初二数学下册期末考试题及答案.doc
八年级数学(下)期末试卷含答案
ABCDEF八年级数学(下)期末试卷考生注意:本试卷共120分,考试时间100分钟.一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项,将此选项选择题(每题3分,本大题共30分)1、下列根式中,与3 是同类二次根式的是( ) A 、8 B 、0.3 C 、23D 、12 2、 若2(3)3a a -=-,则a 与3的大小关系是( )A 、 3a <B 、3a ≤C 、3a >D 、3a ≥3.、若实数a 、b 满足ab <0,则一次函数y =ax +b 的图象可能是( )A .B .C .D .4、已知P 1(-1,y 1),P 2(2,y 2)是一次函数1y x =-+图象上的两个点,则y 1,y 2的大小关系是( )A 、12y y =B 、12y y <C 、12y y >D 、不能确定 5、平行四边形, 矩形,菱形,正方形都具有的性质是( ) A 、对角线相等 B 、对角线互相平分 C 、对角线平分一组对角 D 、对角线互相垂直6、2022年将在北京张家口举办冬季奥运会,很多学校开设了相关的课程如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差:队员1 队员2 队员3 队员4 平均数 51 50 51 50 方差根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应选择A. 队员1B. 队员2C. 队员3 D. 队员47、如图,直线l 1 : y = 4x - 2 与l 2 : y = x +1的图象相交于点 P ,那么关于 x ,y 的二元一次方程组 4x - y = 2的解是 ( ) x-y=-18. 在平面直角坐标系中,一次函数 y = kx + b 的图象与直线 y = 2x 平行,且经过点A (0,6).则一次函数的解析式为 ( )A 、y=2x-3B 、y=2x+6C 、y=-2x+3D 、y=-2x-6 9.如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC 、BE 相交于点F ,则∠BFC 为( )A 、75︒B 、60︒C 、55︒D 、45︒10.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y (m)与挖掘时间x (h )之间的关系如图5所示.根据图象所提供的信息,下列说法正确的是( ) A .甲队开挖到30 m 时,用了2 h B .开挖6 h 时,甲队比乙队多挖了60 mC .乙队在0≤x ≤6的时段,y 与x 之间的关系式为y =5x +20D .当x 为4 h 时,甲、乙两队所挖河渠的长度相等 二、填空题(每题3分,本大题共24分) 11、函数y=12xx-+中,自变量x 的取值范围为 . 12、若函数y = -2x m +2 +n -2正比例函数,则m 的值是 ,n 的值为________.243221323+⨯-÷13、 如图,菱形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AB 和CD 于点E 、F ,BD=6,AC=4,则图中阴影部分的面积和为 .14.、一组数据1,6,x ,5,9的平均数是5,那么这组数据的中位数是______,方差是______.15、将矩形纸片ABCD 沿直线AF 翻折,使点B 恰好落在CD 边的中点E 处,点F 在BC 边上,若CD =6,则FC = .16、如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于 x 的不等式kx +6<x +b 的解集是_____________.17、如图所示,四边形OABC 是正方形,边长为4,点A 、C 分别在x 轴、y 轴的正半轴上,点D 在OA 上,且D 点的坐标为 (1,0),P 是OB 上一动点,则PA +PD 的最小值为 .18.、如图,平行四边形 ABCD 的周长是 52cm ,对角线 AC 与 BD 交于点 O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比 △AOB 的周长多 6cm ,则 AE 的长度为 .三、解答题(本大题共66分) 19、计算.(每小题4分,共计8分)(1)(2)20、(7分)已知a ,b ,c 满足|a -8|+b -5+(c -18)2=0. (1)求a ,b ,c 的值;并求出以a,b,c 为三边的三角形周长; (2)试问以a ,b ,c 为边能否构成直角三角形?请说明理由。
新人教版八年级数学下册期末考试题及答案【完整】
新人教版八年级数学下册期末考试题及答案【完整】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D .1522.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.已知x,y满足方程组x2y5x2y3-=⎧+=-⎨⎩,则22x4y-的值为__________.3.使x2-有意义的x的取值范围是________.4.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b >kx+6的解集是_________.5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD .求证:AE=BD .5.如图1,在菱形ABCD中,AC=2,BD=23,AC,BD相交于点O.(1)求边AB的长;(2)求∠BAC的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A 处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、D5、C6、A7、B8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、-153、x2≥4、x>3.5、46、20三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、3.3、(1)a的取值范围是﹣2<a≤3;(2)当a为﹣1时,不等式2ax+x>2a+1的解集为x<1.4、略.5、(1)2;(2)60︒;(3)见详解6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。
八年级数学下册期末考试卷(附带有答案)
八年级数学下册期末考试卷(附带有答案)(满分: 120 分 考试时间: 120 分钟)一、选择题1、 以下问题,不适合用普查的是( )A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘教师,对应聘人员面试D. 了解全市中小学生每天的零花钱 2、 下列图案中,不是中心对称图形的是( )3A. 全体实数B.x≠1C.x=1D. x >14、 把 118化为最简二次根式得( )1 1 1 1A. 18 18B. 18C. 2D.18 6 3 25、 若反比例函数y = (2m 1)x m 2-2 的图象在第二,四象限,则 m 的值是( )A. −1 或 1B. 小于 12 的任意实数C. −1D. 不能确定k6、 如图,在同一直角坐标系中,正比例函数 y=kx+3 与反比例函数 y = 的图象位置可能是( )x第 1 页 共 12 页3、 如果分式 有意义,则 x 的取值范围是( ) x 1第 2 页 共 12 页A. 1B. 2C. 一、填空题9、 当 x 时,分式 3 D. 4x 1的值为 0. x10、 若 x = 5 3 ,则 x 2 + 6x + 5 的值为 .12、 袋子里有 5 只红球,3 只白球,每只球除颜色以外都相同,从中任意摸出 1 只球,是红球的可能性 (选 填“大于”“小于”或“等于”)是白球的可能性。
13、 矩形 ABCD 的对角线 AC 、BD 交于点 O , ∠AOD =120 ,AC =4,则△ABO 的周长为 .14、 若关于 x 的分式方程 有增根,则.15、 某校高一年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分 100 分,学生成绩取整数),则成绩在 90.5 95.5 这一分数段的频率是a + 3b c11、 若 a:b:c=1:2:3,则 =a 3b + c第 3 页 共 12 页2 和 y =x△PAB 的面积是 3,则 k = .17、 图 1 所示矩形 ABCD 中, BC =x ,CD =y ,y 与 x 满足的反比例函数关系如图 2 所示,等腰直角三角形 AEF 的斜边 EF 过 C 点, M 为 EF 的中点,则下列结论正确的序号是 . ①当 x =3 时, EC <EM③当 x 增大时, EC ⋅CF 的值增大18、 如图 1,边长为 a 的正方形发生形变后成为边长为 a 的菱形,如果这个菱形的一组对边之间的距离为h , a我们把 的值叫做这个菱形的“形变度”。
初二数学下册期末考试题及答案
初二数学下册期末考试题及答案数学试卷一、选择题(每小题4分,共40分,每小题只有一个正确答案)1、下列运算中,正确的是()A.$\frac{y^2}{a}·\frac{a}{y}=y$B.$\frac{y^2}{2x}·\frac{2x}{y}=y$C.$\frac{2x}{x+a}+\frac{y}{a+b}=1$D.$\frac{2x+xy}{x+y}+\frac{a+b}{a}=\frac{a+b+2x}{a}$2、下列说法中,不正确的是()A.为了解一种灯泡的使用寿命,宜采用抽样的方法B.众数在一组数据中不一定唯一C.方差反映了一组数据与其平均数的偏离程度D.对于简单随机样本,可以用样本的方差去估计总体的方差3、能判定四边形是平行四边形的条件是()A.一组对边平行,另一组对边相等B.一组对边相等,一组邻角相等C.一组对边平行,一组邻角相等D.一组对边平行,一组对角相等4、反比例函数$y=\frac{k}{x}$,在第一象限的图象如图所示,则$k$的值可能是()A.1 B.2 C.3 D.45、在平面直角坐标系中,已知点$A(1,2)$,$B(-2,3)$,$C(4,-2)$,$D(2,-1)$,则以这四个点为顶点的四边形$ABCD$是()A.矩形 B.菱形 C.正方形 D.梯形6、某校八年级(2)班的10名团员在“情系灾区献爱心”捐款活动中,捐款情况如下(单位:元):10、8、12、15、10、12、11、9、10、13,则这组数据的()A.平均数是11 B.中位数是10 C.众数是10.5 D.方差是3.97、一个三角形三边的长分别为15cm,20cm和25cm,则这个三角形最长边上的高为()A.15cmB.20cmC.25cmD.12cm8、已知,反比例函数的图像经过点$M(1,1)$和$N(-2,-3)$,则这个反比例函数是()A。
$y=\frac{11}{6x}$ B。
八年级数学下册期末试卷(Word版含解析)
八年级数学下册期末试卷(Word 版含解析) 一、选择题 1.二次根式2x -中x 的值不能是( )A .0B .1C .2D .32.下列条件:①222b c a =-;②C A B ∠=∠-∠;③111::::345a b c =;④::3:4:5A B C ∠∠∠=,能判定ABC 是直角三角形的有( )A .4个B .3个C .2个D .1个3.四边形的三个相邻内角的度数依次如下,那么其中是平行四边形的为( ) A .88︒,108︒,88︒ B .108︒,108︒,82︒ C .88︒,92︒,92︒D .108︒,72︒,108︒ 4.某单位招聘项目经理,考核项目为个人形象、专业知识、策划能力,三个项目权重之比为2:3:5,某应聘者三个项目的得分依次为80,90,80,则他最终得分为( ) A .79 B .83 C .85 D .875.如图,菱形ABCD 的边长为2,60BAD ∠=︒,点P 是边AD 的中点,点Q 是对角线AC 上一动点,则DPQ 周长的最小值是( )A .13+B .33+C .23+D .36.如图,将□ABCD 沿对角线AC 折叠,使点B 落在'B 处,若1240︒∠=∠=,则B =( )A .60︒B .100︒C .110︒D .120︒7.如图,已知AOBC 的顶点O (0,0),点B 在x 轴正半轴上,按以下步骤作图: ①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G .若G 的坐标为(2,4),则点A 的坐标是( )A .(﹣3,4)B .(﹣2,4)C .(225,4)-D .(54,4)- 8.如图,在平面直角坐标系中,OABC 的顶点A 在x 轴上,定点B 的坐标为(8,4),若直线经过点D (2,0),且将平行四边形OABC 分割成面积相等的两部分,则直线DE 的表达式是( )A .y=x-2B .y=2x-4C .y=x-1D .y=3x-6二、填空题9.若225b a a =-+--,则a b -=_______________________.10.菱形两条对角线长分别为2、6,则这个菱形的面积为_________.11.在Rt ABC ∆中,90C ∠=︒,30A ∠=︒,2AC =,斜边AB 的长为__________. 12.如图,在矩形ABCD 中,AD =10,AB =6,点E 为BC 上的点,ED 平分∠AEC ,则EC =___.13.已知一次函数y =kx ﹣b ,当自变量x 的取值范围是1≤x ≤3时,对应的因变量y 的取值范围是5≤y ≤10,那么k ﹣b 的值为_______.14.如图, 在矩形ABCD 中, 对角线AC , BD 交于点O , 已知∠AOD=120°, AB=1,则BC 的长为______15.如图1,在平面直角坐标系中,将平行四边形ABCD 放置在第一象限,且AB //x轴.直线y =﹣x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2,那么AB 的长为___.16.如图所示,将矩形ABCD 沿直线AE 折叠(点E 在边CD 上),折叠后顶点D 恰好落在边BC 上的点F 处,若AD =5,AB =4,则EC 的长是_____.三、解答题17.(1)23317(2)21148--+--- (2)1(6215)36252-⨯-+- (3)148312242÷-⨯+ (4)205112(31)(31)35+-⨯++- 18.位于沈阳周边的红河峡谷漂流项目深受欢迎,在景区游船放置区,工作人员把偏离的游船从点A 拉回点B 的位置(如图).在离水面高度为8m 的岸上点C ,工作人员用绳子拉船移动,开始时绳子AC 的长为17m ,工作人员以0.7米/秒的速度拉绳子,经过10秒后游船移动到点D 的位置,问此时游船移动的距离AD 的长是多少?19.如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形或四边形.(绘图要求:①所绘图形不得超出正方形网格;②必须用直尺和中性笔绘图,确保所绘图形的顶点必须在格点上)(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数; (3)在图③中,画一个直角三角形,使它的三边长都是无理数;(4)在图④中,画一个正方形,使它的面积为10.20.如图,ABCD 的对角线AC 的垂直平分线与AD 、BC 分别交于E 、F ,垂足为点O .(1)求证:四边形AFCE 是菱形.(2)若2AE ED =,6AC =,4EF =,则ABCD 的面积为 . 21.先阅读下列材料,再解决问题: 阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.例如:22232232121(2)212(12)+=+⨯⨯=++⨯⨯=+=|1+2|=1+2解决问题:①模仿上例的过程填空:146514235+=+⨯⨯=_________________=________________=_________________②根据上述思路,试将下列各式化简:(1)28103-; (2)312+. 22.某市为了倡导居民节约用水,生活用自来水按阶梯式水价计费.如图是居民每户每月的水(自来水)费y (元)与所用的水(自来水)量x (吨)之间的函数图象.根据下面图象提供的信息,解答下列问题:(1)当1730x ≤≤时,求y 与x 之间的函数关系式;(2)已知某户居民上月水费为91元,求这户居民上月的用水量;(3)当一户居民在某月用水为15吨时,求这户居民这个月的水费.23.如图1,四边形ACBD 中,AC =AD ,BC =BD .我们把这种两组邻边分别相等的四边形叫做“筝形”,如图2,在“筝形”ACBD 中,对角线AB =CD ,过点B 作BE ⊥AC 于E 点,F 为线段BE 上一点,连接FA 、FD ,FA =FB .(1)求证:△ABF ≌△CDA ;(2)如图3,FA 、FD 分别交CD 、AB 于点M 、N ,若AM =MF ,求证:BN =CM +MN .24.定义:对于平面直角坐标系xOy中的点P(a,b)和直线y=ax+b,我们称点P((a,b)是直线y=ax+b的关联点,直线y=ax+b是点P(a,b)的关联直线.特别地,当a=0时,直线y=b(b为常数)的关联点为P(0,b).如图,已知点A(-2,-2),B(4,-2),C(1,4).(1)点A的关联直线的解析式为______;直线AB的关联点的坐标为______;(2)设直线AC的关联点为点D,直线BC的关联点为点E,点P在y轴上,且S△DEP=2,求点P的坐标.(3)点M(m,n)是折线段AC→CB(包含端点A,B)上的一个动点.直线l是点M的关联直线,当直线l与△ABC恰有两个公共点时,直接写出m的取值范围.25.如图①,已知正方形ABCD的边长为3,点Q是AD边上的一个动点,点A关于直线BQ的对称点是点P,连接QP、DP、CP、BP,设AQ=x.(1)BP+DP的最小值是_______,此时x的值是_______;(2)如图②,若QP的延长线交CD边于点M,并且∠CPD=90°.①求证:点M是CD的中点;②求x的值.(3)若点Q是射线AD上的一个动点,请直接写出当△CDP为等腰三角形时x的值.【参考答案】一、选择题1.D解析:D【分析】根据二次根式有意义的条件即可得出答案.【详解】 2x -∴20x -≥,解得:2x ≤,故选项中符合条件的x 的值有0,12,, ∴x 不能为3,故选:D .【点睛】本题考查了二次根式有意义的条件,熟知根号下为非负数是解本题的关键.2.C解析:C【分析】根据三角形的内角和定理以及勾股定理的逆定理即可得到结论.【详解】解:①222b c a =-即222+=a b c ,△ABC 是直角三角形,故①符合题意;②∵∠A +∠B +∠C =180°,∠C =∠A −∠B ,∴∠A +∠B +∠A −∠B =180°,即∠A =90°,∴△ABC 是直角三角形,故②符合题意;③∵111::::345a b c =, 设a =3k ,b =4k ,c =5k , 则222543k k k ⎛⎫⎛⎫⎛⎫+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴△ABC 不是直角三角形,故③不合题意;④∵::3:4:5A B C ∠∠∠=,∴∠C =5345++×180°=75°,故不是直角三角形;故④不合题意. 综上,符合题意的有①②,共2个,故选:C .【点睛】本题主要考查了直角三角形的判定方法.①如果三角形中有一个角是直角,那么这个三角形是直角三角形;②如果一个三角形的三边a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.3.D解析:D【解析】【分析】两组对角分别相等的四边形是平行四边形,根据所给的三个角的度数可以求出第四个角,然后根据平行四边形的判定方法验证即可.【详解】A 、第四个角是76°,有一组对角不相等,不是平行四边形;B 、第四个角是72°,两组对角都不相等,不是平行四边形;C 、第四个角是88°,而C 中相等的两个角不是对角,不是平行四边形;D 、第四个角是72°,满足两组对角分别相等,因而是平行四边形.故选:D .【点睛】本题主要考查平行四边形的判定:两组对角分别相等的四边形是平行四边形.注意角的对应的位置关系,并不是有两组角相等的四边形就是平行四边形.4.B解析:B【解析】【分析】根据加权平均数的定义列式计算即可.【详解】 解:他最终得分为802903805235⨯+⨯+⨯++=83(分). 故选:B .【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义. 5.A解析:A【分析】连接BQ ,BD ,当P ,Q ,B 在同一直线上时,DQ +PQ 的最小值等于线段BP 的长,依据勾股定理求得BP的长,即可得出DQ+PQ的最小值,进而得出△DPQ周长的最小值.【详解】解:如图所示,连接BQ,BD,∵点Q是菱形对角线AC上一动点,∴BQ=DQ,∴DQ+PQ=BQ+PQ,当P,Q,B在同一直线上时,BQ+PQ的最小值等于线段BP的长,∵四边形ABCD是菱形,∠BAD=60°,∴△BAD是等边三角形,又∵P是AD的中点,∴BP⊥AD,AP=DP=1,∴Rt△ABP中,∠ABP=30°,∴AP=1AB=1,2∴BP22413--AB AP∴DQ+PQ3又∵DP=1,∴△DPQ3+1,故选:A.【点睛】本题主要考查了菱形的性质以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.6.D解析:D【解析】【分析】由平行线的性质可得∠DAC=∠B'AB=40°,由折叠的性质可得∠BAC=∠B'AC=20°,由三角形内角和定理即可求解.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠1=∠B'AB=40°,同理,∠2=∠DAC=40°,∵将□ABCD沿对角线AC折叠,∴∠BAC =∠B 'AC =20°,∴∠B =180°﹣∠2﹣∠BAC =120°,故选:D .【点睛】本题考查了翻折变换的性质、平行四边形的性质以及三角形内角和定理;熟练掌握折叠的性质是解题的关键.7.A解析:A【解析】【分析】首先证明AO AG =,设AO AG x ==,则2AT x =-,在Rt AOT △中,2224(2)x x =+-,求出x ,可得结论.【详解】解:如图,设AC 交y 轴于T .(2,4)G ,2TG ∴=.4OT =,四边形AOBC 是平行四边形,//AC OB ∴,AGO GOB ∴∠=∠,AOG GOB ∠=∠,AOG AGO ∴∠=∠,AO AG ∴=,设AO AG x ==,则2AT x =-,在Rt AOT △中,2224(2)x x =+-,5x ∴=,523AT ∴=-=,(3,4)A ∴-,故选:A .【点睛】本题考查作图-基本作图,平行四边形的性质,等腰三角形的判定和性质,勾股定理等知识,解题的关键是证明AO AG =,学会利用参数解决问题.8.A解析:A【分析】过平行四边形的对称中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形对称中心的坐标,再利用待定系数法求一次函数解析式解答即可.【详解】解:∵点B 的坐标为(8,4),∴平行四边形的对称中心坐标为(4,2),设直线DE 的函数解析式为y=kx+b ,则4220k b k b +=⎧⎨+=⎩, 解得12k b =⎧⎨=-⎩, ∴直线DE 的解析式为y=x-2.故选:A .【点睛】本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.二、填空题9.7【解析】【分析】先由二次根式有意义可得20,20a a -≥⎧⎨-≥⎩从而依次求解,a b 的值,可得答案. 【详解】解: 5b =20,20a a -≥⎧∴⎨-≥⎩解得:2,a =5,b ∴=-()257.a b ∴-=--=故答案为:7.【点睛】本题考查的是二次根式有意义的条件,一元一次不等式组的解法,掌握二次根式有意义的条件是解题的关键.10【解析】【分析】根据菱形的面积等于两对角线乘积的一半求出其面积即可.【详解】解:∵一个菱形的两条对角线长分别为2和6, ∴这个菱形的面积12632=⨯⨯=, 故答案为:3.【点睛】本题考查的是菱形的面积计算,熟知菱形的面积等于两对角线乘积的一半是解题的关键. 11.B解析:433【解析】【分析】由90C ∠=︒,30A ∠=︒得到2,AB BC = 利用勾股定理可得答案.【详解】解:设BC ,x =90C ∠=︒,30A ∠=︒, 2,AB x ∴=2AC =,222(2)2,x x ∴=+122323,33x x ∴==-(舍去), 42 3.3AB x ∴==4 3.3【点睛】 本题考查的是含30角的直角三角形的性质与勾股定理的应用,掌握相关知识点是解题的关键.12.A解析:2【分析】根据平行线的性质以及角平分线的定义证明∠ADE=∠AED,根据等角对等边,即可求得AE 的长,在直角△ABE中,利用勾股定理求得BE的长,进而得出EC.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠ADE,又∵∠DEC=∠AED,∴∠ADE=∠AED,∴AE=AD=10,在直角△ABE中,BE8=.∴EC=BC-BE=10-8=2,故答案为:2.【点睛】本题考查了矩形的性质,勾股定理,等腰三角形的判定,解决本题的关键是灵活运用矩形的性质,等腰三角形的判定和勾股定理.13.5或10【分析】本题分情况讨论①k>0时,x=1时对应y=5;②k>0时,x=1时对应y=10.【详解】解:①k>0时,由题意得:x=1时,y=5,∴k-b=5;②k<0时,由题意得:x=1时,y=10,∴k-b=10;综上,k-b的值为5或10.故答案为:5或10.【点睛】本题考查了待定系数法求函数解析式,注意本题需分两种情况,不要漏解.14.A【分析】根据矩形的性质可得∠ACB的度数,从而利用勾股定理可求出BC的长度.【详解】解:由题意得:∠ACB=30°,∠ABC=90°,在Rt△ABC中,AC=2AB=2,由勾股定理得,【点睛】本题考查了矩形的性质,比较简单,解答本题的关键是求出∠ACB的度数.15.4【分析】由图1,当直线在DE 的左下方时,由图2可得AE 长度;由图1,当直线在DE 和BF 之间时,长度不变,由图2可得EB 的长度,从而AB=AE+EB ,即求得AB .【详解】如图1,当直线在DE解析:4【分析】由图1,当直线在DE 的左下方时,由图2可得AE 长度;由图1,当直线在DE 和BF 之间时,长度不变,由图2可得EB 的长度,从而AB =AE +EB ,即求得AB .【详解】如图1,当直线在DE 的左下方时,由图2得:AE =7-4=3;由图1,当直线在DE 和BF 之间时,由图2可得:EB=8-7=1,所以AB =AE +EB =3+1=4.故答案为:4.【点睛】本题考查一次函数的图象与图形的平移,平行四边形的性质,关键是明确题意,读懂函数图象,利用数形结合的思想.16.5【分析】由折叠可得,.再由矩形性质结合勾股定理即可求出BF 的长,从而求出CF 的长.设,则,在中,利用勾股定理列出关于x 的等式,解出x 即可.【详解】解:由折叠可知,,∵四边形ABCD 是矩形解析:5【分析】由折叠可得5AD AF ==,DE EF =.再由矩形性质结合勾股定理即可求出BF 的长,从而求出CF 的长.设EC x =,则4DE EF x ==-,在Rt CEF 中,利用勾股定理列出关于x 的等式,解出x 即可.【详解】解:由折叠可知5AD AF ==,DE EF =,∵四边形ABCD 是矩形,∴在Rt ABF 中,3BF ==,∴532CF BC BF =-=-=.设EC x =,则4DE EF x ==-,∴在Rt CEF 中,222+=CF CE EF ,即2222(4)x x +=-,解得: 1.5x =.故EC 的长为1.5.故答案为1.5.【点睛】本题考查折叠的性质,矩形的性质和勾股定理.利用数形结合的思想是解答本题的关键.三、解答题17.(1)1;(2);(3);(4).【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简,再利用有理数的加减运算法则计算得出答案;(2)直接利用二次根式的乘法运算法则以及结合绝对值的性质解析:(1)1;(2)2-;(3)44)3.【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简,再利用有理数的加减运算法则计算得出答案;(2)直接利用二次根式的乘法运算法则以及结合绝对值的性质化简,先算乘法,再化简二次根式,去绝对值,最后利用二次根式的加减运算法则计算得出答案;(3)直接利用二次根式的乘除运算法则化简,先算乘除,再利用二次根式的加减运算法则计算得出答案;(4)直接利用二次根式的乘法运算法则化简,先算乘除,再利用有理数的加减运算法则计算得出答案.【详解】解:(13212=- 312122=--+ =1;(2)2=62=2=2-;(3==4=4(41)=-13121231=+-+-=.3【点睛】本题主要考查了二次根式的混合运算以及实数运算,正确化简二次根式是解题关键.18.游船移动的距离AD的长是9米【分析】根据条件先计算经过10秒拉回绳子的长,然后计算出绳子CD的长,在中,在中,,即可求出最终结果.【详解】解:工作人员以0.7米/秒的速度拉绳子,经过10秒解析:游船移动的距离AD的长是9米【分析】根据条件先计算经过10秒拉回绳子的长,然后计算出绳子CD的长,在Rt BCD中BD Rt ABC中,AB=【详解】解:工作人员以0.7米/秒的速度拉绳子,∴经过10秒拉回绳子100.7=7⨯米,开始时绳子AC的长为17m,∴拉了10秒后,绳子CD的长为17-7=10米,∴在Rt BCD中,6BD===米,在Rt ABC中,222217815AB AC BC =-=-=米, ∴AD =15-6=9米,答:游船移动的距离AD 的长是9米.【点睛】本题主要考查勾股定理的运用,属于综合题,难度一般,熟练掌握勾股定理解三角形是解决本题的关键.19.(1)见解析;(2)见解析;(3)见解析;(4)见解析;【解析】【分析】根据勾股定理即可得.【详解】解:(1)如图①所示,三边分别为:3,4,5;(2)如图②所示,三边分别为:,,2或解析:(1)见解析;(2)见解析;(3)见解析;(4)见解析;【解析】【分析】根据勾股定理即可得.【详解】解:(1)如图①所示,三边分别为:3,4,5;(2)如图②所示,三边分别为:2,2,2或22,22,4 ;(3如图③所示,三边分别为:5,5,10或2,22,10或10,10,25;(4)如图④所示,正方形的边长为:10,则面积:(10)2=10.【点睛】本题考查了勾股定理,解题的关键是掌握勾股定理.20.(1)见解析;(2)18【分析】(1)由四边形ABCD 是平行四边形易证△AOE ≌△COF ,从而可得OE=OF ,所以四边形AFCE 是平行四边形,又EF ⊥AC ,根据菱形的判定定理即可得证; (2)由解析:(1)见解析;(2)18【分析】(1)由四边形ABCD 是平行四边形易证△AOE ≌△COF ,从而可得OE =OF ,所以四边形AFCE 是平行四边形,又EF ⊥AC ,根据菱形的判定定理即可得证;(2)由(1)可求三角形ACE 的面积,又2AE ED =,从而可得三角形CED 的面积,则ABCD 的面积即可求解.【详解】(1)∵四边形ABCD 是平行四边形,∴AE //FC .∴∠EAO =∠FCO ,∠AEO =∠CFO .∵EF 平分AC ,∴OA =OC .∴△AOE ≌△COF .∴OE =OF .∴四边形AFCE 是平行四边形.又∵EF ⊥AC ,∴四边形AFCE 是菱形(对角线互相垂直的平行四边形是菱形).(2)∵四边形AFCE 是菱形,6AC =,4EF =,∴三角形ACE 的面积为16262⨯⨯=, ∵2AE ED =,∴三角形CED 的面积等于三角形ACE 的面积的一半,即三角形CED 的面积为1632⨯=, ∴三角形ACD 的面积为639+=,∴ABCD 的面积等于三角形ACD 的面积的2倍,即ABCD 的面积为1892=⨯. 故答案为:18.【点睛】本题考查了菱形的判定及平行四边形面积的求法,解题的关键是熟练掌握菱形的判定定理.21.①,,3+;②(1)5-;(2) .【解析】【分析】①模仿阅读材料的方法将原式变形,计算即可得到结果;②仿照以上方法将各式化简即可.【详解】①===3+,故答案为,,3+;②(1)解析:3+②(1)5(2) 12 【解析】【分析】 ①模仿阅读材料的方法将原式变形,计算即可得到结果;②仿照以上方法将各式化简即可.【详解】3+3=5=12+=12. 【点睛】本题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.22.(1);(2)25吨;(3)45元【分析】(1)利用待定系数法求解函数关系式的方法即可;(2)将y=91代入(1)中解析式中求得x 值即可;(3)将x=17代入(1)中解析式中求得y 值,再求得解析:(1)534y x =-;(2)25吨;(3)45元【分析】(1)利用待定系数法求解函数关系式的方法即可;(2)将y =91代入(1)中解析式中求得x 值即可;(3)将x =17代入(1)中解析式中求得y 值,再求得当017x ≤<时,y 与x 之间的函数关系式,将x =15代入求解y 值即可.【详解】解:(1)设y 与x 之间的函数关系式为:y kx b =+,由题意得:116306620k b k b=+⎧⎨=+⎩,∴534k b =⎧⎨=-⎩, ∴y 与x 之间的函数关系式为:534y x =-.(2)∵91元66>元,∴由91534x =-得:25x =. 答:这户居民上月用水量25吨.(3)当17x =吨时,5173451y =⨯-=元,∴当017x ≤<时,y 与x 之间的函数关系式为:3y x =,当15x =时,45y =元,答:这户居民这个月的水费45元.【点睛】本题考查一次函数的应用,理解题意,能从函数图象中获取有效信息,会利用待定系数法求解函数关系式是解答的关键.23.(1)证明见解析;(2)证明见解析【分析】(1)根据已知条件可得△ABC ≌△ABD ,再根据∠AOC+∠AOD=180°,进而可证得AB ⊥CD ,进而得到∠ACO=∠ABE ,进而证得△ABF ≌△CD解析:(1)证明见解析;(2)证明见解析【分析】(1)根据已知条件可得△ABC ≌△ABD ,再根据∠AOC+∠AOD=180°,进而可证得AB ⊥CD ,进而得到∠ACO=∠ABE ,进而证得△ABF ≌△CDA ;(2)取AB 中点H ,根据已知条件可知MO 为△AFH 的中位线,进而可证得△AFH ≌△DAO ,进一步得到△AFD 为等腰直角三角形,然后过点F 作FI ⊥AF 交AB 于点I ,取CD 上点G 使MG=MN ,连接AG ,先证△AFI ≌△DAM ,而后△FMN ≌△FIN ,得到∠FIN =∠FMN ,进而可证△AMG ≌△FMN ,得到∠AGM=∠FNM ,进而证得△ACG ≌△FBN ,得到BN=CG ,再根据CG=CM+MG ,得到BN=CM+MG ,又MG=MN ,继而得到BN=CM+MN .【详解】证明:(1)∵AC=AD ,BC=BD ,AB=AB ,∴△ABC≌△ABD,∴∠CAO=∠DAO,又∵∠ACO=∠ADO,∴∠AOC=∠AOD,又∵∠AOC+∠AOD=180°,∴∠AOC=∠AOD=90°,∴AB⊥CD,在Rt△AOC中,∠ACO+∠CAO=90°,在Rt△AEB中,∠ABE+∠CAO=90°,∴∠ACO=∠ABE,又∵AC=AD,FA=FB,∴∠ACO=∠ADO=∠ABF=∠FAB,∵,∴△ABF≌△CDA;(2)如图,取AB中点H,∵△ABF是等腰三角形,∴FH⊥AB,∵AM=MF且MO⊥AB,∴MO为△AFH的中位线,∴AO=OH=,又∵AH===DO,由△ABF≌△CDA,可知:AF=BF=AC=AD,∴△AFH≌△DAO,∴∠AFH=∠DAO,∵∠FAH+∠AFH=90°,∴∠FAH+∠DAO=90°,∴∠FAD=90°,∴△AFD为等腰直角三角形,过点F作FI⊥AF交AB于点I,取CD上点G使MG=MN,连接AG,由△AFH≌△DAO可得∠FAI=∠ADM,又∵AD=AF,∴△AFI≌△DAM,∴FI=AM,又∵AM=MF,∴FI=MF,由FI⊥AF可知∠AFI=90°,∠AFN=45°,∴∠NFI=∠AFI-∠AFN=90°-45°=45°,∴∠MFN=∠NFI,又∵FI=FM,∴△FMN≌△FIN,∴∠FIN =∠FMN,又∵∠AMD=∠FIA,∴∠AMD=∠FMN,又∵AM=FM,MG=MN,∴△AMG≌△FMN,∴∠AGM=∠FNM,又∵∠FNM=∠FNB,∴∠AGM=∠FNB,又∵∠ACG=∠FBN,AC=FB,∴△ACG≌△FBN,∴BN=CG,又∵CG=CM++MG,∴BN=CM+MG,又∵MG=MN,∴BN=CM+MN.【点睛】本题考查全等三角形的判定与性质、等腰三角形的性质、中位线等知识,解题的关键是综合运用相关知识解题.24.(1)y=-2x-2,(0,-2);(2)P(0,5)或P(0,3);(3)-2≤m<,或2<m≤4【解析】【分析】(1)利用待定系数法求得直线AB的解析式,根据关联点和关联直线的定义可得结论解析:(1)y=-2x-2,(0,-2);(2)P (0,5)或P (0,3);(3)-2≤m <23,或2<m≤4【解析】【分析】 (1)利用待定系数法求得直线AB 的解析式,根据关联点和关联直线的定义可得结论; (2)先根据关联点求D 和E 的坐标,根据面积和列式可得P 的坐标;(3)点M 分别在线段AC→CB 上讨论,根据直线l 与△ABC 恰有两个公共点时,可得m 的取值范围.【详解】解:(1)设直线AB 的解析式为:y=kx+b ,把点A (-2,-2),B (4,-2)代入得:2242k b k b -+=-⎧⎨+=-⎩, 解得:02k b =⎧⎨=-⎩, ∴直线AB 的解析式为:y=-2,∴点A 的关联直线的解析式为y=-2x-2;直线AB 的关联点的坐标为:(0,-2);故答案为:y=-2x-2,(0,-2);(2)∵点A (-2,-2),B (4,-2),C (1,4).∴直线AC 的解析式为y=2x+2,直线BC 的解析式为y=-2x+6,∴D (2,2),E (-2,6).∴直线DE 的解析式为y=-x+4,∴直线DE 与y 轴交于点F (0,4),如图1,设点P (0,y ),∵S △DEP =2,∴S △DEP =S △EFP +S △DFP=142y ⨯-×|-2|+1422y ⨯-⨯=2,解得:y=5或y=3,∴P(0,5)或P(0,3).(3)①当M在线段AC上时,如图3,∵AC:y=2x+2,∴设M(m,2m+2)(-2≤m≤1),则关联直线l:y=mx+2m+2,把C(1,4)代入y=mx+2m+2得:m+2m+2=4,m=23,∴-2≤m<23;②当M在线段BC上时,如图3,∵BC:y=-2x+6,∴设M(m,-2m+6)(1≤m≤4),则关联直线l:y=mx-2m+6,把A(-2,-2)代入y=mx-2m+6得:-2m-2m+6=-2,m=2,∴2<m≤4;综合上述,-2≤m<23或2<m≤4.【点睛】本题是一次函数的综合题,也是有关关联点和关联直线的新定义问题,考查了一次函数图象上点的坐标特征、理解新定义、利用待定系数法求一次函数的解析式,本题中理解关联点和关联直线的定义,正确进行分类讨论是解题的关键.25.(1);;(2)①见详解;②x=1;(3)△CDP为等腰三角形时x的值为:或或.【分析】(1)BP+DP为点B到D两段折线的和.由两点间线段最短可知,连接DB,若P点落在BD上,此时和最短,且为解析:(1)32;323-;(2)①见详解;②x=1;(3)△CDP为等腰三角形时x的值为:633-或3或633+.【分析】(1)BP+DP为点B到D两段折线的和.由两点间线段最短可知,连接DB,若P点落在BD 上,此时和最短,且为32.考虑动点运动,这种情形是存在的,由AQ=x,则QD=3-x,PQ=x.又PDQ=45°,所以QD=2PQ,即3-x=2x.求解可得答案;(2)由已知条件对称分析,AB=BP=BC,则∠BCP=∠BPC,由∠BPM=∠BCM=90°,可得∠MPC=∠MCP.那么若有MP=MD,则结论可证.再分析新条件∠CPD=90°,易得①结论.②求x的值,通常都是考虑勾股定理,选择直角三角形QDM,发现QM,DM,QD都可用x来表示,进而易得方程,求解即可.(3)若△CDP为等腰三角形,则边CD比为改等腰三角形的一腰或者底边.又P点为A点关于QB的对称点,则AB=PB,以点B为圆心,以AB的长为半径画弧,则P点只能在弧AB上.若CD为腰,以点C为圆心,以CD的长为半径画弧,两弧交点即为使得△CDP为等腰三角形(CD为腰)的P点.若CD为底边,则作CD的垂直平分线,其与弧AC的交点即为使得△CDP为等腰三角形(CD为底)的P点.则如图所示共有三个P点,那么也共有3个Q点.作辅助线,利用直角三角形性质求之即可.【详解】解:(1)连接DB,若P点落在BD上,此时BP+DP最短,如图:由题意,∵正方形ABCD的边长为3,∴223332BD+=∴BP +DP 的最小值是32; 由折叠的性质,PQ AQ x ==,则3QD x =-,∵∠PDQ=45°,∠QPD=90°,∴△QPD 是等腰直角三角形,∴22QD QP x ==,∴32x x -=,解得:323x =-;故答案为:32;323-;(2)如图所示:①证明:在正方形ABCD 中,有AB=BC ,∠A=∠BCD=90°.∵P 点为A 点关于BQ 的对称点,∴AB=PB ,∠A=∠QPB=90°,∴PB=BC ,∠BPM=∠BCM , ∴∠BPC=∠BCP ,∴∠MPC=∠MPB-∠CPB=∠MCB-∠PCB=∠MCP ,∴MP=MC .在Rt △PDC 中,∵∠PDM=90°-∠PCM ,∠DPM=90°-∠MPC ,∴∠PDM=∠DPM ,∴MP=MD ,∴CM=MP=MD ,即M 为CD 的中点.②解:∵AQ=x ,AD=3,∴QD=3-x ,PQ=x ,CD=3.在Rt △DPC 中,∵M 为CD 的中点,∴DM=QM=CM=32, ∴QM=PQ+PM=x+32,∴(x+32)2=(3−x)2+(32)2,解得:x=1.(3)如图,以点B为圆心,以AB的长为半径画弧,以点C为圆心,以CD的长为半径画弧,两弧分别交于P1,P3.此时△CDP1,△CDP3都为以CD为腰的等腰三角形.作CD的垂直平分线交弧AC于点P2,此时△CDP2以CD为底的等腰三角形.;①讨论P1,如图作辅助线,连接BP1、CP1,作QP1⊥BP1交AD于Q,过点P1,作EF⊥AD 于E,交BC于F.∵△BCP1为等边三角形,正方形ABCD边长为3,∴P1F33P1E=333在四边形ABP1Q中,∵∠ABP1=30°,∴∠AQP1=150°,∴△QEP1为含30°的直角三角形,∴31=9332.∵AE=3,2∴x=AQ=AE-QE=39(33)633--=-.22②讨论P2,如图作辅助线,连接BP2,AP2,过点P2作QG⊥BP2,交AD于Q,连接BQ,过点P2作EF⊥CD于E,交AB于F.∵EF垂直平分CD,∴EF垂直平分AB,∴AP2=BP2.∵AB=BP2,∴△ABP2为等边三角形.在四边形ABP2Q中,∵∠BAD=∠BP2Q=90°,∠ABP2=60°,∴∠AQG=120°∴∠EP2G=∠DQG=180°-120°=60°,∴P2E=333∴EG=933,2∴DG=DE+GE=39+=,3333322∴QD=33∴3③对P3,如图作辅助线,连接BP1,CP1,BP3,CP3,过点P3作BP3⊥QP3,交AD的延长线于Q,连接BQ,过点P1,作EF⊥AD于E,此时P3在EF上,不妨记P3与F重合.∵△BCP1为等边三角形,△BCP3为等边三角形,BC=3,∴P1P3=33P1E=333∴EF=333+在四边形ABP3Q中∵∠ABF=∠ABC+∠CBP3=150°,∴∠EQF=30°,∴39332.∵AE=32,∴x=AQ=AE+QE=32+9333362=.综合上述,△CDP为等腰三角形时x的值为:633-3633+.【点睛】本题第一问非常基础,难度较低.第二问因为动点的原因,思路不易找到,这里就需要做题时充分分析已知条件,尤其是新给出的条件.其中求边长是勾股定理的重要应用,是很重要的考点.第三问是一个难度非常高的题目,可以利用尺规作图的思想将满足要求的点P找全.另外求解各个Q点也是考察三角函数及勾股定理的综合应用,有着极高的难度.。
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(a, b)关于原点对称的点是()A. P(a, b)B. P(a, b)C. P(a, b)D. P(b, a)2. 下列函数中,是正比例函数的是()A. y = 2x + 1B. y = x^2C. y = 3/xD. y = 3x3. 在平行四边形ABCD中,若AB = 6cm,BC = 8cm,则对角线AC 的取值范围是()A. 2cm < AC < 14cmB. 4cm < AC < 14cmC. 6cm < AC < 14cmD. 2cm < AC < 6cm4. 下列各数中,是无理数的是()A. √9B. √16C. √3D. √15. 下列命题中,正确的是()A. 两条平行线上的任意两点到第三条直线的距离相等B. 两条平行线上的任意两点到第三条直线的距离不相等C. 两条平行线上的任意一点到第三条直线的距离相等D. 两条平行线上的任意一点到第三条直线的距离不相等二、判断题(每题1分,共5分)1. 互为相反数的两个数的和为0。
()2. 任何两个无理数相加都是无理数。
()3. 两条平行线的斜率相等。
()4. 一次函数的图像是一条直线。
()5. 任意两个等腰三角形的面积相等。
()三、填空题(每题1分,共5分)1. 若a = 3,b = 2,则a b = _______。
2. 在直角三角形中,若一个锐角为30°,则另一个锐角为_______°。
3. 若x^2 5x + 6 = 0,则x的值为_______或_______。
4. 一次函数y = 2x + 1的图像与y轴的交点坐标为_______。
5. 平行四边形的对边_______且_______。
四、简答题(每题2分,共10分)1. 简述勾股定理的内容。
2. 什么是正比例函数?请举例说明。
八年级数学下学期期末测试卷(含答案)
八年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 木工师傅想利用木条制作一个直角三角形,那么下列各组数据不符合直角三角形的三边长的是( )A. 3,4,5B. 6,8,10C. 5,12,13D. 7,15,172. 要使二次根式√ 2x−4在实数范围内有意义,则x的取值范围是( )A. x>2B. x≥2C. x<2D. x=23. 下列各式计算正确的是( )A. √ 2+√ 3=√ 5B. 2+√ 2=2√ 2C. 3√ 2−√ 2=2√ 2D. √ 12−√ 10=√ 6−√ 524. 数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是( )A. x=20B. x=5C. x=25D. x=155. 甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S2甲=8.6,S2乙=2.6,S2丙=5.0,S2丁=7.2,则这四位同学3次数学成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6. 下列不能确定四边形ABCD为平行四边形的是( )A. ∠A=∠C,∠B=∠DB. ∠A=∠B=∠C=90∘C. ∠A+∠B=180∘,∠B+∠C=180∘D. ∠A+∠B=180∘,∠C+∠D=180∘7. 棱形ABCD中,对角线AC=5,BD=12,则棱形的高等于()A. 1513B. 3013C. 6013D. 308. 如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点,若∠ACB=30°,AB=8,则MN的长为()A. 2B. 4C. 8D. 169. 如图,在矩形ABCD中,AB=6,AD=4,DM=2,动点P从点A出发,沿路径A→B→C→M 运动,则△AMP的面积y与点P经过的路径长x之间的函数关系用图像表示大致是()A. B.C. D.10. 如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE 折叠到AF,延长EF交DC于G,连接CF,现在有如下4个结论:①∠EAG=45°;②FG=FC;③FC//AG;④S△GFC=14其中正确结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)11. 在数轴上表示实数a的点如图所示,化简√ (a−5)2+|a−2|的结果为.12. 计算:(√ 3+√ 2)2−√ 24=______.13. 如图,在△ABC中,∠ACB=90°,以它的三边为边分别向外作正方形,面积分别为S1,S2,S3,已知S1=5,S2=12,则S3=________.14. 将直线y=2x+1的图象向下平移3个单位长度后所得直线的解析式是.15. 观察下列等式:①3−2√ 2=(√ 2−1)2,②5−2√ 6=(√ 3−√ 2)2,③7−2√ 12=(√ 4−√ 3)2,…请你根据以上规律,写出第6个等式______.16. 春耕期间,市农资公司连续8天调进一批化肥,并在开始调进化肥的第七天开始销售.若进货期间每天调进化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个公司的化肥存量s(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是______ 天.三、解答题(本大题共8小题,共52.0分。
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 1/2B. 3/4C. 5/6D. 7/82. 如果a=2,b=3,那么a+b等于多少?A. 5B. 6C. 7D. 83. 下列哪个选项是正确的?A. 2x+3y=6B. 2x3y=6C. 3x+2y=6D. 3x2y=64. 如果x=4,那么x²等于多少?A. 8B. 16C. 24D. 325. 下列哪个选项是正确的?A. 2a+3b=5B. 2a3b=5C. 3a+2b=5D. 3a2b=5二、填空题(每题5分,共20分)1. 如果a=5,b=3,那么a+b等于______。
2. 如果x=2,那么x²等于______。
3. 如果a=4,b=2,那么a+b等于______。
4. 如果x=3,那么x²等于______。
三、解答题(每题10分,共40分)1. 解答下列方程组:2x+3y=63x2y=52. 解答下列方程:4x3y=73. 解答下列方程组:2a+3b=63a2b=54. 解答下列方程:3x+2y=7四、计算题(每题10分,共30分)1. 计算:2x²+3y²=6,其中x=2,y=3。
2. 计算:3x²2y²=5,其中x=3,y=2。
3. 计算:2a²+3b²=6,其中a=4,b=2。
五、证明题(每题10分,共20分)1. 证明:如果a+b=c,那么a+c=b。
2. 证明:如果x²=y²,那么x=y。
六、应用题(每题10分,共20分)1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时,求它行驶的距离。
2. 一个长方形的长是5厘米,宽是3厘米,求它的面积。
七、简答题(每题10分,共20分)1. 简述方程的基本概念。
2. 简述不等式的基本概念。
八、论述题(每题10分,共20分)1. 论述数学在生活中的应用。
八年级数学下册期末试卷(附含答案)精选全文完整版
可编辑修改精选全文完整版八年级数学下册期末试卷(附含答案)(满分:120分;考试时间:120分)一、选择题(共10小题,每小题3分,满分30分) 1、使1x -有意义的x 的取值范围是( )A x >1B x >-1C x ≥1D x ≥-1 2、在根式xy 、12、2ab 、x y -、2x y 中,最简二次根式有( )A 1个B 2个C 3个D 4个 3、下列计算正确的是( )A 20210=B 5630⨯=C 2236⨯=D 2(3)3-=- 4、一元二次方程x (x-2)=2-x 的根式( )A -1B 2C 1和2D -1和2 5、下列命题中,真命题的个数有( )①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形; ③一组对边平行,另一组对边相等的四边形是平行四边形;A 3个B 2个C 1个D 0个 6、在△ABC 中,三边长分别为a 、b 、c ,且a+c=2b ,c-a=12b ,则△ABC 是( )A 直角三角形B 等边三角形C 等腰三角形D 等腰直角三角形 7、某公司为了解职工参加体育锻炼情况,对职工某一周平均每天锻炼 (跑步或快走)的里程进行统计(保留整数),并将他们平均每天锻炼 的里程数据绘制成扇形统计图,关于他们平均每天锻炼里程数据 下列说法不正确的是( )A 平均每天锻炼里程数据的中位数是2B 平均每天锻炼里程数据的众数是2C 平均每天锻炼里程数据的平均数是2.34D 平均每天锻炼里程数不少于4km 的人数占调查职工的20% 8、疫情期间居民为了减少外出时间,更愿意使用APP 在线上购物,某购物APP 今年二月份用户比一月份增加了44%,三月份用户比二月份增加了21%,则二、三两个月用户的平均每月增长率是( )A 28%B 30%C 32%D 32.5% 9、有两个一元二次方程:M :ax 2+bx+c=0,N :cx 2+bx+a=0,以下四个结论中,错误的是( ) A 如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根 B 如果方程M 有两根符号相同,那么方程N 也有两根符号相同 C 如果5是方程M 的一个根,那么15是方程N 的一个根D 如果方程M和方程N有一个相同的实数根,那么这个跟必是x=110、△ABC中,∠C=30°,AC=6,BD是△ABC的中线,∠ADB=45°,则AB=()二、填空题(共6小题,每小题3分,满分18分)11的结果是12、已知关于x的一元二次方程x2-bx+8=0,一个根为2,则另一个根是13、有一棵9米高的大树,如果大树距离地面4米处这段(没有断开),则小孩至少离开大树米之处才是安全的。
新人教版八年级数学下册期末考试(及参考答案)
新人教版八年级数学下册期末考试(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D .1522.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .24.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+18.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④9.如图,两个不同的一次函数y=ax+b 与y=bx+a 的图象在同一平面直角坐标系的位置可能是( )A .B .C .D .10.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b|+2()a b +的结果是________.2.方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于__________. 3.如果实数a ,b 满足a+b =6,ab =8,那么a 2+b 2=________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--.2.先化简,再求值:3x 4x 2x x 1x 1--⎛⎫-÷ ⎪--⎝⎭,其中1x 2=.3.已知方程组713x y m x y m+=--⎧⎨-=+⎩的解满足x 为非正数, y 为负数. (1)求m 的取值范围;(2)化简:||32m m --+;(3)在m 的取值范围内,当m 为何整数时,不等式221mx x m +<+的解为1x >.4.如图,直线y =kx +b 经过点A (-5,0),B (-1,4)(1)求直线AB 的表达式;(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、C5、D6、C7、B8、A9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、3.3、204、()()2a b a b ++.5、49136、8三、解答题(本大题共6小题,共72分)1、x=32、x 2-,32-. 3、(1)23m -<≤;(2)12m -;(3)1m =-4、(1)y =x +5;(2)272;(3)x >-3.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。
八年级数学下册期末考试试卷(答案解析版)
八年级数学下册期末考试试卷(答案解析版)一.选择题1.下列各点中,位于直角坐标系第二象限的点是()A. (2,1)B. (﹣2,﹣1)C. (2,﹣1)D. (﹣2,1)2.在①平行四边形,②矩形,③菱形,④正方形中,既是轴对称图形,又是中心对称图形的是()A. ①②③④B. ②③C. ②③④D. ①③④3.如图,在Rt△ABC中,∠C=90°,如果AB=5,BC=3,那么AC等于()A. B. 3 C. 4 D. 54.下列条件中,能判定两个直角三角形全等的是()A. 一锐角对应相等B. 两锐角对应相等C. 一条边对应相等D. 两条直角边对应相等5.如图,如果CD是Rt△ABC的中线,∠ACB=90°,∠A=50°,那么∠CDB等于()A. 100°B. 110°C. 120°D. 130°6.如图,在▱ABCD中,对角线AC、BD相交于点O,点E是AD的中点,如果OE=2,AD=6,那么▱ABCD的周长是()A. 20B. 12C. 24D. 87.若一个多边形的内角和等于900°,则这个多边形的边数是()A. 8B. 7C. 6D. 58.如图,在四边形ABCD中,对角线AC与BD交于点O,下列条件中不一定能判定这个四边形是平行四边形的是()A. AB∥DC,AD=BCB. AD∥BC,AB∥DCC. AB=DC,AD=BCD. OA=OC,OB=OD9.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是()A. 28B. 24C. 16D. 610.对于函数y=x﹣1,下列结论不正确的是()A. 图象经过点(﹣1,﹣2)B. 图象不经过第一象限C. 图象与y轴交点坐标是(0,﹣1)D. y的值随x值的增大而增大11.函数y=2x和y=ax+4的图象相交于点A(m,3),则关于x的不等式2x<ax+4的解集为()A. x<B. x<C. x>﹣D. x<﹣12.如图,在矩形ABCD中,AB=2,AD=3,BE=1,动点P从点A出发,沿路径A→D→C→E运动,则△APE 的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A. B. C. D.二.填空题13.如图,四边形ABCD是菱形,如果AB=5,那么菱形ABCD的周长是________.14.点P(2,3)关于x轴的对称点的坐标为________.15.将直线y=2x向上平移4个单位,得到直线________.16.在一次函数y=﹣x+2的图象上有A(x1,y1),B(x2,y2)两点,若x1>x2,那么y1________y2.17.如图所示,已知△ABC的周长是18,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是________.18.如图,在边长为4的正方形ABCD中,点E是边CD的中点,AE的垂直平分线交边BC于点G,交边AE 于点F,连接DF,EG,以下结论:①DF= ,②DF∥EG,③△EFG≌△ECG,④BG= ,正确的有:________(填写序号)三.解答题19.如图,在▱ABCD中,AE=CF.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为平行四边形.20.如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是否是直角,并说明理由.(2)求四边形草坪ABCD的面积.21.某校为了解八年级学生的视力情况,对八年级的学生进行了一次视力调查,并将调查数据进行统计整理,绘制出如下频数分布表和频数分布直方图的一部分.视力频数(人)频率4.0≤x<4.3 20 0.14.3≤x<4.6 40 0.24.6≤x<4.9 70 0.354.9≤x<5.2 a 0.35.2≤x<5.5 10 b(1)在频数分布表中,a=________,b=________;(2)将频数分布直方图补充完整;(3)若视力在4.6以上(含4.6)均属正常,求视力正常的人数占被调查人数的百分比是多少?22.我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.(1)若0<x≤6,请写出y与x的函数关系式.(2)若x>6,请写出y与x的函数关系式.(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?23.△ABC在平面直角坐标系中的位置如图所示,△ABC的顶点均在格点上,其中每个小正方形的边长为1个单位长度,将△ABC绕原点O旋转180°得△A1B1C1.(1)在图中画出△A1B1C1;(2)写出点A1的坐标________;(3)求出点C所经过的路径长.24.如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB= ,∠DCF=30°,求四边形AECF的面积.(结果保留根号)25.甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,已知甲车匀速行驶;乙车出发2h 后休息,与甲车相遇后继续行驶,结果同时分别到达B,A两地.设甲、乙两车与B地的距离分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)当0<x<2时,求乙车的速度;(2)求乙车与甲车相遇后y乙与x的关系式;(3)当两车相距20km时,直接写出x的值.26.如图,在平面直角坐标系xOy中,已知直线AB:y= x+4交x轴于点A,交y轴于点B.直线CD:y=﹣x﹣1与直线AB相交于点M,交x轴于点C,交y轴于点D.(1)直接写出点B和点D的坐标;(2)若点P是射线MD上的一个动点,设点P的横坐标是x,△PBM的面积是S,求S与x之间的函数关系;(3)当S=20时,平面直角坐标系内是否存在点E,使以点B、E、P、M为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点E的坐标;若不存在,说明理由.答案解析部分一.<b >选择题</b>1.【答案】D【考点】点的坐标【解析】【解答】A、(2,1)在第一象限,A不符合题意;B、(﹣2,﹣1)在第三象限,B不符合题意;C、(2,﹣1)在第四象限,C不符合题意;D、(﹣2,1)在第二象限,D符合题意.故答案为:D.【分析】依据第二象限各点的横坐标为负数,纵坐标为正数解答即可.2.【答案】C【考点】中心对称及中心对称图形【解析】【解答】①只是中心对称图形;②、③、④两者都既是中心对称图形又是轴对称图形;故答案为:C.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,然后依据上述方法进行判断即可.3.【答案】C【考点】勾股定理【解析】【解答】∵在Rt△ABC中,∠C=90°,AB=5,BC=3,∴AC= = =4.故答案为:C.【分析】依据勾股定理可得到AC=,然后将AB、BC的值代入计算即可.4.【答案】D【考点】直角三角形全等的判定【解析】【解答】两直角三角形隐含一个条件是两直角相等,要判定两直角三角形全等,起码还要两个条件,故可排除A、C;而B构成了AAA,不能判定全等;D构成了SAS,可以判定两个直角三角形全等.故答案为:D.【分析】判定两个直角三角形全等的方法有:SAS、SSS、AAS、ASA、HL五种,然后结合题目所给的条件进行判断即可.5.【答案】A【考点】直角三角形斜边上的中线【解析】【解答】∵CD是Rt△ABC的中线,∠ACB=90°,∴DC=DA,∴∠DCA=∠A=50°,∴∠CDB=∠DCA+∠A=100°,故答案为:A.【分析】首先依据在直角三角形中,斜边上的中线等于斜边的一半得到DC=DA,接下来,再依据等边对等角的性质得到∠DCA=∠A=50°,最后,依据三角形的外角的性质进行计算即可.6.【答案】A【考点】三角形中位线定理,平行四边形的性质【解析】【解答】∵▱ABCD对角线相交于点O,E是AD的中点,∴AB=CD,AD=BC=6,EO是△ABD的中位线,∴AB=2OE=4,∴▱ABCD的周长=2(AB+AD)=20.故答案为:A.【分析】首先依据平行四边形的性质可得到O为BD的中点,然后依据三角形的中位线的性质可得到AB=OE=4,然后再依据平行四边形的性质得到各边的长,最后再求得其周长即可.7.【答案】B【考点】多边形内角与外角【解析】【解答】设这个多边形的边数是n,则:(n﹣2)180°=900°,解得n=7故答案为:B.【分析】设这个多边形的边数是n,然后依据多边形的内角和公可得到180°(n﹣2)=900°,最后,再解这个关于n的方程即可.8.【答案】A【考点】平行四边形的判定【解析】【解答】A、“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;B、根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C、根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;D、根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;故答案为:A.【分析】首先结合图形确定出其中的已知条件,然后再依据平行四边形的判定定理逐项进行判断即可. 9.【答案】C【考点】利用频率估计概率【解析】【解答】∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,∴摸到红色球、黑色球的概率分别为0.15和0.45,∴摸到白球的概率为1﹣0.15﹣0.45=0.4,∴口袋中白色球的个数可能为0.4×40=16.故答案为:C.【分析】先求得摸到白球的频率,最后依据频数=总数×频率进行计算即可.10.【答案】B【考点】一次函数的性质【解析】【解答】A、当x=﹣1时,y=x﹣1=﹣1﹣1=﹣2,则图象经过点(﹣1,﹣2),A不符合题意;B、由于k>0,b<0,则图象经过第一、三、四象限,B符合题意;C、当x=0时,y=﹣1,则图象与y轴交点交点坐标是(0,﹣1),C不符合题意;D、由于k=1>0,所以y的值随x值的增大而增大,D不符合题意.故答案为:B.【分析】对于A,将(-1,-2)代入直线的解析式进行判断即可;对于B,依据题意可知k>0,b<0,然后再依据一次函数的图像和性质进行判断即可;对于C,当x=0时,求得对应的y值,从而可得到直线与y轴交点的坐标;对于D,依据一次函数的图像和性质进行判断即可.11.【答案】B【考点】一次函数与一元一次不等式【解析】【解答】把A(m,3)代入y=2x得2m=3,解得m= ,把A(,3)代入y=ax+4得3= a+4,解得a=﹣,解不等式2x<﹣x+4得x<.故答案为:B.【分析】将点A的坐标代入两直线的解析式可求得m、a的值,然后将a的值代入不等式,得到关于x的一元一次不等式,最后,再解这个不等式即可.12.【答案】A【考点】分段函数,一次函数的图象,根据实际问题列一次函数表达式【解析】【解答】∵在矩形ABCD中,AB=2,AD=3,∴CD=AB=2,BC=AD=3,∵BE=1,∴CE=BC﹣BE=2,①点P在AD上时,△APE的面积y= x•2=x(0≤x≤3),②点P在CD上时,S△APE=S梯﹣S△ADP﹣S△CEP,形AECD= (2+3)×2﹣×3×(x﹣3)﹣×2×(3+2﹣x),=5﹣x+ ﹣5+x,=﹣x+ ,∴y=﹣x+ (3<x≤5),③点P在CE上时,S△APE= ×(3+2+2﹣x)×2=﹣x+7,∴y=﹣x+7(5<x≤7),故答案为:A.【分析】分为点P在AD上、点P在CD上、点P在CE上三种情况列出三角形的面积与x的关系,即y与x的关系式,然后依据关系可得到函数的大致图像,故此可得到问题的答案.二.<b >填空题</b>13.【答案】20【考点】菱形的性质【解析】【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴菱形的周长为20,故答案为20【分析】依据菱形的四条边相等可得到BC=AB=CD=AD=5,然后再求得菱形的周长即可.14.【答案】(2,﹣3)【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:∵点P(2,3)∴关于x轴的对称点的坐标为:(2,﹣3).故答案为:(2,﹣3).【分析】依据关于x轴对称点的横坐标互为相反数,纵坐标相等进行解答即可.15.【答案】y=2x+4【考点】一次函数图象与几何变换【解析】【解答】解:直线y=2x向上平移4个单位后得到的直线解析式为y=2x+4.故答案为:y=2x+4.【分析】当直线y=kx+b(k≠0)平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m.16.【答案】<【考点】一次函数的性质【解析】【解答】解:∵﹣1<0,∴直线y=﹣x+2上,y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【分析】已知k=-1<0,一次函数的性质可知y随x的增大而减小,然后依据两点的横坐标的大小可得到它们纵坐标的大小关系.17.【答案】36【考点】角平分线的性质【解析】【解答】解:如图,过点O作OE⊥AB于E,作OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD=OF=4,∴△ABC的面积= ×18×4=36.故答案为:36.【分析】过点O作OE⊥AB于E,作OF⊥AC于F,依据平分线的性质可得到OE=OD=OF,然后将三角形ABC 的面积转化为△ABO、△BCO、△ACO的面积之和求解即可.18.【答案】①④【考点】全等三角形的判定与性质,线段垂直平分线的性质,正方形的性质【解析】【解答】解:如图,设FG交AD于M,连接BE.∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠ADC=∠C=90°,∵DE=EC=2,在Rt△ADE中,AE= = =2 .∵AF=EF,∴DF= AE= ,故①正确,易证△AED≌△BEC,∴∠AED=∠BEC,∵DF=EF,∴∠FDE=∠FED=∠BEC,∴DF∥BE,∵BE与EG相交,∴DF与EG不平行,故②错误,∵AE⊥MG,易证AE=MG=2 ,由△AFM∽△ADE,可知= ,∴FM= ,FG= ,在Rt△EFG中,EG= = ,在Rt△ECG中,CG= = ,∴BG=BC﹣CG=4﹣= ,故④正确,∵EF≠EC,FG≠CG,∴△EGF与△EGC不全等,故③错误,故答案为①④.【分析】设FG交AD于M,连接BE.对于①先依据勾股定理求得AE的长,然后依据直角三角形斜边上中线依据斜边的一半可得到DF的长;对于②,先证明DF∥BE,然后依据过一点有且只有一条直线与已知直线平行进行判断即可;对于③,依据全等三角形的判定定理可对③作出判断;对于④,先依据相似三角形的性质可求得FM和FG的长,然后依据勾股定理可求得EG和CG的长,最后依据BG=BC﹣CG可求得BG的长.三.<b >解答题</b>19.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS)(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=CF,∴DF=EB,∵DF∥EB,∴四边形BFDE是平行四边形.【考点】全等三角形的判定与性质,平行四边形的判定与性质【解析】【分析】(1)首先依据平行四边形的性质可得到AD=BC,∠A=∠C,然后再根据SAS证明即可;(2)依据平行四边形的性质得到DC∥AB,DC=AB,然后再依据等式的性质可得到DF=BE,最后,再依据一组对边平行且相等的四边形为平行四边形进行证明即可.20.【答案】(1)解:∠D是直角,理由如下:连接AC,∵∠B=90°,AB=24m,BC=7m,∴AC2=AB2+BC2=242+72=625,∴AC=25(m).又∵CD=15m,AD=20m,152+202=252,即AD2+DC2=AC2,∴△ACD是直角三角形,或∠D是直角(2)解:S四边形ABCD=S△ABC+S△ADC= •AB•B C+ •AD•DC=234(m2).【考点】勾股定理的应用【解析】【分析】(1)连接AC,先根据勾股定理求出AC的长,再依据勾股定理的逆定理得到∠D是直角;(2)由题意可知S四边形ABCD=S△ABC+S△ADC,然后将四边形ABCD的面积转化为两个直角三角形的面积之和求解即可.21.【答案】(1)60;0.05(2)解:频数分布直方图如图所示,(3)解:视力正常的人数占被调查人数的百分比是×100%=70%.【考点】频数(率)分布表,频数(率)分布直方图【解析】【解答】解:(1)总人数=20÷0.1=200.∴a=200×0.3=60,b=1﹣0.1﹣0.2﹣0.35﹣0.3=0.05,故答案为60,0.05.(2)频数分布直方图如图所示,(3)视力正常的人数占被调查人数的百分比是×100%=70%.故答案为:(1)1;2;(2)见解答过程;(3)70%.【分析】(1)依据总数=频数÷频率可求得总人数,然后依据频数=总数×频率,频率=频数÷总数求解即可;(2)依据(1)中结果补全统计图即可;(3)依据百分比=频数÷总数求解即可.22.【答案】(1)解:根据题意可知:当0<x≤6时,y=2x;(2)解:根据题意可知:当x>6时,y=2×6+3×(x﹣6)=3x﹣6(3)解:∵当0<x≤6时,y=2x,y的最大值为2×6=12(元),12<27,∴该户当月用水超过6吨.令y=3x﹣6中y=27,则27=3x﹣6,解得:x=11.答:这个月该户用了11吨水.【考点】一次函数的应用【解析】【分析】(1)当0<x≤6时,根据“水费=用水量×2”可得出y与x的函数关系式;(2)当x>6时,根据“水费=6×2+(用水量-6)×3”可得出y与x的函数关系式;(3)当0<x≤6时,y≤12,由此可知这个月该户用水量超过6吨,将y=27代入y=3x-6中,得到关于x的一元一次方程,然后求得x的值即可.23.【答案】(1)解:如图所示,△A1B1C1即为所求;(2)(2,﹣4)(3)解:由勾股定理可得,CO=∴点C所经过的路径长为:×2×π× = π.【考点】图形的旋转,旋转的性质,作图-旋转变换【解析】【解答】解:(1)如图所示,△A1B1C1即为所求;(2)由图可得,点A1的坐标为(2,﹣4),(3)由勾股定理可得,CO= 10∴点C所经过的路径长为:×2×π× = π.故答案为:(1)见解答过程;(2)(2,﹣4);(3)π.【分析】(1)根据旋转角度、旋转方向、旋转中心,确定出对应点的位置,然后顺次连结对应点可得到△A1B1C1;(2)根据点A1在坐标系中的位置可得到点A1的坐标;(3)点C所经过的路径为以O为圆心,为半径的半圆,然后再依据弧长公式进行计算即可.24.【答案】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形(2)解:∵四边形ABCD是矩形,∴CD=AB= ,在Rt△CDF中,cos∠DCF= ,∠DCF=30°,∴CF= =2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2【考点】菱形的判定,矩形的性质【解析】【分析】(1)首先根据线段垂直平分线的性质得到AF=CF,AE=CE,OA=OC,然后再证明△AOF ≌△COE,则可得AF=CE,从而可得到四边形的四条边都相等,故此可作出判断;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,最后依据菱形的面积=底×高求解即可.25.【答案】(1)解:200÷2=100(km/h).答:当0<x<2时,乙车的速度为100km/h.(2)解:甲车的速度为(400﹣200)÷2.5=80(km/h),甲、乙两车到达目的地的时间为400÷80=5(h).设乙车与甲车相遇后y乙与x的关系式为y乙=kx+b,将点(2.5,200)、(5,400)代入y乙=kx+b,,解得:,∴乙车与甲车相遇后y乙与x的关系式为y乙=80x(2.5≤x≤5).(3)解:根据题意得:y乙= ,y甲=400﹣80x(0≤x≤5).当0≤x<2时,400﹣80x﹣100x=20,解得:x= >2(不合题意,舍去);当2≤x<2.5时,400﹣80x﹣200=20,解得:x= ;当2.5≤x≤5时,80x﹣(400﹣80x)=20,解得:x= .综上所述:当x的值为或时,两车相距20km.【考点】一次函数的应用【解析】【分析】(1)先根据函数图像确定乙车行驶2小时所行驶的路程,然后再根据速度=路程÷时间求解即可;(2)依据函数图像可得到甲车行驶2.5行驶的路程,然后根据速度=路程÷时间可求出甲车的速度,由时间=路程÷速度可求出甲、乙两车到达目的地的时间,再结合二者相遇的时间,利用待定系数法即可求出乙车与甲车相遇后y乙与x的关系式;(3)根据数量关系,找出y甲、y乙关于x的函数关系式,分0≤x<2、2≤x<2.5和2.5≤x≤5三种情况,列出关于x的一元一次方程,最后解关于x的一元一次方程即可.26.【答案】(1)解:∵点B是直线AB:y= x+4与y轴的交点坐标,∴B(0,4),∵点D是直线CD:y=﹣x﹣1与y轴的交点坐标,∴D(0,﹣1);(2)解:如图1,∵直线AB与CD相交于M,∴M(﹣5,),∵点P的横坐标为x,∴点P(x,﹣x﹣1),∵B(0,4),D(0,﹣1),∴BD=5,∵点P在射线MD上,即:x≥0时,S=S△BDM+S△BDP= ×5(5+x)= x+ ,(3)解:如图,由(1)知,S= x+ ,当S=20时,x+ =20,∴x=3,∴P(3,﹣2),①当BP是对角线时,取BP的中点G,连接MG并延长取一点E'使GE'=GE,设E'(m,n),∵B(0,4),P(3,﹣2),∴BP的中点坐标为(,1),∵M(﹣5,),∴= ,=1,∴m=8,n= ,∴E'(8,),②当AB为对角线时,同①的方法得,E(﹣9,6),③当MP为对角线时,同①的方法得,E''(﹣2,﹣),即:满足条件的点E的坐标为(8,)、(﹣9,6)、(﹣2,﹣).【考点】直线与坐标轴相交问题【解析】【分析】(1)将x=0代入函数解析式得到对应的y值,从而可得到点B和点D的坐标;(2)将所求三角形的面积转为△BDM和△BDP的面积之和,然后依据三角形的面积公式列出函数关系式即可;(3)分三种情况利用对角线互相平分的四边形是平行四边形和线段的中点坐标的确定方法即可得出结论.。
八年级下册数学期末考试试卷(解析版)
八年级下册数学期末考试试卷(解析版)一.选择题1.若分式有意义,则x的取值范围是()A. x≠3B. x=3C. x<3D. x>32.下列约分正确的是()A. B. C. D.3.如下图,平行四边形ABCD的周长为40,△BOC的周长比△AOB的周长多10,则AB长为()A. 20B. 15C. 10D. 54.函数y= 的图象经过点(﹣4,6),则下列各点中在y= 图象上的是()A. (3,8)B. (3,﹣8)C. (﹣8,﹣3)D. (﹣4,﹣6)5.一组数据:3,2,1,2,2的众数,中位数分别是()A. 2,1B. 2,2C. 3,1.D. 2,16.如图,下列四组条件中.不能判定四边形ABCD是平行四边形的是()A. AB=DC,AD=BCB. AB∥DC,AD∥BCC. AB∥DC,AD=BCD. AB∥DC,AB=DC7.在4月14日玉树发生的地震导致公路破坏,为抢修一段120米的公路,施工队每天比原来计划多修5米,结果提前4天通了汽车,问原计划每天修多少米?若设原计划每天修x米,则所列方程正确的是()A. ﹣=4B. ﹣=4C. ﹣=4D. ﹣=48.若关于x的方程﹣=0无解,则m的值是()A. 3B. 2C. 1D. ﹣19.点P1(x1,y1)、P2(x2,y2)是一次函数y=5x+10的图象上两点,且x1<x2,则y1﹣y2()A. 大于0B. 大于或等于0C. 小于0D. 小于或等于010.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB 上,当△CDE的周长最小时,点E的坐标为()A. (3,1)B. (3,)C. (3,)D. (3,2)二.填空题11.计算:20160+ ﹣13﹣=________.12.化简的结果是________.13.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=1,则AC的长是________.14.如图所示,菱形ABCD中,对角线AC,BD相交于点O,若再补充一个条件能使菱形ABCD成为正方形,则这个条件是________.(只填一个条件即可,答案不唯一)15.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).(1)点C的坐标是________;(2)将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段AC扫过的面积为________.三.解答题16.先化简代数式,再从﹣2,2,0三个数中选一个恰当的数作为a的值代入求值.17.如图,四边形ABCD中,∠A=∠ABC=90°,AD=3,BC=5,E是边CD的中点,连结BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形.(2)若BD=BC,求四边形BDFC的面积.18.如图,已知双曲线y= ,经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式y1;(3)根据图象直接写出y≥y1时,x的取值范围.19.小明为了了解本班全体同学在阅读方面的情况,采取全面调查的方法,从喜欢阅读“科普常识、小说、漫画、营养美食”等四类图书中调查了全班学生的阅读情况(要求每位学生只能选择一种自己喜欢阅读的图书类型)根据调查的结果绘制了下面两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)该班喜欢阅读科普常识的同学有________人,该班的学生人数有________人;(2)补全条形统计图;(3)在扇形统计图中,表示“漫画”类所对圆心角是________度,喜欢阅读“营养美食”类图书的人数占全班人数的百分比为________.20.如图,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值.21.某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式.(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.22.如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系和位置关系;(不要求证明)(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断予以证明;(3)如图3,若点E、F分别是BC、AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.23.如图,在平面直角坐标系中,直线L1:y=﹣x+6分别与x轴、y轴交于点B,C,且与直线L2:y= x 交于点A.(1)分别求出点A、B、C的坐标;(2)若D是线段OA上的点且△COD的面积为12,求直线CD的表达式;(3)在(2)的条件下,在射线CD上是否存在点P使△OCP为等腰三角形?若存在,直接写出点P的坐标.若不存在,请说明理由.答案解析部分一.<b >选择题</b>1.【答案】A【考点】分式有意义的条件【解析】【解答】解:根据题意可得3﹣x≠0;解得x≠3;故选A.【分析】根据分式有意义的条件是分母不为0;分析原分式可得关系式3﹣x≠0,解可得答案.2.【答案】D【考点】约分【解析】【解答】解:A、=a4,故本选项错误;B、不能化简,故本选项错误;C、不能化简,故本选项错误;D、=﹣=﹣1,故本选项正确.故选D.【分析】根据同底数幂的除法,底数不变指数相减,找出分子与分母的最大公因式,化简即可得出结果.3.【答案】D【考点】平行四边形的性质【解析】【解答】解:∵△AOB的周长比△BOC的周长少10cm 即BC﹣AB=10cm,∵周长是40cm,即BC+AB=20cm,∴AB=5cm.故选D.【分析】由于平行四边形的对角线互相平分,那么△AOB、△BOC的周长差,实际是AB、BC的差,联立平行四边形的周长,即可得解.4.【答案】B【考点】反比例函数图象上点的坐标特征【解析】【解答】解:将(﹣4,6)代入y= ,∴k=﹣24,(A)3×8=24,故A不在图象上,(B)3×(﹣8)=﹣24,故B在图象上,(C)﹣8×(﹣3)=24,故C不在图象上,(D)﹣4×(﹣6)=24,故D不在图象上,故选(B)【分析】将(﹣4,6)代入图象中,求出k的值.若将各点的横纵坐标相乘等于k,则该点在反比例函数的图象上.5.【答案】B【考点】中位数、众数【解析】【解答】解:把数据由小到大排列为:1,2,2,2,3,所以这组数据的众数为2,中位数为2.故选B.【分析】先把把数据由小到大排列,然后根据众数和中位数的定义求解.6.【答案】C【考点】平行四边形的判定【解析】【解答】解:根据平行四边形的判定,A、B、D均符合是平行四边形的条件,C则不能判定是平行四边形.故选:C.【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.7.【答案】A【考点】由实际问题抽象出分式方程【解析】【解答】解:设原计划每天修x米,可得:,故选A【分析】要求的未知量是工作效率,有工作路程,一定是根据时间来列等量关系的.关键描述语是:“提前4天开通了列车”;等量关系为:原来所用的时间﹣实际所用的时间=4.8.【答案】B【考点】分式方程的解【解析】【解答】解:去分母得:2m﹣3﹣x=0,由分式方程无解,得到x﹣1=0,即x=1,把x=1代入整式方程得:2m﹣4=0,解得:m=2,故选B【分析】分式方程去分母转化为整式方程,由分式方程无解得到x﹣1=0,求出x的值,代入整式方程求出m的值即可.9.【答案】C【考点】一次函数的性质【解析】【解答】解:∵y=5x+10中k>0,∴y随x增大而增大,∵x1<x2,∴y1<y2,∴y1﹣y2<0,故选:C.【分析】根据一次函数的性质,当k>0时,y随x增大而增大进而可得y1<y2,从而可得答案.10.【答案】B【考点】坐标与图形性质,矩形的性质,轴对称-最短路线问题【解析】【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y= ,∴点E坐标(3,)故选:B.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.二.<b >填空题</b>11.【答案】7【考点】实数的运算,零指数幂,负整数指数幂【解析】【解答】解:原式=1+9﹣1﹣2=7,故答案为:7【分析】原式利用零指数幂、负整数指数幂法则计算即可得到结果.12.【答案】-1【考点】分式的加减法【解析】【解答】解:原式= =﹣=﹣1.故答案为:﹣1.【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.13.【答案】2【考点】矩形的性质【解析】【解答】解:在矩形ABCD中,OC=OD,∴∠OCD=∠ODC,∵∠AOD=60°,∴∠OCD= ∠AOD= ×60°=30°,又∵∠ADC=90°,∴AC=2AD=2×1=2.故答案为:2.【分析】根据矩形的对角线互相平分且相等可得OC=OD,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠OCD=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半解答.14.【答案】∠BAD=90°或AC=BD【考点】菱形的性质,正方形的判定【解析】【解答】解:要使菱形成为正方形,只要菱形满足以下条件之一即可,(1)有一个内角是直角(2)对角线相等.即∠BAD=90°或AC=BD.故答案为:∠BAD=90°或AC=BD.【分析】根据菱形的性质及正方形的判定来添加合适的条件.15.【答案】(1)(1,4)(2)16【考点】点的坐标,坐标与图形变化-平移【解析】【解答】解:(1)∵∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),∴AB=3,则AC= =4,故C(1,4);故答案为:(1,4);(2)∵将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,∴4=2x﹣6,解得:x=5,则△ABC沿x轴向右平移了4个单位长度,故线段AC扫过的面积为:4×4=16.故答案为:16.【分析】(1)直接利用勾股定理得出AC的长,进而得出答案;(2)直接得出△ABC沿x轴向右平移的距离进而得出线段AC扫过的面积.三.<b >解答题</b>16.【答案】解:原式= ÷ = •= ,当a=0时,原式= =2.【考点】分式的化简求值【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将a=0代入计算即可求出值.17.【答案】(1)证明:∵∠A=∠ABC=90°,∴BC∥AD,∴∠CBE=∠DFE,又∵E是边CD的中点,∴CE=DE,在△BEC与△FED中,,∴△BEC≌△FED,∴BE=FE∴四边形BDFC是平行四边形;(2)解:∵BD=BC=5,∴AB= = =4,∴四边形BDFC的面积=BC•AB=5×4=20.【考点】平行四边形的判定与性质【解析】【分析】(1)根据同旁内角互补两直线平行求出BC∥AD,再根据两直线平行,内错角相等可得∠CBE=∠DFE,然后利用“角角边”证明△BEC和△FCD全等,根据全等三角形对应边相等可得BE=EF,然后利用对角线互相平分的四边形是平行四边形证明即可;(2)利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得.18.【答案】(1)解:∵y= ,经过点D(6,1),∴=1,∴k=6;(2)解:∵点D(6,1),∴BD=6,设△BCD边BD上的高为h,∵△BCD的面积为12,∴BD•h=12,即×6h=12,解得h=4,∴CA=3,∴=﹣3,解得x=﹣2,∴点C(﹣2,﹣3),设直线CD的解析式为y=kx+b,则,得,所以,直线CD的解析式为y= x﹣2,(3)解:∵点D(6,1),点C(﹣2,﹣3),∴当y≥y1时,x的取值范围为:x≤﹣2,0<x≤6.【考点】反比例函数与一次函数的交点问题【解析】【分析】(1)把点D的坐标代入双曲线解析式,进行计算即可得解;(2)先根据点D的坐标求出BD的长度,再根据三角形的面积公式求出点C到BD的距离,然后求出点C的纵坐标,再代入反比例函数解析式求出点C的坐标,然后利用待定系数法求一次函数解析式解答;(3)根据函数图象即可得到结论.19.【答案】(1)16;40(2)解:喜欢漫画的有:40﹣4﹣12﹣16=8(人),如图:(3)72;10%【考点】全面调查与抽样调查,扇形统计图,条形统计图【解析】【解答】解:解:(1)由条形图可知阅读科普常识的同学有16人,∵喜欢阅读小说的有12人,占30%,∴该班的学生人数为:12÷30%=40(人),故答案为:16,40;(2)喜欢漫画的有:40﹣4﹣12﹣16=8(人),如图:;(3)在扇形统计图中,表示“漫画”类所对圆心角是×360°=72°,喜欢阅读“营养美食”类图书的人数占全班人数的百分比:4÷40=10%;故答案为:72,10%;【分析】(1)由喜欢阅读小说的有12人,占30%,即可求得该班的学生人数;(2)用总人数﹣4﹣12﹣16,即可求得喜欢漫画的人数,则可把条形统计图补充完整;(3)由题意可得“漫画”类所对圆心角×360°=72°,喜欢阅读“营养美食”类图书的人数占全班人数的百分比:4÷40=10%;20.【答案】(1)证明:∵四边形ABCD是矩形,∴AD=BC,AB=DC.由折叠可得:EC=BC,AE=AB,∴AD=EC,AE=DC,在△ADE与△CED中,,∴△DEC≌△EDA(SSS).(2)解:∵∠ACD=∠BAC,∠BAC=∠CAE,∴∠ACD=∠CAE,∴AF=CF,设DF=x,则AF=CF=4﹣x,在RT△ADF中,AD2+DF2=AF2,即32+x2=(4﹣x)2,解得;x= ,即DF= .【考点】翻折变换(折叠问题)【解析】【分析】(1)根据矩形的性质、轴对称的性质可得到AD=EC,AE=DC,即可证到△DEC≌△EDA (SSS);(2)易证AF=CF,设DF=x,则有AF=4﹣x,然后在Rt△ADF中运用勾股定理就可求出DF的长.21.【答案】(1)解:由图象得:出租车的起步价是8元;设当x>3时,y与x的函数关系式为y=kx+b(k≠0),由函数图象,得,解得:,故y与x的函数关系式为:y=2x+2;(2)解:∵32元>8元,∴当y=32时,32=2x+2,x=15答:这位乘客乘车的里程是15km.【考点】一次函数的应用【解析】【分析】(1)根据函数图象可以得出出租车的起步价是8元,设当x>3时,y与x的函数关系式为y=kx+b,运用待定系数法就可以求出结论;(2)将y=32代入(1)的解析式就可以求出x的值.22.【答案】(1)解:结论:FG=CE,FG∥CE.理由:如图1中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.(2)解:结论仍然成立.理由:如图2中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.(3)解:结论仍然成立.理由:如图3中,设DE与FC的延长线交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,∴∠CBF=∠DCE=90°在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.【考点】平行四边形的性质【解析】【分析】(1)结论:FG=CE,FG∥CE.如图1中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.(2)结论仍然成立.如图2中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.(3)结论仍然成立.如图3中,设DE与FC的延长线交于点M,证明方法类似.23.【答案】(1)解:联立两直线解析式可得,解得,∴A(6,3),在y=﹣x+6中,令y=0可求得x=12,令x=0可得y=6,∴B(12,0),C(0,6)(2)解:∵点D在线段OA上,∴可设D(x,x)(0≤x≤6),∵△COD的面积为12,∴×6x=12,解得x=4,∴D(4,2),∵C(0,6),∴可设直线CD的表达式为y=kx+6,把D(4,2)代入可得4=2k+6,解得k=﹣1,∴直线CD的表达式为y=﹣x+6(3)解:∵点P在射线CD上,∴可设P(t,﹣t+6)(t≥0),∵C(0,6),O(0,0),∴PC= = t,OP= = ,且OC=6,∵△OCP为等腰三角形,∴有PC=PO、PC=OC和PO=OC三种情况,①当PC=PO时,即t= ,解得t=3,此时P点坐标为(3,3);②当PC=OC时,即t=6,解得t=3 ,此时P点坐标为(3 ,6﹣3 );③当PO=OC时,即=6,解得t=0或t=6,当t=0时,P与O重合,不合题意,舍去,故t=6,此时P点坐标为(6,0);综上可知存在满足条件的点P,其坐标为(3,3)或(3 ,6﹣3 )或(6,0).【考点】一次函数的应用,一次函数的性质【解析】【分析】(1)联立两直线解析式可求得A点坐标,利用直线L1的解析式可求得B、C的坐标;(2)可设D(x,x),由题意可求得x的值,则可求得D点坐标,利用待定系数法可求得直线CD的表达式;(3)可设出P点坐标,利用勾股定理可表示出PC、PO和OC的长,分PC=PO、PC=OC和PO=OC三种情况,分别得到关于P点坐标的方程,可求得P点坐标.。
八年级数学下册期末试卷(附答案解析)
八年级数学下册期末试卷(附答案解析)学校:___________姓名:___________班级:_____________一、单选题(每题3分,共27分)1( )A B .C D 2.下列图形中,不是中心对称图形的是( )A .B .C .D .3.下列表达式中,y 是x 的函数的是( )A .2y x =B .||1y x =+C .||y x =D .221y x =-4.下列几组数中,能作为直角三角形三边长度的是( )A .2,3,4a b c ===B .5,6,8a b c ===C .5,12,13a b c ===D .7,15,12a b c === 5.下列运算中正确的是( )AB =C 2±D =6.下列说法不正确的是( )A .数据0、1、2、3、4、5的平均数是3B .选举中,人们通常最关心的数据是众数C .数据3、5、4、1、2的中位数是3D .甲、乙两组数据的平均数相同,方差分别是S 甲2=0.1,S 乙2=0.11,则甲组数据比乙组数据更稳定 7.如图①,正方形ABCD 在平面直角坐标系中,其中AB 边在y 轴上,其余各边均与坐标轴平行,直线:1l y x =-沿y 轴的正方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m (米),平移的时间为t (秒),m 与t 的函数图象如图①所示,则图①中b 的值为( )A .B .C .D .8.在下列给出的条件中,能判定四边形ABCD 是平行四边形的是( )A .//AB CD ,AD BC =B .A B ∠=∠,CD ∠=∠ C .//AD BC ,AD BC = D .AB AD =,CD BC =9.下列哪个点在一次函数34y x =-上( ).A .(2,3)B .(-1,-1)C .(0,-4)D .(-4,0)10.如图,菱形ABCD 的对角线AC 、BD 交于点O ,将①BOC 绕着点C 旋转180°得到B O C '',若AC =2,AB ='AB 的长是( )A .4B .C .5D .二、填空题(每题5分,共25分)11在实数范围内有意义,则x 应满足的条件是_____.12.一个正方形的面积是5,那么这个正方形的对角线的长度为_______.13.新定义[a ,b ]为一次函数y =ax +b (其中a ≠0,且a ,b 为实数)的“关联数”,若“关联数”[3,m +2]所对应的一次函数是正比例函数,则关于x 的方程1111x m+=-的解为____. 14.如图,已知面积为1的正方形ABCD 的对角线相交于点O ,过点O 任作一条直线分别交AD BC ,于E F ,,则阴影部分的面积是________.15.在平面直角坐标系中,若点P(x﹣2,x+1)关于原点的对称点在第四象限,则x的取值范围是_____.三、解答题16.(6分)计算:;)031+;17.在数轴上表示a、b、c三数点的位置如下图所示,化简:|c||a-b|.18.(6分)如图,四边形ABCD是平行四边形,AE①BC于E,AF①CD于F,且BE=DF.(1)求证:四边形ABCD是菱形;(2)连接EF,若①CEF=30°,BE=2,直接写出四边形ABCD的周长.19.(10分)2019年10月1日是新中国成立七十周年,某校为庆祝国庆,组织全校学生参加党史知识竞赛,从中抽取200名学生的成绩(得分取正整数,满分100分)进行统计,绘制了如图尚不完整的统计图表.200名学生党史知识竞赛成绩的频数表请结合表中所给的信息回答下列问题:(1)频数表中,a = ,b = ,c = ;(2)将频数直方图补充完整;(3)若该校共有1500名学生,请估计本次党史知识竞赛成绩超过80分的学生人数.20.(10分)某校有一露天舞台,纵断面如图所示,AC 垂直于地面,AB 表示楼梯,AE 为舞台面,楼梯的坡角①ABC =45°,坡长AB =2m ,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD ,使①ADC =30°.(1)求舞台的高AC (结果保留根号);(2)求DB 的长度(结果保留根号).21.(10分)如图,直线6y kx =+与x 轴、y 轴分别交于点E 、点F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-.(1)求一次函数的解析式;(2)若点(),P x y 是线段EF (不与点E 、F 重合)上的一点,试写出OPA ∆的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)在(2)的条件下探究:当点P 在什么位置时,OPA ∆的面积为278,并说明理由. 22.(10分)如图,矩形ABCD 的对角线相交于点O ,分别过点C 、D 作//CE BD 、//DE AC ,CE 、DE 交于点E .(1)求证:四边形OCED 是菱形;(2)将矩形ABCD 改为菱形ABCD ,其余条件不变,连结OE .若10AC =,24BD =,则OE 的长为多少?23.(10分)某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用. 24.(10分)如图,ABC 中,D 是AB 边上任意一点,F 是AC 中点,过点C 作CE ①AB 交DF 的延长线于点E ,连接AE ,CD .(1)求证:四边形ADCE 是平行四边形:(2)若4BC =,45CAB ∠=︒,AC =AB 的长.参考答案与解析:1.D=故答案为:D .【点睛】本题考查了无理数化简的问题,掌握无理数化简的方法是解题的关键.2.B【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A 、是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项正确;C 、是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项错误.故选:B .【点睛】本题考查中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.C【分析】根据函数的定义:在某一变化过程中有两个变量x 与y ,如果对x 的每一个值,y 都有唯一确定的值与之对应,那么就说x 是自变量,y 是x 的函数,进行求解即可.【详解】解:A 、2y x =,对于一个x ,存在有两个y 与之对应,例如:当x =1时,y =±1,y 不是x 的函数,故此选项不符合题意;B 、||1y x =+对于一个x ,存在有两个y 与之对应,例如:当x =1时,y =±2,y 不是x 的函数,故此选项不符合题意;C 、||y x =对于一个x ,对于任意的x ,y 都有唯一的值与之对应,y 是x 的函数,故此选项符合题意;D 、221y x =-对于一个x ,存在有两个y 与之对应,例如:当x =0时,y =±1,y 不是x 的函数,故此选项不符合题意;故选C .【点睛】本题主要考查了函数的定义,解题的关键在于能够熟记定义.4.C【分析】由勾股定理的逆定理逐一分析各选项,从而可得答案.【详解】解:22222223134,a b c +=+=≠= 故A 不符合题意;22222256618,a b c +=+=≠= 故B 不符合题意;22222251216913,a b c +=+=== 故C 符合题意;22222271219315,a c b +=+=≠= 故D 不符合题意;故选:.C【点睛】本题考查的是勾股定理的逆定理,掌握“利用勾股定理的逆定理判断三角形是不是直角三角形.”是解题的关键5.D【分析】根据二次根式的加法、混合运算以及二次根式的化简等知识逐一进行分析即可得.【详解】A.,故A 选项错误;B.42=-=2,故B 选项错误;C.2=,故C 选项错误;D.故选D.【点睛】本题考查了二次根式的混合运算以及二次根式的化简等知识,熟练掌握各运算的运算法则是解题的关键.6.A【详解】试题分析:A 、数据0、1、2、3、4、5的平均数是16×(0+1+2+3+4+5)=2.5,此选项错误; B 、选举中,人们通常最关心的数据是得票数最多的,即众数,此选项正确;C 、数据3、5、4、1、2从小到大排列后为1、2、3、4、5,其中位数为3,此选项正确;D 、①S 甲2<S 乙2,①甲组数据比乙组数据更稳定,此选项正确;故选A .考点:平均数;众数;中位数;方差.7.D【分析】先根据图①分析a 和b 的含义,先求出a 后再利用勾股定理求出b 即可.【详解】解:由图①可知,当直线l 运动a 秒时,m 的值最大为b ,当直线l 运动10秒时,m 的值又变为0,①可以得出直线l 运动到经过A 点时用了a 秒,经过D 点时用了10秒,①55a AB ==,,即正方形边长为5,①AC = ①b =故选:D .【点睛】本题考查了正方形的性质、勾股定理、一次函数的图象与性质等知识,解题关键是理解图象中的点的含义.8.C【分析】根据平行四边形的判定条件判断即可;【详解】根据分析可得当//AD BC ,AD BC =时,根据一组对边平行且相等的四边形是平行四边形能证明;故答案选C .【点睛】本题主要考查了平行四边形的判定,准确判断是解题的关键.9.C【详解】A 选项:①当x=2时,y=3×2-4=2≠3,①点(2,3)不在此函数的图象上,故本选项错误; B 选项:①当x=-1时,y=3×(-1)-4=-7≠-1,①点(-1,-1)不在此函数的图象上,故本选项错误; C 选项:当x=0时,y=0-4=-4,①点(0,-4)在此函数的图象上,故本选项正确;D 选项:当x=-4时,y=3×(-4)-4=-16≠0,①点(-4,0)不在此函数的图象上,故本选项错误. 故选C .10.C【分析】利用菱形的性质求出OB 的长度,再利用勾股定理求出'AB 的长即可.【详解】解:①菱形ABCD ,①BD ①AC ,AB =BC ,AO =OC =1在Rt①OBC 中,4OB =,①旋转,①OB O B ''=,90O '∠=︒,在Rt①AO B ''中,'5AB =,故选:C .【点睛】本题主要考查菱旋转和形的性质,能够利用勾股定理结合性质解三角形是解题关键.11.x ≥5.【分析】直接利用二次根式的定义分析得出答案.x﹣5≥0,解得:x≥5.故答案为:x≥5.【点睛】本题考查二次根式有意义的条件以及绝对值的性质,解题关键是掌握二次根式中的被开方数是非负数.12【详解】解:设正方形的对角线长为x,由题意得,12x2=5,解得13.5 3【详解】试题分析:根据“关联数”[3,m+2]所对应的一次函数是正比例函数,得到y=3x+m+2为正比例函数,即m+2=0,解得:m=-2,则分式方程为11112x-=-,去分母得:2-(x-1)=2(x-1),去括号得:2-x+1=2x-2,解得:x=53,经检验x=53是分式方程的解.考点:1.一次函数的定义;2.解分式方程;3.正比例函数的定义.14.1 4【详解】依据已知和正方形的性质及全等三角形的判定可知△AOE①①COF,则得图中阴影部分的面积为正方形面积的14,因为正方形的边长为1,则其面积为1,于是这个图中阴影部分的面积为14. 故答案为14. 15.﹣1<x <2【分析】根据题意可得点P 在第二象限,再利用第二象限内点的坐标符号可得关于x 的不等式组,然后解不等式组即可.【详解】解:①点P (x ﹣2,x +1)关于原点的对称点在第四象限,①点P 在第二象限,①2010x x -<⎧⎨+>⎩, 解得:﹣1<x <2,故答案为:﹣1<x <2.【点睛】此题主要考查了关于原点对称点的坐标,关键是掌握第二象限内点的坐标符号.16.(1)(2)4【分析】(1)根据二次根式的加减运算法则即可求出答案;(2)原式利用二次根式的除法,绝对值的意义,以及0指数幂的法则计算即可的到结果.(1==(2)031+(31=-+31+=4 【点睛】本题考查二次根式的混合运算,以及0指数幂,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.17.2a【分析】首先根据数轴可以确定,,a b c 的符号,以及各个绝对值数内的数的大小,然后即可去掉绝对值符号,从而对式子进行化简.【详解】解:根据数轴可以得到:0c a b <<<,且a b c <<,①c a b -()(),c c a b b a =-+++--,c c a a =-+++=2a .18.(1)见解析(2)16【分析】(1)根据平行四边形的性质可得①B =①D ,进而易证△ABE ≌△ADF (ASA ),即得出AB =AD ,进而即可求证结论:▱ABCD 是菱形;(2)由菱形的性质可知BC =CD ,进而可得CE =CF ,再由等腰三角形的性质和三角形内角和定理即可求出①ECF =120°,即求出①B =60°,最后利用含30°角的直角三角形的性质即可求出AB 的长,进而即可求出菱形的周长.(1)证明:①四边形ABCD 是平行四边形①①B =①D ,①AE ①BC ,AF ①CD ,①①AEB =①AFD =90°,在①AEB 和①AFD 中,B D BE DFAEB AFD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ①①AEB ①①AFD (ASA ),①AB =AD ,①四边形ABCD 是菱形.(2)如图,由(1)可知BC =CD ,①BE =DF ,①CE =CF ,①①CFE =①CEF =30°,①①ECF =180°−2①CEF =120°,①①B =180°−①ECF =60°,在Rt①ABE中,①BAE=30°,①24==,AB BE⨯=.①菱形ABCD的周长为4416【点睛】本题考查平行四边形的性质,菱形的判定和性质,全等三角形的判定和性质,等腰三角形的判定和性质以及含30°角的直角三角形的性质等知识.利用数形结合的思想是解答本题的关键.19.(1)20,80,0.32;(2)补全的频数分布直方图见解析;(3)本次党史知识竞赛成绩超过80分的学生有1080人.【分析】(1)根据频数表可直接进行求解;(2)由(1)可直接进行作图;(3)由(1)、(2)可得成绩超过80分的学生人数的频率,然后直接列式求解即可.【详解】(1)a=200×0.10=20,b=200×0.40=80,c=64÷200=0.32,故答案为:20,80,0.32;(2)由(1)知,a=20,b=20,补全的频数分布直方图见右图;(3)1500×(0.40+0.32)=1500×0.72=1080(人),即本次党史知识竞赛成绩超过80分的学生有1080人.【点睛】本题主要考查频数与频率,熟练掌握频数与频率是解题的关键.20.(2)m【分析】(1)在Rt △ABC 中,根据①ABC =45°,得到AC =BC =AB •sin45°=; (2)根据Rt △ADC 中,①ADC =30°,得到CD=tan AC ADC=∠推出BD =CD ﹣BC =)m . (1)解:①AC ①BC ,①①ACB =90°,①在Rt △ABC 中,AB =2m ,①ABC =45°,①①BAC =90°-①ABC =45°,①AC =BC =AB •sin45°=2×2m ),答:舞台的高ACm ; (2)在Rt △ADC 中,①ADC =30°,则CD=tan AC ADC==∠①BD =CD ﹣BC =)m ,答:DBm . 【点睛】本题考查了解直角三角形,熟练运用含30°角的直角三角形性质和含45°角的直角三角形的性质,是解决本题的关键.21.(1)364y x =+;(2)9184s x =+;80x -<<;(3)当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为278,见解析【分析】(1)把点E 的坐标为(-8,0)代入6y kx =+求出k 即可解决问题;(2)△OP A 是以OA 长度6为底边,P 点的纵坐标为高的三角形,根据1••2PAO y SOA P =, 列出函数关系式即可;(3)利用(2)的结论,列出方程即可解决问题;【详解】解:(1)把()8,0E -代入6y kx =+中有086k =-+ ①34k = ①一次函数解析式为364y x =+ (2)如图:①OPA ∆是以OA 为底边,P 点的纵坐标为高的三角形①()6,0A -①6OA = ①1139666182244s y x x ⎛⎫=⨯⨯=⨯+=+ ⎪⎝⎭ 自变量x 的取值范围:80x -<<(3)当OPA ∆的面积为278时,有9271848x += 解得132x =-把132x =-代入一次函数364y x =+中,得98y = ①当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为278 【点睛】本题考查一次函数综合题、三角形的面积、一元一次方程等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会构建一次函数或方程解决实际问题.22.(1)见解析;(2)13【分析】(1)先证明四边形OCED 是平行四边形,再根据矩形性质证明OC=OD ,即可证得结论;(2)根据菱形的性质和勾股定理可得到CD =13,再根据矩形的判定和性质即可得到OE 的长.【详解】(1)证明:①//DE AC 、//CE BD ,①四边形OCED 是平行四边形,①四边形ABCD 是矩形,①AC BD =,12OC AC =,12OD BD =, ①OC OD =,①四边形OCED 是菱形;(2)解:①四边形ABCD 是菱形,①AC BD ⊥,152OC AC ==,1122OD BD ==,①13CD ,①//DE AC 、//CE BD ,①四边形OCED 是平行四边形,①AC BD ⊥,①四边形OCED 是矩形,①13OE CD ==.【点睛】本题考查矩形的判定与性质、平行四边形的判定、菱形的判定与性质、勾股定理,熟练掌握相关知识的联系与运用是解答的关键.23.1)22800y x =+;(2)购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.【详解】试题分析:(1)根据购车的数量以及价格根据总费用直接表示出等式;(2)根据购买中型客车的数量少于大型客车的数量,得出y=22x+800,中x 的取值范围,再根据y 随着x 的增大而增大,得出x 的值.试题解析:(1)因为购买大型客车x 辆,所以购买中型客车(20)x -辆.()62402022800y x x x =+-=+.(2)依题意得< x . 解得x >10.① 22800y x =+,y 随着x 的增大而增大,x 为整数,① 当x=11时,购车费用最省,为22×11+800="1" 042(万元).此时需购买大型客车11辆,中型客车9辆.答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.考点:一次函数的应用24.(1)证明见解析(2)2【分析】(1)根据平行线的性质得到CAD ACE ∠=∠,ADE CED ∠=∠.根据全等三角形的性质得到AD CE =,于是得到四边形ADCE 是平行四边形;(2)过点C 作CG AB ⊥于点G ,根据等腰三角形的性质和勾股定理即可得到结论.(1)证明:①AB CE ,①CAD ACE ∠=∠,ADE CED ∠=∠.①F 是AC 中点,①AF CF =.在AFD △与CFE 中,CAD ACE ADE CED AF CF ∠∠⎧⎪∠∠⎨⎪=⎩==,①AFD CFE AAS ≌(),①AD CE =.①AB CE ,①四边形ADCE 是平行四边形;(2)解:过点C 作CG AB ⊥于点G ,在ACG 中,=90AGC ∠︒,4BC =,45CAB ∠=︒,AC =由勾股定理得(22228CG AG AC +===,①2CG AG ==,在BCG 中,90BGC ∠=︒,2CG =,4BC =,①BG =①2AB AG BG =+=.【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,解直角三角形,正确的识别图形是解题的关键.。
八年级数学下册期末考试卷(含有答案)
八年级数学下册期末考试卷(含有答案)(满分:120分;时间120分钟)一、选择题(本大题共10个小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案A超过一个均记零分。
)1. 若式子√2x−4在实数范围内有意义,则x的取值范围是( )A. x≠2B. x≥2C. x≤2D. x≠−22. 下列方程是一元二次方程的是( )=5 D. x2=0A. x2+2y=1B. x3−2x=3C. x2+1x23. 下列说法中正确的有( ) ①四边相等的四边形一定是菱形; ②顺次连接矩形各边中点形成的四边形定是正方形; ③对角线相等的四边形一定是矩形; ④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.A. 4个B. 3个C. 2个D. 1个4. 把代数式(a−1)⋅√1中的a−1移到根号内,那么这个代数式等于( )1−aA. −√1−aB. √a−1C. √1−aD. −√a−15. 陈师傅应客户要求加工4个长为4cm、宽为3cm的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,图中有可能不合格的零件是( )A. B. C. D.6. 已知m是一元二次方程x2−3x+1=0的一个根,则2022−m2+3m的值为( )A. 2023B. 2022C. 2021D. −20207. 对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B′M=1,则CN的长为( )A. 7B. 6C. 5D. 48. 若最简二次根式√7a+b与√6a−bb+3是同类二次根式,则a+b的值为( )A. 2B. −2C. −1D. 19. 关于x的一元二次方程(m−3)x2+m2x=9x+5化为一般形式后不含一次项,则m的值为( )A. 0B. ±3C. 3D. −3A. 2个B. 3个C. 4个D. 5个二、填空题(本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分只要求填写最后结果。
八年级数学(下)第二学期期末考试含答案
八年级数学(下)第二学期期末考试总分:120分 时量:120分钟一、选择题(本大题共12小题,共36分)1.下列各式运算结果是负数的是( )A.()2--B.02--C.22-D.()22- 2.为庆祝中华人民中国成立70周年,我国于2019年10月1日在北京天安门广场举行大型阅兵仪式,在此次活动中,共有15个徒步方队,32个装备方队,空中梯队12个,约15000名官兵通过天安门广场接受党和人民的检阅.将数字15000用科学计数法表示为( )A.31510⨯B.41.510⨯C.51.510⨯D.60.1510⨯3.下列运算中正确的是( )A.2323a a a =⋅B.()224ab ab =C.2222ab b a ÷=D.()222a b a b +=+4.如图,在三角形ABC 中,45A ∠=︒,三角形ABC 的高线BD ,CE 交于点O ,则BOC ∠的度数( )A.120︒B.125︒C.135︒D.145︒5.如图,AB//CD ,AF 交CD 于点E ,45A ∠=︒,则CEF ∠等于( )A.135︒B.120︒C.45︒D.35︒6.一个样本的方差是0,若中位数是a ,那么它的平均数是( )A.等于aB.不等于aC.大于aD.小于a7.下列命题是真命题的是( )A.一组对边平行另一组对边相等的四边形是平行四边形B.一组邻边相等的平行四边形是菱形C.对角线相等的四边形是矩形D.对角线垂直的四边形是菱形8.我国古代数学名著《孙子算经》中记载了一道题,大意是:求100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A.10033100x y x y +=⎧⎨+=⎩B.1003100x y x y +=⎧⎨+=⎩C.100131003x y x y +=⎧⎪⎨+=⎪⎩D.1003100x y x y +=⎧⎨+=⎩9.如图所示为抛物线()20y ax bx c a =++≠在坐标系中的位置,以下六个结论:①0a >;②0b >;③0c >;④240b ac ->;⑤0a b c ++<;⑥20a b +>.其中正确的个数是( )A.3B.4C.5D.610.已知圆锥的底面半径为3cm ,母线长为9cm ,则圆锥的侧面积是( )A.218cm πB.227cm πC.236cm πD.254cm π11.一次函数()0y ax c a =+≠与二次函数()20y ax bx c a =++≠在同一平面直角坐标系中的图象可能是( )A. B.C.D.12.如图,抛物线21322y x x =-++的图象与坐标轴交于点A ,B ,D ,顶点为E ,以AB 为直径画半圆交y 负半轴交于点C ,圆心为M ,P 是半圆上的一动点,连接EP .①点E 在M 的内部;②CD 的长为332-;③若P 与C 重合,则15DPE ∠=︒;④在P 的运动过程中,若3AP =26PE =+;⑤N 是PE 的中点,当P 沿半圆从点A 运动至点B 时,点N 运动的路径长是π.则正确的选项为( )A.①②④B.②③④C.②③⑤D.③④⑤二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式()24a b ab +-的结果是________.14.若一元二次方程2220x x --=有两个实数根1x ,2x ,则1212x x x x +-的值是________.15.正六边形的外接圆的半径与内切圆的半径之比为________.16.如图,点A ,B ,C 都在O 上,若30C ∠=︒,则AOB ∠的度数是________度. 17.将二次函数2y x =的图象先向右平移1个单位,再向上平移2个单位,平移后的得到图像函数表达式是________.18.抛物线23y x x =--与直线y x b =+交于A 、B 两点,且26AB =,则b =________.三、解答题(本大题共8个小题)19.计算:(1)()10120209322-⎛⎫+--+- ⎪⎝⎭; (2)解一元二次方程2890x x +-=.20.先化简代数式:22321124a a a a -+⎛⎫-+ ⎪+-⎝⎭,再从2-,0,2这三个数中,选择一个恰当的数作为a 的值,代入求值.21.某中学对本校学生每天完成作业所用时间的情况进行了抽样调查.随机调查了九年级部分学生每天完成作业所用的时间,并根据统计结果制成了条形统计图(时间取整数,图中从左至右依次为第1、2、3、4、5组)和扇形统计图,请结合图中信息回答下列问题:(1)本次调查的学生人数为________;(2)补全条形统计图;(3)根据图中提供的信息,可知下列结论正确的是________(只填所有正确的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知学生完成作业所用时间的众数在第二组内C.图中,90~120时间段对应的扇形圆心角为108(4)学生每天完成作业的时间不超过120分钟,视为课业负担适中,根据以上调查,估计该校九年级560名学生中,课业负担适中的学生有多少人?22.如图,平行四边形ABCD 中,过点D 作DE AB ⊥于点E ,点F 在边CD 上,CF AE =,连AF ,BF . (1)求证:四边形BFDE 是矩形;(2)已知60DAB ∠=︒,AF 是DAB ∠的平分线,若3AD =,求DC 的长度.23.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.24.如图,O 是直角三角形ABC 的外接圆,直径4AC =,过C 点作O 的切线,与AB 延长线交于点D ,M 为CD 的中点,连接BM ,OM ,且BC 与OM 相交于点N .(1)求证:BM 与O 相切;(2)当60A ∠=︒时,求弦AB 和弧AB 所夹图形的面积;(3)在(2)的条件下,在O 的圆上取点F ,使15ABF ∠=︒,求点F 到直线AB 的距离.25.阅读下面材料:对于二次函数()20y ax bx c a =++>,当m x n ≤≤时,二次函数在何处取得最值?对此,我们可做如下探究:当0a >时,观察图①到图④:(1)由图①可知,当x n =时取最小值,当x m =时取最大值,点离对称轴越近,函数值越小;(2)由图②、图③可知,当2b x a=-时取最小值,点离对称轴越近,函数值越小; (3)由图④可知,当x m =时取最小值,当x n =时取最大值,点离对称轴越近,函数值越小.结论:1.当抛物线开口向上时,抛物线上的点,离对称轴越近,其对应的函数值越小;2.若对称轴在自变量的取值范围内,则二次函数在2b x a=-时取最小值; 3.若对称轴不在自变量的取值范围内,则二次函数在离对称轴最近的点处取得最小值.请结合以上结论,解决下列问题:(1)已知二次函数222y x x =--,当32x -≤≤时,此时函数的最大值和最小值; (2)已知二次函数数222y x x =--在1m x m ≤≤+的范围内有最小值2m ,求出m 的值;(3)二次函数222y x x =--,当m x n ≤≤时,()m y n m n ≤≤≠,求出此时的m ,n 的值.26.如图,抛物线218333y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点.以AB 为直径作M .(1)求出M的坐标并证明点C在M上;(2)若P为抛物线上一动点,求出当CP与M相切时P的坐标;,若存在,求出D点坐标,若不存在,请说明(3)在抛物线上是否存在一点D,使得BC平分ABD理由.参考答案考试时间:120分钟 满分:120分一、选择题(本大题共12小题,每小题3分,共36分)1-5:BBCCA 6-11:ABCBB 11-12:DB二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式(a +a )2−4aa 的结果是 (a-b)2 ;14.若一元二次方程0222=--x x 有两个实数根21,x x ,则2121x x x x -+的值是___4__;16. 如图,点 A ,B ,C 都在 ⊙O 上,若 ∠C =30∘,则 ∠AOB 的度数是 60 度. 17.将二次函数的图象先向右平移1个单位,再向上平移2个单位,平移后的得到图像函数表达式是 y=(x-1)2+2 ;18.抛物线32--=x x y 与直线b x y +=交于A 、B 两点,且AB =62,则b = -1 .三、解答题(本大题共8个小题)19.计算:(1)239)2020()21(01-+--+-; (2)解一元二次方程a 2+8a −9=0.解:原式=2-3 ----3分 1,921=-=x x -------3分 20.先化简代数式:412)231(22-+-÷+-a a a a ,再从−2,0,2这三个数中,选择一个恰当的数作为a 的值,代入求值.解:原式=12--a a ; -----3分 当a=0时,原式=2----3分21.某中学对本校学生每天完成作业所用时间的情况进行了抽样调查。
八年级下册数学期末试卷测试卷(含答案解析)
八年级下册数学期末试卷测试卷(含答案解析)一、选择题1.下列二次根式,无论x 取什么值都有意义的是( ) A .xB .21x -C .21x D .21x +2.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( ) A .2、3、4B .3、4、5C .5、12、13D .30、50、603.如图,下列四组条件中,不能判定四边形ABCD 是平行四边形的是( )A .AB =CD ,AD =BC B .AB //CD ,AB =CD C .AB =CD ,AD //BCD .AB //CD ,AD //BC4.某校有17名同学报名参加信息学竞赛,测试成绩各不相同,学校取前8名参加决赛,小童已经知道了自己的成绩,他想知道自己能否参加决赛,还需要知道这17名同学测试成绩的( ) A .中位数B .平均数C .众数D .方差5.如图,在正方形ABCD 中,取AD 的中点E ,连接EB ,延长DA 至F ,使EF =EB ,以线段AF 为边作正方形AFGH ,交AB 于点H ,则AHAB的值是( )A 51- B 51+ C 352D .126.如图,在菱形ABCD 中MN 分别在AB 、CD 上且AM=CN ,MN 与AC 交于点O ,连接BO 若∠DAC=62°,则∠OBC 的度数为( )A .28°B .52°C .62°D .72°7.如图,等腰Rt ABC 中,AB =AC ,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:①DF =DN ;②DMN 为等腰三角形;③DM 平分∠BMN ;④AE =23EC ;⑤AE=NC ,其中正确结论有( )A .2个B .3个C .4个D .5个8.如图,直线 y 1 与 y 2 相交于点C , y 1 与 x 轴交于点 D ,与 y 轴交于点(0,1), y 2 与 x 轴 交于点 B (3,0),与 y 轴交于点 A ,下列说法正确的个数有( )①y 1的 解 析 式 为12y x =+;② OA = OB ;③2AC BC =④12y y ⊥;⑤ ∆AOB ≅ ∆BCD . A .2 个B .3个C .4 个D .5 个二、填空题9.5x -中字母x 的取值范围是__________.10.如图,在菱形ABCD 中,AC ,BD 两对角线相交于点O .若∠BAD =60°,BD =2cm ,则菱形ABCD 的面积是____cm 2.11.如图,每个小正方形的边长都为1,则ABC ∆的三边长a ,b ,c 的大小关系是________(用“>”连接).12.如图,点P 在矩形ABCD 的对角线AC 上,且不与点A C 、重合,过点P 分别作边AB AD 、的平行线,交两组对边于点E F 、和G H 、.四边形PEDH 和四边形PFBG 都是矩形并且面积分别为S 1,S 2,则S 1,S 2之间的关系为__________.13.一次函数图象过点()0,2-日与直线23y x =-平行,则一次函数解析式__________. 14.如图,两个完全相同的三角尺ABC 和DEF 在直线l 上滑动.要使四边形CBFE 为菱形,还需添加的一个条件是____(写出一个即可).15.星期六下午,小张和小王同时从学校沿相同的路线去书店买书,小王出发4分钟后发现忘记带钱包,立即调头按原速原路回学校拿钱包,小王拿到钱包后,以比原速提高20%的速度按原路赶去书店,结果还是比小张晚4分钟到书店(小王拿钱包的时间忽略不计).在整个过程中,小张保持匀速运动,小王提速前后也分别保持匀速运动,如图所示是小张与小王之间的距离y (米)与小王出发的时间x (分钟)之间的函数图象,则学校到书店的距离为________米.16.已知矩形ABCD,点E在AD边上,DE AE>,连接BE,将ABE△沿着BE翻折得到BFE△,射线EF交BC于G,若点G为BC的中点,1FG=,6DE=,则BE长为________.三、解答题17.计算:(1)(25﹣2)0+|2﹣5|+(﹣1)2021;(2)(6+3)(6﹣3)+14÷7.18.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几”.此问题可理解为:如图,有一架秋千,当它静止时,踏板离地的距离AB的长度为1尺.将它往前推送,当水平距离为10尺时.即10A C'=尺,则此时秋千的踏板离地的距离A D'就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,求绳索OA的长.19.如图,在4×4的网格直角坐标系中(图中小正方形的边长代表一个单位长),已知点A(﹣1,﹣1),B(2,2).(1)线段AB的长为;(2)在小正方形的顶点上找一点C,连接AC,BC,使得S△ABC=92.①用直尺画出一个满足条件的△ABC;②写出所有符合条件的点C 的坐标.20.已知:如图,在Rt △ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C 作CF ∥AB ,交DE 的延长线于点F ,连接BF 、CD . (1)求证:四边形CDBF 是平行四边形.(2)当D 点为AB 的中点时,判断四边形CDBF 的形状,并说明理由.21.先观察下列等式,再回答问题: 2211+2+()1 =1+1=2;2212+2+()212=2 12;2213+2+()3=3+13=313;…(1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.22.某航空公司规定,旅客乘机所携带行李的质量x (kg )与其运费y (元)由如图所示的一次函数图象确定,问: (1)求一次函数解析式(2)旅客可携带的免费行李的最大质量是多少kg ?23.如图.正方形ABCD 的边长为4,点E 从点A 出发,以每秒1个单位长度的速度沿射线AD 运动,运动时间为t 秒(t >0),以AE 为一条边,在正方形ABCD 左侧作正方形AEFG ,连接BF .(1)当t =1时,求BF 的长度;(2)在点E 运动的过程中,求D 、F 两点之间距离的最小值; (3)连接AF 、DF ,当△ADF 是等腰三角形时,求t 的值.24.如图1,已知直线24y x =+与y 轴,x 轴分别交于A ,B 两点,以B 为直角顶点在第二象限作等腰Rt ABC ∆.(1)求点C 的坐标,并求出直线AC 的关系式;(2)如图2,直线CB 交y 轴于E ,在直线CB 上取一点D ,连接AD ,若AD AC =,求证:BE DE =.(3)如图3,在(1)的条件下,直线AC 交x 轴于点M ,72P a ⎛⎫- ⎪⎝⎭,是线段BC 上一点,在x 轴上是否存在一点N ,使BPN ∆面积等于BCM ∆面积的一半?若存在,请求出点N 的坐标;若不存在,请说明理由.25.如图1,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,且交AC 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD.(1)①求证:四边形BFDE 是菱形;②求∠EBF 的度数.(2)把(1)中菱形BFDE 进行分离研究,如图2,G ,I 分别在BF ,BE 边上,且BG=BI ,连接GD ,H 为GD 的中点,连接FH ,并延长FH 交ED 于点J ,连接IJ ,IH ,IF ,IG .试探究线段IH 与FH 之间满足的数量关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图3,矩形ABCD 满足AB=AD 时,点E 是对角线AC 上一点,连接DE ,作EF ⊥DE ,垂足为点E ,交AB 于点F ,连接DF ,交AC 于点G .请直接写出线段AG ,GE ,EC 三者之间满足的数量关系.【参考答案】一、选择题 1.D 解析:D 【分析】直接利用二次根式有意义,则被开方数是非负数,进而得出答案. 【详解】解:A.x 0x 时,二次根式有意义,故此选项不合题意;2B.1x -210x -时,二次根式有意义,故此选项不合题意;21C.x 0x ≠时,二次根式有意义,故此选项不合题意; 2D.1x +x 取什么值,二次根式都有意义,故此选项符合题意.故选:D . 【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.2.C解析:C 【分析】先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可. 【详解】解:A 、22+32≠42,不能构成直角三角形,故此选项不符合题意;B 32+42≠52,不能构成直角三角形,故此选项不符合题意;C 、52+122=132,能构成直角三角形,故此选项符合题意;D 、302+502≠602,不能构成直角三角形,故此选项不符合题意.故选:C.【点睛】本题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.C解析:C【解析】【分析】根据平行四边形的判定定理分别进行分析即可.【详解】解:A、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;B、根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题;C、不能判定四边形ABCD是平行四边形,故此选项符合题意;D、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;故选:C.【点睛】本题主要考查了平行四边形的判定,解题的关键是掌握平行四边形的判定定理.4.A解析:A【解析】【分析】由于比赛取前8名参加决赛,共有17名选手参加,根据中位数的意义分析即可.【详解】解:由于总共有17个人,且他们的分数互不相同,第9名的成绩是中位数,要判断是否进入前8名,故应知道自己的成绩和中位数.故选:A.【点睛】本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数.5.A解析:A【分析】设AB=2a,根据四边形ABCD为正方形,E点为AD的中点,可得EF的长,进而可得结果.【详解】解:设AB=2a,∵四边形ABCD为正方形,∴AD=2a,∵E点为AD的中点,∴AE=a,∴BE225AE AB=+=a,∴EF5=a,∴AF=EF﹣AE=(5-1)a,∵四边形AFGH为正方形,∴AH=AF=(5-1)a,∴()515122aAHAB a--==.故选:A.【点睛】本题考查了正方形的性质,解决本题的关键是掌握正方形的性质.6.A解析:A【解析】【分析】连接OB,根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【详解】解:连接OB,∵四边形ABCD为菱形∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵MAO NCOAM CNAMO CNO ∠∠⎧⎪⎨⎪∠∠⎩===,∴△AMO≌△CNO(ASA),∴AO=CO , ∵AB=BC , ∴BO ⊥AC , ∴∠BOC=90°, ∵∠DAC=62°, ∴∠BCA=∠DAC=62°, ∴∠OBC=90°-62°=28°. 故选A . 【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.7.C解析:C 【解析】 【分析】先根据等腰直角三角形的性质得出BD AD =,DBF DAN ∠=∠,BDF ADN ∠=∠,进而证DFB DAN △≌△,即可判断①,再证ABF CAN △≌△,推出CN AF AE ==,即可判断⑤;根据全等三角形的判定与性质可得M 为AN 的中点,进而可证得12DM AM NM AN ===,由次可判断②,再根据等腰三角形的性质及外角性质可判断③,最后再根据垂直平分线的判定与性质以及直角三角形的勾股定理可判断④. 【详解】解:90BAC ∠=︒,AC AB =,AD BC ⊥,45ABC C ∴∠=∠=︒,AD BD CD ==,90ADN ADB ∠=∠=︒,45BAD CAD ∴∠=︒=∠,BE 平分ABC ∠,122.52ABE CBE ABC ∴∠=∠=∠=︒,9022.567.5BFD AEB ∴∠=∠=︒-︒=︒,67.5AFE BFD AEB ∴∠=∠=∠=︒,AF AE ∴=,又∵M 为EF 的中点, ∴AM BE ⊥,90AMF AME ∴∠=∠=︒,9067.522.5DAN CAN MBN ∴∠=∠=︒-︒=︒=∠,在FBD 和NAD 中,FBD DAN BD ADBDF ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩FBD NAD ∴△≌△(ASA ),DF DN ∴=,故①正确;在AFB △和CNA 中4522.5BAF C AB ACABF CAN ∠=∠=︒⎧⎪=⎨⎪∠=∠=︒⎩AFB CAN ∴△≌△(ASA ),AF CN ∴=,AF AE =,AE CN ∴=,故⑤正确;在ABM 和NBM 中ABM NBM BM BMAMB NMB ∠=∠⎧⎪=⎨⎪∠=∠⎩ABM NBM ∴△≌△(ASA ),AM NM ∴=,∴点M 是AN 的中点,又∵90ADN ∠=︒, ∴12DM AM NM AN ===,DM NM =, DMN ∴是等腰三角形,故②正确;DM AM =,22.5DAM ADM ∴∠=∠=︒,45DMN DAM ADM ∴∠=∠+∠=︒,9045DMB DMN DMN ∴∠=︒-∠=︒=∠,DM ∴平分BMN ∠,故③正确;如图,连接EN ,∵AM NM =,AM BE ⊥,∴BE 垂直平分AN ,∴EA =EN ,22.5ENA EAN ∴∠=∠=︒,45CEN ENA EAN ∴∠=∠+∠=︒,又∵45C ∠=︒,∴90ENC ∠=︒,且EN CN =,在Rt ENC 中,22222EC EN CN EN =+=, ∴EC ,AE ∴,故④错误, 即正确的有4个,故选:C .【点睛】本题考查了全等三角形的判定与性质,三角形外角性质,三角形内角和定理,直角三角形斜边上中线性质,等腰三角形的判定与性质,垂直平分线的判定与性质以及勾股定理等相关知识的应用,能熟练运用相关图形的判定与性质是解此题的关键,主要考查学生的推理能力.8.A解析:A【分析】通过待定系数法,求出直线y 1的解析式,于是可对①进行判断;利用待定系数法求出y 2的解析式为y =﹣x +3,则可确定A (0,3),所以OA =OB ,于是可对②进行判断;通过两点间的距离公式求出AC 、BC 的长,从而对③进行判断;计算∠EDO 和∠ABO 的度数,再通过三角形的内角和定理得出∠DCB 的度数,即可对④进行判断;通过计算BD 和AB 的长可对⑤进行判断.【详解】由图可知:直线y 1过点(0,1),(1,2),∴直线y 1的解析式为11y x =+,所以①错误;设y 2的解析式为y =kx +b ,把C (1,2),B (3,0)代入得:230k b k b +=⎧⎨+=⎩,解得:13k b =-⎧⎨=⎩,所以y 2的解析式为y =﹣x +3,当x =0时,y =﹣x +3=3,则A (0,3),则OA =OB ,所以②正确;∵A (0,3),C (1,2),B (3,0),∴ACBC ,∴12AC BC ==,所以③错误; 在11y x =+中,令y 1=0,得x =-1,∴D (-1,0),∴OD =1.∵OE =1,∴OD =OE ,∴∠EDO =45°.∵OA =OB =3,∴∠ABO =45°,∴∠DCB =180°-45°-45°=90°,∴DC ⊥AB ,∴12y y ⊥,故④正确;因为BD =3+1=4,而AB ,所以△AOB 与△BCD 不全等,所以⑤错误.故正确的有②④.故选A.【点睛】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;也考查了全等三角形的判定.二、填空题9.5x≥【解析】【分析】根据二次根式成立的条件可直接进行求解.【详解】解:由题意得:x-≥,解得:5x≥;50x≥.故答案为5【点睛】本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.10.A解析:3【解析】【分析】BD=1,可证△ABD是等由菱形的性质可得AB=AD,AC⊥BD,AO=CO,BO=DO=12边三角形,可得AB=BD=4,由勾股定理可求AO的长,即可求解.【详解】解:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,AO=CO,BO=DO=1BD=1cm,2∵∠BAD=60°,∴△ABD是等边三角形,∴AB=BD=2cm,∴223cm=-AO AB BO∴AC=3,∴菱形ABCD 的面积=12AC ×BD =2,故答案为:【点睛】本题主要考查了菱形的性质,勾股定理,解题的关键在于能够熟练掌握相关知识进行求解. 11.c a b >>;【解析】【分析】观察图形根据勾股定理分别计算出a 、b 、c ,根据二次根式的性质即可比较a 、b 、c 的大小.【详解】解:在图中,每个小正方形的边长都为1,由勾股定理可得:===a==b=c ∵>>∴c a b >>,故答案为:c a b >>.【点睛】本题考查了勾股定理和比较二次根式的大小,本题中正确求出a 、b 、c 的值是解题的关键.12.S 1=S 2【分析】由矩形的性质找出90D B ∠=∠=︒,结合对边互相平行即可证出四边形PEDH 和四边形PFBG 都是矩形,再根据矩形的性质可得出三对三角形的面积相等,由此即可得结果.【详解】解:∵四边形ABCD 为矩形,∴90D B ∠=∠=︒.又∵////EF AB CD ,////GH AD BC ,∴四边形PEDH 和四边形PFBG 都是矩形.∵//EF AB ,//HG BC ,四边形ABCD 为矩形,∴四边形AEPG 和四边形PHCF 也是矩形,∴ACD ABC SS =,PHC PCF S S =,AEP APG S S =, ∴ACD PHC AEP ABC PCF APG S S S S S S --=--,∴12S S故答案为:12S S .【点睛】本题考查了矩形的性质与判定,掌握矩形的性质与判定是解题的关键.13.32y x =--【解析】【分析】设一次函数解析式为y=kx+b ,先把(0,-2)代入得b=-2,再利用两直线平行的问题得到k=-3,即可得到一次函数解析式.【详解】解:设一次函数解析式为y=kx+b ,把(0,-2)代入得b=-2,∵直线y=kx+b 与直线y=2-3x 平行,∴k=-3,∴一次函数解析式为y=-3x-2.故答案为:y=-3x-2.【点睛】本题考查两直线相交或平行的问题:若两条直线是平行的关系,那么它们的自变量系数相同,即k 值相同.14.C解析:CB=BF ;BE ⊥CF ;∠EBF=60°;BD=BF 等(写出一个即可).【分析】根据邻边相等的平行四边形是菱形或对角线互相垂直的平行四边形是菱形进而判断即可.【详解】解:根据题意可得出:四边形CBFE 是平行四边形,当CB=BF 时,平行四边形CBFE 是菱形,当CB=BF ;BE ⊥CF ;∠EBF=60°;BD=BF 时,都可以得出四边形CBFE 为菱形. 故答案为:如:CB=BF ;BE ⊥CF ;∠EBF=60°;BD=BF 等.【点睛】此题主要考查了菱形的判定,关键是熟练掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.15.840【分析】结合题意根据最后一段图象可求得根据小王后来的速度,进而可求得小王原来的速度,再根据第一段图象可求得小张的速度,最后根据两人行完全程的时间相差4分钟可得方程,解方程即可求得答案.【解析:840【分析】结合题意根据最后一段图象可求得根据小王后来的速度,进而可求得小王原来的速度,再根据第一段图象可求得小张的速度,最后根据两人行完全程的时间相差4分钟可得方程,解方程即可求得答案.【详解】解:由题意可知:最后一段图象是小张到达书店后等待小王前往书店的图象,则小王后来的速度为:336÷4=84(米/分钟),∴小王原来的速度为:84÷(1+20%)=70(米/分钟),根据第一段图象可知:v 王-v 张=40÷4=10(米/分钟),∴小张的速度为:70-10=60(米/分钟),设学校到书店的距离为x 米, 由题意得:4448460x x ⎛⎫++-= ⎪⎝⎭, 解得:x =840,答:学校到书店的距离为840米,故答案为:840.【点睛】本题考查了函数图象的实际应用,行程问题的基本关系,一元一次方程的应用,有一定的难度,求出两人的速度是解题的关键. 16.【分析】先设,根据,,可得,,再根据,可得,进而得出方程,即可得到的长,可求得,再利用勾股定理可以,再用一次勾股定理即可算出.【详解】解:设,,,,,又为的中点,,由折叠可得,,解析:【分析】先设AE EF x ==,根据6DE =,1FG =,可得6AD x BC =+=,1EG x =+,再根据GEB GBE ∠=∠,可得EG BG =,进而得出方程612x x ++=,即可得到AE 的长,可求得EG BG =,再利用勾股定理可以BF ,再用一次勾股定理即可算出BE .【详解】解:设AE EF x ==,6DE =,1FG =,6AD x BC ∴=+=,1EG x =+,又G 为BC 的中点,1622x BG BC +∴==,由折叠可得,AEB GEB ∠=∠,由//AD BC ,可得AEB GBE ∠=∠,GEB GBE ∴∠=∠,EG BG ∴=,612x x +∴+=, 解得4x =,即4AE =,5EG BG EF FG ∴==+=,90BAE BFE ∠=∠=︒,BF ∴BE ∴=故答案是:【点睛】本题主要考查了折叠问题,勾股定理、三角全等、解题的关键是折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题17.(1)﹣2;(2)3+.【分析】(1)先化简零指数幂,绝对值,有理数的乘方,然后再计算;(2)先利用平方差公式,二次根式的除法运算法则计算乘除,最后算加减.【详解】解:(1)原式=1+﹣2解析:(12;(2)【分析】(1)先化简零指数幂,绝对值,有理数的乘方,然后再计算;(2)先利用平方差公式,二次根式的除法运算法则计算乘除,最后算加减.【详解】解:(1)原式=2﹣12;(2)22=6﹣=【点睛】本题考查二次根式的混合运算,零指数幂,掌握二次根式混合运算的运算顺序和计算法则及平方差公式(a +b )(a ﹣b )=a 2﹣b 2的结构是解题关键.18.绳索OA 的长为14.5尺.【分析】设绳索OA 的长为x 尺,根据题意知,可列出关于 的方程,即可求解.【详解】解:由题意可知: 尺,设绳索OA 的长为x 尺,根据题意得,解得.答:绳索OA 的解析:绳索OA 的长为14.5尺.【分析】设绳索OA 的长为x 尺,根据题意知,可列出关于x 的方程,即可求解.【详解】解:由题意可知:5A D '= 尺,设绳索OA 的长为x 尺,根据题意得()2221015x x ++-=, 解得14.5x =.答:绳索OA 的长为14.5尺.【点睛】本题主要考查了勾股定理的应用,明确题意,列出方程是解题的关键.19.(1)3;(2)①见解析;②C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2).【解析】【分析】(1)直接利用勾股定理求出AB 的长度即可;(2)①根据三角形ABC 的面积画解析:(1)2)①见解析;②C 1(2,﹣1),C 2(﹣1,2),C 3(﹣2,1),C 4(1,﹣2).【解析】【分析】(1)直接利用勾股定理求出AB 的长度即可;(2)①根据三角形ABC 的面积92画出对应的三角形即可; ②根据点C 的位置,写出点C 的坐标即可.【详解】解:(1)如图所示在Rt △ACB 中,∠P =90°,AP =3,BP =3 ∴AB ==(2)①如图所示Rt △ACB 中,∠C =90°,AC =3,BC =3 ∴119=33222ABC S AC BC =⨯⨯=△②C 1(2,﹣1),C 2(﹣1,2),C 3(﹣2,1),C 4(1,﹣2).满足条件的三角形如图所示.C 1(2,﹣1),C 2(﹣1,2),C 3(﹣2,1),C 4(1,﹣2).【点睛】本题主要考查了勾股定理,三角形的面积,点的坐标,解题的关键在于能够熟练掌握相关知识点进行求解.20.(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF=BD ,再由CF ∥DB ,即可得出结论; (2)由直角三角形斜边上的直线性质得CD=DB ,即解析:(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF =BD ,再由CF ∥DB ,即可得出结论;(2)由直角三角形斜边上的直线性质得CD =DB ,即可证平行四边形CDBF 是菱形.【详解】(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD ,∵E 是BC 中点,∴CE =BE ,在△CEF 和△BED 中,ECF EBD CE BECEF BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CEF ≌△BED (ASA ),∴CF =BD ,又∵CF ∥AB ,∴四边形CDBF 是平行四边形.(2)解:四边形CDBF 是菱形,理由如下:∵D 为AB 的中点,∠ACB =90°,∴CD =12AB =BD ,由(1)得:四边形CDBF 是平行四边形,∴平行四边形CDBF 是菱形.【点睛】本题考查了平行四边形的判定和性质、菱形的判定、全等三角形的判定和性质、直角三角形斜边上的中线性质等知识;熟练掌握平行四边形的判定与性质,证明△CEF ≌△BED 是解题的关键,属于中考常考题型. 21.(1);(2),证明见解析.【解析】【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即可猜想出第四个等式为44;(2)根据等式的变化,找出变化规律“n解析:(1144+=144;(2211n n n n ++=,证明见解析.【解析】【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即=414+=414;(2)根据等式的变化,找出变化规律=n 211n n n ++=”,再利用222112n n n n++=+()()开方即可证出结论成立. 【详解】(1)∵1+1=2;=212+=212;=313+=313;里面的数字分别为1、2、3,∴ 144+= 144.(21+1=2,212+=212313+=313=414+=414,…,∴= 211n n n n ++=.证明:等式左边==n 211n n n++==右边.=n 211n n n ++=成立. 【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律n 211n n n ++=”.解决该题型题目时,根据数值的变化找出变化规律是关键.22.(1)y=20x-300;(2)15【分析】(1)根据图象,用待定系数法即可求出函数的解析式;(2)根据解析式取y=0,求出对应的x 即可.【详解】解:(1)设y=kx+b ,代入(20,10解析:(1)y =20x -300;(2)15【分析】(1)根据图象,用待定系数法即可求出函数的解析式;(2)根据解析式取y =0,求出对应的x 即可.【详解】解:(1)设y=kx+b,代入(20,100),(30,300),得:1002030030k bk b=+⎧⎨=+⎩,解得:20300kb=⎧⎨=-⎩,∴y=20x-300;(2)取y=0,则20x-300=0,解得x=15,∴免费行李的最大质量为15kg.【点睛】本题主要考查一次函数的图形,关键是能根据图象用待定系数法求出函数的解析式,然后根据y的值即可求出x的值.23.(1)(2)(3)2或或4【分析】(1)由勾股定理可求出答案;(2)延长AF,过点D作射线AF的垂线,垂足为H,设AH=DH=x,在Rt△AHD中,得出x2+x2=42,解方程解析:(1)(2)(3)2或或4【分析】(1)由勾股定理可求出答案;(2)延长AF,过点D作射线AF的垂线,垂足为H,设AH=DH=x,在Rt△AHD中,得出x2+x2=42,解方程求出x即可得出答案;(3)分AF=DF,AF=AD,AD=DF三种情况,由正方形的性质及直角三角形的性质可得出答案.【详解】解:(1)当t=1时,AE=1,∵四边形AEFG是正方形,∴AG=FG=AE=1,∠G=90°,∴BF===,(2)如图1,延长AF,过点D作射线AF的垂线,垂足为H,∵四边形AGFE是正方形,∴AE=EF,∠AEF=90°,∴∠EAF=45°,∵DH⊥AH,∴∠AHD=90°,∠ADH=45°=∠EAF,∴AH=DH,设AH=DH=x,∵在Rt△AHD中,∠AHD=90°,∴x2+x2=42,解得x1=﹣2(舍去),x2=2,∴D、F两点之间的最小距离为2;(3)当AF=DF时,由(2)知,点F与点H重合,过H作HK⊥AD于K,如图2,∵AH=DH,HK⊥AD,∴AK==2,∴t=2.当AF=AD=4时,设AE=EF=x,∵在Rt△AEF中,∠AEF=90°,∴x2+x2=42,解得x1=﹣2(舍去),x2=2,∴AE=2,即t=2.当AD=DF=4时,点E与D重合,t=4,综上所述,t为2或2或4.【点睛】本题是四边形综合题,考查了勾股定理,正方形的性质,等腰三角形的性质等知识,解题的关键是熟练掌握正方形的性质,学会用分类讨论的思想思考问题.24.(1)y=x+4;(2)见解析;(3)存在,点N(﹣,0)或(,0).【解析】【分析】(1)根据题意证明△CHB≌△BOA(AAS),即可求解;(2)求出B、E、D的坐标分别为(-1,0)、解析:(1)y =13x+4;(2)见解析;(3)存在,点N (﹣463,0)或(343,0). 【解析】【分析】(1)根据题意证明△CHB ≌△BOA (AAS ),即可求解;(2)求出B 、E 、D 的坐标分别为(-1,0)、(0,12)、(1,-1),即可求解; (3)求出BC 表达式,将点P 代入,求出a 值,再根据AC 表达式求出M 点坐标,由S △BMC =12MB×y C =12×10×2=10,S △BPN =12S △BCM =5=12 NB×a=38NB 可求解. 【详解】解:(1)令x =0,则y =4,令y =0,则x =﹣2,则点A 、B 的坐标分别为:(0,4)、(﹣2,0),过点C 作CH ⊥x 轴于点H ,∵∠HCB+∠CBH =90°,∠CBH+∠ABO =90°,∴∠ABO =∠BCH ,∠CHB =∠BOA =90°,BC =BA ,在△CHB 和△BOA 中,===BCH ABO CHB BOA BC BA ∠∠∠∠⎧⎪⎨⎪⎩, ∴△CHB ≌△BOA (AAS ),∴BH =OA =4,CH =OB=2,∴ 点C (﹣6,2),将点A 、C 的坐标代入一次函数表达式:y= m x+ b 得:426b m b=⎧⎨=-+⎩, 解得:134m b ⎧=⎪⎨⎪=⎩, 故直线AC 的表达式为:y =13x+4;(2)同理可得直线CD 的表达式为:y =﹣12x ﹣1①,则点E (0,﹣1),直线AD 的表达式为:y =﹣3x+4②,联立①②并解得:x =2,即点D (2,﹣2),点B 、E 、D 的坐标分别为(﹣2,0)、(0,﹣1)、(2,﹣2),故点E 是BD 的中点,即BE =DE ;(3)将点BC 的坐标代入一次函数表达式并解得:直线BC 的表达式为:y =﹣12x-1,将点P (﹣72,a )代入直线BC 的表达式得:34a =, 直线AC 的表达式为:y =13x+4, 令y=0,则x=-12,则点M (﹣12,0),S △BMC =12MB×y C =12×10×2=10, S △BPN =12S △BCM =5=12NB×a=38NB , 解得:NB =403, 故点N (﹣463,0)或(343,0). 【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、求函数表达式、面积的计算等,综合性较强,理清题中条件关系,正确求出点的坐标是解题的关键. 25.(1)①证明见解析;②;(2);(3).【分析】(1)①由,推出,,推出四边形是平行四边形,再证明即可.②先证明,推出,延长即可解决问题.(2).只要证明是等边三角形即可.(3)结论:.如解析:(1)①证明见解析;②60EBF ∠=︒;(2)IH =;(3)222EG AG CE =+.【分析】(1)①由DOE BOF ∆≅∆,推出EO OF =,OB OD =,推出四边形EBFD 是平行四边形,再证明EB ED =即可.②先证明2ABD ADB ∠=∠,推出30ADB ∠=︒,延长即可解决问题.(2)IH =.只要证明IJF ∆是等边三角形即可.(3)结论:222EG AG CE =+.如图3中,将ADG ∆绕点D 逆时针旋转90︒得到DCM ∆,先证明DEG DEM ∆≅∆,再证明ECM ∆是直角三角形即可解决问题.【详解】(1)①证明:如图1中,四边形ABCD 是矩形,//AD BC ∴,OB OD =,EDO FBO ∴∠=∠,在DOE ∆和BOF ∆中,EDO FBO OD OBEOD BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, DOE BOF ∴∆≅∆,EO OF ∴=,OB OD =,∴四边形EBFD 是平行四边形,EF BD ⊥,OB OD =,EB ED ∴=,∴四边形EBFD 是菱形.②BE 平分ABD ∠,ABE EBD ∴∠=∠,EB ED =,EBD EDB ∴∠=∠,2ABD ADB ∴∠=∠,90ABD ADB ∠+∠=︒,30ADB ∴∠=︒,60ABD ∠=︒,30ABE EBO OBF ∴∠=∠=∠=︒,60EBF ∴∠=︒.(2)结论:3IH FH =.理由:如图2中,延长BE 到M ,使得EM EJ =,连接MJ .四边形EBFD 是菱形,60B ∠=︒,EB BF ED ∴==,//DE BF ,JDH FGH ∴∠=∠,在DHJ ∆和GHF ∆中,DHG GHF DH GHJDH FGH ∠=∠⎧⎪=⎨⎪∠=∠⎩, DHJ GHF ∴∆≅∆,DJ FG ∴=,JH HF =,EJ BG EM BI ∴===,BE IM BF ∴==,60MEJ B ∠=∠=︒,MEJ ∴∆是等边三角形,MJ EM NI ∴==,60M B ∠=∠=︒在BIF ∆和MJI ∆中,BI MJ B M BF IM =⎧⎪∠=∠⎨⎪=⎩, BIF MJI ∴∆≅∆,IJ IF ∴=,BFI MIJ ∠=∠,HJ HF =,IH JF ∴⊥,120BFI BIF ∠+∠=︒,120MIJ BIF ∴∠+∠=︒,60JIF ∴∠=︒,JIF ∴∆是等边三角形,在Rt IHF ∆中,90IHF ∠=︒,60IFH ∠=︒,30FIH ∴∠=︒, 3IH FH ∴=.(3)结论:222EG AG CE =+.理由:如图3中,将ADG ∆绕点D 逆时针旋转90︒得到DCM ∆,90FAD DEF ∠+∠=︒,AFED ∴四点共圆,45EDF DAE ∴∠=∠=︒,90ADC ∠=︒,45ADF EDC ∴∠+∠=︒,ADF CDM ∠=∠,45CDM CDE EDG ∴∠+∠=︒=∠,在DEM ∆和DEG ∆中,DE DE EDG EDM DG DM =⎧⎪∠=∠⎨⎪=⎩, DEG DEM ∴∆≅∆,GE EM ∴=,45DCM DAG ACD ∠=∠=∠=︒,AG CM =,90ECM ∴∠=︒222EC CM EM ∴+=,EG EM =,AG CM =,222GE AG CE ∴=+.【点睛】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.。
新人教版八年级数学下册期末考试及答案【完美版】
新人教版八年级数学下册期末考试及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知25523y x x=-+--,则2xy的值为()A.15-B.15C.152-D.1522.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-63.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=()A.105°B.115°C.125°D.135°5.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是( )A.7086480x yx y+=⎧⎨+=⎩B.7068480x yx y+=⎧⎨+=⎩C.4806870x yx y+=⎧⎨+=⎩D.4808670x yx y+=⎧⎨+=⎩6.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.187.若a=7+2、b=2﹣7,则a和b互为()A.倒数B.相反数C.负倒数D.有理化因式8.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+2()a b +的结果是________.2.方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于__________. 3.分解因式:3x -x=__________.4.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a ,b ,c ,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.5.如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E=________度.6.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数. (1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1)求证:CE =AD ;(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(3)若D 为AB 中点,则当∠A 的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.5.如图,矩形EFGH 的顶点E ,G 分别在菱形ABCD 的边AD ,BC 上,顶点F 、H 在菱形ABCD 的对角线BD 上.(1)求证:BG DE =;(2)若E 为AD 中点,2FH =,求菱形ABCD 的周长.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、D4、B5、A6、C7、D8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、3.3、x (x+1)(x -1)4、a+c5、:略6、40°三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2.3、(1)1;(2)m >2;(3)-2<2m -3n <184、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略5、(1)略;(2)8.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
八年级数学(下)期末考试试卷含答案
得分评卷人人八年级数学(下)期末考试试卷(全卷共五个大题,满分150分,考试时间100分钟)题号 一 二 三 四 五总分 总分人 复查人 得分友情提示:答题前先写好自己的学校、姓名、考号等信息;答题时,请你认真审题,做到先易后难;答题后,要注意检查.祝你成功! 一、选择题:(本大题共12个小题,每小题4分,共48分)每小题只有一个答案是正确的,请将正确选项的字母填在下列括号内.1.下列手机屏幕解锁图案中不是轴对称图形的是( )2.以下列各组线段为边,能组成三角形的是( )A .2 cm ,3 cm ,5 cmB .3 cm ,3 cm ,6 cmC .5 cm , 8 cm , 2 cmD .4 cm ,5 cm ,6 cm3.下列运算正确的是( )A . 235=x x x +B .()222=x y x y ++ C . 236=x x x ⋅ D . ()326=x x4.一枚一角硬币的直径约为0.022m ,用科学记数法表示为( )A .32.210m -⨯B .22.210m -⨯C .12.210m -⨯ D .32210m -⨯5.下列各式从左到右的变形是因式分解的是( )A .2)1(3222++=++x x xB .22))((y x y x y x -=-+ C .222()x xy y x y -+=- D .)(222y x y x -=-6.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知∠BAC =60° ,PA=6,则PE长是( )A .3B .4C .5D .67.已知△ABC 的三个内角满足关系:∠A+∠B=∠C ,则此三角形是( ) A .等边三角形 B .锐角三角形 C .直角三角形 D .钝角三角形8.“尊老、敬老”是中华民族的传统美德.重阳节当天,我区一中学 “善行文学社”的全体同学租一辆面包车前去“夕阳红”老年公寓看望那里的老年人面包车的租金为180元,出发时又增加了两名同学,结果每个同学比原来少花费了3元车费.若设“善行文学社”有x 人,则所列方程为( )A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=+ D .18018032x x-=-9.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1、P 2、P 3、P 4四个点中找出符合条件的点P ,则点P 有( )A . 1个B .2个C . 3个D . 4个10.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=( )A . 90°B . 100°C . 130°D . 180°11. 分式1x mx --中,当x m =时,下列结论正确的是( )A.分式的值为零B .分式无意义C .若1m ≠时,分式的值为零D .若1m =时,分式的值为零 12.如图所示,△ABC 为等边三角形,AQ=PQ ,PR=PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,现有①点P 在∠BAC 的平分线上; ②AS=AR ;③QP ∥AR ; ④△BRP ≌△QSP 四个结论.第10题图第12题图得分评卷人人• 则对四个结论判断正确的是( ).A .仅①和②正确B .仅②③正确C .仅①和③正确D .全部都正确二、填空题:(本大题6个小题,每小题4分,共24分)请将答案直接填写在题后的横线上.13.若点A (m ,7)与点B (8,n )关于x 轴对称,则m = . 14.因式分解:23aa -= .15.如图,∠ABC =∠DCB ,请补充一个条件: ,使△ABC ≌△DCB.(只填一个即可)16.如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若 △ABC 的面积为122cm ,则图中阴影部分的面积是____________2cm .17.如图,在△ABC 中,将△ABC 沿DE 折叠,使顶点C 落在△ABC 三边的垂直平分线的交点O 处,若BE=BO ,则∠BOE=____________度.18.如果记22()1x y f x x ==+,并且f (1)表示当1x =时y 的值,即f (1)=2211112=+;得分评卷人人得分评卷人人f (12)表示当12x =时y 的值,即f (12)=221()12151()2=+.那么111(1)(2)()(3)()(4)()234f f f f f f f ++++++1(2017)()2017f f +++= _.三、解答题:(本大题2个小题,19题10分,20题6分,共16分)下列各题解答时必须给出必要的演算过程或推理步骤.19.计算或化简(每小题5分,共10分)。
初二数学下册期末考试试卷及答案
专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长是()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是二次函数?()A. y = 2x² 3x + 1B. y = x² + 4C. y = 3x + 2D. y = 5x² 4x + 13. 在直角坐标系中,点(3, 4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 若一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的面积是()A. 60cm²B. 78cm²C. 84cm²D. 90cm²5. 下列哪个数是无理数?()A. √9B. √16C. √3D. √1二、判断题(每题1分,共5分)6. 若a > b,则a² > b²。
()7. 两个等腰直角三角形的面积一定相等。
()8. 一次函数的图像是一条直线。
()9. 二次函数的图像是一个抛物线。
()10. 两个负数相乘的结果是正数。
()三、填空题(每题1分,共5分)11. 若一个圆的半径为r,则这个圆的面积是______。
12. 一次函数y = 3x 5的图像与y轴的交点是______。
13. 二次函数y = x² 4x + 4的顶点坐标是______。
14. 若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的高是______。
15. 两个相同的数相乘,结果是这个数的______。
四、简答题(每题2分,共10分)16. 请简述勾股定理的内容。
17. 什么是等腰三角形?请给出一个例子。
18. 请解释一次函数的图像是一条直线的原理。
19. 什么是二次函数的顶点?如何找到它?20. 请解释无理数的概念,并给出一个例子。
五、应用题(每题2分,共10分)21. 一个长方形的长度是10cm,宽度是5cm,求这个长方形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数 学 试 卷
一﹑选择题(每小题4分,共40分,每小题只有一个正确答案)
1、下列运算中,正确的是( )
A .3
2
6
a a a =÷ B .222
2x y x y =⎪⎭
⎫
⎝⎛
C .
1=+++b
a b
b a a D .y x x xy x x +=+2
2 2、下列说法中,不正确...
的是( ) A .为了解一种灯泡的使用寿命,宜采用普查的方法
B .众数在一组数据中若存在,可以不唯一
C .方差反映了一组数据与其平均数的偏离程度
D .对于简单随机样本,可以用样本的方差去估计总体的方差 3、能判定四边形是平行四边形的条件是( ) A .一组对边平行,另一组对边相等 B .一组对边相等,一组邻角相等 C .一组对边平行,一组邻角相等 D .一组对边平行,一组对角相等
4、反比例函数k
y x
=
在第一象限的图象如图所示, 则k 的值可能是( )
A .1
B .2
C .3
D .4
5、在平面直角坐标系中,已知点A (0,2),B (32-,0),C (0,2-),D (32,0),则以这四个点为顶点的四边形ABCD 是( ) A .矩形
B .菱形
C .正方形
D .梯形
6、某校八年级(2)班的10名团员在“情系灾区献爱心”捐款活动 中,捐款情况如下(单位:元):10、8、12 、15、10、12、11、9、 10、13.则这组数据的( )
A .平均数是11
B .中位数是10
C .众数是10.5
D .方差是3.9
7、一个三角形三边的长分别为15cm ,20cm 和25cm ,则这个三角形最长边上的高为( )
A.15cm
B.20cm
C.25cm
D.12cm
8、已知,反比例函数的图像经过点M (1,1)和N(-2,1
2
-),则这个反比例函数
是( )
A.x y 1=
B.x y 1-=
C.x
y 2= D.x y 2-=
9、如图所示,有一张一个角为600的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是( )
600
A.邻边不等的矩形
B.等腰梯形
C.有一角是锐角的菱形
D.正方形
10、甲、乙两班举行跳绳比赛,参赛选手每分钟跳绳的次数经统计计算后填入下表:
某同学根据上表分析得出如下结论:①甲、乙两班学生跳绳成绩的平均水平相同,②乙班优秀的人数多于甲班优秀的人数(每分钟跳绳次数≥170为优秀),③甲班的成绩的波动情况比乙班的成绩的波动大。
上述结论正确的是( ) A. ①②③
B. ①②
C. ②③
D. ①③
二、填空题(每小题4分,共24分,将正确答案直接填在空格的横线上)
11、当x = 时,分式21
1
x x -+的值为零.
12、某种感冒病毒的直径为0.0000000031米,用科学记数法表示为 米.
13、随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:
13=甲x ,13=乙x ,5.72=甲
S ,6.212=乙S ,则小麦长势比较整齐的试验田是 (填“甲”或“乙”).
14、如图,
□ABCD 中,AE,CF 分别是∠BAD,∠BCD 的角平分线,请添加一个条件 使四边形AECF 为菱形.
15、若一个三角形的三边满足222c b a -=,则这个三角形是 . 16、如图,矩形ABCD 的对角线BD 过O 点 ,BC ∥x 轴,且A (2,-1),则经过C 点的反比例函数的解析式
为 .
A B
E C
F 14题 16题
三、解答题(每小题6分,共24分,写出详细的解题过程)
17、计算:
(1)(
)
()
2011
1
1931521--+-+--⎪⎭⎫ ⎝⎛-
(2)2411241111x x x
x
+++-+++
18、解分式方程: (1)x x x -+=-2223 (2)2
3118
339
x x x -=-+-
19、先化简,再求值:4
12)211(22-++÷+-x x x x ,其中3-=x
20、一个游泳池长48米,小方和小朱进行游泳比赛,从同一处(A 点)出发,小方平均速度为3
米/秒,小朱为3.1米/秒.但小朱一心想快,不看方向沿斜线(AC 方向)游,而小方直游(AB 方向),两人到达终点的位置相距14米.按各人的平均速度计算,谁先到达终点,为什么?
四、解答题(每小题10分,共40分,写出详细的解答过程)
21、观察下表所给出的三个数,,a b c 其中a
b c
3、4、5 222345+= 5、12、13 22251213+= 7、24、25 22272425+= 9、40、41
22294041+=
… …
21、b 、c
22221b c +=
(1) 观察各组数的共同点:(6分)
①各组数均满足 .
②最小数a 是 数,其余的两个数b 、c 是 的正整数; ③最小数a 的 等于另外两个数b 、c 的和.
(2)根据以上的观察,当21a =时,求b 、c 的值.(4分)
22、如图所示,铁路路基横断面为等腰梯形ABCD ,斜坡BC 的坡度3:4()BF
i i CF
==
,路基高
3BF cm =,底CD 宽为18cm ,求路基顶AB 的宽 。
23、张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?
24、已知1y 是关于x 的正比例函数,2y 是关于x 的反比例函数,并且当自变量1x =时,12y y =;当自变量2x =时,129y y -=,求1y 和2y 的表达式.
五、解答题(25题10分,26题12分,共22分,写出详细的解题过程)
A F
B C
D
25、如图,在ABC △中,D 是BC 边上的一点,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于F ,且AF DC =,连接CF . (1)求证:D 是BC 的中点;
(2)如果AB AC =,试猜测四边形ADCF 的形状,并证明你的结论.
26、如图,在平面直角坐标系中,直线AB 与y 轴和x 轴分别交于点A 、点B ,与反比例函数m
y x
=
在第一象限的图象交于点C(1,6)、点D(3,n).过点C 作CE ⊥y 轴于E ,过点D 作DF ⊥x 轴于F .
(1)求m ,n 的值;
(2)求直线AB 的函数解析式; (3)求:△OCD 的面积。
八年级数学答案
B A F
C E D
一、选择题(每题4分,共40分)
C 、A 、
D 、C 、B A 、D 、A 、D 、A 二、填空题(每题4分,共24分)
11、1x = 12、93.110-⨯ 13、甲
14、AF AE = 15、直角三角形 16、2
y x
=-
三、解答题(每题6分,共24分)
17、(1)8 (2)8
8
1x -
18、(1)7x = (2)无解
19、21
x x -+ 52
20、小方先达到终点。
四、解答题(每题10分,共40分)
21、(1)①222a b c += ②奇、连续 ③平方 (2)220b =,221c = 22、10cm
23、解:设张老师每小时走x 千米,则李老师每小时走(1)x -千米. 依题意可列:
15151
12
x x -=- 解得:6x = 15x -=千米
答:张老师每小时走6千米,李老师每小时走5千米.
24、解:设11y k x =,22k
y x
=其中10k ≠,20k ≠
依题意可列:122
1292k k k k =⎧⎪
⎨-=⎪⎩ 解得:126
6k k =⎧⎨=⎩
即:16y x =,26
y x
=
五、解答题 25、(1)证明:∵E 是AD 的中点 ∴AE DE = ∵AF ∥BC
∴FAE BDE ∠=∠ 在AEF ∆和DEB ∆中
FAE BDE AE DE AEF DEB ∠=∠⎧⎪
=⎨⎪∠=∠⎩
∴AEF ∆≌DEB ∆()ASA ∴AF DB = 又∵AF DC = ∴D 是BC 的中点
(2)解:四边形ADCF 是矩形,理由如下: ∵AF ∥DC 且AF DC =
∴四边形ADCF 是平行四边形 ∵AB AC =,D 是BC 的中点 ∴AD BC ⊥ ∴90ADC ︒
∠= ∴ADCF 是矩形
26、解:(1)由图知:(1,6)C 在反比例函数图像上 ∴166m =⋅=
同理 (3,)D n 在反比例函数图像上 ∴36n ⋅= ∴2n =
(2)设:(0)AB y kx b k =+≠
由(1,6),(3,2)C D 在其图像上,得
623k b
k b =+⎧⎨
=+⎩
解得:28k b =-⎧⎨=⎩
∴:28AB y x =-+
(3)由28y x =-+得(0,8),(4,0)A B ∴1
1
1
4816,814,4242
2
2
AOB
ACO
DOB
S S S =⨯⨯==⨯⨯==⨯⨯= ∴16448OCD
S =--=
E
B
D
C
F
A。