州中学高三第一次月考数学】已知函数⎪⎪⎪⎩⎪⎪⎪⎨⎧>+∈≤≤-+-<--=)21(15))(212(3)2(1)(x x R x x x x x x f .(1)求函数)(x f 的最小值;(2)已知R m ∈,命题p :关于x 的不等式+≥2)(m x f 22-m 对任意R m ∈恒成立;q :函数x m y )1(2-=是增函数,若“p 或q ”为真,“p 且q ”为假,求实数m 的取值范围.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

山东省2014届高三文科数学备考之2013届名校解析试题精选分类汇编5:数列 Word版含答案

山东省2014届高三文科数学备考之2013届名校解析试题精选分类汇编5:数列 Word版含答案

山东省2014届高三文科数学一轮复习之2013届名校解析试题精选分类汇编5:数列一、选择题1 .(【解析】山东省青岛一中2013届高三1月调研考试文科数学)已知数列{n a }满足*331log 1log ()n n a a n ++=∈N ,且2469a a a ++=,则15793log ()a a a ++的值是 ( )A .15-B .5-C .5D .15【答案】B 【解析】由*331log 1log ()n n a a n ++=∈N ,得313log log 1n n a a +-=,即13log 1n na a +=,解得13n n a a +=,所以数列{}n a 是公比为3的等比数列.因为3579246()a a a a a a q ++=++,所以35579933a a a ++=⨯=.所以5515791333log ()log 3log 35a a a ++==-=-,选 B .2 .(【解析】山东省德州市2013届高三3月模拟检测文科数学)若正项数列{}n a 满足1111n n ga ga +=+,且a 2001+a 2002+a 2003+a 2010=2013,则a 2011+a 2012+a 2013+a 2020的值为( )A .2013·1010B .2013·1011C .2014·1010D .2014·1011【答案】A 由条件知1111lg1n n n n a ga ga a ++-==,即110n naa +=为公比是10的等比数列.因为102001201020112020()a a q a a ++=++ ,所以1020112020201310a a ++=⋅ ,选A .3 .(【解析】山东省实验中学2013届高三第一次诊断性测试数学(文)试题)在各项均为正数的等比数列{}n a 中,31,1,s a a ==则2326372a a a a a ++=( )A .4B .6C .8D.8-【答案】C 【解析】在等比数列中,23752635,a a a a a a a ==,所以22232637335522a a a a a a a a a ++=++22235()11)8a a =+=+==,选C .4 .(【解析】山东省济宁市2013届高三1月份期末测试(数学文)解析)已知函数()()2cos f n n n π=,且()()1,n a f n f n =++则123100a a a a +++⋅⋅⋅+=( )A .100-B .0C .100D .10200【答案】A 解:若n 为偶数,则()()221=(1)(21)na f n f n n n n =++-+=-+,为首项为25a =-,公差为4-的等差数列;若n 为奇数,则()()221=(1)21n a f n f n n n n =++-++=+,为首项为13a =,公差为4的等差数列.所以123100139924100()()a a a a a a a a a a +++⋅⋅⋅+=+++++++ 50495049503450(5)410022⨯⨯=⨯+⨯+⨯--⨯=-,选A . 5 .(【解析】山东省济南市2013届高三3月高考模拟文科数学)等差数列}{n a 中,482=+a a ,则它的前9项和=9S ( )A .9B .18C .36D .72【答案】B 在等差数列中,28194a a a a +=+=,所以1999()941822a a S +⨯===,选 B .6 .(【解析】山东省实验中学2013届高三第三次诊断性测试文科数学)已知各项为正的等比数列{}n a 中,4a 与14a 的等比数列中项为22,则1172a a +的最小值 ( )A .16B .8C .22D .4【答案】B 【解析】由题意知224149a a a ==,即9a =.所以设公比为(0)q q >,所以22971192228a a a a q q +=+=+≥=,2=,即42q =,所以q =,所以最小值为8,选B .7 .(【解析】山东省德州市2013届高三上学期期末校际联考数学(文))在各项均为正数的数列{a n }中,对任意m 、*n N Î都有m n m a a +=·n a 若636,a =则9a 等于 ( )A .216B .510C .512D .l024【答案】A 解:由题意可知26336a a ==,所以36a =,所以93636636216a a a a +===⨯= ,选A .8 .(【解析】山东省潍坊市2013届高三上学期期末考试数学文(a ))如果等差数列{}n a 中,15765=++a a a ,那么943...a a a +++等于 ( )A .21B .30C .35D .40【答案】C 【解析】在等差数列中,由15765=++a a a 得663155a a ==,.所以3496...=77535a a a a +++=⨯=,选C .9 .(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)已知等差数列{}n a 的前n 项和为n S ,满足1313113a S a ===,则 ( )A .14-B .13-C .12-D .11-【答案】D 在等差数列中,1131313()132a a S +==,所以1132a a +=,即113221311a a =-=-=-,选 D .10.(【解析】山东省枣庄市2013届高三3月模拟考试 数学(文)试题)两旅客坐火车外出旅游,希望座位连在一起,且仅有一个靠窗,已知火车上的座位的排法如表格所示,则下列座位号码符合要求的是( )A .48,49B .62,63C .84,85D .75,76【答案】C 根据座位排法可知,做在右窗口的座位号码应为5的倍数,所以C 符合要求.选 C .11.(山东省威海市2013届高三上学期期末考试文科数学){}n a 为等差数列,n S 为其前n 项和,已知77521a S ==,,则10S =( )A .40B .35C .30D .28【答案】【答案】A 设公差为d ,则由77521a S ==,得1777()2a a S +=,即17(5)212a +=,解得11a =,所以716a a d =+,所以23d =.所以1011091092101040223S a d ⨯⨯=+=+⨯=,选 ( )A .12.(【解析】山东省济宁市2013届高三1月份期末测试(数学文)解析)已知在等比数列{}n a 中,1346510,4a a a a +=+=,则该等比数列的公比为 ( )A .14B .12C .2D .8【答案】B 解:因为31346()a a q a a +=+,所以34613514108a a q a a +===+,即12q =,选B .13.(【解析】山东省实验中学2013届高三第三次诊断性测试文科数学)已知等差数列{}n a 的公差为d 不为0,等比数列{}n b 的公比q 是小于1的正有理数,若211,d b d a ==,且321232221b b b a a a ++++是正整数,则q 的值可以是 ( )A .71 B .-71 C .21 D .21-【答案】C 【解析】由题意知21312,23a a d d a a d d =+==+=,22222131,b b q d q b b q d q ====,所以2222221232222212349141a a a d d d b b b d d q d q q q ++++==++++++,因为321232221b b b a a a ++++是正整数,所以令2141t q q=++,t 为正整数.所以2114t q q ++=,即21014t q q ++-=,解得q ===,因为t 为正整数,所以当8t =时,12122q -+===.符合题意,选C .14.(【解析】山东省滨州市2013届高三第一次(3月)模拟考试数学(文)试题)已知数列{}n a 为等差数例,其前n 项的和为n S ,若336,12a S ==,则公差d = ( )A .1B .2C .3D .53【答案】B 在等差数列中,13133()3(6)1222a a a S ++===,解得12a =所以解得2d =,选 B . 15.(【解析】山东省济南市2013届高三上学期期末考试文科数学)已知数列{}n a 的前n 项和为n S ,且122-=n S n , 则=3a( )A .-10B .6C .10D .14【答案】C 解:22332231(221)10a S S =-=⨯--⨯-=,选 C .16.(【解析】山东省临沂市2013届高三3月教学质量检测考试(一模)数学(文)试题)已知等差数列{n a }中,74a π=,则tan(678a a a ++)等于( )A .B .C .-1D .1【答案】C 在等差数列中6787334a a a a π++==,所以6784tan()tan14a a a π++==-,选 C . 17.(【解析】山东省烟台市2013届高三5月适应性练习(一)文科数学)已知等比数列{a n }的公比q=2,前n硕和为S n .若S 3=72,则S 6等于 ( )A .312B .632C .63D .1272【答案】B 【解析】3131(12)77122a S a -===-,所以112a =.所以6161(12)6363122a S a -===-,选 B .二、填空题18.(【解析】山东省青岛市2013届高三第一次模拟考试文科数学)设n S 是等差数列{}n a 的前n 项和,1532,3a a a ==,则9S =_____________ ;【答案】54- 由1532,3a a a ==得1143(2)a d a d +=+,即12d a =-=-,所以919899298542S a d ⨯=+=⨯-⨯=-. 19.(山东省青岛即墨市2013届高三上学期期末考试 数学(文)试题)等比数列}{n a ,2=q ,前n 项和为=24a S S n ,则____________. 【答案】215解:在等比数列中,4141(12)1512a S a -==-,所以4121151522S a a a ==.20.(【解析】山东省实验中学2013届高三第一次诊断性测试数学(文)试题)数列{}n a 满足113,1,n n n n a a a a A +=-=表示{}n a 前n 项之积,则2013A =_____________.【答案】1-【解析】由113,1,n n n a a a a +=-=得11n n na a a +-=,所以231233a -==,312a =-,43a =,所以{}n a 是以3为周期的周期数列,且1231a a a =-,又20133671=⨯,所以6712013(1)1A =-=-.21.(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)在如图所示的数阵中,第9行的第2个数为___________.【答案】66 每行的第二个数构成一个数列{}n a ,由题意知23453,6,11,18a a a a ====,所以3243543,5,7,a a a a a a -=-=-=12(1)123n n a a n n --=--=-,等式两边同时相加得22[233](2)22n n n a a n n -+⨯--==-,所以()222223,2n a n n a n n n =-+=-+≥,所以29929366a =-⨯+=.22.(【解析】山东省泰安市2013届高三第一轮复习质量检测数学(文)试题)正项数列{}n a 满足:()222*121171,2,2,2,n n n a a a a a n N n a +-===+∈≥=则______.【答案】因为()222*112,2n n n a a a n N n +-=+∈≥,所以数列2{}n a 是以211a =为首项,以2221413d a a =-=-=为公差的等差数列,所以213(1)32n a n n =+-=-,所以1n a n =≥,所以7a ==23.(【解析】山东省潍坊市2013届高三第一次模拟考试文科数学)现有一根n 节的竹竿,自上而下每节的长度依次构成等差数列,最上面一节长为10cm,最下面的三节长度之和为114cm,第6节的长度是首节与末节长度的等比中项,则n=_____.【答案】16 设对应的数列为{}n a ,公差为,(0)d d >.由题意知110a =,12114n n n a a a --++=,261n a a a =.由12114n n n a a a --++=得13114n a -=,解得138n a -=,即2111(5)()n a d a a d -+=+,即2(105)10(38)d d +=+,解得2d =,所以11(2)38n a a n d -=+-=,即102(2)38n +-=,解得16n =.24.(【解析】山东省济宁市2013届高三第一次模拟考试文科数学 )已知等差数列{n a }中,35a a +=32,73a a -=8,则此数列的前10项和10S =____.【答案】190【解析】由7348a a d -==,解得2d =,由3532a a +=,解得110a =.所以101109101902S a d ⨯=+=. 25.(【解析】山东省潍坊市2013届高三第二次模拟考试文科数学)已知等差数列{}n a 的前n 项和为n S ,若2,4,3a 成等比数列,则5S =_________.【答案】40因为2,4,3a 成等比数列,所以232416a ==,所以38a =.又153535()525584022a a a S a +⨯====⨯=. 26.(【解析】山东省烟台市2013届高三上学期期末考试数学(文)试题)已知等比数列{a n }中,6710111,16a a a a ==g g ,则89a a g 等于_______【答案】4【解析】在等比数列中2676()10a a a q ==>g ,所以0q >,所以289670a a a a q =>g .所以67101116a a a a =,即289()16a a =g ,所以894a a =g .27.(【解析】山东省泰安市2013届高三上学期期末考试数学文)下面图形由小正方形组成,请观察图1至图4的规律,并依此规律,写出第n 个图形中小正方形的个数是___________.【答案】(1)2n n +【解析】12341,3,6,10a a a a ====,所以2132432,3,4a a a a a a -=-=-=, 1n n a a n --=,等式两边同时累加得123n a a n -=+++ ,即(1)122n n n a n +=+++=,所以第n 个图形中小正方形的个数是(1)2n n + 三、解答题28.(【解析】山东省烟台市2013届高三上学期期末考试数学(文)试题)已知数列{a n }的前n 项和为S n ,且22n n S a =-.(1)求数列{a n }的通项公式;(2)记1213(21)n n S a a n a =+++-g g L g ,求S n【答案】29.(【解析】山东省潍坊市2013届高三上学期期末考试数学文(a ))设数列{}n a 为等差数列,且9,553==a a ;数列{}n b 的前n 项和为n S ,且2=+n n b S . (I)求数列{}n a ,{}n b 的通项公式; (II)若()+∈=N n b a c nnn ,n T 为数列{}n c 的前n 项和,求n T . 【答案】30.(【解析】山东省滨州市2013届高三第一次(3月)模拟考试数学(文)试题)已知数列{}n a 的前n 项和是n S ,且11()2n n S a n *+=∈N (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设113log (1)()n n b S n *+=-∈N ,令122311n T b b b b =++11n n b b ++,求n T . 【答案】31.(【解析】山东省临沂市2013届高三5月高考模拟文科数学)已知点(1,2)是函数()(01)x f x a a a =≠>且的图象上一点,数列{}n a 的前n 项和()1n S f n =-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)将数列{}n a 前2013项中的第3项,第6项,,第3k 项删去,求数列{}n a 前2013项中剩余项的和.【答案】解:(Ⅰ)把点(1,2)代入函数()x f x a =,得2a =.()121,n n S f n ∴=-=-当1n =时,111211;a S ==-= 当2n ≥时,1n n n a S S -=-1(21)(21)n n -=---12n -=经验证可知1n =时,也适合上式,12n n a -∴=.(Ⅱ)由(Ⅰ)知数列{}n a 为等比数列,公比为2,故其第3项,第6项,,第2013项也为等比数列,首项31324,a -==公比32012201328,2a ==为其第671项∴此数列的和为67120134(18)4(21)187--=- 又数列{}n a 的前2013项和为2013201320131(12)21,12S ⨯-==--∴所求剩余项的和为2013201320134(21)3(21)(21)77----=32.(【解析】山东省实验中学2013届高三第三次诊断性测试文科数学)已知数列}{n a 的前n 项和为n S ,且)(14*∈+=N n a S n n . (Ⅰ)求21,a a ;(Ⅱ)设||log 3n n a b =,求数列{}n b 的通项公式.【答案】解:(1)由已知1411+=a S ,即31,14111=∴+=a a a ,又1422+=a S ,即91,1)42221-=∴+=+a a a a (;(2)当1>n 时,)1(41)1(4111+-+=-=--n n n n n a a S S a ,即13--=n n a a ,易知数列各项不为零(注:可不证不说),311-=∴-n n a a 对2≥n 恒成立, {}n a ∴是首项为31,公比为-31的等比数列,n n n n a ----=-=∴3)1()31(3111,n a n n -==∴-3log ||log 33,即n b n -=33.(【解析】山东省泰安市2013届高三上学期期末考试数学文)在等差数列{}n a 中,13a =,其前n 项和为n S ,等比数列{}n b 的各项均为正数,11b =,公比为q ,且222212,,n n S b S q a b b +==求与; 【答案】34.(【解析】山东省济宁市2013届高三1月份期末测试(数学文)解析)设数列{}n a 的前n 项和为n S ,若对于任意的正整数n 都有23n n S a n =-.(I)设3n n b a =+,求证:数列{}n b 是等比数列,并求出{}n a 的通项公式; (II)求数列{}n nb 的前n 项和T n .【答案】35.(【解析】山东省德州市2013届高三3月模拟检测文科数学)数列{}n a 是公差不小0的等差数列a 1、a 3,是函数2()1(66)f x n x x =-+的零点,数列{}n b 的前n 项和为n T ,且*12()n n T b n N =-∈ (1)求数列{}n a ,{}n b 的通项公式;(2)记n n n c a b =,求数列{}n c 的前n 项和S n .【答案】36.(【解析】山东省德州市2013届高三上学期期末校际联考数学(文))已知数列{a n }的公差为2的等差数列,它的前n 项和为n S ,且1321,1,1a a a +++成等比数列. (I)求{a n }的通项公式; (2)13{},.4n n n n T T S <记数列的前项求证: 【答案】37.(【解析】山东省济南市2013届高三上学期期末考试文科数学)已知等差数列{}n a 的前n 项和为n S ,且满足24a =,3417a a +=. (1)求{}n a 的通项公式; (2)设22n a n b +=,证明数列{}n b 是等比数列并求其前n 项和n T .【答案】解:(1)设等差数列{}n a 的公差为d .由题意知3411212317,4,a a a d a d a a d +=+++=⎧⎨=+=⎩解得,11a =,3d =, ∴32n a n =-(n N *∈) (2)由题意知, 2322n a n n b +==(n N *∈),3(1)33122n n n b ---==(,2n N n *∈≥)∴333312282n n n n b b --===(,2n N n *∈≥),又18b = ∴{}n b 是以18b =,公比为8的等比数列()()818881187n nn T -==-- 38.(山东省烟台市2013届高三3月诊断性测试数学文)设{a n }是正数组成的数列,a 1=3.若点()2*11,2()n n n a aa n N ++-∈在函数321()23f x x x =+-的导函数()y f x '=图像上. (1)求数列{a n }的通项公式; (2)设12n n nb a a +=⋅,是否存在最小的正数M,使得对任意n *N ∈都有b 1+b 2++b n <M 成立?请说明理由.【答案】39.(【解析】山东省济宁市2013届高三第一次模拟考试文科数学 )(本小题满分l2分)设数列{n a }满足:a 1=5,a n+1+4a n =5,(n ∈N*)(I)是否存在实数t ,使{a n +t }是等比数列?(Ⅱ)设数列b n =|a n |,求{b n }的前2013项和S 2013.【答案】解:(I)由+1+4=5n n a a 得+1=4+5n n a a -令()+1+=4+n n a t a t -,得+1=45n n a a t -- 则5=5t -,=1t - 从而()+11=41n n a a --- .又11=4a -, {}1n a ∴-是首项为4,公比为4-的等比数列,∴存在这样的实数=1t -,使{}+n a t 是等比数列(II)由(I)得()11=44n n a --⋅- ()=14nn a ∴--{1+4, 41==n n n n n n b a -∴为奇数,为偶数()()()()()123420132013122013=++=1+4+41+1+4+41++1+4S b b b ∴--1232013=4+4+4++4+1 201420144441=+1=143--- 40.(【解析】山东省枣庄市2013届高三3月模拟考试 数学(文)试题)已知等比数列13212{}1,6,,8n a q a a a a a >=-的公比且成等差数列.(1)求数列{a n }的通项公式;(2)设(1),: 1.n n nn n b b a +=≤求证 【答案】41.(【解析】山东省青岛市2013届高三第一次模拟考试文科数学)已知N n *∈,数列{}n d 满足2)1(3nn d -+=,数列{}n a 满足1232n n a d d d d =+++⋅⋅⋅+;数列{}n b 为公比大于1的等比数列,且42,b b 为方程064202=+-x x 的两个不相等的实根.(Ⅰ)求数列{}n a 和数列{}n b 的通项公式;(Ⅱ)将数列{}n b 中的第.1a 项,第.2a 项,第.3a 项,,第.n a 项,删去后剩余的项按从小到大的顺序排成新数列{}n c ,求数列{}n c 的前2013项和.【答案】解:(Ⅰ)2)1(3n n d -+= ,∴1232n n a d d d d =+++⋅⋅⋅+3232nn ⨯== 因为42,b b 为方程064202=+-x x 的两个不相等的实数根. 所以2042=+b b ,6442=⋅b b 解得:42=b ,164=b ,所以:n n b 2=(Ⅱ)由题知将数列{}n b 中的第3项、第6项、第9项删去后构成的新数列{}n c 中的奇数列与偶数列仍成等比数列,首项分别是12b =,24b =公比均是,8201313520132462012()()T c c c c c c c c =+++⋅⋅⋅+++++⋅⋅⋅+ 1007100610062(18)4(18)208618187⨯-⨯-⨯-=+=-- 42.(【解析】山东省潍坊市2013届高三第一次模拟考试文科数学)已知数列{}n a 的各项排成如图所示的三角形数阵,数阵中每一行的第一个数1247,,,,a a a a ⋅⋅⋅构成等差数列{}n b ,n S 是{}n b 的前n 项和,且1151,15b a S ===( I )若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知916a =,求50a 的值; (Ⅱ)设122111n n n nT S S S ++=++⋅⋅⋅+,求n T.【答案】解:(Ⅰ){}n b 为等差数列,设公差为155,1,15,51015,1d b S S d d ==∴=+== 1(1)1.n b n n ∴=+-⨯=设从第3行起,每行的公比都是q ,且0q >,2294,416,2,a b q q q === 1.+2+3++9=45,故50a 是数阵中第10行第5个数, 而445010102160.a b q ==⨯= (Ⅱ)12n S =++ (1),2n n n ++=1211n n n T S S ++∴=++21nS +22(1)(2)(2)(3)n n n n =++++++22(21)n n ++11112(1223n n n n =-+-+++++11)221n n +-+ 1122().121(1)(21)n n n n n =-=++++43.(山东省青岛即墨市2013届高三上学期期末考试 数学(文)试题)等差数列}{n a 中,9,155432==++a a a a . (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)设213+=n a n b ,求数列},21{n n b a +的前n 项和n S 【答案】解:(Ⅰ)设数列{}由题意得首项的公差为,1a d a n且⎩⎨⎧=+=+⎩⎨⎧==++941563915115432d a d a a a a a 即 解得⎩⎨⎧==211d a所以数列{}12-=n a a n n 的通项公式为 (Ⅱ)由(Ⅰ)可得n n n a b 3231==+ 所以n n n n b a 3..21=+ 所以+++=323.33.23.11n S 13.+n n两式相减得++++-=433333(22n S 13.)3+++n n n 10 分43).12(323..1233.31313111+++-+=-+=+---=n n n n n n S n n n 即)()(44.(【解析】山东省潍坊市2013届高三第二次模拟考试文科数学)某工厂为扩大生产规模,今年年初新购置了一条高性能的生产线,该生产线在使用过程中的维护费用会逐年增加,第一年的维护费用是4万元,从第二年到第七年,每年的维护费用均比上年增加2万元,从第八年开始,每年的维护费用比上年增加25%(I)设第n 年该生产线的维护费用为n a ,求n a 的表达式; (Ⅱ)设该生产线前n 年维护费为n S ,求n S .【答案】45.(山东省威海市2013届高三上学期期末考试文科数学)已知数列{}n a ,15a =-,22a =-,记()A n =12n a a a +++ ,23()B n a a =+1n a +++ ,()C n =342+n a a a +++ (*N n ∈),若对于任意*N n ∈,()A n ,()B n ,()C n 成等差数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ) 求数列{}||n a 的前n 项和.【答案】解:(Ⅰ)根据题意()A n ,()B n ,()C n 成等差数列∴()+()2()A n C n B n =整理得2121253n n a a a a ++-=-=-+= ∴数列{}n a 是首项为5-,公差为3的等差数列 ∴53(1)38n a n n =-+-=- (Ⅱ)38,2||38,3n n n a n n -+≤⎧=⎨-≥⎩记数列{}||n a 的前n 项和为n S .当2n ≤时,2(583)313222n n n n S n +-==-+ 当3n ≥时,2(2)(138)313714222n n n n S n -+-=+=-+综上,2231322231314322n n n n S n n n ⎧-+≤⎪⎪=⎨⎪-+≥⎪⎩ 46.(【解析】山东省实验中学2013届高三第一次诊断性测试数学(文)试题)已知{}n a 是公比大于1的等经数列,13,a a 是函数9()10f x x x=+-的两个零点(1)求数列{}n a 的通项公式;(2)若数列{}n a 满足312312,80n n b og n b b b b =+++++≥ 且,求n 的最小值.【答案】47.(【解析】山东省济南市2013届高三3月高考模拟文科数学)正项等比数列}{n a 的前n 项和为n S ,164=a ,且32,a a 的等差中项为2S . (1)求数列}{n a 的通项公式; (2)设12-=n n a n b ,求数列}{n b 的前n 项和n T .【答案】解:(1)设等比数列}{n a 的公比为)0(>q q ,由题意,得⎪⎩⎪⎨⎧+=+=)(2161121131q a a q a q a q a ,解得⎩⎨⎧==221q a所以n n a 2= (2)因为12122--==n n n n a n b ,所以12753224232221-+++++=n n nT , 121275322123222141+-+-++++=n n n nn T , 所以12127532212121212143+--+++++=n n n n T122411)411(21+---=n n n 12233432+⋅+-=n n故2181612992n n nT ++=-⋅ 48.(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)等比数列....{}n c 满足(){}1*1104,n n n n c c n N a -++=⋅∈数列的前n 项和为n S ,且2log .n n a c =(I)求,n n a S ;(II)数列{}{}1,41n n n n n b b T b S =-满足为数列的前n 项和,是否存在正整数m,()1m >,使得16,,m m T T T 成等比数列?若存在,求出所有m 的值;若不存在,请说明理由.【答案】解: (Ⅰ)40,103221=+=+c c c c ,所以公比4=q10411=+c c 得21=c121242--=⋅=n n n c所以212log 221n n a n -==-21()[1(21)]22n n n a a n n S n ++-=== (Ⅱ)由(Ⅰ)知211114122121n b n n n ⎛⎫==- ⎪--+⎝⎭于是11111112335212121n n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎣⎦假设存在正整数()1m m >,使得16,,m m T T T 成等比数列,则216213121m m m m ⎛⎫=⨯ ⎪++⎝⎭, 整理得24720m m --=, 解得14m =-或 2m = 由,1m N m *∈>,得2m =, 因此,存在正整数2m =,使得16,,m m T T T 成等比数列49.(【解析】山东省临沂市2013届高三3月教学质量检测考试(一模)数学(文)试题)已知等比数列{n a }的首项为l,公比q≠1,n S 为其前n 项和,a l ,a 2,a 3分别为某等差数列的第一、第二、第四项.(I)求n a 和n S ;(Ⅱ)设21n n b log a +=,数列{21n n b b +}的前n 项和为T n ,求证:34n T <.【答案】50.(【解析】山东省烟台市2013届高三5月适应性练习(一)文科数学)在等差数列{}n a 中,a 1 =3,其前n项和为S n ,等比数列{b n }的各项均为正数,b 1 =1,公比为q,且b 2 +S 2 =12, q=22S b . (1)求a n 与b n ; (2)设数列{C n }满足c n =1nS ,求{n c }的前n 项和T n . 【答案】51.(【解析】山东省青岛一中2013届高三1月调研考试文科数学)已知等差数列{}n a 的首项1a =1,公差d>0,且第2项、第5项、第14项分别为等比数列{}n b 的第2项、第3项、第4项. (1)求数列{}n a 与{}n b 的通项公式; (2)设数列{n c }对n ∈N +均有11c b +22c b ++nnc b =1n a +成立,求1c +2c 3c ++2012c . 【答案】.解答:(1)由已知得2a =1+d, 5a =1+4d, 14a =1+13d,∴2(14)d +=(1+d)(1+13d), ∴d=2, n a =2n-1又2b =2a =3,3b = 5a =9 ∴数列{n b }的公比为3,n b =3⋅23n -=13n -(2)由11c b +22c b ++nnc b =1n a + (1) 当n=1时,11c b =2a =3, ∴1c =3当n>1时,11c b +22c b ++11n n c b --= n a (2) (1)-(2)得nnc b =1n a +-n a =2 ∴n c =2n b =2⋅13n - 对1c 不适用∴n c =131232n n n -=⎧⎨∙≥⎩∴123c c c +++2012c =3+2⋅3+2⋅23++2⋅20113=1+2⋅1+2⋅3+2⋅23++2⋅20113=1+2⋅20121313--=2012352.(【解析】山东省泰安市2013届高三第一轮复习质量检测数学(文)试题)设等比数列{}n a 的前n 项和为,415349,,,n S a a a a a =-成等差数列.(I)求数列{}n a 的通项公式;(II)证明:对任意21,,,k k k R N S S S +++∈成等差数列.【答案】。

山东省2014届理科数学一轮复习试题选编29:二项式定理

山东省2014届理科数学一轮复习试题选编29:二项式定理

山东省2014届理科数学一轮复习试题选编29:二项式定理一、选择题 1.(山东省淄博市2013届高三上学期期末考试数学(理))若()()()()()()923112012311132222xx a a x a x a x a x +-=+-+-+-+⋅⋅⋅+-,则1211a a a ++⋅⋅⋅+的值为( )A .0B .5-C .5D .255【答案】C【 解析】令2x =,则290(21)(23)5a =+-=-.令3x =,则01110a a a ++⋅⋅⋅+=,所以1110(5)5a a a +⋅⋅⋅+=-=--=,选C .2 .(山东省德州市2013届高三上学期期末校际联考数学(理))51()(21)ax x x+-的展开式中各项系数的和为2,则该展开式中常数项为 ( )A .-20B .—10C .10D .20【答案】C【解析】令1x =,可得各项系数和为5(1)(21)12a a +-=+=,所以1a =.所以555111()(21)()(21)()(12)ax x x x x x x x x+-=+-=-+-,5(12)x -的展开式的通项公式为155(2)(2)k k k k k k T C x x C +=-=-,当1k =时,125(2)10T C x x =-=-;所以展开式的常数项为1(10)10x x-⨯-=,选 C .3 .(山东省2013届高三高考模拟卷(一)理科数学)若2013(2)x -220130122013a a x a x a x =++++ ,则02420121352013a a a a a a a a ++++=++++( )A .201320133131+-B .201320133131+--C .201220123131+-D .201220123131+--【答案】B 【解析】令1=x 得01234520131a a a a a a a +++++++= ①,令1-=x 得201301234520133a a a a a a a -+-+-+-= ②,由①②联立,可得2012420a a a a ++++ 2013312+=,++31a a 52013a a ++ 2013132-=,从而02420121352013a a a a a a a a ++++++++ 20132013312132+=-201320133131+=--. 4 .(山东省枣庄市2013届高三3月模拟考试数学(理)试题)若4(1,)a a b +=+为有理数,则a+b=( )A .36B .46C .34D .44【答案】D二项式的展开式为11223344441118928C C C ++++=+++=+,所以28,16a b ==,281644a b +=+=,选 D .5 .(山东省济南市2013届高三3月高考模拟理科数学)二项式8(2x-的展开式中常数项是 ( )A .28B .-7C .7D .-28【答案】C展开式的通项公式为488831881()(()(1)22k k k k k k k k x T C C x ---+==-,由4803k -=得6k =,所以常数项为6866781()(1)72T C -=-=,选C .6 .(山东省临沂市2013届高三第三次模拟考试 理科数学)51()(2)x a x x+-的展开式中各项系数的和为2,则该展开式中常数项为 ( )A .-40B .-20C .20D .40【答案】 .A .7 .(山东省潍坊市2013届高三第二次模拟考试理科数学)设0(cos sin )a x x dx π=⎰-,则二项式26()a x x+展开式中的3x 项的系数为 ( )A .-20B .20C .-160D .160【答案】C 因为00(cos sin )(sin cos )2a x x dx x x ππ=⎰-=+=-,所以二项式为26262()()a x x x x+=-,所以展开式的通项公式为261231662()()(2)kk k k k k k T C x C x x--+=-=-,由1233k -=得3k =,所以333346(2)160T C x x =-=-,所以3x 项的系数为160-.选C .8 .(山东省济南市2012届高三3月高考模拟题理科数学(2012济南二模))设a=π0⎰sin x d x ,则二项式6⎛⎝的展开式的常数项是( )A .160B .-160C .240D .-240【答案】B【解析】由2)cos (sin 00=-=⎰ππx xdx ,所以2=a ,所以二项式为6)12(xx -,展开式的通项为22666661)1(2)1()2(k k kk k k k k k xxC xx C T ----+-=-=k k k k x C ---=366)1(2,所以当3=k ,为常数,此时160)1(23336-=-C ,选B .9 .(山东省青岛市2013届高三第一次模拟考试理科数学)已知()|2||4|f x x x =++-的最小值为n ,则二项式1()n x x-展开式中2x 项的系数为 ( )A .15B .15-C .30D .30-【答案】A 因为函数()|2||4|f x x x =++-的最小值为4(2)6--=,即6n =.展开式的通项公式为6621661()(1)k k k k k k k T C x C x x--+=-=-,由622k -=,得2k =,所以222236(1)15T C x x =-=,即2x 项的系数为15,选A .10.(山东省济宁市2013届高三4月联考理科数学)设221(32)=⎰-a x x dx ,则二项式261()-ax x展开式中的第4项为( )A .31280-xB .1280-C .240D .240-【答案】A11.(山东省莱钢高中2013届高三4月模拟检测数学理试题 )(82展开式中不含..4x项的系数的和为( )A .-1B .1C .0D .2【答案】C12.(山东省莱芜市莱芜十七中2013届高三4月模拟数学(理)试题)设22(13)40a x dx =-+⎰,则二项式26()a x x+展开式中不含..3x 项的系数和是( )A .160-B .160C .161D .161-【答案】C13.(山东省菏泽市2013届高三第二次模拟考试数学(理)试题)()5a x x R x ⎛⎫+∈ ⎪⎝⎭展开式中3x 的系数为10,则实数a 等于 ( )A .-1B .12C .1D .2【答案】D14.(山东省枣庄市2013届高三4月(二模)模拟考试数学(理)试题)若2012(3)nnn x a a x a x a x -=++++ ,其二项式系数的和为16,则012n a a a a ++++=( )A .8B .16C .32D .64【答案】B15.(山东省潍坊市2013届高三上学期期末考试数学理( )A .)若()()()()()()923112012311132222x x a a x a x a x a x +-=+-+-+-+⋅⋅⋅+-,则1211a a a ++⋅⋅⋅+的值为 ( )A .0B .5-C .5D .255【答案】C【解析】令3x =,则有012110a a a a +++⋅⋅⋅+=,令2x =,则290(21)(23)5a =+-=-,所以121105a a a a ++⋅⋅⋅+=-=,选C .二、填空题16.(山东省夏津一中2013届高三4月月考数学(理)试题)若52345012345(12),x a a x a x a x a x a x +=+++++则a 3=______________.【答案】8017.(山东省凤城高中2013届高三4月模拟检测数学理试题 )若261()xax -的二项展开式中3x 项的系数为52,则实数a =_______.【答案】-218.(山东省莱芜五中2013届高三4月模拟数学(理)试题)若31()nx x-展开式中的所有二项式系数和为512,则该展开式中3x 的系数为______.【答案】84;19.(2013届山东省高考压轴卷理科数学)(2013滨州市一模)设6sin (a xdx,π=⎰则二项式的展开式中的常数项等于________.【答案】-160词 【解析】,3,2)1(,)12()1(,2|)cos (sin 36616600=∴-=-=-∴=-==--+⎰r x C T x x x x a x dx x a r r r r r ππ所以常数项为-160.20.(山东省威海市2013届高三上学期期末考试理科数学)8(2x -的展开式中,常数项为___________. 【答案】7展开式的通项公式为488831881()((1)()22k k k k k k kk x T C C x ---+==-,由4803k -=,解得6k =,所以常数项为226781(1)()72T C =-=.21.(山东省烟台市2013届高三3月诊断性测试数学理试题)若(x 2-nx)1的展开式中含x 的项为第6项,设(1-3x)n=a o +a 1x+a 2x 2++a n x n,则a l +a 2++a n 的值为_____________ 【答案】255展开式(x 2-n x )1的通项公式为22311()()(1)k n k k kk n k k n n T C x C x x--+=-=-,因为含x 的项为第6项,所以5,231k n k =-=,解得8n =,令1x =,得88018(13)2a a a +++=-= ,又01a =,所以81821255a a ++=-= .22.(山东省德州市2013届高三第二次模拟考试数学(理)试题)二项式)10的展开式中含x 的正整数指数幂的项数是____________. 【答案】523.(2013年山东临沂市高三教学质量检测考试理科数学)在62(x )x-的二项展开式中,常数项等于_______. 【答案】 【答案】160- 展开式的通项公式为6621662()(2)k k k k k kk T C x C x x--+=-=-,由620k -=,得3k =,所以3346(2)160T C =-=-,即常数项为160-.24.(山东省济南市2013届高三4月巩固性训练数学(理)试题)设dx x )12(20-⎰,则二项式4⎪⎭⎫ ⎝⎛+x a x 的展开式中的常数项为__________.___【答案】2425.(2011年高考(山东理))若62(x x -展开式的常数项为60,则常数a 的值为_________.【答案】解析:6(x 的展开式616(k k k k T C x -+=636(kk C x -=,令630,2,k k -==226(1560,4C a a ===,答案应填:4.26.(山东省济宁市2013届高三第一次模拟考试理科数学 )25(ax的展开式中各项系数的和为243,则该展开式中常数项为 【答案】10【解析】因为展开式中各项系数的和为243,所以当1x =时,5(1)243a +=,解得2a =,展开式的通项公式为5102552155(2)2k kkk k kk T C x C x ---+==,由51002k -=,解得4k =,所以常数项为455210T C =⨯=.27.(山东省泰安市2013届高三第一轮复习质量检测数学(理)试题)二项式6213x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项等于______(用数字作答). 【答案】1215展开式的通项公式为666316621(3)()3kk k k k kk T C x C x x---+==,由630k -=得2k =,所以常数项为423631215T C ==.28.(山东省滨州市2013届高三第一次(3月)模拟考试数学(理)试题)设6sin (a xdx,π=⎰则二项式的展开式中的常数项等于________.【答案】160-00sin =cos 2a xdx x ππ=-=⎰,所以二项式的展开式为663166(((1)2k k kk k k k k T C C x ---+==-⋅⋅,由30k -=时,3k =,所以常数项为33346(1)2160T C =-⋅=-.29.(山东省菏泽市2013届高三5月份模拟考试数学(理)试题)若22nx ⎫⎪⎭展开式中只有第六项的二项式系数最大,则展开式中的常数项是_________.【答案】180。

潍坊市2021-2022学年中考二模数学试题含解析

潍坊市2021-2022学年中考二模数学试题含解析

2021-2022中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如果关于x 的分式方程1311a x x x --=++有负数解,且关于y 的不等式组2()43412a y y y y ---⎧⎪⎨+<+⎪⎩无解,则符合条件的所有整数a 的和为( )A .﹣ 2B .0C .1D .32.如图,ABCD 中,E 是BC 的中点,设AB a,AD b ==,那么向量AE 用向量a b 、表示为( )A .12a bB .12a b -C .12a b -+D .12a b -- 3.不等式组312840x x ->⎧⎨-≤⎩的解集在数轴上表示为( ) A . B . C . D .4.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有( )和黑子.A .37B .42C .73D .1215.在平面直角坐标系中,将点P (﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是( )A .(2,4)B .(1,5)C .(1,-3)D .(-5,5)6.如图,Rt △AOB 中,∠AOB=90°,OA 在x 轴上,OB 在y 轴上,点A 、B 30),(0,1),把Rt △AOB 沿着AB 对折得到Rt △AO′B ,则点O′的坐标为( )A .3522(,)B .3322(,) C .23532(,) D .43332(,) 7.如图,二次函数2y ax bx =+的图象开口向下,且经过第三象限的点P.若点P 的横坐标为1-,则一次函数()y a b x b =-+的图象大致是( )A .B .C .D .8.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( ) A .5.6×10﹣1 B .5.6×10﹣2 C .5.6×10﹣3 D .0.56×10﹣19.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/小时,依据题意列方程正确的是( )A .304015x x =-B .304015x x =-C .304015x x =+D .304015x x=+ 10.若反比例函数k y x =的图像经过点1(,2)2A -,则一次函数y kx k =-+与k y x=在同一平面直角坐标系中的大致图像是( ) A . B . C . D .二、填空题(共7小题,每小题3分,满分21分)11.已知xy =3,那么y x x y x y +的值为______ . 12.如图,在△ACB 中,∠ACB =90°,点D 为AB 的中点,将△ACB 绕点C 按顺时针方向旋转,当CB 经过点D 时得到△A 1CB 1.若AC =6,BC =8,则DB 1的长为________.13.如果x y 10+-=,那么代数式2y x y x x x ⎛⎫--÷ ⎪⎝⎭的值是______. 14.如图,AB 为⊙0的弦,AB=6,点C 是⊙0上的一个动点,且∠ACB=45°,若点M 、N 分别是AB 、BC 的中点,则MN 长的最大值是______________.15.如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PB =5.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2;③EB ⊥ED ;④S △APD +S △APB =1+6;⑤S 正方形ABCD =4+6.其中正确结论的序号是 .16.如图,正方形ABCD 边长为3,连接AC ,AE 平分∠CAD ,交BC 的延长线于点E ,FA ⊥AE ,交CB 延长线于点F ,则EF 的长为__________.17.327﹣|﹣1|=______.三、解答题(共7小题,满分69分)18.(10分)某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的35.问该兴趣小组男生、女生各有多少人?19.(5分)先化简分式:(a-3+4+3aa)÷-2+3aa∙+3+2aa,再从-3、5-3、2、-2中选一个你喜欢的数作为a的值代入求值.20.(8分)珠海某企业接到加工“无人船”某零件5000个的任务.在加工完500个后,改进了技术,每天加工的零件数量是原来的1.5倍,整个加工过程共用了35天完成.求技术改进后每天加工零件的数量.21.(10分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形AECF的周长.22.(10分)如图,已知在△ABC中,AB=AC=5,cosB=45,P是边AB上一点,以P为圆心,PB为半径的⊙P与边BC的另一个交点为D,联结PD、AD.(1)求△ABC的面积;(2)设PB=x,△APD的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果△APD是直角三角形,求PB的长.23.(12分)如图,在Rt△ABC中,∠C=90°,AC=12AB.求证:∠B=30°.请填空完成下列证明.证明:如图,作Rt△ABC的斜边上的中线CD,则CD=12AB=AD ().∵AC=12 AB,∴AC=CD=AD 即△ACD是等边三角形.∴∠A=°.∴∠B=90°﹣∠A=30°.24.(14分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B求证:△ADF∽△DEC;若AB=8,3,3AE的长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】解关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩,结合解集无解,确定a的范围,再由分式方程1311a xx x--=++有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩,可整理得242y ay+⎧⎨<-⎩∵该不等式组解集无解,∴2a+4≥﹣2又∵1311a xx x--=++得x=42a-而关于x的分式方程1311a xx x--=++有负数解∴a﹣4<1∴a<4于是﹣3≤a<4,且a为整数∴a=﹣3、﹣2、﹣1、1、1、2、3则符合条件的所有整数a的和为1.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.2、A【解析】根据AE AB BE=+,只要求出BE即可解决问题.【详解】解:四边形ABCD是平行四边形,AD BC AD BC∴∥,=,BC AD b∴==,BE CE=,1BE b2∴=,AE AB BE,AB a=+=,1AE a b2∴=+,故选:A.【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.3、A【解析】分别求得不等式组中两个不等式的解集,再确定不等式组的解集,表示在数轴上即可.312840x x ->⎧⎨-≤⎩①② 解不等式①得,x>1;解不等式②得,x>2;∴不等式组的解集为:x≥2,在数轴上表示为:故选A.【点睛】本题考查了一元一次不等式组的解法,正确求得不等式组中每个不等式的解集是解决问题的关键.4、C【解析】解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个.故选C .点睛:本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.5、B【解析】试题分析:由平移规律可得将点P (﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是(1,5),故选B .考点:点的平移.6、B【解析】连接OO′,作O′H ⊥OA 于H .只要证明△OO′A 是等边三角形即可解决问题.【详解】连接OO′,作O′H ⊥OA 于H ,在Rt △AOB 中,∵tan ∠BAO=OB OA 3 ∴∠BAO=30°,由翻折可知,∠BAO′=30°,∴∠OAO′=60°,∵AO=AO′,∴△AOO′是等边三角形,∵O′H ⊥OA ,∴3 ∴3OH=32, ∴O′332), 故选B .【点睛】本题考查翻折变换、坐标与图形的性质、等边三角形的判定和性质、锐角三角函数等知识,解题的关键是发现特殊三角形,利用特殊三角形解决问题.7、D【解析】【分析】根据二次函数的图象可以判断a 、b 、a b -的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.【详解】由二次函数的图象可知,a 0<,b 0<,当x 1=-时,y a b 0=-<,()y a b x b ∴=-+的图象经过二、三、四象限,观察可得D选项的图象符合,故选D.【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.8、B【解析】0.056用科学记数法表示为:0.056=-25.610⨯,故选B.9、C【解析】由实际问题抽象出方程(行程问题).【分析】∵甲车的速度为x千米/小时,则乙甲车的速度为15x+千米/小时∴甲车行驶30千米的时间为30x,乙车行驶40千米的时间为4015x+,∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得304015x x=+.故选C.10、D 【解析】甶待定系数法可求出函数的解析式为:1yx=-,由上步所得可知比例系数为负,联系反比例函数,一次函数的性质即可确定函数图象. 【详解】解:由于函数kyx=的图像经过点1,22A⎛⎫-⎪⎝⎭,则有1k,=-∴图象过第二、四象限,∵k=-1,∴一次函数y=x-1,∴图象经过第一、三、四象限,故选:D.【点睛】本题考查反比例函数的图象与性质,一次函数的图象,解题的关键是求出函数的解析式,根据解析式进行判断;二、填空题(共7小题,每小题3分,满分21分)11、± 【解析】分析:先化简,再分同正或同负两种情况作答.详解:因为xy =3,所以x 、y 同号,于是原式=当x >0,y >0时,原式;当x <0,y <0时,原式=(故原式=±点睛:本题考查的是二次根式的化简求值,能够正确的判断出化简过程中被开方数底数的符号是解答此题的关键. 12、2【解析】根据勾股定理可以得出AB 的长度,从而得知CD 的长度,再根据旋转的性质可知BC=B 1C ,从而可以得出答案.【详解】∵在△ACB 中,∠ACB =90°,AC =6,BC =8,∴10AB ==,∵点D 为AB 的中点,∴152CD AB ==,∵将△ACB 绕点C 按顺时针方向旋转,当CB 经过点D 时得到△A 1CB 1.∴CB 1=BC =8,∴DB 1=CB 1-CD=8﹣5=2,故答案为:2.【点睛】本题考查的是勾股定理、直角三角形斜边中点的性质和旋转的性质,能够根据勾股定理求出AB 的长是解题的关键. 13、1【解析】分析:对所求代数式根据分式的混合运算顺序进行化简,再把10x y +-=变形后整体代入即可.详解:2,y x y x x x ⎛⎫--÷ ⎪⎝⎭22,x y x y xx x ⎛⎫-=-÷ ⎪⎝⎭ ()(),x y x y x x x y+-=⋅- .x y =+10,x y +-= 1.x y ∴+=故答案为1.点睛:考查分式的混合运算,掌握运算顺序是解题的关键.注意整体代入法的运用.14、32【解析】根据中位线定理得到MN 的最大时,AC 最大,当AC 最大时是直径,从而求得直径后就可以求得最大值.【详解】解:因为点M 、N 分别是AB 、BC 的中点,由三角形的中位线可知:MN=12AC , 所以当AC 最大为直径时,MN 最大.这时∠B=90°又因为∠ACB=45°,AB=6 解得AC=62MN 长的最大值是32.故答案为:32.【点睛】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN 的值最大,难度不大.15、①③⑤【解析】①利用同角的余角相等,易得∠EAB =∠PAD ,再结合已知条件利用SAS 可证两三角形全等;②过B 作BF ⊥AE ,交AE 的延长线于F ,利用③中的∠BEP =90°,利用勾股定理可求BE ,结合△AEP 是等腰直角三角形,可证△BEF 是等腰直角三角形,再利用勾股定理可求EF 、BF ;③利用①中的全等,可得∠APD =∠AEB ,结合三角形的外角的性质,易得∠BEP =90°,即可证;④连接BD ,求出△ABD 的面积,然后减去△BDP 的面积即可;⑤在Rt △ABF 中,利用勾股定理可求AB 2,即是正方形的面积.【详解】①∵∠EAB +∠BAP =90°,∠PAD +∠BAP =90°,∴∠EAB =∠PAD ,又∵AE =AP ,AB =AD ,∵在△APD 和△AEB 中,AE AP EAB PAD AB AD =⎧⎪∠=∠⎨⎪=⎩,∴△APD ≌△AEB (SAS );故此选项成立;③∵△APD ≌△AEB ,∴∠APD =∠AEB ,∵∠AEB =∠AEP +∠BEP ,∠APD =∠AEP +∠PAE ,∴∠BEP =∠PAE =90°,∴EB ⊥ED ;故此选项成立;②过B 作BF ⊥AE ,交AE 的延长线于F ,∵AE =AP ,∠EAP =90°,∴∠AEP =∠APE =45°,又∵③中EB ⊥ED ,BF ⊥AF ,∴∠FEB =∠FBE =45°,又∵BE2PE,∴BF =EF故此选项不正确;④如图,连接BD,在Rt△AEP中,∵AE=AP=1,∴EP= 2,又∵PB= 5,∴BE= 3,∵△APD≌△AEB,∴PD=BE= 3,∴S △ABP+S△ADP=S△ABD-S△BDP= 12S正方形ABCD-12×DP×BE=12×(4+ 6)-12×3×3=12+62.故此选项不正确.⑤∵EF=BF=62,AE=1,∴在Rt△ABF中,AB2=(AE+EF)2+BF2=4+ 6,∴S正方形ABCD=AB2=4+ 6,故此选项正确.故答案为①③⑤.【点睛】本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识.16、6【解析】利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的长.【详解】解:∵四边形ABCD为正方形,且边长为3,∴,∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴,∴17、2【解析】原式利用立方根定义,以及绝对值的代数意义计算即可求出值.【详解】解:原式=3﹣1=2,故答案为:2【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.三、解答题(共7小题,满分69分)18、男生有12人,女生有21人.【解析】设该兴趣小组男生有x人,女生有y人,然后再根据:(男生的人数-1)×2-1=女生的人数,(女生的人数-1) ×35=男生的人数,列出方程组,再进行求解即可. 【详解】设该兴趣小组男生有x人,女生有y人,依题意得:2(1)13(1)5y xx y=--⎧⎪⎨=-⎪⎩,解得:1221 xy=⎧⎨=⎩.答:该兴趣小组男生有12人,女生有21人.【点睛】本题主要考查了二元一次方程组的应用,解题的关键是明确题中各个量之间的关系,并找出等量关系列出方程组.19、3a+;5【解析】原式=((3)3a aa++-3+4+3aa)32aa+⋅-∙+3+2aa=(3)343a a aa+--+32aa+⋅-∙+3+2aa=243aa-+32aa+⋅-∙+3+2aa=3a+a=2,原式=520、技术改进后每天加工1个零件.【解析】分析:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,根据题意列出分式方程,从而得出方程的解并进行检验得出答案.详解:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,根据题意可得5005000500351.5x x-+=,解得x=100,经检验x=100是原方程的解,则改进后每天加工1.答:技术改进后每天加工1个零件.点睛:本题主要考查的是分式方程的应用,属于基础题型.根据题意得出等量关系是解题的关键,最后我们还必须要对方程的解进行检验.21、(1)见解析;(2)1【解析】(1)根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;(2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到结论.【详解】(1)∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°.∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.在△AEO 和△CFO 中,∵EAO FCO AO CO AOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEO ≌△CFO (ASA );∴OE =OF .又∵OA =OC ,∴四边形AECF 是平行四边形.又∵EF ⊥AC ,∴平行四边形AECF 是菱形;(2)设AF =x .∵EF 是AC 的垂直平分线,∴AF =CF =x ,BF =8﹣x .在Rt △ABF 中,由勾股定理得:AB 2+BF 2=AF 2,∴42+(8﹣x )2=x 2,解得:x =5,∴AF =5,∴菱形AECF 的周长为1.【点睛】本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想.22、(1)12(2)y=21212255x x -+(0<x <5)(3)3532或12532 【解析】试题分析:(1)过点A 作AH ⊥BC 于点H ,根据cosB=45求得BH 的长,从而根据已知可求得AH 的长,BC 的长,再利用三角形的面积公式即可得;(2)先证明△BPD ∽△BAC ,得到BPD S =21225x ,再根据APD BPD S AP S BP = ,代入相关的量即可得; (3)分情况进行讨论即可得.试题解析:(1)过点A 作AH ⊥BC 于点H ,则∠AHB=90°,∴cosB=BH AB , ∵cosB=45,AB=5,∴BH=4,∴AH=3, ∵AB=AC ,∴BC=2BH=8, ∴S △ABC =12×8×3=12(2)∵PB=PD ,∴∠B=∠PDB ,∵AB=AC ,∴∠B=∠C ,∴∠C=∠PDB ,∴△BPD ∽△BAC , ∴2BPD BAC S PB SAB ⎛⎫= ⎪⎝⎭ , 即2125BPD S x ⎛⎫= ⎪⎝⎭, 解得BPD S =21225x , ∴APD BPD S AP S BP= , ∴251225y x x x -= ,解得y=21212255x x -+(0<x <5); (3)∠APD <90°, 过C 作CE ⊥AB 交BA 延长线于E ,可得cos ∠CAE=725 , ①当∠ADP=90°时,cos ∠APD=cos ∠CAE=725, 即7525x x =- , 解得x=3532; ②当∠PAD=90°时,5725x x -= , 解得x=12532, 综上所述,PB=3532或12532.【点睛】本题考查了相似三角形的判定与性质、底在同一直线上且高相等的三角形面积的关系等,结合图形及已知选择恰当的知识进行解答是关键.23、直角三角形斜边上的中线等于斜边的一半;1.【解析】根据直角三角形斜边上的中线等于斜边的一半和等边三角形的判定与性质填空即可.【详解】证明:如图,作Rt△ABC的斜边上的中线CD,则CD=12AB=AD(直角三角形斜边上的中线等于斜边的一半),∵AC=12 AB,∴AC=CD=AD 即△ACD是等边三角形,∴∠A=1°,∴∠B=90°﹣∠A=30°.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定与性质,重点在于逻辑思维能力的训练.24、(1)见解析(2)6【解析】(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC.(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在在Rt△ADE中,利用勾股定理求出线段AE的长度. 【详解】解:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC∴∠C+∠B=110°,∠ADF=∠DEC∵∠AFD+∠AFE=110°,∠AFE=∠B,∴∠AFD=∠C在△ADF与△DEC中,∵∠AFD=∠C,∠ADF=∠DEC,∴△ADF∽△DEC(2)∵四边形ABCD是平行四边形,∴CD=AB=1.由(1)知△ADF∽△DEC,∴AD AF DE CD=,∴AD CDDE12AF⋅===在Rt△ADE中,由勾股定理得:AE6===。

潍坊2014二模数学试题文科及理科

潍坊2014二模数学试题文科及理科

高三数学(文)2014.04本试卷共5页,分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第I 卷(选择题 共50分)注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的、准考证号、考试科目填写在规定的位置上。

2.第I 卷每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案,不得使用涂改液,胶带纸、修正带和其他笔。

4.不按以上要求作答以及将答案写在试题卷上的,答案无效。

一、选择题:本大题共10小题。

每题5分,共50分.在每题给出的四个选项中,只有一项是符合题目要求的.1.假设复数z 满足()1i z i z +=,则的虚部为 A.2i - B.12- C.2i D.122.已知集合{}(){}2210,l 10,A x x B x ox A B g =-≤=-≤⋂=则 A.[]0,2 B.(]0,2 C.(]1,2D.()1,2 3.以下结论正确的选项是A.假设向量a//b ,则存在唯一的实数a b λλ=使B.已知向量,a b 为非零向量,则“,a b 的夹角为钝角”的充要条件是“0a b •<”C.“假设3πθ=,则1cos 2θ=”的否命题为“假设132πθθ≠≠,则cos ” D.假设命题22:,10:,10p x R x x p x R x x ∃∈-+<⌝∀∈-+>,则4.为了调查学生携带 的情况,学校对高一、高二、高三三个年级的学生进行分层抽样调查.已知高一有学生1000人、高二有1200人;三个年级总共抽取了66人,其中高一抽取了20人,则高三年级的全部学生数为A.1000B.1100C.1200D.13004.已知()()()21sin ,42f x x x f x f x π⎛⎫'=++ ⎪⎝⎭为的导函数,则()'y f x =图象大致是 6.已知,αβ表示平面,,m n 表示直线,,m βαβ⊥⊥,给出以下四个结论;①,n n αβ∀⊂⊥;②,n m n β∀⊂⊥;③,//n m n α∀⊂;④,n m n α∃⊂⊥. 则上述结论中正确的个数为A.1B.2C.3D.47.已知函数()2f x x x =+,执行右边的程序框图,假设输出的结果是3132,则判断框中的条件应是 A. 30n ≤ B. 31n ≤C. 32n ≤D. 33n ≤8.已知双曲线()2222:10x y C a b a b-=>0,>的左、右焦点分别是12F F 、,过2F 垂直x 轴的直线与双曲线C 的两渐近线的交点分别是M 、N ,假设1MF ∆N 为正三角形,则该双曲线的离心率为A.213B.3C.13D.23+ 9.某几何体的三视图如下图,则该几何体外接球的外表积为A.43π B.323π C.4π D.16π10.已知定义在R 上的函数()y f x =对任意的x 满足()()1,11f x f x x +=--≤<当时,()3f x x =.函数()1,0,1,0a og x x g x x x ⎧>⎪=⎨-<⎪⎩,假设函数()()()[)6h x f x g x =--+∞在,上有6个零点,则实数a 的取值范围是A.()1077⎛⎫⋃+∞ ⎪⎝⎭,, B.(]117997⎡⎫⋃⎪⎢⎣⎭,,C.(]11199⎡⎫⋃⎪⎢⎣⎭,,D.[)117997⎛⎤⋃ ⎥⎝⎦,, 第II 卷〔非选择题 共100分〕注意事项:将第II 卷答案用0.5mm 的黑色签字笔答在答题卡的相应位置上.二、填空题:本大题共5小题,每题5分,共25分.11.已知12,e e 是夹角为601232a e e =+,则a =________。

山东省2014届理科数学一轮复习试题选编7:函数的综合问题(教师版)

山东省2014届理科数学一轮复习试题选编7:函数的综合问题(教师版)

山东省2014届理科数学一轮复习试题选编7:函数的综合问题一、选择题1 .(山东省潍坊市2013届高三第二次模拟考试理科数学)某学校要召开学生代表大会,规定根据班级人数每10人给一个代表名额,当班级人数除以10的余数大于6时,再增加一名代表名额.那么各班代表人数y 与该班人数x 之间的函数关系用取整函数[]y x =([x]表示不大于*的最大整数)可表示为( ) A .[]10x y = B .3[]10x y += C .4[]10x y += D .5[]10x y += 【答案】B 法一:特殊取值法,若x=56,y=5,排除 C .D,若x=57,y=6,排除A,所以选B法二:设)90(10≤≤+=ααm x ,,时⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡+≤≤10103103,60x m m x αα 1101103103,96+⎥⎦⎤⎢⎣⎡=+=⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡+≤<x m m x αα时当,所以选B 2 .(山东省寿光市2013届高三10月阶段性检测数学(理)试题)已知函数321,,1,12()111,0,.362x x x f x x x ⎧⎛⎤∈ ⎪⎥+⎪⎝⎦=⎨⎡⎤⎪-+∈⎢⎥⎪⎣⎦⎩函数π()sin()22(0)6g x a x a a =-+ ,若存在[]12,0,1x x ∈,使得12()()f x g x =成立,则实数a 的取值范围是 ( )A .14,23⎡⎤⎢⎥⎣⎦ B .10,2⎛⎤⎥⎝⎦ C .24,33⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦【答案】B3 .(山东省德州市2013届高三第二次模拟考试数学(理)试题)若对于定义在R 上的函数f(x),存在常数()t t R ∈,使得f(x+t)+tf(x)=0对任意实数x 均成立,则称f(x )是阶回旋函数,则下面命题正确的是( )A .f(x)=2x是12-阶回旋函数 B .f(x)=sin(πx)是1阶回旋函数 C .f (x)=x 2是1阶回旋函数 D .f(x)=log a x 是0阶回旋函数【答案】B4 .(山东省2013届高三高考模拟卷(一)理科数学)已知c b a ,,为互不相等的三个正实数,函数)(x f 可能满足如下性质:①)(a x f -为奇函数;②)(a x f +为奇函数;③)(b x f -为偶函数;④)(b x f +为偶函数;⑤()()f x c f c x +=-.类比函数2013sin y x =的对称中心、对称轴与周期的关系,某同学得到了如下结论:(i)若满足①②,则)(x f 的一个周期为4a ;(ii)若满足①③;则)(x f 的一个周期为||4b a -;(iii)若满足③④,则)(x f 的一个周期为||3b a -;(iv)若满足②⑤;则)(x f 的一个周期为||4c a +. 其中正确结论的个数为 ( ) A .1 B .2 C .3 D .4【答案】B 【解析】由2013sin y x =的图象知,两相邻对称中心的距离为2T 两相邻对称轴的距离为2T,对称中心与距其最近的对称轴的距离为4T,若满足①②,则)(x f 的两个相邻对称中心分别为)0,(a ,)0,(a -,从而有a a a T2)(2=--=,即a T 4=;若满足①③,则)(x f 的对称轴为b x =,与对称轴相邻的对称中心为)0.(a ,有||4b a T-=,即||4b a T -=;若满足③④,则)(x f 的两个相邻的对称轴为b x -=和b x =,从而有=--=)(2b b Tb 2,即b T 4=;若满足②⑤,则)(x f 的对称中心为)0,(a -,与其相邻的对称轴为c x =,从而有()4Tc a a c =-+=-,即=T 4||a c -.故只有(iii)(iv)错误.5 .(山东省枣庄市2013届高三3月模拟考试数学(理)试题)已知函数2()1f x x =+的定义域为[,]()a b a b <,值域为[1,5],则在平面直角坐标系内,点(a,b)的运动轨迹与两坐标轴围成的图形的面积是 ( )A .8B .6C .4D .2【答案】C由2()15f x x =+=,得24x =,即2x =±.故根据题意得a,b 的取值范围为:20a -≤≤且2b =或者02b ≤≤且2a =-,所以点(a,b)的运动轨迹与两坐标轴围成的图形是一个边长为2的正方形面积为4,选 C .6 .(山东省德州市2013届高三3月模拟检测理科数学)已知函数(1)y f x =-的图象关于直线1x =对称,且当(,0),()'()0x f x x f x ∈-∞+<成立若a=(20.2)·0.2(2),(12)f b n =·121(12),(1)4f n c og =·121(1)4f og ,则a,b,c 的大小关系是( )A .a b c >>B .b a c >>C .c a b >>D .a c b >>【答案】B 因为函数(1)y f x =-的图象关于直线1x =对称,所以()y f x =关于y 轴对称,所以函数()y xf x =为奇函数.因为[()]'()'()xf x f x xf x =+,所以当(,0)x ∈-∞时,[()]'()'()0xf x f x xf x =+<,函数()y xf x =单调递减,当(0,)x ∈+∞时,函数()y xf x =单调递减.因为0.2122<<,0ln 21<<,121log 24=,所以0.21210ln 22log 4<<<,所以b a c >>,选B .7 .(2012年山东理)(12)设函数f (x)=,g(x )=ax 2+bx 若y=f(x)的图像与y=g(x)图像有且仅有两个不同的公共点A(x 1,y 1),B(x 2,y 2),则下列判断正确的是 ( ) A .当a<0时,x 1+x 2<0,y 1+y 2>0 B .当a<0时, x 1+x 2>0, y 1+y 2<0 C .当a>0时,x 1+x 2<0, y 1+y 2<0 D .当a>0时,x 1+x 2>0, y 1+y 2>0【答案】解析:令bx ax x+=21,则)0(123≠+=x bx ax ,设23)(bx ax x F +=,bx ax x F 23)(2+=' 令023)(2=+='bx ax x F ,则ab x 32-=,要使y=f(x)的图像与y=g(x)图像有且仅有两个不同的公共点只需1)32()32()32(23=-+-=-abb a b a a b F ,整理得23274a b =,于是可取3,2=±=b a 来研究,当3,2==b a 时,13223=+x x ,解得21,121=-=x x ,此时2,121=-=y y ,此时0,02121>+<+y y x x ;当3,2=-=b a 时,13223=+-x x ,解得21,121-==x x ,此时2,121-==y y ,此时0,02121<+>+y y x x .答案应选 B .另解:令)()(x g x f =可得b ax x+=21.设b ax y xy +=''=',12 不妨设21x x <,结合图形可知, 当0>a 时如右图,此时21x x >,即021>>-x x ,此时021<+x x ,112211y x x y -=->=,即021>+y y ;同理可由图形经过推理可得当0<a 时0,02121<+>+y y x x .答案应选B .8 .(山东省2013届高三高考模拟卷(一)理科数学)我们定义若函数)(x f 为D 上的凹函数须满足以下两条规则:(1)函数在区间D 上的任何取值有意义;(2)对于区间D 上的任意n 个值n x x x ,,,21 ,总满足)()()()(2121nx x x nf x f x f x f n n +++≥+++ ,那么下列四个图象中在]2,0[π上满足凹函数定义的是【答案】A 【解析】要判断是不是凹函数,需要先明确凹函数的定义,由定义的第一点可以排除D,在 ( ) A . B .C 这三个选项中可以考虑特值法,取01=x ,22π=x ,则显然选项 B .C 不满足)2(2)()(2121x x f x f x f +>+,故选( ) A .9 .(山东省夏津一中2013届高三4月月考数学(理)试题)函数y=f(x),x∈D,若存在常数C,对任意的x l ∈D,仔在唯一的x 2∈D,使得C =,则称函数f(x)在D 上的几何平均数为 C .已知f(x)=x 3,x∈[1,2],则函数f(x)=x 3在[1,2]上的几何平均数为 ( )A B .2C .4D .【答案】D10.(山东省威海市2013届高三上学期期末考试理科数学)对于函数()f x ,如果存在锐角θ使得()f x 的图象绕坐标原点逆时针旋转角θ,所得曲线仍是一函数,则称函数()f x 具备角θ的旋转性,下列函数具有角4π的旋转性的是 ( )A .y =B .ln y x =C .1()2x y =D .2y x =【答案】C 设直线y x b =+,要使()f x 的图像绕坐标原点逆时针旋转角4π,所得曲线仍是一函数,则函数y x b =+与()f x 不能有两个交点.由图象可知选C .11.(山东省实验中学2013届高三第一次诊断性测试数学(理)试题)已知定义在R 上的函数()y f x =满足以下三个条件:①对于任意的x R ∈,都有(4)()f x f x +=;②对于任意的121212,,02,()();x x R x x f x f x ∈≤<≤<且都有③函数(2)y f x =+的图象关于y 轴对称,则下列结论中正确的是( )A .(4.5)(7)(6.5)f f f <<B .(7)(4.5)(6.5)f f f <<C .(7)(6.5)(4.5)f f f <<D .(4.5)(6.5)(7)f f f << 【答案】A【解析】由(4)()f x f x +=知函数的周期是4,由②知,函数在[0,2]上单调递增,函数(2)y f x =+的图象关于y 轴对称,即函数函数()y f x =的图象关于2x =对称,即函数在[2,4]上单调递减.所以(4.5)(0.5)f f =,(6.5)(2.5)(1.5)f f f ==,(7)(3)(1)f f f ==,由(0.5)(1)(1.5)f f f <<可知(4.5)(7)(6.5)f f f <<,选( ) A .12.(山东省青岛市2013届高三上学期期中考试数学(理)试题)已知定义在R 上的奇函数()f x 满足(4)()f x f x -=-,且[]0,2x ∈时,2()log (1)f x x =+,甲、乙、丙、丁四位同学有下列结论:甲:()31f =;乙:函数()f x 在[]6,2--上是减函数;丙:函数()f x 关于直线4x =对称;丁:若()0,1m ∈,则关于x 的方程()0f x m -=在[]8,8-上所有根之和为8-,其中正确的是( )A .甲、乙、丁B .乙、丙C .甲、乙、丙D .甲、丙二、填空题:本大题共4小题,每小题4分,共16分. 【答案】A13.(山东省夏津一中2013届高三4月月考数学(理)试题)函数y = 1n|x-1|的图像与函数y=-2 cosπx(-2≤x≤4)的图像所有交点的横坐标之和等于( )A .8B .6C .4D .2【答案】B14.(山东省文登市2013届高三3月二轮模拟考试数学(理))对于正实数α,记M α为满足下述条件的函数()f x 构成的集合:12,x x R ∀∈且21x x >,有212121()()()()x x f x f x x x αα--<-<-.下列结论中正确的是( )A .若12(),()f x M g x M αα∈∈,则12()()f x g x M αα++∈B .若12(),()f x M g x M αα∈∈且12αα>,则12()()f x g x M αα--∈C .若12(),()f x M g x M αα∈∈,则12()()f x g x M αα⋅⋅∈D .若12(),()f x M g x M αα∈∈且()0g x ≠,则12()()f x M g x αα∈ 【答案】A15.(2013年山东临沂市高三教学质量检测考试理科数学)已知集合M={(x,y )|y f (x )=},若对于任意11(x ,y )M ∈,存在22(x ,y )M ∈,使得12120x x y y +=成立,则称集合M 是“垂直对点集”.给出下列四个集合:①M={1(x,y )|y x=};②M={1(x,y )|y sin x =+}; ③M={2(x,y )|y log x =};④{(,)2}x M x y y e ==-.其中是“垂直对点集”的序号是 ( )A .①②B .②③C .①④D .②④【答案】 【答案】D①1y x=是以,x y 轴为渐近线的双曲线,渐近线的夹角为90°,在同一支上,任意(x 1,y 1)∈M,不存在(x 2,y 2)∈M,满足“垂直对点集”的定义;对任意(x 1,y 1)∈M,在另一支上也不存在(x 2,y 2)∈M,使得x 1x 2+y 1y 2=0成立,所以不满足“垂直对点集”的定义,不是“垂直对点集”.②{(,)sin 1}M x y y y x ===+,如图在曲线上,两点构成的直角始存在,所以{(,)sin 1}M x y y y x ===+是“垂直对点集”.对于③2{(,)log }M x y y x ==,如图在曲线上两点构成的直角始存在,例如取M (0,1)-,N 2(log 2,0),满足“垂直对点集”的定义,所以正确.对于④{(,)2}x M x y y e ==-,如图取点(1,0),曲线上不存在另外的点,使得两点与原点的连线互相垂直,所以不是“垂直对点集”. ,故选 D .二、填空题16.(山东省枣庄三中2013届高三上学期1月阶段测试理科数学)已知()f x 为R 上的偶函数,对任意x R∈都有(6)()(3)f x f x f +=+且当[]12,0,3x x ∈, 12x x ≠ 时,有1212()()0f x f x x x ->-成立,给出四个命题:①(3)0f = ② 直线6x =-是函数()y f x =的图像的一条对称轴③ 函数()y f x =在[]9,6--上为增函数 ④ 函数()y f x =在[]9,9--上有四个零点其中所有正确命题的序号为______________ 【答案】①②④【解析】令3x =-,得(36)(3)(3)(3)f f f f -+=-+=,即(3)0f =,所以①正确.因为(6)()(3)f x f x f +=+,所以(6)()(3)()(3)f x f x f f x f -+=-+=+,即(6)(6)f x f x -+=+,所以直线6x =是函数()y f x =的图像的一条对称轴,因为函数为偶函数,所以6x =-也是函数()y f x =的图像的一条对称轴所以②正确.由1212()()0f x f x x x ->-可知函数()f x 在区间[0,3]上递增,又(6)()(3)()f x f x f f x +=+=,所以函数的周期为6,所以函数在[6,9]上递增,所以在[]9,6--上为减函数,所以③错误.因为函数的周期为6,所以(9)(3)(3)(9)0f f f f -=-===,故函数()y f x =在[]9,9--上有四个零点,所以④正确,所以正确的命题为①②④17.(山东省潍坊市2013届高三上学期期末考试数学理(A ))若函数)(x f 满足0,≠∈∃m R m ,对定义域内的任意)()()(,m f x f m x f x +=+恒成立,则称)(x f 为m 函数,现给出下列函数:①xy 1=; ②x y 2=;③x y sin =;④nx y 1= 其中为m 函数的序号是.(把你认为所有正确的序号都填上) 【答案】②③【解析】①若x y 1=,则由()()()f x m f x f m +=+得111x m x m=++,即111()m x m x x x m m -==++,所以22()m x x m x mx =+=+,显然不恒成立.②若x y 2=,由()()()f x m f x f m +=+得由2()22x m x m +=+恒成立,所以②为m 函数.③若x y sin =,由()()()f x m f x f m +=+得sin()sin sin x m x m +=+,当2m π=时,有sin(2)sin x x π+=,sin sin 20m π==,此时成立,所以③为m 函数.④若nx y 1=,由()()()f x m f x f m +=+得由ln()ln ln ln x m x m mx +=+=,即x m mx +=,即(1)0m x m -+=,要使(1)0m x m -+=恒成立,则有10m -=,即1m =.但此时(1)0110m x m -+=+=≠,所以不存在m ,所以④不是m 函数.所以为m 函数的序号为②③.18.(2009高考(山东理))已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++=【答案】【解析】:因为定义在R 上的奇函数,满足(4)()f x f x -=-,所以(4)()f x f x -=-,所以,由)(x f 为奇函数,所以函数图象关于直线2x =对称且(0)0f =,由(4)()f x f x -=-知(8)()f x f x -=,所以函数是以8为周期的周期函数,又因为)(x f 在区间[0,2]上是增函数,所以)(x f 在区间[-2,0]上也是增函数.如图所示,,不妨设1234x x x x <<<由对称性知1x +答案:-819.(山东省济宁市2013[a,b]⊆D,使得函数f (x )满足:(1) f (x )在[a,b]内是单调函数;(2)f (x )在[a,b]上的值域为[2a,2b],则称区间[a,b]为y=f (x )的“和谐区间”.下列函数中存在“和谐区间”的是_______ (只需填符合题意的函数序号) ①20f (x )x (x )=≥;②xf (x )e (x R )=∈; ③10f (x )(x )x =>;④2401xf (x )(x )x =≥+. 【答案】①③④【解析】①若2()f x x =,则由题意知()2()2f a a f b b =⎧⎨=⎩,即2222a a b b ⎧=⎪⎨=⎪⎩,解得02a b =⎧⎨=⎩时,满足条件.②若()x f x e =,则由题意知()2()2f a a f b b =⎧⎨=⎩,即22a b e a e b⎧=⎪⎨=⎪⎩,即,a b 是方程2xe x =的两个根,由图象可知方程2xe x =无解时,所以不满足条件.③若1()f x x =,则由题意知()2()2f a b f b a =⎧⎨=⎩,即1212b a ab⎧=⎪⎪⎨⎪=⎪⎩,所以只要12ab =即可,所以满足条件.④若24()1xf x x =+,因为22244'()(1)x f x x -=+,则由题意知当01x ≤≤时,'()0f x >,函数递增,当1x >时,'()0f x <,函数递减.当01x ≤≤时由()2()2f a af b b =⎧⎨=⎩得22421421aa ab b b ⎧=⎪⎪+⎨⎪=⎪+⎩,由2421x x x =+,解得0x =或1x =,所以当0,1a b ==时,满足条件,即区间为[0,1].所以存在“和谐区间”的是①③④.20.(山东省烟台市2013届高三上学期期中考试数学试题(理科))函数()f x 的定义域为A ,若12,x x A ∈且12()()f x f x =时总有12x x =,则称()f x 为单函数.例如:函数)(12)(R x x x f ∈+=是单函数.给出下列命题:①函数)()(2R x x x f ∈=是单函数; ②指数函数)(2)(R x x f x∈=是单函数;③若()f x 为单函数,12,x x A ∈且12x x ≠,则12()()f x f x ≠; ④在定义域上具有单调性的函数一定是单函数,其中的真命题是 ______________.(写出所有真命题的序号)【答案】②③④ 【解析】当122,2x x ==-时,12()4(),f x f x ==故①错;()2x f x =为单调增函数,故②正确;而③④显然正确21.(山东济南外国语学校2012—2013学年度第一学期高三质量检测数学试题(理科))具有性质:1()()f f x x=-的函数,我们称为满足“倒负”交换的函数,下列函数: ①1;y x x =-②1;y x x=+ ③,(01)0,(1)1(1)x x y x x x⎧⎪<<⎪==⎨⎪⎪->⎩中满足“倒负”变换的函数是________________.【答案】①③ 【解析】当1y x x =-时,11()()f x f x x x=-=-,所以①满足“倒负”变换的函数.当1y x x =+时,11()()f x f x x x =+=,所以②不满足“倒负”变换的函数.当,(01)0,(1)1(1)x x y x x x⎧⎪<<⎪==⎨⎪⎪->⎩时,当1x >时,101x <<,11()()f f x x x ==-,当01x <<时,1x >,1()()f x f x x=-=-,所以③满足“倒负”变换的函数,所以满足条件的函数是①③.22.(山东省日照市2013届高三12月份阶段训练数学(理)试题)定义在R 上的函数()yf x =,若对任意不等实数12,x x 满足()()12120f x f x x x -<-,且对于任意的,x y R ∈,不等式()()22220f x x f y y -+-≤成立.又函数()1y f x =-的图象关于点()1,0对称,则当14x ≤≤时,yx的取值范围为_______________.【答案】1[,1]2-【解析】若对任意不等实数12,x x 满足1212()()0f x f x x x -<-,可知函数()y f x =为R 上递减函数.由函数(1)y f x =-的图象关于点(1,0)对称,可知函数()y f x =的图象关于点(0,0)对称,所以函数()y f x =为奇函数.又22(2)(2)0f x x f y y -+-≤,即222(2)(2)(2)f x x f y y f y y -≤--=-,所以2222+x x y y -≥-,即()(2)0.x y x y -+-≥()(2)014x y x y x -+-≥⎧⎨≤≤⎩表示的平面区域如图所示,yx 表示区域中的点与原点连线的斜率,又12OA k =-,所以yx的取值范围为1[,1]2-.如图23.(山东省青岛市2013届高三上学期期中考试数学(理)试题)已知函数()f x 的定义域为R ,若存在常数0m >,对任意R x ∈,有()f x m x ≤,则称函数()f x 为F -函数.给出下列函数:①2()f x x =;②2()1x f x x =+;③()2xf x =;④()sin 2f x x =. 其中是F -函数的序号为_________________.【答案】②④24.(山东省淄博市2013届高三复习阶段性检测(二模)数学(理)试题)已知函数()f x 在实数集R 上具有下列性质:①直线1x =是函数()f x 的一条对称轴;②()()2f x f x +=-;③当1213x x ≤<≤时,()()()21f x f x -⋅()210,x x -<则()2012f 、()2013f 从大到小的顺序为_______.【答案】(2013)(2012)(2011)f f f >> 由()()2f x f x +=-得()()4f x f x +=,所以周期是4所以(2011)(3)f f =,()2012(0)f f =,(2013)(1)f f =.因为直线1x =是函数()f x 的一条对称轴,所以()2012(0)(2)f f f ==..由()()()21f x f x -⋅()210x x -<,可知当1213x x ≤<≤时,函数单调递减.所以(2013)(2012)(2011)f f f >>.25.(山东省莱芜市莱芜二中2013届高三4月模拟考试数学(理)试题)如图,已知边长为8米的正方形钢板有一个角锈蚀,其中4AE =米,6CD =米. 为了合理利用这块钢板,将在五边形ABCDE 内截取一个矩形块BNPM ,使点P 在边DE 上. 则矩形BNPM 面积的最大值为_________平方米 .A MEPDCB N F【答案】48 三、解答题26.(2009高考(山东理))两县城A 和B 相距20km ,现计划在两县城外以AB 为直径的半圆弧上选择一点C 建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A 和城B 的总影响度为城A 与城B 的影响度之和,记C 点到城A 的距离为x km ,建在C 处的垃圾处理厂对城A 和城B 的总影响度为y,统计调查表明:垃圾处理厂对城A 的影响度与所选地点到城A 的距离的平方成反比,比例系数为4;对城B 的影响度与所选地点到城B 的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A 和城B 的总影响度为0.065.(1)将y 表示成x 的函数;(11)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A 和城B 的总影响度最小?若存在,求出该点到城A 的距离;若不存在,说明理由。

【2014潍坊二模】山东省潍坊市2014届高三4月模拟考试 文综历史 Word版含答案

【2014潍坊二模】山东省潍坊市2014届高三4月模拟考试 文综历史 Word版含答案

高三文综历史部分本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,共12页。

满分300分,考试用时150分钟。

考试结束后,将答题卡和答题纸一并交回。

答卷前,考生务必将自己的姓名、准考证号、考试科目填涂在答题卡规定的地方。

第I卷(必做,共1 40分)注意事项:1.第I卷共35小题,每小题4分,共140分。

在每小题给出的四个选项中,只有一项是最符合题目要求的。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不涂在答题卡上,只答在试卷上无效。

13.“分封制在封土授民的同时,也把周王朝自己及其商王朝接受过来的先进的器物、官僚体制、典章制度、意识形态和文化结构,带到了分封制度所及之地。

”这主要强调分封制A.巩固了西周的统治B.推动了中原文明的扩展C.扩大了西周的疆域D.促成了统一民族的形成14.登州(今蓬莱)“东扼岛夷,北控辽左,南通吴会,西翼燕云”,唐代空前繁荣,呈现出“丝竹笙歌,商贾云集”的景象,经由高丽、渤海道至登州,登陆往长安的朝贡者络绎不绝。

材料反映了登州在唐代成为北方航运中心的原因有①军事重镇②经济繁荣③政治中心④交通便利A.①②③B.①②④C.②③④D.①③④15.斯塔夫里阿诺斯《全球通史》在描述1 6世纪的历史写道:“……在这些世纪里,一个生气勃勃的新欧洲正在崛起……,安逸自在、心满意足的中国人目不转睛地注视着过去。

”材料中“心满意足的注视着过去”的根本含义是A. 固守农耕经济B.坚持君主专制C.昧于世界大势D.实行闭关锁国16.彼得拉克说:“真正的贵族并非天生,而是自为的。

”这句话的实质意义是A. 鼓励个人的奋斗B.反对封建等级特权C.打破天主教精神枷锁D.否定上帝的存在17.观察英国内阁、议会、国王的关系图。

图中方框空白处应是A. 差额选举B.提名推荐C.直接选举D.间接选举18.右图是南洋兄弟烟草公司为“爱国”牌香烟设计的烟画。

2014槐荫二模数学答案

2014槐荫二模数学答案

2014年学业水平阶段性调研测试数学试题参考答案与评分标准一、选择题二、填空题16. 2m2-4m+217. x1=0,x2=318. 6519. 1820. (-1,0)或(5,-2)21. 6三、解答题22.解:(1) 原式=4-1+2×12+3 ············································································· 1分=4-1+1+3····················································································· 2分=7 ·································································································· 3分(2)解:方程两边都乘以(x-3)得:2-x-1=x-3 ·········································································································· 1分解得:x=2 ················································································································ 2分经检验,x=2是原方程的解. ·················································································· 4分23.解:(1)∵∠A=∠F,∴BC∥DE, ············································································································· 1分∴∠C=∠CEF,······································································································ 2分∵∠C=∠D,∴∠D=∠CEF,∴BD∥CE. ················································································································· 3分(2)∵O为BD中点,∴OD=OB,∵四边形ABCD是矩形,∴AD∥BC,············································································································ 1分∴∠PDO=∠QBO, ································································································ 2分又∵∠POD=∠QOD,∴△POD≌△QOD,······························································································ 3分∴OP=OQ. ················································································································ 4分24. 解:(1)10÷10%=100(人), ········································································· 2分(2)良好:40%×100=40(人),优秀:100﹣40﹣10﹣30=20(人),······································································ 4分30÷100×360°=108°,································································································ 5分如图: ····················································· 7分(3)(40+20)÷100×800=480(人)······································································ 8分25.解:设平均增长率为x,根据题意得:····························································· 1分64(1+x)2=100, ········································································································ 5分解得:x1=0.25=25%,····························································································· 6分x2=-2.25(不合题意,舍掉) ···················································································· 7分四月份的销量为:100(1+25%)=125辆.答:四月份的销量为125辆.················································································ 8分26. 解:(1)∵OA=OB=1,∴点A、B的坐标分别为(1,0)、(0,1)设直线AB的解析式为y=kx+b,则有1bk b=⎧⎨=+⎩,∴直线AB的解析式为1y x=-+············································································ 1分点E的坐标是(,1)a a-,点F的坐标是(1,b)b-··················································· 3分(2)∵如图1,OA=OB=1,∴∠OAF=∠EBO,∴BE=BA﹣AE,AF=BA﹣BF································································ 4分∵点P是函数12yx=图象上任意一点,∴21ab=··················································································································· 5分1=即,AF•BE=OB•OA,∴△AOF∽△BEO,······································································································· 6分(3)当点P在曲线上移动时,在△OEF中,∠EOF一定等于45° ····························· 7分由(2)知,△AOF∽△BEO,∴∠AFO=∠BOE,······································································································· 8分在△BOF中,∠AFO=∠BOF+∠B,而∠BOE=∠BOF+∠EOF,∴∠EOF=∠B=45° ········································································································ 9分对图2,图3同理可证,∴∠EOF=45°.27.解:(1)∵CD⊥AB于点D,BD=3,CD=6,∴BC=, ······················································································· 1分∵45 CEBE=,∴BE=59BC=59⨯. ··················································································· 2分(2)由(1)得AB2=BE·BC,∴△ABE∽△CBA,································································································ 3分∴∠BAE=∠BCA. ···································································································· 4分(3)作BM⊥AC于点M, ························································································· 5分∵CD⊥AB于点D,AD=2,CD=6,∴AC∵12AB·CD=12AC·BM,∴BM=·CDABAC=············································································ 6分∴CM==BM,····················································· 7分∴∠BCA=45°,····································································································· 8分∴∠BAE=45°,∴∠AFD=45°,∴∠CFE=45°,∴tan∠CFE=1. ········································································································· 9分28. 解:(1)因为抛物线与x轴交于点A(-1,0)、B(3,0)两点,设抛物线的函数关系式为:y =a (x +1)(x -3), ∵抛物线与y 轴交于点C (0,-3), ∴﹣3=a (0+1)(0-3), ∴a =1,所以,抛物线的函数关系式为:y =x 2-2x -3, ···················································· 1分又y =( x -1) 2-4,因此,抛物线的顶点坐标为(1,-4); ······························································ 2分 (2)连接EM , ··········································································································· 3分 ∵EA 、ED 是⊙M 的两条切线, ∴EA =ED ,EA ⊥AM ,ED ⊥MD , ∴△EAM ≌△EDM , 又四边形EAMD 的面积为43, ∴S △EAM =23, ∴21AM •AE =23, 又AM =2, ∴AE =23,因此,点E 的坐标为E 1(﹣1,23)或E 2(﹣1,﹣23), ························ 4分 当E 点在第二象限时,切点D 在第一象限, 在直角三角形EAM 中,tan ∠EMA =AM EA =232=3, ∴∠EMA =60°,∴∠DMB =60°, 过切点D 作DF ⊥AB ,垂足为点F , ∴MF =1,DF =3,因此,切点D 的坐标为(2,3), 设直线PD 的函数关系式为y =kx +b ,将E (﹣1,23),D (2,3)的坐标代入得⎪⎩⎪⎨⎧+-=+=bk b k 3223,解之,得:⎪⎪⎩⎪⎪⎨⎧=-=33533b k ,所以,直线PD 的函数关系式为y =-x 33+335, ·········································· 5分 当E 点在第三象限时,切点D 在第四象限, 同理可求:切点D 坐标为(2,﹣3),直线PD 的函数关系式为y =x 33-335, 因此,直线PD 的函数关系式为y =-x 33+335或y =x 33-335; ·········· 6分 (3)若四边形EAMD 的面积等于△DAN 的面积,又S 四边形EAMD =2S △EAM ,S △DAN =2S △AMD ,∴S △AMD =S △EAM , ···································································································· 7分 ∴E 、D 两点到x 轴的距离相等, ∵PD 与⊙M 相切, ∴点D 与点E 在x 轴同侧, ∴切线PD 与x 轴平行, ························································································· 8分 此时切线PD 的函数关系式为y =2或y =﹣2, 当y =2时,由y =x 2﹣2x ﹣3得,x =1±6; 当y =﹣2时,由y =x 2﹣2x ﹣3得,x =1±2,故满足条件的点P 的位置有4个,分别是P 1(1+6,2)、P 2(1﹣6,2)、P 3(1+2,﹣2)、P 4(1﹣2,﹣2). ·················································································· 9分。

2024年山东省潍坊市初中学业水平考试二模数学模拟试题

2024年山东省潍坊市初中学业水平考试二模数学模拟试题

2024年山东省潍坊市初中学业水平考试二模数学模拟试题一、单选题1.下列各数是负数的是( )A .2024-B .()20241-C .()2024--D .2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 3.如图,直线a b ∥,直线c 分别交a ,b 于点A ,C ,点B 在直线b 上,AB AC ⊥,若1132∠=︒,则2∠的度数是( )A .38︒B .42︒C .48︒D .52︒4.关于x 的一元二次方程240x x k -+=有两个不等实数解,则k 的取值范围是( ) A .4k < B .4k < C .4k <- D .1k <5.如图,在ABC V 中,点D 在边AB 上,过点D 作DE BC ∥,交AC 点E .若46AD BD ==,,则AE AC的值是( )A .12 B .25 C .35 D .346.在同一平面直角坐标系中,函数y ax =和y x a =-+(a 为常数,0a >)的图象可能是( ) A . B . C . D .二、多选题7.下列因式分解正确的是( )A .()1ax ay a x y +=++B .()333a b a b +=+C .()22442a a a -+=-D .()2a b a a b +=+8.《九章算术》是中国古代重要的数学著作,该著作中给出了勾股数a ,b ,c 的计算公式:()()22221122a m nb mnc m n =-==+,,,其中0m n m n >>,,是互质的奇数.下列四组勾股数中,可以由该勾股数计算公式直接得出的是( )A .3,4,5B .5,12,13C .6,8,10D .7,24,25 9.规定:若函数1y 的图像与函数2y 的图像有三个不同的公共点,则称这两个函数互为“兄弟函数”,其公共点称为“兄弟点”.下列结论正确的是( )A .函数1y x =+与2243y x x =--互为“兄弟函数”B .函数3y x=-与265y x x =--互为“兄弟函数” C .函数23y x =-+与2341y x x =--互为“兄弟函数”D .若函数()21520y ax x a =-+≠与21y x=-互为“兄弟函数”,1x =是其中一个“兄弟点”的横坐标,则实数a 的值为2.10.如图,在正方形ABCD 中,点E 为AB 的中点,CE BD ,交于点H DF CE ⊥,于点F FM ,平分DFE ∠,分别交AD BD ,于点M ,G ,延长MF 交BC 于点N ,连接BF .下列结论中正确的是( )A .1tan 2CDF ∠=B .:3:4EBH DHF S S =△△C .::5:3:2MG GF FN =D .BEF HCD △∽△三、填空题11.如图,将ABC V 先向右平移3个单位,再绕原点O 旋转180︒,得到A B C '''V ,则点A 的对应点A '的坐标是.12.如图,正方形ABCD 的顶点A ,B 在y 轴上,反比例函数k y x=的图象经过点C 和AD 的中点E ,若2AB =,则k 的值是.13.如图,在56⨯的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB 的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB (阴影部分)的概率是π12,则图中扇形的面积为.14.九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方案是.四、解答题15.(1)解不等式组()2113113x x x ⎧-+>-⎪⎨+-≤⎪⎩,把它的解集在数轴上表示出来,并写出其正整数解 (2)化简2111x x x x x x-⎛⎫+⋅ ⎪+-⎝⎭.下面是甲、乙两同学的部分运算过程:①甲同学解法的依据是______,乙同学解法的依据是_____;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.②请选择一种解法,写出完整的解答过程.16.如图在正方形ABCD 中,点E 在CD 上,连接AE ,BE ,F 为BE 的中点连接CF .若32DE CF EC ==,,求AE 的长.17.如图1,是某校教学楼正厅摆放的校园智能阅读屏.数学兴趣小组在学习完锐角三角函数一章后,参加实践活动,想要利用所学知识计算智能阅读屏最高点到地面的高度.他们绘制了图2所示的展板侧面的截面图,并测得120cm AB =,80cm BD =,105ABD ∠=︒,60BDQ ∠=︒,底座四边形EFPQ 为矩形,5cm EF =.请帮助该数学兴趣小组求出展板最高点A 到地面PF 的距离.(结果保留到根号)18.【背景】在一次物理实验中,小冉同学用一固定电压为12V 的蓄电池,通过调节滑动变阻器来改变电流大小,完成控制灯泡L (灯丝的阻值L 2ΩR =)亮度的实验(如图),已知串联电路中,电流与电阻L R R 、之间关系为LU I R R =+,通过实验得出如下数据:(1)=a _______,b =_______;(2)【探究】根据以上实验,构建出函数()1202y x x =≥+,结合表格信息,探究函数()1202y x x =≥+的图象与性质. ①在平面直角坐标系中画出对应函数()1202y x x =≥+的图象;②随着自变量x的不断增大,函数值y的变化趋势是_________.(3)【拓展】结合(2)中函数图象分析,当0x≥时,123622xx≥-++的解集为________.19.为弘扬传统文化,增强同学们的爱国主义精神,某校团委组织举办了“红色经典阅读”竞赛,从九年级和八年级各随机抽取10名学生.统计这部分学生的竞赛成绩,并对数据(成绩)进行了收集、整理,分析.下面给出了部分信息.【收集数据】九年级10名学生竞赛成绩:85,78,86,79,72,91,79,71,70,89八年级10名学生竞赛成绩:85,80,77,85,80,73,90,74,75,81【整理数据】【分析数据】【解决问题】根据以上信息,回答下列问题:(1)填空:=a_________,b=_________,c=_________;(2)请你根据【分析数据】中的信息,判断哪个级部成绩比较好,简要说明理由;(3)九年级共有学生450人,八年级其有学生400人.按竞赛规定,80分及80分以上的学生可以获奖,估计这两个班可以获奖的总人数是多少?20.装有水的水槽放置在水平台面上,其横截面是以AB为直径的半圆O,50cmAB=,如图1和图2所示,MN为水面截线,GH为台面截线,MN GH∥.(1)计算:在图1中,已知48cm MN =,作OC MN ⊥于点C .求OC 的长.操作:将图1中的水面沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM ∠=︒时停止滚动,如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D . (2) 探究:在图2中,操作后水面高度下降了多少?21.ABCD Y 中,AE BC ⊥,垂足为E ,连接DE ,将ED 绕点E 逆时针旋转90︒,得到EF ,连接BF .(1)当点E 在线段BC 上,=45ABC ∠︒时,如图①,求证:AE EC BF +=;(2)当点E 在线段BC 延长线上,=45ABC ∠︒时,如图②:当点E 在线段CB 延长线上,135ABC ∠=︒时,如图③,请猜想并直接写出线段AE ,EC ,BF 的数量关系;(3)在(1)、(2)的条件下,若3BE =,5DE =,则CE =_______.22.根据以下素材,探究完成任务.小林在练习投掷实心球,其示意图如图,第一次练习时,球从点A处被抛出,其路线是抛物线.点A距离地面1.6m,当球到OA的水平距离为1m时,达到最大高度为1.8m.根据体育老师建议,第二次练习时,小林在正前方1m处(如图)架起距离地面高为2.45m的OC .横线.球从点A处被抛出,恰好越过横线,测得投掷距离8m。

2014山东省实验中学高三二模考试数学文试题及答案

2014山东省实验中学高三二模考试数学文试题及答案

山东省实验中学2011级第二次模拟考试数学试题(文科)2014.4第I 卷(选择题 50分)一、选择题:(本大题共10小题,每小题5分,共50分.)1.在复平面内,复数1i i -+对应的点位于 A.第一象限 B. 第二象限C. 第三象限D. 第四象限 2.定义集合{}{}{}*1357235*A B x x A x B B A B =∈∉=且,若A=,,,,,,,则的子集个数为A.1B.2C.3D.4 3.等比数列{}n a 中,“13a a <”是“46a a <”的A.充而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件4.已知函数()y f x =是奇函数,当()10lg ,100x f x x f f ⎛⎫⎛⎫>= ⎪ ⎪⎝⎭⎝⎭时,则的值等于 A.112g B. 112g - C. lg 2 D. 12g -5.给出下列图象其中可能为函数()()43,,,f x x ax cx d a b c d R =+++∈的图象是 A.①③ B.①② C.③④ D.②④6.如图是一个组合几何体的三视图,则该几何体的体积是64π+B. 128πC.1264π+D.36128π+7.图中共顶点的椭圆①、②与双曲线③、④的离心率分别为1234e e e e 、、、,其大小关系为A.1234e e e e <<<B.2134e e e e <<<C.1243e e e e <<<D. 2143e e e e <<<8.已知函数()f x 的部分图象如图所示,则()f x 的解析式可能为A.()2sin 26f x ππ⎛⎫=- ⎪⎝⎭B.()44f x x π⎛⎫=+ ⎪⎝⎭错误!未找到引用源 C.()2cos 23x f x π⎛⎫=-⎪⎝⎭ D.()2sin 46f x x π⎛⎫=+ ⎪⎝⎭9.已知2,,2,y x z x y x y x y x m ≥⎧⎪=++≤⎨⎪≥⎩满足且z 的最大值是最小值的4倍,则m 的值是 A.17 B. 16 C. 15 D. 1410.若函数()f x 在给定区间M 上,还存在正数t ,使得对于任意,x M x t M ∈+∈有,且()()()f x t f x f x +≥,则称为M 上的t 级类增函数,则以下命题正确的是 A.函数()()41f x x x=++∞是,上的1级类增函数B.函数()()()2log 11f x x =-+∞是,上的1级类增函数 C.若函数()[)231f x x x =-+∞为,上的t 级类增函数,则实数t 的取值范围为[)1+∞,D.若函数()sin 23f x x ax ππ⎡⎫=++∞⎪⎢⎣⎭为,上的级类增函数,则实数a 的取值范围为2第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.阅读左侧程序框图,则输出的数据S 为______.12.200辆汽车经过某一雷达地区,时速频率分布直方图如右图所示,则时速超过60km/h 的汽车数量为________辆.13.已知抛物线()220y px p =>的准线与圆22670x y x +--=相切,则p 的值为________.14.设102m <<,若1212k m m+≥-恒成立,则k 的最大值为________.15.在四边形ABCD 中,()131,1,..AB DC BC BD BA BD ===,则四边形ABCD 的面积为__________。

安阳市2013-2014学年中招二模数学试题参考答案

安阳市2013-2014学年中招二模数学试题参考答案
2014 年中招模拟考试试题(二)
数学参考答案及评分意见
一、选择题 1.A 二、填空题 9. x ≤ 2 10. 40 11. 2.B 3.A 4.B 5.C 6. B 7. C 8. D
2 3
12. 240
13. 3
14. 30
4 8 15.(2,–1)或 ( , ) 5 5
三、解答题 16. 原式
3 ,且 C GAO 90 , 5
B C D F G O A E
∴ sin GAO
3 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 7分 ,· 5
18. 解: (1)△DEF≌△BCF,△ADC≌△ABE;· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 4分 (2)证明:∵△ABC≌△ADE, ∴∠CAB+∠CAE=∠EAD+∠CAE, 在△BAE 和△DAC 中 AB=AD, ∠BAE=∠DAC, AC=AE, ∴△BAE≌△DAC, ∴BE=DC. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 9分
九年级数学参考答案 第 1 页 共 4 页
∴AB=AD, AC=AE, ∠CAB=∠EAD, 即∠BAE=∠DAC. · · · · · · · · · · · · · · · · · · · · 6分

2014年安庆市二模理科数学参考答案

2014年安庆市二模理科数学参考答案

2014年安庆市高三模拟考试(二模) 数学试题(理科) 参考答案及评分标准一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只1. 解析:i z -=1,i i i i i zz z --=--=-+-+=-1121)1(2)1(222,选A. 2. 解析:}1{<∈=x R x B ,则A B =I }1{-,阴影部分表示的集合为}3,2,1{,选D. 3. 解析:由86543=+-+a a a a 得853=+a a ,所以871=+a a ,282)(7717=+⨯=a a S ,选C.4. 解析:设图中甲、乙丢失的数据分别为b a ,,则16805a x +=+,26805y =+,∵0 9a ≤≤,∴1625808055a x y +=++<≤,选B. 5. 解析:多面体ABCDE 为四棱锥,利用割补法可得其 体积38344=-=V ,选D. 6. 解析:直线的方程为2=x ,圆的方程为22(1)(1)2x y -+-=,圆心到直线的距离为1,故圆C 上有2个点到l 距离为1,选B.7. 解析:设椭圆的长半轴长为1a ,双曲线的实半轴长为2a ,焦距为2c ,1PFm =,2PF n =,且不妨设m n >,由 12m n a +=,22m n a -=得12m a a =+,12n a a =-.又123F PF π∠=,∴222221243c m n mn a a =+-=+,∴22122234a a c c+=234e =,解得2e =,选C.8. 解析:设i i i a a b -=+1,1,2,3,4i =,则i b 等于1或-1,由554433221()()()()a a a a a a a a a =-+-+-+-1234b b b b +++=,知i b )4,3,2,1(=i 共有3个1,1个-1.这种组合共有414=C 个,选B.9. 解析:由已知有⎪⎪⎩⎪⎪⎨⎧>>≤+-≥+-00013012b a b a b a ,作出可行域,令()221b a d +-=,则d 的最小值为点)0,1(到直线013=+-b a 的距离,此时510min =d , 所以()221b a +-的最小值为52,选B. 10. 解析:令()ln (12)f x x x x =-<<,则11()10x f x x x-'=-=>, 所以函数()(12)y f x x =<<为增函数,∴()(1)10f x f >=>,∴ln 0x x >>⇒ln 01x x <<,∴2ln ln x xx x ⎛⎫< ⎪⎝⎭.又2222ln ln 2ln ln (2)ln 0x x x x x x xx x x x---==>, ∴222ln ln ln x x x x x x ⎛⎫<< ⎪⎝⎭,选A . 二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上) 11. 解析:∵ 52))(1(a x x x -++的展开式所有项的系数和为0)1)(111(52=-++a , ∴ 1a =,∴52))(1(a x x x -++4434352)1()1()1)(1()1)(1(---=--=-++=x x x x x x x x , 其展开式中含4x 项的系数为330044C (1)C (1)5---=-.第9题图12. 解析:由C A B sin cos 8sin =及正、余弦定理知:bc a c b c b 28222-+⨯=,整理得22243c b a +=,由b c a 322=-联立解得:4=b .13. 解析:当输出的6=n 时,512263S =+++=L ,设输入的T 值为0T ,003(125)45T T T =-+++=-L , 且T S ≥,解得0108T ≤.T 最大值为108.14. 解析:函数()f x 有三个零点等价于方程12m x x =+有且仅有三个实根. ∵11(2)2m x x x x m=⇔=++,作函数(2)y x x =+的图像,如图所示,由图像可知m 应满足:101m<<,故1m >.15. αcos 2221mn n m e m ++=+=,∵2πα≠,所以②错误;由b a //得()b a R λλ=∈r r,所以,s m t n λλ==,所以0=-ns mt ,故③正确;∵1212()()()cos a b me ne se te ms nt mt ns ms nt α⋅=+⋅+=+++≠+r r u r u r u r u r,所以④错误;根据夹角公式><=⋅,,又a b ==r r 1245a b e e ⋅=+⋅r r u r u r得121245(54)cos 3e e e e π+⋅=+⋅u r u r u r u r ,故1212e e ⋅=-u r u r ,即1cos 2α=- 23πα∴=,⑤正确所以正确的是①、③、⑤.三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(本题满分12分)解析:(Ⅰ)n m x f ⋅=)()4cos()4cos(3)4(sin 2πππ-+-+=x x x21)32sin(2cos 23)2sin 1(21+-=-+=πx x x …………4分由于0)32sin(=-πx 得:Z k k x ∈=-,32ππ,所以Z k k x ∈+=,621ππ.所以)(x f 的图像的对称中心坐标为Z k k ∈+),21,621(ππ …………6分 (Ⅱ))(x g =)32sin(π+x ,列表:描点、连线得函数()y g x =在5[,]66ππ-上的图象如图所示:17.(本题满分12分)解答:设“教师甲在A 点投中”的事件为A ,“教师甲在B 点投中”的事件为B . (Ⅰ)根据题意知X 的可能取值为0,2,3,4,5,761)311()211()()0(2=-⨯-=⋅⋅==A B A P X P ,31)211()311(21)()2(12=-⨯-⨯⨯=⋅⋅+⋅⋅== C A B A A B A P X P 121)211(31)211()()3(=-⨯⨯-=⋅⋅==A B A P X P6121)311(21)()4(=⨯-⨯=⋅⋅==A B A P X P6131)211(21)()5(12=⨯-⨯⨯=⋅⋅+⋅⋅==C A B A A B A P X P…………12分121213121)()7(=⨯⨯=⋅⋅==A B A P X P …………6分 所以X 的分布列是:312176156141213312610=⨯+⨯+⨯+⨯+⨯+⨯=EX …………8分 (Ⅱ)教师甲胜乙包括:甲得2分、3分、4分、5分、7分五种情形. 这五种情形之间彼此互斥,因此,所求事件的概率P 为:1111111111111111()()()(1)361263663126631261212P =⨯+⨯++⨯+++⨯++++⨯-571914448== …………12分 18.(本题满分12分)解析:(Ⅰ) 22211)(x ax x x x a x f -+=+-=',),0(+∞∈x由a 41+=∆知, ①当41-≤a 时,0)(≥'x f ,)(x f 在),0(+∞上递增,无最值; ②当041≤<-a 时,02=-+a x x 的两根均非正,因此,)(x f 在),0(+∞上递增,无最值;③当0>a 时,02=-+a x x 有一正根2411a x ++-=,)(x f 在)2411,0(a++-上递减,在),2411(+∞++-a上递增;此时,)(x f 有最小值;所以,实数a 的范围为0>a . …………7分 (Ⅱ)证明:依题意:1)11(111121222121=+⇒+-=+-x x a x x a x x a , 由于0,021>>x x ,且21x x ≠,则有22121212121)2()(22x x x x x x x x x x a +<⋅≤+⇒≥+⋅=22121)2()(2x x x x +<+∴821>+⇒x x . …………12分19.(本题满分13分)解答:(Ⅰ)∵平面ABCD 垂直于圆O 所在的平面,两平面的交线为AB ,BC ⊆平面ABCD ,BC AB ⊥,∴BC 垂直于圆O 所在的平面.又EA 在圆O 所在的平面内,∴BC EA ⊥.∵AEB ∠是直角,∴BE EA ⊥,∴EA ⊥平面EBC ,∴EA EC ⊥.…………6分(Ⅱ) 如图,以点O 为坐标原点,AB 所在的直线为y 轴,过点O 与BC 平行的直线为z 轴,建立空间直角坐标系O xyz -.由异面直线AE 和DC 所成的角为6π,//AB DC 知6BAE π∠=, ∴3BOE π∠=,∴1,,0)2E a ,由题设可知(0,,)C a a ,(0,,)D a a -,∴3,,)2DE a a =-uuu r,1,,)2CE a a =--uur .设平面DCE 的一个法向量为000(,,)p x y z =u r ,由0DE p ⋅=u u u r u r ,0CE p ⋅=u u r u r得00z x =,00y =,取02x =,得0z =∴p =u r .又平面AEB 的一个法向量为(0,0,1)q =r,∴cos ,7p q <>=u r r .平面DCE 与平面AEB所成的锐二面角的余弦值7. …………13分 (其他解法可参考给分)第19题图20.(本题满分13分)解析:(Ⅰ)根据已知条件有0tan >α,且ααta n 1ta n 2>+,故椭圆E 的长轴在y 轴上.e ==≥=,当且仅当4πα=时取等号. 由于椭圆E 的离心率e 最小时其形状最圆,故最圆的椭圆方程为2212y x +=. …………5分(Ⅱ)设交点P ),(00y x ,过交点P 的直线l 与椭圆2212y x +=相切. (1)当斜率不存在或等于零时,易得P 点的坐标为P (1,±. …………6分 (2)当斜率存在且非零时,则01x ≠±设斜率为k ,则直线l :00)(y x x k y +-=, 与椭圆方程联立消y ,得:2220000(2)2()()20k x k y kx x y kx ++-+--=. 由相切,2220000[2()]4(2)[()2]0k y kx k kx y ∆=--+--=,化简整理得2220000(1)220x k x y k y -++-=. ①因过椭圆外一点有两条直线与椭圆相切,由已知两切线垂直,故121-=k k ,而21,k k 为方程①的两根,故202211y x -=--,整理得:22003x y +=.又(1,±也满足上式,故P 点的轨迹方程为223x y +=,即P 点在定圆223x y +=上. ………13分21.(本题满分13分)解析:(Ⅰ)若2-=λ,则nn n a a a 221-=+, 由21122000n n n n n n n na a a a a a a a ++->⇔->⇔->⇔>,当1=n 时,21>a 或021<<-a .⑴若21>a ,由n n a a >+1知:2>n a ,显然2120n n n na a a a +--=>,满足.⑵若021<<-a ,则必须满足⎪⎩⎪⎨⎧><<-<<-++2020211k k k a a a 或,其中*N k ∈得:⎪⎩⎪⎨⎧>-<-<-<<-222022202k k k k k a a a a a 或, 即有12-<<-k a 或022<<-k a , 即121-<<-a 或0221<<-a , 所以12-<<-a 或022<<-a 或2>a . (Ⅱ) 2≥n a 对任意*∈N n 成立的充要条件为4-≥λ.必要性:由22≥a ,解出4-≥λ; (另解:假设221≥+=+nn n a a a λ,得n n a a 222+-≥λ,令21)21(2)(2+--=n a n f ,2≥n a ,可得:4)(max -=n f ,即有4-≥λ.) …………8分充分性:数学归纳法证明:4-≥λ时,对一切*∈N n ,2≥n a 成立.证明:(1)显然1=n 时,结论成立;(2)假设)1(≥=k k n 时结论成立,即2≥k a ,当1+=k n 时,kk k a a a λ+=+21.考察函数xx x f λ+=2)(,),2[+∞∈x ,① 若 04≤≤-λ,由02)('2>-=xx f λ,知)(x f 在区间),2[+∞上单调递增.由假设得kk k a a a λ+=+2124λ+≥2≥.② 若0>λ,对),2[+∞∈x 总有242)(>>+=xx x f λ,则由假设得221>+=+kk k a a a λ.所以,1+=k n 时,结论成立,综上可知:当4-≥λ时,对一切*∈N n ,2≥n a 成立.故2≥n a 对任意*∈N n 成立的充要条件是4-≥λ.…………13分。

2014年山东省潍坊市高考数学二模试卷(理科)

2014年山东省潍坊市高考数学二模试卷(理科)

2014年山东省潍坊市高考数学二模试卷(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共50.0分)1.若复数z满足(1+i)•z=i,则z的虚部为()A.-B.-C.D.【答案】D【解析】解:∵(1+i)•z=i,∴z===,∴z的虚部为,故选:D.由题意可得z=,再利用两个复数代数形式的乘除法法则,虚数单位i的幂运算性质,计算求得结果.本题主要考查两个复数代数形式的乘除法法则,虚数单位i的幂运算性质,属于基础题.2.设集合A={x||2x-1|≤3},B={x|y=lg(x-1)},则A∩B=()A.(1,2)B.[1,2]C.(1,2]D.[1,2)【答案】C【解析】解:由A中不等式得:-3≤2x-1≤3,解得:-1≤x≤2,即A=[-1,2],由B中y=lg(x-1),得到x-1>0,即x>1,∴B=(1,+∞),则A∩B=(1,2].故选:C.求出A中不等式的解集确定出A,求出B中x的范围确定出B,找出A与B的交集即可.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.下列结论正确的是()A.若向量∥,则存在唯一的实数λ使=λB.已知向量,为非零向量,则“,的夹角为钝角”的充要条件是“•<0’’C.“若θ=,则cosθ=”的否命题为“若θ≠,则cosθ≠”D.若命题p:∃x∈R,x2-x+1<0,则¬p:∀x∈R,x2-x+1>0【答案】C【解析】解:若向量∥,≠,则存在唯一的实数λ使=λ,故A不正确;已知向量,为非零向量,则“,的夹角为钝角”的充要条件是“•<0,且向量,不共线”,故不正确;条件否定,结论否定,可知C正确;若命题p:∃x∈R,x2-x+1<0,则¬p:∀x∈R,x2-x+1≤0,故D不正确.故选:C.根据向量共线定理判断A,向量,为非零向量,则“,的夹角为钝角”的充要条件是“•<0,且向量,不共线”,可判断B,条件否定,结论否定,可判断C;命题p:∃x∈R,x2-x+1<0,则¬p:∀x∈R,x2-x+1≤0,可判断D.本题考查命题的真假判断与应用,考查学生分析解决问题的能力,知识综合性强.4.已知f(x)=x2+sin,f′(x)为f(x)的导函数,则f′(x)的图象是()A. B. C. D.【答案】A【解析】解:由f(x)=x2+sin=x2+cosx,∴f′(x)=x-sinx,它是一个奇函数,其图象关于原点对称,故排除B,D.又f″(x)=-cosx,当-<x<时,cosx>,∴f″(x)<0,故函数y=f′(x)在区间(-,)上单调递减,故排除C.故选:A.先化简f(x)=x2+sin=x2+cosx,再求其导数,得出导函数是奇函数,排除B,D.再根据导函数的导函数小于0的x的范围,确定导函数在(-,)上单调递减,从而排除C,即可得出正确答案.本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.5.已知α,β表示平面,m,n表示直线,m⊥β,α⊥β,给出下列四个结论:①∀n⊂α,n⊥β;②∀n⊂β,m⊥n;③∀n⊂α,m∥n;④∃n⊂α,m⊥n,则上述结论中正确的个数为()A.1B.2C.3D.4【答案】B【解析】解:由α,β表示平面,m,n表示直线,m⊥β,α⊥β,知:①∀n⊂α,则n∥β或n⊂β或n与β相交,故①错误;②∀n⊂β,由直线与平面垂直的性质,知m⊥n,故②正确;③∀n⊂α,则m与n相交、平行或异面,故③错误;④由m⊥β,α⊥β知,在平面α中至少有一条直线与m垂直,∴∃n⊂α,m⊥n,故④正确.故选:B.利用空间中线线、线面、面面间的位置关系求解.本题考查命题真假的判断,是基础题,解题时要注意空间思维能力的培养.6.已知函数f(x)=x2+x,执行如图所示的程序框图,若输出的结果是,则判断框中的条件应是()A.n≤30B.n≤31C.n≤32D.n≤33【答案】B【解析】∴解:∵函数f(x)=x2+x,∴f(n)=n(n+1),由程序框图知:算法的功能是求S=++…+=1-的值,∵输出的结果是,∴跳出循环的n值为32,∴判断框内的条件应填:n<32或n≤31.故选:B.算法的功能是求S=++…+的值,根据输出的结果判断跳出循环的n值,从而确定判断框内应填的条件.本题考查了当型循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.7.已知双曲线C:-=1(a>0,b>0)的左、右焦点分别是F1、F2过F2垂直x轴的直线与双曲线C的两渐近线的交点分别是M、N,若△MF1N为正三角形,则该双曲线的离心率为()A. B. C. D.2+【答案】A【解析】解:双曲线C:-=1(a>0,b>0)的渐近线方程为bx±ay=0,x=c时,y=±,∵△MF1N为正三角形,∴2c=×,∴a=b,∴c=b,∴e==.故选:A.求出双曲线C的两渐近线方程,利用△MF1N为正三角形,建立三角形,即可求出该双曲线的离心率.本题考查双曲线的简单性质,考查学生的计算能力,比较基础.8.某几何体的三视图如图所示,则该几何体外接球的表面积为()A.πB.πC.4πD.16π【答案】D【解析】解:由三视图知:几何体为圆锥,圆锥的高为1,底面半径为,设外接球的半径为R,如图:则(R-1)2+3=R2⇒R=2.∴外接球的表面积S=4π×22=16π.故选:D.几何体为圆锥,根据三视图判断圆锥的高与底面半径,设外接球的半径为R,结合图形求得R,代入球的表面积公式计算.本题考查了由三视图求几何体的外接球的表面积,结合图形的求得外接球的半径是解答本题的关键.9.在区间[-3,3]上任取两数x,y,使x2-y-1<0成立的概率为()A. B. C. D.【答案】A【解析】解:由题意可得,区间[-3,3]上任取两数x,y,区域为边长为6的正方形,面积为36,x2-y-1<0的区域是图中阴影区域以外的部分,其面积S==,∴在区间[-3,3]上任取两数x,y,使x2-y-1<0成立的概率为=.故选:A.该题涉及两个变量,故是与面积有关的几何概型,分别表示出满足条件的面积和整个区域的面积,最后利用概率公式解之即可.本题主要考查了与面积有关的几何概率的求解,解题的关键是准确求出区域的面积,属于中档题.10.已知定义在R上的函数y=f(x)对任意的x满足f(x+1)=-f(x),当-1≤x<1时,f(x)=x3.函数g(x)=,>,<若函数h(x)=f(x)-g(x)在[-6,+∞)上有6个零点,则实数a的取值范围是()A.(0,)∪(7,+∞)B.[,)∪(7,9]C.[,1)∪(1,9]D.(,]∪[7,9)【答案】B【解析】解:∵对任意的x满足f(x+1)=-f(x),∴f(x+2)=-f(x+1)=f(x),即函数f(x)是以2为最小正周期的函数,画出函数f(x)、g(x)在[-6,+∞)的图象,由图象可知:在y轴的左侧有2个交点,只要在左侧有4个交点即可.则<即有>或<<<或<,故7<a≤9或≤a<.故选:B.f(x)=x3.函数g(x)=[-6,+∞)上有6个零点,即函数f(x)与g(x)的交点的个数,由函数图象的变换,分别做出y=f(x)与y=g(x)的图象,由此求得a的取值范围.本题考查函数图象的变化与运用,涉及函数的周期性,对数函数的图象等知识点,关键是作出函数的图象,由此分析两个函数图象交点的个数.二、填空题(本大题共5小题,共25.0分)11.已知,是夹角为60°的两个单位向量,若向量=3+2,则||= ______ .【答案】【解析】解:∵=1,=°=.∴=+4+12=9+4+12×=19.∴=故答案为:.利用数量积的运算和性质即可得出.本题考查了数量积的运算和性质,属于基础题.12.现将如图所示的5个小正方形涂上红、黄两种颜色,其中3个涂红色,2个涂黄色,若恰有两个相邻的小正方形涂红色,则不同的涂法种数共有______ .(用数字作答)【答案】6【解析】解:当涂红色两个相邻的小正方形在两端时是有=4,当涂红色两个相邻的小正方形在不在两端时是有=2,则不同的涂法种数共有4+2=6种.故答案为:6.根据涂红色两个相邻的小正方形的位置进行分类,利用分类计数原理即可解得.本题主要考查了分类计数原理,本题的关键是根据涂红色两个相邻的小正方形位置进行分类.13.已知抛物线C:y2=2px(p>0)上一点P(2,m)(m>0),若P到焦点F的距离为4,则以P为圆心且与抛物线C的准线相切的圆的标准方程为______ .【答案】(x-2)2+(y-4)2=16【解析】解:由题意结合抛物线的定义可得P到准线的距离为4,∴2-(-)=4,求得p=4,∴抛物线C:y2=8x.点P(2,m)代入抛物线C:y2=8x,结合m>0,可得m=4.再根据题意可得圆的半径为4,故所求的圆的标准方程为(x-2)2+(y-4)2=16,故答案为:(x-2)2+(y-4)2=16.根据题意可得2-(-)=4,求得p=4,可得抛物线C:y2=8x.把点P(2,m)代入抛物线的方程,求得m的值,可得圆心和半径,从而得到所求的圆的标准方程.本题主要考查抛物线的定义和标准方程的应用,求圆的标准方程的方法,求出m的值,是解题的关键,属于中档题.14.曲线y=xsinx在点A(,),B(-,))处的切线分别为l1,l2,设l1,l2及直线x-2y+2=0围成的区域为D(包括边界).设点P(x,y)是区域D内任意一点,则x+2y 的最大值为______ .【答案】6【解析】解:∵y=xsinx,∴y′=sinx+xcosx,x=,y′=1;x=-,y′=-1,∴l1:y-=x-,即y=x;l2:y-=-(x-),即y=-x,l1,l2及直线x-2y+2=0围成的区域为D(包括边界),如图所示,交点坐标分别为(0,0)、(2,2)、(-,),∴在(2,2)处,x+2y的最大值为6.故答案为:6.求出函数的切线方程,作出对应的平面区域,利用线性规划的知识进行求解即可得到结论.本题主要考查导数的几何意义的应用,以及线性规划的有关知识,利用数形结合是解决本题的关键.15.如图所示,位于东海某岛的雷达观测站A,发现其北偏东45°,与观测站A距离20海里的B处有一货船正匀速直线行驶,半小时后,又测得该货船位于观测站A东偏北θ(0°<θ<45°)的C处,且cosθ=,已知A、C两处的距离为10海里,则该货船的船速为______ 海里/小时.【答案】4【解析】解:∵cosθ=,∴sin=,由题意得∠BAC=45°-θ,即cos∠BAC=cos(45°-θ)=,∵AB=20,AC=10,∴由余弦定理得BC2=AB2+AC2-2AB•AC cos∠BAC,即BC2=(20)2+102-2×20×10×=800+100-560=340,即BC=,设船速为x,则=2,∴x=4(海里/小时),故答案为:4根据余弦定理求出BC的长度即可得到结论.本题主要考查解三角形的应用,根据条件求出cos∠BAC,以及利用余弦定理求出BC的长度是解决本题的关键.三、解答题(本大题共6小题,共75.0分)16.已知函数f(x)=A sin(ωx+)(A>0,ω>0)的振幅为2,其图象的相邻两个对称中心之间的距离为.(Ⅰ)若f(α+)=,0<α<π,求sinα;(Ⅱ)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,若函数y=g(x)-k是在[0,π]上有零点,求实数k的取值范围.【答案】解:(Ⅰ)依题意,A=2,T==,∴ω=3,∴f(x)=2sin(3x+)…2分又f(α+)=2sin[3(+)+]=2sin(2α+)=2cos2α=,∴cos2α=…4分∴sin2α==,又0<α<π,∴sinα=…6分(Ⅱ)将函数y=f(x)的图象向右平移个单位得到y=g(x)=2sin[3(x-)+]=2sin(3x-)的图象,…8分则函数y=g(x)-k=2sin(3x-)-k,∵x∈[0,π],∴3x-∈[-,],∴-≤2sin(3x-)≤2…11分∵函数y=g(x)-k在[0,π]上有零点,∴y=g(x)与y=k在[0,π]上有交点,∴实数k的取值范围是[-,2]…12分【解析】(Ⅰ)利用函数y=A sin(ωx+φ)的图象性质可求得A=2,T=,解得ω=3,于是可得函数y=f(x)的解析式,从而可由f(α+)=,0<α<π,求得sinα;(Ⅱ)利用函数y=A sin(ωx+φ)的图象变换,可求得g(x)=2sin(3x-),利用正弦函数的单调性与最值可求得x∈[0,π]时该函数的值域,利用y=g(x)与y=k在[0,π]上有交点,即可求得实数k的取值范围.本题考查函数y=A sin(ωx+φ)的图象性质与图象变换,考查正弦函数的单调性与最值,考查等价转化思想与运算求解能力,属于中档题.17.直三棱柱ABC-A1B1C1中,AB⊥BC,BC=,BB1=2,AC1与A1C交于一点P,延长B1B到D,使得BD=AB,连接DC,DA,得到如图所示几何体.(Ⅰ)若AB=1,求证:BP∥平面ACD,(Ⅱ)若直线CA1与平面BCC1B1所成的角为30°,求二面角D-AC-C1的余弦值.【答案】(Ⅰ)证明:取AC的中点E,连接PE,DE…1分则PE,∵BD=AB=1,BB1=2,∴BD=BB1=CC1,又∵BD∥CC1,∴BD CC1,∴PE BD,∴四边形DBPE为平行四边形,∴BP∥DE, (3)分∵BP⊄面ACD,DE⊂面ACD,…4分∴BP∥平面ACD,…5分(Ⅱ)解:由题意知,AB⊥BC,AB⊥BB1,∴AB⊥面BC1,∴A1B1⊥面BC1连接B1C,则∠A1CB1为直线CA1与平面BCC1B1所成的角,则∠A1CB1=30°,…6分在R t△A1B1C中,B1C=,tan A1CB1.∴A1B1=…7分以B为原点,分别以BC,BB1,AA1为x、y、z轴建立如图所示的空间直角坐标系,则A(0,0,),C(,0,0),D(0,-,0),∴=(,0,-),=(0,-,-),…8分设面ACD的法向量为=(x,y,z),则即,取z=1,则=(1,-1,1)…9分在平面ABC内取面AC1的一个法向量=(x,0,z),则=x-z=0,取x=1,则z=1,∴=(1,0,1)…10分∴cos<,>==,…11分由图知二面角D-AC-C1为钝角,二面角D-AC-C1的余弦值为-…12分【解析】(Ⅰ)取AC的中点E,连接PE,DE,证明四边形DBPE为平行四边形,从而BP∥平面ACD;(Ⅱ)轴建立空间直角坐标系,用向量法解决.空间直角坐标系本题考查线面平行,考查面面角,考查向量知识的运用,解题的关键是正确建立坐标系,属于中档题.18.某超市制定“五一”期间促销方案,当天一次性购物消费额满1000元的顾客可参加“摸球抽奖赢代金券”活动,规则如下:①每位参与抽奖的顾客从一个装有2个红球和4个白球的箱子中逐次随机摸球,一次只摸出一个球;②若摸出白球,将其放回箱中,并再次摸球;若摸出红球则不放回,工作人员往箱中补放一白球后,再次摸球;③如果连续两次摸出白球或两个红球全被摸出,则停止摸球.停止摸球后根据摸出的红球个数领取代金券,代金券数额Y与摸出的红球个数x满足如下关系:Y=144+72x(单位:元).(Ⅰ)求一位参与抽奖顾客恰好摸球三次即停止摸球的概率;(Ⅱ)求随机变量Y的分布列与期望.【答案】解:(Ⅰ)恰好摸球三次即停止摸球包含三种情况:①红白红;②白红红;③红白白,∴所求事件的概率为:p==.(Ⅱ)x的可能取值为0,1,2,对应随机变量Y的可能取值为144,216,288,则P(Y=144)=,P(Y=216)=,P(Y=288)=1-=,∴Y的分布列为:【解析】(Ⅰ)恰好摸球三次即停止摸球包含三种情况:①红白红;②白红红;③红白白,由此能求出一位参与抽奖顾客恰好摸球三次即停止摸球的概率.(Ⅱ)x的可能取值为0,1,2,对应随机变量Y的可能取值为144,216,288,分别求出相应的概率,由此能求出随机变量Y的分布列与期望.本题考查概率的求法,考查离散型随机变量的分布列和数期望的求法,解题时要认真审题,是中档题.19.已知等差数列{a n},a1+a3+a5=42,a4+a6+a8=69;等比数列{b n},b1=2,log2(b1b2b3)=6.(Ⅰ)求数列{a n}和数列{b n}的通项公式;(Ⅱ)设c n=a n-b n,求数列{|c n|}的前n项和T n.【答案】解:(Ⅰ)设等差数列{a n}的公差为d,∵a1+a3+a5=3a3=42,∴a3=14,a4+a6+a8=3a6=69,∴a6=23,∴d==3.a n=a3+(n-3)d=14+(n-3)•3=3n+5.设等比数列{b n}的公比为q,由log2(b1b2b3)=6,得b1b2b3=26,即,∴b2=4,则q==2,∴.(Ⅱ)c n=a n-b n=(3n+5)-2n,c n+1-c n=[3(n+1)+5]-2n+1-(3n+5)+2n=3-2n,当n=1时,c2-c1=1>0,c2>c1,当n≥2时,3-2n<0,c n+1<c n,又c1=6,c2=7,c3=6,c4=1,c5=-12,…∴{c n}的前4项为正,从第5项开始往后各项为负,设数列{c n}的前n项和为S n,S n=(a1-b1)+(a2-b2)+…+(a n-b n)=(a1+a2+…+a n)-(b1+b2+…+b n)=(2n+1-2),∴当n≤4时,T n=|c1|+|c2|+…+|c n|=c1+c2+…+c n=S n=+2;当n≥5时,T n=c1+c2+c3+c4-(c5+c6+…+c n)=S4-(S n-S4)=2S4-S n∴,,.【解析】(Ⅰ)设等差数列{a n}的公差为d,由等差数列的性质及已知可分别求得a3=14,a6=23,进而可求d,由通项公式可得a n;设等比数列{b n}的公比为q,由log2(b1b2b3)=6,得b1b2b3=26,由等比数列的性质可得b2=4,则q==2,由通项公式可得b n;(Ⅱ)易求c n=a n-b n=(3n+5)-2n,由c n+1-c n=[3(n+1)+5]-2n+1-(3n+5)+2n=3-2n 的符号可判断{c n}的前4项为正,从第5项开始往后各项为负,设数列{c n}的前n项和为S n,利用等差、等比数列的求和公式可求S n=(a1-b1)+(a2-b2)+…+(a n-b n)=(a1+a2+…+a n)-(b1+b2+…+b n),然后分n≤4,n≥5两种情况讨论可求T n.本题考查等差、等比数列的通项公式、求和公式,考查分类讨论思想,考查学生的运算求解能力,属中档题.20.如图,椭圆C:+=1(a>b>0)的短轴长为2,点P为上顶点,圆O:x2+y2=b2将椭圆C的长轴三等分,直线l:y=mx-(m≠0)与椭圆C交于A、B两点,PA、PB与圆O交于M、N两点.(Ⅰ)求椭圆C的方程;(Ⅱ)求证△APB为直角三角形;(Ⅲ)设直线MN的斜率为n,求证:为定值.【答案】(Ⅰ)解:∵椭圆C:+=1(a>b>0)的短轴长为2,∴2b=2,解得b=1,∵圆O将椭圆的长轴三等分,∴2b=,∴a=3b=3,∴椭圆C的方程为.(Ⅱ)证明:由,消去y得(1+9m2)x2-,设A(x1,y1),B(x2,y2),则,,又P(0,1),∴,,===(1+m2)•-==0∴PA⊥PB,∴△PAB为直角三角形.(Ⅲ)证明:由(Ⅱ)知PA⊥PB,由题意知PA,PB的斜率存在且不为0,设直线PA的斜率为k,k>0,则PA:y=kx+1,由,得或,∴,,又直线l过点(0,-),则m==,由,得,或,∴M(,),又∵PM⊥PN,∴MN为⊙O的直径,∴MN过原点,∴n=,又∵m≠0,∴k2-1≠0,∴n≠0,∴=,∴为定值.【解析】(Ⅰ)由椭圆C:+=1(a>b>0)的短轴长为2,解得b=1,由圆O将椭圆的长轴三等分,得a=3b=3,由此能求出椭圆C的方程.(Ⅱ)由,得(1+9m2)x2-,由此推导出,从而能证明△PAB为直角三角形.(Ⅲ)设直线PA的斜率为k,k>0,则PA:y=kx+1,由,得,,又直线l过点(0,-),则m=,由,得M(,),MN过原点,n=,由此能证明为定值.本题考查椭圆方程的求法,考查三角形为直角三角形的证明,考查两数比值为定值的证明,解题时要认真审题,注意函数与方程思想的合理运用.21.已知函数f(x)=a x+x2-xlna(a>0且a≠1).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)a>l,证明:当x∈(0,+∞)时,f(x)>f(-x);(Ⅲ)若对任意x1,x2,x1≠x2,且当f(x1)=f(x2)时,有x1+x2<0,求a的取值范围.【答案】解:(Ⅰ)f′(x)=a x•lna+2x-lna,令g(x)=f′(x),∴g′(x)=a x(lna)2+2>0,∴g(x)是(-∞,+∞)上的增函数,∵g(0)=0,∴x>0时,g(x)>g(0)=0,此时f′(x)>0,x<0时,g(x)<g(0)=0,此时f′(x)<0,∴f(x)在(0,+∞)单调递增,在(-∞,0)单调递减.(Ⅱ)设h(x)=f(x)-f(-x)=a x-a-x-2xlna,∴h′(x)=(a x+a-x)lna-2lna,∵a>1,故lna>0,∴h′(x)≥2-2lna=2lna-2lna=0,∴h(x)在(0,+∞)单调递增;∴h(x)>h(0)=0,即x∈(0,+∞)时,f(x)>f(-x).(Ⅲ)由于x1≠x2,且f(x1)=fx2),由(Ⅰ)知x1,x2异号,不妨设x1<0,x2>0,则x1,-x2∈(-∞,0),由(Ⅱ)知:当a>1时,f(x1)=f(x2)>f(-x2),∵x∈(-∞,0)时,f(x)单调递减,故x1<-x2,∴x1+x2<0,即a>1适合题意;当0<a<1时,lna<0,由(Ⅱ)h(x)=a x-a-x-2xlnah′(x)=(a x+a-x)lna-2lna≤2lna-2lna=0,∴h(x)在(0,+∞)单调递减,h(x)<h(0)=0,即f(x)<f(-x),故f(x1)=f(x2)<f(-x2),∵x∈(-∞,0)时,f(x)单调递减,x1>-x2,x1+x2>0,即0<a<1不合题意,综上:a>1.【解析】(Ⅰ)通过对函数求导确定单调区间,(Ⅱ)设出新函数,通过对新函数求导找到单调区间,确定最小值,从而问题得解,(Ⅲ)对a进行讨论,由前两问综合得出.本题考察了导数的综合应用,函数的单调性,分类讨论思想,是一道综合题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学(文)2014.04本试卷共5页,分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第I 卷(选择题 共50分)注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的、号、考试科目填写在规定的位置上。

2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案,不得使用涂改液,胶带纸、修正带和其他笔。

4.不按以上要求作答以及将答案写在试题卷上的,答案无效。

一、选择题:本大题共10小题。

每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足()1i z i z +=,则的虚部为 A.2i - B.12- C.2i D.122.已知集合{}(){}2210,l 10,A x x B x ox A B g =-≤=-≤⋂=则 A.[]0,2 B.(]0,2 C.(]1,2D.()1,2 3.下列结论正确的是A.若向量a//b ,则存在唯一的实数a b λλ=使B.已知向量,a b 为非零向量,则“,a b 的夹角为钝角”的充要条件是“0a b •<”C.“若3πθ=,则1cos 2θ=”的否命题为“若132πθθ≠≠,则cos ” D.若命题22:,10:,10p x R x x p x R x x ∃∈-+<⌝∀∈-+>,则4.为了调查学生携带手机的情况,学校对高一、高二、高三三个年级的学生进行分层抽样调查.已知高一有学生1000人、高二有1200人;三个年级总共抽取了66人,其中高一抽取了20人,则高三年级的全部学生数为A.1000B.1100C.1200D.13004.已知()()()21sin ,42f x x x f x f x π⎛⎫'=++ ⎪⎝⎭为的导函数,则()'y f x =图象大致是6.已知,αβ表示平面,,m n 表示直线,,m βαβ⊥⊥,给出下列四个结论;①,n n αβ∀⊂⊥;②,n m n β∀⊂⊥;③,//n m n α∀⊂;④,n m n α∃⊂⊥. 则上述结论中正确的个数为A.1B.2C.3D.47.已知函数()2f x x x =+,执行右边的程序框图,若输出的结果是3132,则判断框中的条件应是A. 30n ≤B. 31n ≤C. 32n ≤D. 33n ≤ 8.已知双曲线()2222:10x y C a b a b-=>0,>的左、右焦点分别是12F F 、,过2F 垂直x 轴的直线与双曲线C 的两渐近线的交点分别是M 、N ,若1MF ∆N 为正三角形,则该双曲线的离心率为A.21B.3C.13D.23+9.某几何体的三视图如图所示,则该几何体外接球的表面积为A.43π B.323π C.4π D.16π10.已知定义在R 上的函数()y f x =对任意的x 满足()()1,11f x f x x +=--≤<当时,()3f x x =.函数()1,0,1,0a og x x g x x x⎧>⎪=⎨-<⎪⎩,若函数()()()[)6h x f x g x =--+∞在,上有6个零点,则实数a 的取值围是A.()1077⎛⎫⋃+∞ ⎪⎝⎭,,B.(]117997⎡⎫⋃⎪⎢⎣⎭,,C.(]11199⎡⎫⋃⎪⎢⎣⎭,,D.[)117997⎛⎤⋃ ⎥⎝⎦,, 第II 卷(非选择题 共100分)注意事项:将第II 卷答案用0.5mm 的黑色签字笔答在答题卡的相应位置上.二、填空题:本大题共5小题,每小题5分,共25分.11.已知12,e e 是夹角为60的两个单位向量.若向量1232a e e =+,则a =________。

12.函数()()12301x f x a a a +=->≠且的图象经过的定点坐标是_________.13.已知抛物线()2:20C y px p =>上一点()()2,0P m m >,若P 到焦点F 的距离为4,则以P 为圆心且与抛物线C 的准线相切的圆的标准方程为_______.14.曲线sin 2222y x x A B ππππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭在点,,,处的切线分别为1212,,l l l l ,设及直线220x y -+=围成的区域为D (包括边界).设点(),P x y 是区域D 任意一点,则x+2y 的最大值为________.15.如右图所示,位于东海某岛的雷达观测站A ,发现其北偏东45,与观测站A 距离202海里的B 处有一货船正匀速直线行驶,半小时后,又测得该货船位于观测站A 东偏北()045θθ<<的C 处,且4cos 5θ=.已知A 、C 两处的距离为10海里,则该货船的船速为________海里/小时.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数()()sin 0,04f x A x A πωω⎛⎫=+>> ⎪⎝⎭的振幅为2,其图象的相邻两个对称中心之间的距离为3π. (I )若26,03125f πααπ⎛⎫+=<< ⎪⎝⎭,求sin α; (II )将函数()y f x =的图象向右平移6π个单位得到()y g x =的图象,若函数()11036y g x k π⎡⎤=-⎢⎥⎣⎦在,上有零点,数k 的取值围.17.(本小题满分12分)某学校随机抽取了100名学生进行身高调查,得到如下统计表:(I )求表中b 、c 、d 的值;(II )根据上面统计表,估算这100名学生的平均身高x ;(III )若从上面100名学生中,随机选取2名身高不低于185cm 的学生,求这2名学生中至少有1名学生身高不低于195cm 的概率.18.(本小题满分12分)直三棱柱111ABC A B C -中,111,,AB AC AC AA AC AC ⊥=与交于一点P ,延长1B B 到D ,使得BD=112AA ,连接DC ,DA 得到如图所示几何体. (I )求证:BP//平面ACD ;(II )求证:平面1ABC ⊥平面11A B C .19. (本小题满分12分)已知等差数列{}135468,42,69n a a a a a a a ++=++=;等比数列{}1,2n b b =,()2123log 6bb b =.(I )求数列{}n a 和数列{}n b 的通项公式;(II )设n n n c a b =-,求数列{}n c 的前n 项和n T .20.(本小题满分13分) 如图,椭圆()2222:10x y C a b a b+=>>的短轴长为2,点P 为上顶点,圆222:O x y b +=将椭圆C 的长轴三等分,直线()4:05l y mx m =-≠与椭圆C 交于A 、B 两点.(I )求椭圆C 的方程;(II )求证△APB 为直角三角形,并求该三角形面积的最大值.21. (本小题满分14分)已知函数()()2ln 01x f x a x x a a a =+->≠且. (I )求函数()f x 的单调区间;(II )比较()()11f f -与的大小;(III )对任意[]()()1212111x x f x f x e ∈--≤-,,,恒成立,求a 的取值围.高三数学(理)本试卷共4页,分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第I 卷(选择题共50分)注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的、号、考试科目填写在规定的位置上。

2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案,不得使用涂改液,胶带纸、修正带和其他笔。

4.不按以上要求作答以及将答案写在试题卷上的,答案无效。

一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足 (1)i z i +⋅=,则z 的虚部为A . 2i -B . 12-C .2iD .122.设集合 {}{}|213,|lg(1)A x x B x y x =-≤==-,则 A B =A.(1,2)B.[1,2]C.(1,2]D.[1,2)3.下列结论正确的是A.若向量a ∥b ,则存在唯一的实数 λ使 a b λ=B.已知向量a ,b 为非零向量,则“a ,b 的夹角为钝角”的充要条件是“a ⋅b<0’’ c .“若 3πθ=,则 1cos 2θ=”的否命题为“若 3πθ≠,则 1cos 2θ≠” D .若命题 2:,10p x R x x ∃∈-+<,则 2:,10p x R x x ⌝∀∈-+>4.已知 21()sin(),'()42f x x x f x π=++为 ()f x 的导函数,则 '()y f x =的图象大致是5.已知 ,αβ表示平面,m ,n 表示直线, ,m βαβ⊥⊥,给出下列四个结论:① ,n n αβ∀⊂⊥;② ,n m n β∀⊂⊥;③,//n m n α∀⊂;④ ,n m n α∃⊂⊥, 则上述结论中正确的个数为A .1B .2C .3D .46.已知函数 2()f x x x =+,执行右边的程序框图,若输出的结果是3132,则 判断框中的条件应是A. 30n ≤ B . 31n ≤C . 32n ≤D . 33n ≤ 7.已知双曲线 2222:1(0,0)x y C a b a b-=>>的左、右焦点分别是1F 、2F 过 2F 垂直x 轴的直线与双曲线C 的两渐近线的交点分别是M 、N ,若1MF N ∆为正三角形,则该双曲线的离心率为A . 213B . 3C . 13D . 23+8.某几何体的三视图如图所示,则该几何体外接球的表面积为A . 43π B .323π C . 4π D . 16π 9.在区间[-3,3]上任取两数x ,y ,使 210x y --<成立的概率为A . 827B . 727C . 16D . 42710.已知定义在R 上的函数 ()y f x =对任意的x 满足 (1)()f x f x +=-,当-l ≤x<l时, 3()f x x =.函数 log ,0,()1,0a x x g x x x⎧>⎪=⎨-<⎪⎩若函数在 [)6,-+∞上有6个零点,则实数a 的取值围是A . 1(0,)(7,)7+∞ B. (]11,7,997⎡⎤⎢⎥⎣⎦C. (]1,1,1,99⎡⎫⎪⎢⎣⎭ D . [)11,7,997⎛⎤ ⎥⎝⎦第Ⅱ卷 (非选择题共1 00分)注意事项:将第Ⅱ卷答案用0. 5mm 的黑色签字笔答在答题卡的相应位置上,二、填空题:本大题共5小题,每小题5分,共25分.1 1.已知 12,e e 是夹角为 60的两个单位向量,若向量 1232a e e =+,则 a =________.12.现将如图所示的5个小正方形涂上红、黄两种颜色,其中3个涂红色,2个涂黄色,若恰有两个相邻的小正方形涂红色,则不同的涂法种数共有_________.(用数字作答)13.已知抛物线 2:2(0)C y px p =>上一点 (2,)(0)P m m >,若P 到焦点F 的距离为4,则以P 为圆心且与抛物线C 的准线相切的圆的标准方程为_________.14.曲线 sin y x =在点 (,),(,)2222A B ππππ-处的切线分别为 12,l l ,设 12,l l 及直线 x-2y+2=0围成的区域为D(包括边界).设点P(x ,y)是区域D 任意一点,则x+2y 的最大值为________.15.如右图所示,位于东海某岛的雷达观测站A ,发现其北偏东 45,与观测站A 距离 202海里的B 处有一货船正匀速直线行驶,半小时后,又测得该货船位于观测站A 东偏北 (045)θθ<<的C 处,且4cos 5θ=,已知A 、C 两处的距离为10海里,则该货船的船速为 海里/小时___________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数 ()sin()(0,0)4f x A x A πωω=+>>的振幅为2,其图象的相邻两个对称中心之间的距离为 3π. (I)若 26(),03125f a a ππ+=<<,求sina ; (Ⅱ)将函数 ()y f x =的图象向右平移 6π个单位得到 ()y g x =的图象,若函数 ()y g x k =-是在 110,36π⎡⎤⎢⎥⎣⎦上有零点,数 k 的取值围. 17.(本小题满分1 2分)直三棱柱 111ABC A B C -中,,2,AB BC BC ⊥=,112,BB AC =与1A C 交于一点P ,延长 1B B 到D ,使得BD=AB ,连接DC ,DA ,得到如图所示几何体.(I)若AB=1,求证:BP ∥平面ACD,(Ⅱ)若直线 1CA 与平面 11BCC B 所成的角为 30,求二面角 1D AC C --的余弦值.18.(本小题满分12分)某超市制定“五一”期间促销方案,当天一次性购物消费额满1000元的顾客可参加“摸球抽奖赢代金券”活动,规则如下:①每位参与抽奖的顾客从一个装有2个红球和4个白球的箱子中逐次随机摸球,一次只摸出一个球;②若摸出白球,将其放回箱中,并再次摸球;若摸出红球则不放回,工作人员往箱中补放一白球后,再次摸球;③如果连续两次摸出白球或两个红球全被摸出,则停止摸球.停止摸球后根据摸出的红球个数领取代金券,代金券数额Y 与摸出的红球个数x 满足如下关系:Y=144+72x(单位:元).(I)求一位参与抽奖顾客恰好摸球三次即停止摸球的概率; (Ⅱ)求随机变量Y 的分布列与期望.19.(本小题满分12分)已知等差数列 {}135468,42,69n a a a a a a a ++=++=;等比数列 {}1,2n b b =, 2123log ()6b b b =.(I)求数列 {}n a 和数列 {}n b 的通项公式;(Ⅱ)设 n n n c a b =-,求数列{}n c 的前n 项和 n T .20.(本小题满分13分) 如图,椭圆 2222:1(0)x y C a b a b+=>>的短轴长为2,点P 为上顶点,圆 222:O x y b +=将椭圆C 的长轴三等分,直线 4:(0)5l y mx m =-≠与椭圆C 交于A 、B 两点,PA 、PB 与圆O 交于M 、N 两点.(I)求椭圆C 的方程;(Ⅱ)求证△APB 为直角三角形;(Ⅲ)设直线MN 的斜率为n ,求证:m n为定值. 21.(本小题满分14分)已知函数 2()ln (01)x f x a x x a a a =+->≠且.( I)求函数 ()f x 的单调区间;(Ⅱ)a>l ,证明:当 (0,)x ∈+∞时, ()()f x f x >-; (Ⅲ)若对任意 1212,,x x x x ≠,且当 12()()f x f x =时,有 120x x +<,求a 的取值围,。

相关文档
最新文档