空间中向量的概念和运算-课件
空间向量基本定理--课件(共25张PPT)
基底.
3.单位正交基底:如果空间的一个基底中的三个基向量两两垂直,
且长度都为1,那么这个基底叫做单位正交基底,常用 ,,
表示.
由空间向量基本定理可知,对空间中的任意向量a,均可以分解
为三个向量xi,yj,zk,使a=xi+yj+zk,像这样,把一个空间向量
1 2
1
A. a- b+ c
2 3
2
1 1 1
C. a+ b- c
2 2 2
2 1
1
B.- a+ b+ c
3 2
2
2 2 1
D. a+ b- c
3 3 2
答案:B
1
2
2
1
1
解析:显然 = − = 2 ( + )-3 =-3a+2b+2c.
探究一
探究二
探究三
当堂检测
应用空间向量基本定理证明线线位置关系
解析:只有不共面的三个向量才能作为一个基底,在三棱柱中,
,,1 不共面,可作为基底。
激趣诱思
知识点拨
微判断
判断下列说法是否正确,正确的在后面的括号内打“√”,错误
的打“×”.
(1)空间向量的基底是唯一的.(
)
(2)若a,b,c是空间向量的一个基底,则a,b,c均为非零向
量.(
)
(3)已知A,B,M,N是空间四点,若, , 不能构成空间的
=
1 1 1
1
+ - · --
2 2 2
3
2 √10
√3× 3
=
人教课标版《空间向量及其运算》PPT课件1
2
2 22
又 NC 1 NC
CC
1
1 2
BC
AA 1
1 AD 2
AA
1
1c 2
a,
MP
NC
1
(1 2
a
1 2
b
c)
(a
1 c) 2
3 a 1 b 3 c. 222
探究提高 用已知向量来表示未知向量,一定要结 合图形,以图形为指导是解题的关键.要正确理解 向量加法、减法与数乘运算的几何意义.首尾相接 的若干向量之和,等于由起始向量的始点指向末 尾向量的终点的向量,我们可把这个法则称为向 量加法的多边形法则.在立体几何中要灵活应用三 角形法则,向量加法的平行四边形法则在空间仍 然成立.
共线
或重合 ,则称这些向量叫做共线向量或平行向量 ,
向量
a平行于b记作
a∥b
共面 向量
平行于同一 平面 的向量叫做共面向量
二、空间向量中的有关定理
定理
内容
定 理
对于空间任意两个向量a,b,a∥b的充
要条件是存在实数λ,使 a=λb (b≠0).
如图所示,点P在l上的充要条
共线 向量
件是:
①其中
定理 推 a叫做直线l的方向向量,t∈R,
三、向量的线性运算 1.空间向量的加法和减法 类似于平面向量,我们可以定义空间向量的加法和 减法运算(如图):
OAOC
D
CO AO
2.空间向量的数乘
实数λ与空间向量a的乘积 λa 仍然是一个向量,
称为
数乘 .
当λ>0时,λa与a方向 相同
;当λ<0时,
λa与a方向
相反 ;λa的长度是a的长度的|λ|
空间向量及其运算课件 课件
x
y
x1 y1
2
x2 y2
2
空间向量
空间向量的坐标运算:
a (x1, y1, z1),b (x2 , y2 , z2 )
a b (x1 x2 , y1 y2 , z1 z2 );
a (x1, y1, z1), R;
空间向量
空间向量的夹角:
a (x1, y1, z1),b (x2 , y2 , z2 ) cos a,b a • b
| a || b |
x1x2 y1 y2 z1z2
x12 y12 z12 x22 y22 z22
垂直与平行:
a (x1, y1, z1),b (x2 , y2 , z2 ) a // b x1 y1 z1 (?)
(4)已知不共线的三点A、B、C,对平面 ABC外的任意一点O,若 OG 1 (OA OB OC) 则G是三角形ABC的重心 3
以上命题中,正确的是__________
已知三棱锥O—ABC中,G为△ABC的重心,OA=a,OB=b, OC=c,试用a , b , c 来表示OG.
(1)若AD是△ABC的中线,则有
平面的向量参数方程:
A, B,C是不共线的三点,P 平面ABC
存在唯一的实数对x, y,使 AP x
AB yAC
存在唯一的实数对x, y,使
OP (1 x y) OA yOC
存在唯一的实数对x, y, z
(x y z 1),使 OP x OA
yOB zOC
空间向量及其运算
• 空间向量的概念、表示、相等关系。 • 空间向量的加法、减法、数乘向量 • 加法交换律 • 加法结合律 • 数乘分配律
1.2 空间向量基本定理 课件(49张)
情
课
景 导
第一章 空间向量与立体几何
堂 小
学
结
·
探
提
新
素
知
1.2 空间向量基本定理
养
合
作
课
探
时
究
分
层
释
作
疑
业
难
·
返 首 页
·
情
景
学习目标
课
核心素养
堂
导 学
1.了解空间向量基本定理及其意义.
1.通过基底概念的学习,培
小 结
·
探
提
新 2.掌握空间向量的正交分解.(难点) 养学生数学抽象的核心素养. 素
提 素 养
合 作
C.D→1A1,D→1C1,D→1D
D.A→C1,A→1C,C→C1
课
探
时
究 释
C
[由题意知,
→ D1A1
,
→ D1C1
,
→ D1D
不共面,可以作为空间向量
分 层 作
疑
业
难 的一个基底.]
·
返 首 页
·
情
课
景 导
4.已知空间的一个基底{a,b,c},m=a-b+c,n=xa+yb
堂 小
导
小
学
(2)当基底确定后,空间向量基本定理中实数组(x,y,z)是否唯 结
·
探
提
新
素
知 一?
养
合 作
[提示] (1)不能.因为0与任意一个非零向量共线,与任意两个 课
探
时
究 非零向量共面.
分 层
释
作
疑 难
(2)唯一确定.
高中数学新湘教版选修2-1 空间中向量的概念和运算
3.1空间中向量的概念和运算第一课时 空间中向量的概念和线性运算[读教材·填要点]1.向量的概念既有大小又有方向的量称为向量. 2.用有向线段表示向量要表示向量a ,可以从任意一点A 出发作有向量线段AB ,使AB 的方向与a 相同,长度|AB |等于a 的模,则有向线段AB 表示向量a ,记为a =AB ―→.3.空间向量加法的运算律 (1)a +b =b +a .(加法交换律)(2)(a +b )+c =a +(b +c ).(加法结合律) 4.向量与实数相乘(1)向量与实数相乘:任何一个向量a 都可以看作某个平面上的向量,它与实数λ相乘可以按照平面向量与实数相乘的法则进行.(2)①λ(a +b )=λa +λb .(对向量加法的分配律) ②(λ1+λ2)a =λ1a +λ2a .(对实数加法的分配律)[小问题·大思维]1.空间向量的定义及表示方法,同平面向量的定义及表示方法有区别吗? 提示:空间向量与平面向量没有本质区别,定义及表示方法都一样. 2.在空间中,所有单位向量平移到同一起点后,终点轨迹是什么图形?提示:因为单位向量的模均等于1,那么当所有向量移到同一起点后,终点轨迹是一个球面.3.空间两向量的加减法与平面内两向量的加减法完全相同吗?提示:因为空间中任意两个向量均可平移到同一平面内,所以空间向量与平面向量均可用三角形或平行四边形法则,是相同的.4.两个向量a ,b 共线是两个向量共面的什么条件?提示:a ,b 共线时, 这两个向量一定共面;若a 与b 共面,a 与b 所在的直线可能相交,所以a 与b 共线是a 与b 共面的充分不必要条件.已知ABCD 为正方形,P 是ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形ABCD 的中心O .Q 是CD 的中点,求下列各式中x ,y 的值:(1)O Q ―→=P Q ―→+x PC ―→+y PA ―→; (2)PA ―→=x PO ―→+y P Q ―→+PD ―→. [自主解答]如图,(1)∵O Q ―→=P Q ―→-PO ―→ =P Q ―→-12(PA ―→+PC ―→)=P Q ―→-12PA ―→-12PC ―→,∴x =y =-12.(2)∵PA ―→+PC ―→=2PO ―→,∴PA ―→=2PO ―→-PC ―→. 又∵PC ―→+PD ―→=2P Q ―→,∴PC ―→=2P Q ―→-PD ―→.从而有PA ―→=2PO ―→-(2P Q ―→-PD ―→)=2PO ―→-2P Q ―→+PD ―→. ∴x =2,y =-2.本例中,若P Q ―→=x BA ―→+y BC ―→+z BP ―→,则x ,y ,z 为何值?解:∵P Q ―→=PB ―→+BC ―→+C Q ―→=-BP ―→+BC ―→+12CD ―→=-BP ―→+BC ―→+12BA ―→=12BA ―→+BC ―→-BP ―→,∴x =12,y =1,z =-1.利用多边形法则是处理此类问题的基本技巧,一般地,可以找到的封闭图形不是唯一的,但无论哪一种途径,结果应是唯一的.应用向量的加减法法则和数乘运算表示向量是向量在几何中应用的前提,一定要熟练掌握.1.如图所示,在三棱柱ABC -A 1B 1C 1中,M 是BB 1的中点,化简下列各式,并在图中标出化简得到的向量:(1) CB ―→+BA 1―→; (2) AC ―→+CB ―→+12AA 1―→;(3)AA 1―→-AC ―→-CB ―→. 解:(1)CB ―→+BA 1―→=CA 1―→.(2)因为M 是BB 1的中点, 所以BM ―→=12BB 1―→.又AA 1―→=BB 1―→,所以AC ―→+CB ―→+12AA 1―→=AB ―→+BM ―→=AM ―→.(3)AA 1―→-AC ―→-CB ―→=CA 1―→-CB ―→=BA 1―→. 向量CA 1―→,AM ―→,BA 1―→如图所示.空间四边形ABCD 中,E ,H 分别是AB ,AD 的中点,F ,G 分别在边CB ,CD 上,且CF ―→=23CB ―→, CG ―→=23CD ―→.判断EH ―→与FG ―→是否共线?若共线,并判断四边形EFGH 的形状.[自主解答] 根据题意,∵EH ―→=AH ―→-AE ―→, BD ―→=AD ―→-AB ―→, 又∵AH ―→=12AD ―→,∴AE ―→=12AB ―→.∴EH ―→=12BD ―→.①∵FG ―→=CG ―→-CF ―→,BD ―→=CD ―→-CB ―→, 又∵CG ―→=23CD ―→,CF ―→=23CB ―→,∴FG ―→=23(CD ―→-CB ―→)=23BD ―→.②由①②得,EH ―→=34FG ―→.∴EH ―→与FG ―→共线.∴EH ∥FG ―→,且|EH ―→|≠|FG ―→|. 又∵点F 不在直线EH 上, ∴EH ∥FG 且|EH |≠|FG |. ∴四边形EFGH 为梯形.判断空间图形中两个向量共线的步骤为: (1)作出空间图形;(2)结合空间图形,充分利用空间向量运算法则,用空间中的向量表示a 与b ; (3)化简得出a =xb ,从而得出a ∥b ,即a 与b 共线.本例中,如果F ,G 分别是边CB ,CD 的中点,你能判断出EFGH 是什么四边形吗? 解:若F ,G 分别是边BC ,CD 的中点, ∵EH ―→=AH ―→-AE ―→,BD ―→=AD ―→-AB ―→, AH ―→=12AD ―→,AE ―→=12AB ―→,∴EH ―→=12BD ―→.①∵FG ―→=CG ―→-CF ―→,BD ―→=CD ―→-CB ―→, 又∵CG ―→=12CD ―→,CF ―→=12CB ―→,∴FG ―→=12(CD ―→-CB ―→)=12BD ―→.②由①②,得EH ―→=FG ―→, ∴EH ―→∥FG ―→且|EH ―→|=|FG ―→|. 又∵点F 不在直线EH 上, ∴EH ∥FG 且|EH |=|FG |. ∴四边形EFGH 是平行四边形.2.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且 A 1E ―→=2ED 1―→,F 在对角线A 1C 上,且A 1F ―→=23FC ―→.求证:E ,F ,B 三点共线.证明:设AB ―→=a ,AD ―→=b ,AA 1―→=c . ∵A 1E ―→=2ED 1―→,A 1F ―→=23FC ―→,∴A 1E ―→=23A 1D 1―→,A 1F ―→=25A 1C ―→.∴A 1E ―→=23AD ―→=23b ,A 1F ―→=25(AC ―→-AA 1―→)=25(AB ―→+AD ―→-AA 1―→) =25a +25b -25c . ∴EF ―→=A 1F ―→-A 1E ―→ =25a -415b -25c =25⎝⎛⎭⎫a -23b -c . 又EB ―→=EA 1―→+A 1A ―→+AB ―→=-23b -c +a=a -23b -c ,∴EF ―→=25EB ―→.所以E ,F ,B 三点共线.已知A ,B ,C 三点不共线,平面ABC 外一点M 满足OM ―→=13OA ―→+13OB ―→+13OC ―→.(1)判断MA ―→, MB ―→, MC ―→三个向量是否共面; (2)判断M 是否在平面ABC 内.[自主解答] (1)∵OA ―→+OB ―→+OC ―→=3OM ―→,∴OA ―→-OM ―→=(OM ―→-OB ―→)+(OM ―→-OC ―→)=BM ―→+CM ―→. ∴MA ―→=BM ―→+CM ―→=-MB ―→-MC ―→. ∴向量MA ―→,MB ―→,MC ―→共面.(2)由(1)向量MA ―→,MB ―→,MC ―→共面,而它们有共同的起点M ,且A ,B ,C 三点不共线, ∴M ,A ,B ,C 共面,即M 在平面ABC 内.利用向量法解决向量共面问题,关键是熟练的进行向量的表示,恰当应用向量共面的充要条件.向量共面的充要条件的实质是:共面的四点中所形成的两个不共线的向量一定可以表示其他向量,对于向量共面的充要条件,不仅会正用,也要能够逆用它求参数的值.3.已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,求证:(1)E ,F ,G ,H 四点共面. (2)BD ∥平面EFGH . 证明:如图,连接EG ,BG .(1)因为EG ―→=EB ―→+BG ―→=EB ―→+12(BC ―→+BD ―→)=EB ―→+BF ―→+EH ―→=EF ―→+EH ―→,由向量共面的充要条件知:E ,F ,G ,H 四点共面.(2)因为EH ―→=AH ―→-AE ―→=12AD ―→-12AB ―→=12BD ―→,所以EH ∥BD .又EH⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .解题高手 妙解题 什么是智慧,智慧就是简单、高效、不走弯路如图,已知斜三棱柱ABC -A ′B ′C ′中,点M ,N 分别在面对角线AC ′,棱BC 上,且AM =kAC ′,BN =kBC (0<k ≤1).求证:MN ∥平面ABB ′A ′.[巧思] 要证明MN ∥平面ABB ′A ′,只要证明向量MN ―→可以用平面ABB ′A ′内的两个不共线的向量线性表示即可,但要注意指明MN 不在平面ABB ′A ′内.[妙解] 因为M 在AC ′上,且AM =kAC ′, 所以AM ―→=kAC ′―→=k AC ―→+kAA ′―→,又AN ―→=AB ―→+BN ―→=AB ―→+k BC ―→=AB ―→+k (AC ―→-AB ―→)=(1-k )AB ―→+k AC ―→, 所以MN ―→=AN ―→-AM ―→=(1-k )AB ―→+k AC ―→-k AC ―→-kAA ′―→=(1-k )AB ―→-kAA ′―→. 因为AB ―→与AA ′―→不共线,由共面向量定理,可知MN ―→,AB ―→,AA ′―→共面. 因为0<k ≤1,所以MN ⊄平面ABB ′A ′, 所以MN ∥平面ABB ′A ′.1.设有四边形ABCD ,O 为空间任意一点,且AO ―→+OB ―→=DO ―→+OC ―→,则四边形ABCD 是( )A .平行四边形B .空间四边形C .等腰梯形D .矩形解析:∵AO ―→+OB ―→=DO ―→+OC ―→, ∴AB ―→=DC ―→.∴AB ―→∥DC ―→且|AB ―→|=|DC ―→|. ∴四边形ABCD 为平行四边形. 答案:A2.已知向量AB ―→,AC ―→,BC ―→满足|AB ―→|=|AC ―→|+|BC ―→|,则( ) A .AB ―→=AC ―→+BC ―→ B .AB ―→=-AC ―→-BC ―→ C .AC ―→与BC ―→同向D .AC ―→与CB ―→同向 解析:由条件可知,C 在线段AB 上,故D 正确. 答案:D3.在正方体ABCD -A 1B 1C 1D 1中,下列各式: ①(AB ―→+BC ―→)+CC 1―→;②(AA 1―→+A 1D 1―→)+D 1C 1―→; ③(AB ―→+BB 1―→)+B 1C 1―→;④(AA 1―→+A 1B 1―→)+B 1C 1―→中,运算结果为向量AC 1―→的共有( ) A .1个 B .2个 C .3个D .4个解析:①(AB ―→+BC ―→)+CC 1―→=AC ―→+CC 1―→=AC 1―→; ②(AA 1―→+A 1D 1―→)+D 1C 1―→=AD 1―→+D 1C 1―→=AC 1―→; ③(AB ―→+BB 1―→)+B 1C 1―→=AB 1―→+B 1C 1―→=AC 1―→; ④(AA 1―→+A 1B 1―→)+B 1C 1―→=AB 1―→+B 1C 1―→=AC 1―→. 答案:D4.对于空间中任意四点A ,B ,C ,D 都有DA ―→+CD ―→-CB ―→等于________. 解析:由向量加(减)法的三角形法则可知DA ―→+CD ―→-CB ―→=DA ―→+BD ―→=BA ―→. 答案:BA ―→5.已知正方体ABCD -A ′B ′C ′D ′,则下列三个式子中: ①AB ―→-CB ―→=AC ―→; ②AA ′―→=CC ′―→;③AB ―→+BB ′―→+BC ―→+C ′C ―→=AC ′―→. 其中正确的有________.解析:①AB ―→-CB ―→=AB ―→+BC ―→=AC ―→,正确;②显然正确;③AB ―→+BB ′―→+BC ―→+C ′C ―→=(AB ―→+BC ―→)+(BB ′―→+C ′C ―→)=AC ―→+0≠AC ′―→,错误.答案:①②6.如图,在直四棱柱ABCD -A1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB =4,CD =2,E ,E 1,F 分别是棱AD ,AA 1,AB 的中点.证明:直线EE 1∥平面FCC 1.证明:由题意知AB ―→=2DC ―→,∵F 是AB 的中点, ∴AF ―→=12AB ―→=DC ―→,∴四边形AFCD 是平行四边形,∴AD ―→=FC ―→.∵E ,E 1分别是AD ,AA 1的中点,∴EE 1―→=AE 1―→-AE ―→=12AA 1―→-12AD ―→=12CC 1―→-12FC ―→,又CC 1―→与FC ―→不共线,根据共面向量定理可知EE 1―→,CC 1―→,FC ―→共面. ∵EE 1不在平面FCC 1内, ∴直线EE 1∥平面FCC 1.一、选择题1.已知空间四边形ABCD 中,G 为CD 的中点,则AB ―→+12(BD ―→+BC ―→)等于( )A . AG ―→B .CG ―→C .BC ―→D.12BC ―→ 解析:AB ―→+12(BD ―→+BC ―→)=AB ―→+12×(2BG ―→)=AB ―→+BG ―→=AG ―→.答案:A2.如图所示空间四边形ABCD ,连接AC ,BD ,设M ,G 分别是BC ,CD 的中点,则MG ―→-AB ―→+AD ―→等于( )A.32 DB ―→ B .3MG ―→ C .3GM ―→D .2MG ―→解析:MG ―→-AB ―→+AD ―→=MG ―→-(AB ―→-AD ―→) =MG ―→-DB ―→=MG ―→+BD ―→ =MG ―→+2MG ―→=3MG ―→. 答案:B3.给出下列命题:①若A ,B ,C ,D 是空间任意四点,则有AB ―→+BC ―→+CD ―→+DA ―→=0; ②|a |-|b |=|a +b |是a ,b 共线的充要条件; ③若AB ―→,CD ―→共线,则AB ∥CD ;④对空间任意一点O 与不共线的三点A ,B ,C ,若OP ―→=x OA ―→+y OB ―→+z OC ―→(其中x ,y ,z ∈R),则P ,A ,B ,C 四点共面.其中不正确命题的个数是( ) A .1 B .2 C .3D .4解析:显然①正确;若a ,b 共线,则|a |+|b |=|a +b |或|a +b |=||a |-|b ||,故②错误;若AB ―→,CD ―→共线,则直线AB ,CD 可能重合,故③错误;只有当x +y +z =1时,P ,A ,B ,C 四点才共面,故④错误.故选C.答案:C4.已知两非零向量e 1,e 2不共线,设a =λe 1+μe 2(λ,μ∈R 且λ2+μ2≠0),则( ) A .a ∥e 1B .a ∥e 2C .a 与e 1,e 2共面D .以上三种情况均有可能解析:当λ=0,μ≠0时,a =μe 2,则a ∥e 2; 当λ≠0,μ=0时,a =λe 1,则a ∥e 1; 当λ≠0,μ≠0时,a 与e 1,e 2共面. 答案:D 二、填空题5.化简:AB ―→-AC ―→+BC ―→-BD ―→-DA ―→=________. 解析:原式=(AB ―→-AC ―→)+(BC ―→-BD ―→)-DA ―→=CB ―→+DC ―→-DA ―→=DB ―→-DA ―→=AB ―→. 答案:AB ―→6.设e 1,e 2是空间两个不共线的向量,已知AB ―→=e 1+ke 2,BC ―→=5e 1+4e 2,DC ―→=-e 1-2e 2,且A ,B ,D 三点共线,则实数k 的值是________.解析:∵BC ―→=5e 1+4e 2,DC ―→=-e 1-2e 2,∴BD ―→=BC ―→+CD ―→=(5e 1+4e 2)+(e 1+2e 2)=6e 1+6e 2, ∵A ,B ,D 三点共线,∴AB ―→=λBD ―→,∴e 1+ke 2=λ(6e 1+6e 2),∵e 1,e 2是不共线向量,∴⎩⎪⎨⎪⎧1=6λ,k =6λ,∴k =1.答案:17.如图,已知空间四边形ABCD 中,AB ―→=a -2c ,CD ―→=5a +6b -8c ,对角线AC ,BD 的中点分别为E ,F ,则EF ―→=________(用向量a ,b ,c 表示).解析:设G 为BC 的中点, 连接EG ,FG ,则EF ―→=EG ―→+GF ―→ =12AB ―→+12CD ―→ =12(a -2c )+12(5a +6b -8c ) =3a +3b -5c . 答案:3a +3b -5c8.在空间四边形OABC 中,OA ―→=a ,OB ―→=b ,OC ―→=c ,点M 在OA 上,且OM =2MA ,N 为BC 的中点,给出以下向量:①3a -4b +3c ;②-4a +3b +3c ;③3a +3b -4c ; ④43a -b -c . 其中与MN ―→平行的向量是________(只填相应序号即可).解析:由已知得MN ―→=ON ―→-OM ―→=12(OB ―→+OC ―→)-23OA ―→=-23a +12b +12c .所以MN ―→=16(-4a +3b +3c )=-12⎝⎛⎭⎫43a -b -c ,故②④适合. 答案:②④ 三、解答题9.如图,H 为四棱锥P -ABCD 的棱PC 的三等分点,且PH =12HC ,点G 在AH 上,AG =mAH .四边形ABCD 为平行四边形.若G ,B ,P ,D 四点共面,求实数m 的值.解:连接BD ,BG ,∵AB ―→=PB ―→-PA ―→ 且 AB ―→=DC ―→, ∴DC ―→=PB ―→-PA ―→. ∵PC ―→=PD ―→+DC ―→, ∴PC ―→=PD ―→+PB ―→-PA ―→ =-PA ―→+PB ―→+PD ―→. ∵PH HC =12,∴PH ―→=13PC ―→=13(-PA ―→+PB ―→+PD ―→)=-13PA ―→+13PB ―→+13PD .又∵AH ―→=PH ―→-PA ―→, ∴AH ―→=-43PA ―→+13PB ―→+13PD ―→.∵AGAH =m ,∴AG ―→=m AH ―→=-4m 3PA ―→+m 3PB ―→+m 3PD ―→.∵BG ―→=-AB ―→+AG ―→=PA ―→-PB ―→+AG ―→, ∴BG ―→=⎝⎛⎭⎫1-4m 3PA ―→+⎝⎛⎭⎫m 3-1PB ―→+m 3PD ―→. 又∵B ,G ,P ,D 四点共面,∴1-4m 3=0,∴m =34.10.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为DD 1和BB 1的中点.(1)证明:四边形AEC 1F 是平行四边形; (2)试判断A 1D 1是否平行于平面AEC 1F .解:(1)证明:∵E ,F 分别为DD 1和BB 1的中点, ∴AE ―→=AD ―→+DE ―→=AD ―→+12DD 1―→,FC 1―→=FB 1―→+B 1C 1―→=12BB 1―→+B 1C 1―→.又AD ―→=B 1C 1―→,DD 1―→=BB 1―→, ∴AE ―→=FC 1―→,即AE 綊FC 1, ∴四边形AEC 1F 是平行四边形.(2)设A 1D 1平行于平面AEC 1F ,则存在x ,y ,使得A 1D 1―→=x AE ―→+y AF ―→,又AE ―→=AD ―→+ 12DD 1―→,AF ―→=AB ―→+BF ―→=AB ―→+12BB 1―→, ∴A 1D 1―→=x (AD ―→+12DD 1―→)+y (AB ―→+12BB 1―→)即(x -1)A 1D 1―→+y AB ―→+12(x +y )BB 1―→=0.∵A 1D 1―→,AB ―→,BB 1―→不共面,∴不存在实数x ,y 使得上式成立,故不存在实数x ,y 可以使得A 1D 1―→=x AE ―→+y AF ―→,∴A1D1不平行于平面AEC1F.第二课时空间向量的数量积[读教材·填要点]空间向量的数量积(1)定义:已知两个非零向量a,b,则|a||b|cos〈a,b〉叫作a,b的数量积,记作a·b. 即a·b=|a||b|cos〈a,b〉.(2)运算律:①(λa)·b=λ(a·b);②交换律:a·b=b·a;③分配律:a·(b+c)=a·b+a·c.(3)数量积的性质:[小问题·大思维]1.已知三个非空向量a,b,c,若a·b=a·c,那么b=c成立吗?提示:不一定有b=c.当a⊥b,a⊥c时,a·b=a·c=0,此时不一定有b=c.2.已知向量a,b,对于|a·b|=|a|·|b|成立吗?提示:|a·b|=|a||b||cos〈a,b〉|≤|a||b|.∴当a与b共线时,|a·b|=|a||b|,否则不成立.如图所示,在棱长为1的正四面体ABCD 中,E ,F 分别是AB ,AD 的中点,求值:(1)EF ―→·BA ―→; (2)EF ―→·BD ―→; (3)EF ―→·DC ―→; (4)AB ―→·CD ―→.[自主解答] (1)EF ―→·BA ―→=12BD ―→·BA ―→=12|BD ―→||BA ―→|·cos 〈BD ―→,BA ―→〉 =12cos 60°=14. (2)EF ―→·BD ―→=12BD ―→·BD ―→=12|BD ―→|2=12.(3)EF ―→·DC ―→=12BD ―→·DC ―→=12|BD ―→|·|DC ―→|cos 〈BD ―→,DC ―→〉=12cos 120°=-14.(4)AB ―→·CD ―→=AB ―→·(AD ―→-AC ―→)=AB ―→·AD ―→-AB ―→·AC ―→=|AB ―→||AD ―→|cos 〈AB ―→,AD ―→〉-|AB ―→||AC ―→|cos 〈AB ―→,AC ―→〉=cos 60°-cos 60°=0.空间向量数量积的计算要充分利用向量所在的图形,巧妙地进行向量的分解与合成,分解时要充分利用图形的特点以及其含有的特殊向量,这里的特殊向量主要指具有特殊夹角或已知模的向量.1.已知a =3p -2q ,b =p +q ,p 和q 是相互垂直的单位向量,则a ·b =( ) A .1 B .2 C .3D .4解析:∵p ⊥q 且|p |=|q |=1,∴a ·b =(3p -2q )·(p +q )=3p 2+p ·q -2q 2=3+0-2=1. 答案:A2.已知正四面体OABC 的棱长为1,求: (1)OA ―→·OB ―→;(2)(OA ―→+OB ―→)·(CA ―→+CB ―→).解:(1)OA ―→·OB ―→=|OA ―→||OB ―→|cos ∠AOB =1×1×cos 60°=12.(2)(OA +OB ―→)·(CA ―→+CB ―→)=(OA ―→+OB ―→)·(OA ―→-OC ―→+OB ―→-OC ―→) =(OA ―→+OB ―→)·(OA ―→+OB ―→-2OC ―→)=12+1×1×cos 60°-2×1×1×cos 60°+1×1×cos 60°+12-2×1×1×cos 60°=1.如图,已知线段AB ⊥平面α,BC ⊂α,CD ⊥BC ,DF ⊥平面α,且∠DCF =30°,D 与A 在α的同侧,若AB =BC =CD =2,求A ,D 两点间的距离.[自主解答] ∵AD ―→=AB ―→+BC ―→+CD ―→,∴|AD ―→|2=AD ―→·AD ―→=(AB ―→+BC ―→+CD ―→)·(AB ―→+BC ―→+CD ―→)=|AB ―→|2+|BC ―→|2+|CD ―→|2+2AB ―→·BC ―→+2BC ―→·CD ―→+2AB ―→·CD ―→.①∵AB =BC =CD =2,∴|AB ―→|=|BC ―→|=|CD ―→|=2.② 又∵AB ⊥α,BC ⊂α,∴AB ⊥BC .∴AB ―→·BC ―→=0.③ ∵CD ⊥BC ,∴CD ―→·BC ―→=0.④把②③④代入①可得|AD ―→|2=4+4+4+2AB ―→·CD ―→=12+2|AB ―→|·|CD ―→|cos 〈AB ―→,CD ―→〉 =12+8cos 〈AB ―→,CD ―→〉.⑤ ∵∠DCF =30°,从而∠CDF =60°. 又∵AB ⊥α,DF ⊥α,∴AB ∥DF . ∴〈AB ―→,DC ―→〉=〈DF ―→,DC ―→〉=60°. ∴〈AB ―→,CD ―→〉=120°.代入⑤式得到|AD ―→|2=12+8cos 120°=8, ∴|AD ―→|=2 2.即A ,D 两点间的距离为2 2.求两点间的距离或线段长度的方法如下: (1)将此线段用向量表示;(2)用其他已知夹角和模的向量表示该向量; (3)利用|a |=a 2,通过计算求出|a |,即得所求距离.3.如图所示,在▱ABCD 中,AD =4,CD =3,∠D =60°,PA ⊥平面ABCD ,PA =6,求线段PC 的长. 解:∴PC ―→=PA ―→+AD ―→+DC ―→, ∴|PC ―→|2=(PA ―→+AD ―→+DC ―→)2=|PA ―→|2+|AD ―→|2+|DC ―→|2+2PA ―→·AD ―→+2AD ―→·DC ―→+2DC ―→·PA ―→=62+42+32+2|AD ―→||DC ―→|cos 120°=61-12=49.∴|PC ―→|=7,即PC =7.如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 为AC 与BD 的交点,G 为CC 1的中点,求证:A 1O ⊥平面GBD .[自主解答] 设A 1B 1―→=a ,A 1D 1―→=b ,A 1A ―→=c ,则a ·b =0,b ·c =0,a ·c =0,|a |=|b |=|c |.∵A 1O ―→=A 1A ―→+AO ―→=A 1A ―→+12(AB ―→+AD ―→)=c +12a +12b ,BD ―→=AD ―→-AB ―→=b -a ,OG ―→=OC ―→+CG ―→=12(AB ―→+AD ―→)+12CC 1―→=12a +12b -12c . ∴A 1O ―→·BD ―→=⎝⎛⎭⎫c +12a +12b ·(b -a ) =c ·b -c ·a +12a ·b -12a 2+12b 2-12b ·a=12(b 2-a 2)=12(|b |2-|a |2)=0.于是A 1O ―→⊥BD ―→,即A 1O ⊥BD . 同理可证A 1O ―→⊥OG ―→,即A 1O ⊥OG . 于是有A 1O ⊥平面GBD .用向量法证明垂直关系的操作步骤 (1)把几何问题转化为向量问题; (2)用已知向量表示所证向量;(3)结合数量积公式和运算律证明数量积为0; (4)将向量问题回归到几何问题.4.如图,在空间四边形OABC 中,OB =OC ,AB =AC .求证:OA ⊥BC .证明:在△OAC 和△OAB 中, OB =OC ,AB =AC , ∴△OAC ≌△OAB . ∴∠AOC =∠AOB .∵OA ―→·BC ―→=OA ―→·(OC ―→-OB ―→) =OA ―→·OC ―→-OA ―→·OB ―→=|OA ―→|·|OC ―→|cos ∠AOC -|OA ―→|·|OB ―→|cos ∠AOB =0, ∴OA ⊥BC .解题高手 妙解题 什么是智慧,智慧就是简单、高效、不走弯路如图所示,在平行四边形ABCD 中,AB =AC =1,∠ACD =90°,沿着它的对角线AC 将△ACD 折起,使AB 与CD 成60°角,求此时B ,D 间的距离.[巧思] 求B ,D 间的距离可以转化为求向量BD ―→的模,但向量BD ―→的模无法直接求出,可以转化为其他向量,注意折起后AB 与AC ,CD 与AC 的垂直关系没有发生改变,可以充分利用这种关系.[妙解] ∵∠ACD =90°, ∴AC ―→·CD ―→=0.同理AC ―→·BA ―→=0. ∵AB 与CD 成60°角,∴〈BA ―→,CD ―→〉=60°或〈BA ―→,CD ―→〉=120°. 又BD ―→=BA ―→+AC ―→+CD ―→,∴|BD ―→|2=|BA ―→|2+|AC ―→|2+|CD ―→|2+2BA ―→·AC ―→+2BA ―→·CD ―→+2AC ―→·CD ―→ =3+2×1×1×cos 〈BA ―→,CD ―→〉. ∴当〈BA ―→,CD ―→〉=60°时,|BD ―→|2=4, 此时B ,D 间的距离为2;当〈BA ―→,CD ―→〉=120°时,|BD ―→|2=2, 此时B ,D 间的距离为 2.1.设a ,b 为空间的非零向量,下列各式:①a 2=|a |2;②a ·b a2=ba ;③(a ·b )2=a 2·b 2;④(a -b )2=a 2-2a ·b +b 2;⑤(a ·b )·c =b ·(a ·c )=(b ·c )·a ;⑥向量a 在向量b 的方向上的投影为|a |cos 〈a ,b 〉,其中正确的个数为( )A .1B .2C .3D .4解析:由向量数量积的性质可知①正确;向量的数量积不满足消去律,故②不正确;(a ·b )2=a 2·b 2·cos 2〈a ,b 〉≤a 2·b 2,故③不正确;由向量数量积的运算律知④正确;数量积不满足结合律,⑤不正确;|a |cos 〈a ,b 〉为向量a 在向量b 的方向上的投影,可正可负,⑥正确.答案:C2.已知正四面体A -BCD 中,AE =14AB ,CF =14CD ,则直线DE和BF 夹角的余弦值为( )A.413 B.313 C .-413D .-313解析:设正四面体的棱长为4.∵正四面体A -BCD 中,相邻两棱夹角为60°,对棱互相垂直.又ED ―→=EA ―→+AD ―→=14BA ―→+AD ―→,BF ―→=BC ―→+CF ―→=BC ―→+14CD ―→,∴ED ―→·BF ―→=14BA ―→·BC ―→+14AD ―→·CD ―→=4,|ED ―→|2=116BA ―→ 2+12BA ―→·AD ―→+AD ―→2=1-4+16=13.|ED ―→|=13,同理|BF ―→|=13. ∴cos 〈ED ―→,BF ―→〉=ED ―→·BF ―→| ED ―→||BF ―→|=413.答案:A3.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,设AB ―→=a ,AD ―→=b ,AA 1―→=c ,则a ·(b +c )的值为( )A .1B .0C .-1D .-2解析:a ·(b +c )=a ·b +a ·c =0. 答案:B4.空间四边形OABC 中,OB =OC ,∠AOB =∠AOC =π3,则cos 〈OA ―→,BC ―→〉的值为________.解析:cos 〈OA ―→,BC ―→〉=OA ―→·BC ―→|OA ―→|·|BC ―→|=OA ―→·(OC ―→-OB ―→)|OA ―→|·|BC ―→|=|OA ―→||OC ―→|cos π3-|OA ―→||OB ―→|cosπ3|OA ―→|·|BC ―→|=0. 答案:05.已知向量a ,b ,c 两两夹角都是60°,且|a |=|b |=|c |=1,则|a -2b +c |=________. 解析:∵|a -2b +c |2=a 2+4b 2+c 2-4a ·b -4b ·c +2a ·c =1+4+1-4×cos 60°-4×cos 60°+2×cos 60°=3, ∴|a -2b +c |= 3.答案: 36.已知长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AA 1B 1B 的中心,F 为A 1D 1的中点.求:(1)BC ―→·ED 1―→; (2)BF ―→·AB 1―→.解:如图所示,设AB ―→=a ,AD ―→=b ,AA 1―→=c , 则|a |=|c |=2,|b |=4, a ·b =b ·c =c ·a =0. (1)BC ―→·ED 1―→=b ·⎣⎡⎦⎤12(c -a )+b =|b |2=42=16.(2)BF ―→·AB 1―→=⎝⎛⎭⎫c -a +12b ·(a +c ) =|c |2-|a |2=22-22=0.一、选择题1.下列各命题中,不.正确的命题的个数为( ) ①a ·a =|a |;②m (λa )·b =(mλ)a ·b (m ,λ∈R); ③a ·(b +c )=(b +c )·a ; ④a 2b =b 2a .A .4B .3C .2D .1解析:∵a ·a =|a |2, ∴a ·a =|a |,故①正确.m (λa )·b =(mλa )·b =mλa ·b =(mλ)a ·b ,故②正确. a ·(b +c )=a ·b +a ·c ,(b +c )·a =b ·a +c ·a =a ·b +a ·c =a ·(b +c ),故③正确. a 2·b =|a |2·b ,b 2·a =|b |2·a , 故④不一定正确. 答案:D2.已知a +b +c =0,|a |=2,|b |=3,|c |=4,则向量a 与b 之间的夹角为( )A .30°B .45°C .60°D .以上都不对解析:由已知c =-(a +b ),所以|c |2=(a +b )2=|a |2+|b |2+2a ·b ,即a ·b =32. ∴cos 〈a ,b 〉=a ·b |a |·|b |=14. 答案:D3.已知PA ⊥平面ABC ,∠ABC =120°,PA =AB =BC =6,则PC等于( )A .62B .6C .12D .144 解析:∵PC ―→=PA ―→+AB ―→+BC ―→,∴PC ―→2=PA ―→2+AB ―→2+BC ―→2+2AB ―→·BC ―→=36+36+36+2×36cos 60°=144.∴|PC |=12.答案:C4.设A ,B ,C ,D 是空间不共面的四点,且满足AB ―→·AC ―→=0,AC ―→·AD ―→=0,AB ―→·AD―→=0,则△BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .等腰三角形 解析:∵BD ―→=AD ―→-AB ―→,BC ―→=AC ―→-AB ―→,∴BD ―→·BC ―→=(AD ―→-AB ―→)·(AC ―→-AB ―→)=AD ―→·AC ―→-AD ―→·AB ―→-AB ―→·AC ―→+|AB ―→|2=|AB ―→|2>0,∴cos ∠CBD =cos 〈BC ―→,BD ―→〉=BC ―→·BD ―→|BC ―→|·|BD ―→|>0,∴∠CBD 为锐角,同理,∠BCD 与∠BDC 均为锐角,∴△BCD 为锐角三角形.答案:B二、填空题5.在棱长为1的正方体ABCD -A ′B ′C ′D ′中,AD ′―→·BC ′―→=________.解析:由正方体知BC ′∥AD ′,∴〈AD ′―→, BC ′―→〉=0,又|AD ′―→|=|BC ′―→|=2,所以AD ′―→·BC ′―→=2·2·1=2.答案:26.在四面体OABC 中,棱OA ,OB ,OC 两两垂直,且OA =1,OB =2,OC =3,G为△ABC 的重心,则OG ―→·(OA ―→+OB ―→+OC ―→)=________.解析:由已知OA ―→·OB ―→=OA ―→·OC ―→=OB ―→·OC ―→=0,且OG ―→=OA ―→+OB ―→+OC ―→3, 故OG ―→·(OA ―→+OB ―→+OC ―→)=13(OA ―→+OB ―→+OC ―→)2 =13(|OA ―→|2+|OB ―→|2+|OC ―→|2) =13(1+4+9)=143. 答案:1437.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a 与b 所成的角是________.解析:AB ―→=AC ―→+CD ―→+DB ―→,∴AB ―→·CD ―→=(AC ―→+CD ―→+DB ―→)·CD ―→=AC ―→·CD ―→+CD ―→2+DB ―→·CD ―→=0+12+0=1,又|AB ―→|=2,|CD ―→|=1.∴cos 〈AB ―→,CD ―→〉=AB ―→·CD ―→| AB ―→|·|CD ―→|=12×1=12. ∴a 与b 所成的角是60°.答案:60°8.如图所示,在▱ABCD 中,AD =4,CD =3,∠D =60°,PA ⊥平面ABCD ,PA =6,则线段PC 的长为________.解析:∵PC ―→=PA ―→+AD ―→+DC ―→.∴|PC ―→|2=(PA ―→+AD ―→+DC ―→)2=|PA ―→|2+|AD ―→|2+|DC ―→|2+2PA ―→·AD ―→+2AD ―→·DC ―→+2DC ―→·PA ―→=62+42+32+2|AD―→||DC ―→|cos 120°=61-12=49.∴|PC ―→|=7,即PC =7.答案:7三、解答题9.如图所示,已知△ADB 和△ADC 都是以D 为直角顶点的直角三角形,且AD =BD =CD ,∠BAC =60°.求证:BD ⊥平面ADC .证明:不妨设AD =BD =CD =1,则AB =AC = 2.BD ―→·AC ―→=(AD ―→-AB ―→)·AC ―→=AD ―→·AC ―→-AB ―→·AC ―→,由于AD ―→·AC ―→=AD ―→·(AD ―→+DC ―→)=AD ―→·AD ―→=1,AB ―→·AC ―→=|AB ―→|·|AC ―→|cos 60°=2×2×12=1. ∴BD ―→·AC ―→=0,即BD ⊥AC ,又已知BD ⊥AD ,AC ∩AD =A ,∴BD ⊥平面ADC .10.如图,正三棱柱ABC -A 1B 1C 1中,底面边长为 2.(1)设侧棱长为1,求证:AB 1⊥BC 1;(2)设AB 1与BC 1的夹角为π3,求侧棱的长. 解:(1)证明:AB 1―→=AB ―→+BB 1―→, BC 1―→=BB 1―→+BC ―→.∵BB 1⊥平面ABC ,∴BB 1―→·AB ―→=0,BB 1―→·BC ―→=0.又△ABC 为正三角形,∴〈AB ―→·BC ―→〉=π-〈BA ―→·BC ―→〉=π-π3=2π3. ∵AB 1―→·BC 1―→=(AB ―→+BB 1―→)·(BB 1―→+BC ―→)=AB ―→·BB 1―→+AB ―→·BC ―→+BB 1―→2+BB 1―→·BC ―→=|AB ―→|·|BC ―→|·cos 〈AB ―→,BC ―→〉+BB 1―→2=-1+1=0,∴AB 1⊥BC 1.(2)结合(1)知AB 1―→·BC 1―→=|AB ―→|·|BC ―→|·cos 〈AB ―→,BC ―→〉+BB 1―→2=BB 1―→2-1.又|AB 1―→|=AB ―→2+BB 1―→2=2+BB 1―→2=|BC 1―→|.∴cos 〈AB 1―→,BC 1―→〉=BB 1―→2-12+BB 1―→2=12,∴|BB 1―→|=2,即侧棱长为2.。
空间向量及其运算讲义
空间向量及其运算讲义一、知识梳理1.空间向量的有关概念2.(1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb . (2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量. (3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.(2)空间向量数量积的运算律 ①(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ; ③分配律:a ·(b +c )=a ·b +a ·c . 4.空间向量的坐标表示及其应用设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示 坐标表示 数量积 a·ba 1b 1+a 2b 2+a 3b 3 共线 a =λb (b ≠0,λ∈R ) a 1=λb 1,a 2=λb 2,a 3=λb 3 垂直 a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模 |a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23注意:1.向量三点共线定理在平面中A ,B ,C 三点共线的充要条件是:OA →=xOB →+yOC →(其中x +y =1),O 为平面内任意一点. 2.向量四点共面定理在空间中P ,A ,B ,C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →(其中x +y +z =1),O 为空间中任意一点.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)空间中任意两个非零向量a ,b 共面.( ) (2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( ) (3)对于非零向量b ,由a ·b =b ·c ,则a =c .( )(4)两向量夹角的范围与两异面直线所成角的范围相同.( )(5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.( ) (6)若a·b <0,则〈a ,b 〉是钝角.( ) 题组二:教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________. 题组三:易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( ) A .垂直 B .平行C .异面D .相交但不垂直5.与向量(-3,-4,5)共线的单位向量是__________________________________.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C 四点共面,则实数t =______.三、典型例题题型一:空间向量的线性运算1.如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=______.2.如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于( )A.12(-a +b +c ) B.12(a +b -c ) C.12(a -b +c ) D.12(-a -b +c ) 思维升华:用已知向量表示某一向量的方法用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量.在立体几何中三角形法则、平行四边形法则仍然成立. 题型二:共线定理、共面定理的应用典例:如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面? (2)直线MN 是否与平面ABB 1A 1平行?思维升华:(1)证明空间三点P ,A ,B 共线的方法 ①P A →=λPB →(λ∈R );②对空间任一点O ,OP →=OA →+tAB →(t ∈R ); ③对空间任一点O ,OP →=xOA →+yOB →(x +y =1). (2)证明空间四点P ,M ,A ,B 共面的方法 ①MP →=xMA →+yMB →;②对空间任一点O ,OP →=OM →+xMA →+yMB →;③对空间任一点O ,OP →=xOM →+yOA →+zOB →(x +y +z =1); ④PM →∥AB →(或P A →∥MB →或PB →∥AM →).跟踪训练 如图,在四棱柱ABCD —A 1B 1C 1D 1中,底面ABCD 是平行四边形,E ,F ,G 分别是A 1D 1,D 1D ,D 1C 1的中点.(1)试用向量AB →,AD →,AA 1→表示AG →; (2)用向量方法证明平面EFG ∥平面AB 1C . 题型三:空间向量数量积的应用典例 如图,已知平行六面体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为1的正方形,AA 1=2,∠A 1AB =∠A 1AD =120°.(1)求线段AC 1的长;(2)求异面直线AC 1与A 1D 所成角的余弦值; (3)求证:AA 1⊥BD .思维升华:(1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角. (3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练 如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值. 注意:坐标法在立体几何中的应用典例 (12分)如图,已知直三棱柱ABC -A 1B 1C 1,在底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.(1)求BN →的模;(2)求cos 〈BA 1→,CB 1→〉的值; (3)求证:A 1B ⊥C 1M .四、反馈练习1.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c . 其中正确命题的个数是( )A .0B .1C .2D .32.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于( ) A.32 B .-2 C .0D.32或-2 3.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( ) A .l ∥α B .l ⊥α C .l ⊂αD .l 与α斜交4.已知a =(1,0,1),b =(x,1,2),且a·b =3,则向量a 与b 的夹角为( ) A.5π6 B.2π3 C.π3D.π65.已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ等于( ) A .9 B .-9 C .-3 D .36.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )A. 3B. 2 C .1 D.3-27.已知2a +b =(0,-5,10),c =(1,-2,-2),a·c =4,|b |=12,则以b ,c 为方向向量的两直线的夹角为________.8.如图所示,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x ,y ,z 的值分别为______.9.A ,B ,C ,D 是空间不共面四点,且AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,则△BCD 的形状是________三角形.(填锐角、直角、钝角中的一个) 10.已知ABCD -A 1B 1C 1D 1为正方体, ①(A 1A →+A 1D 1—→+A 1B 1—→)2=3A 1B 1—→2; ②A 1C →·(A 1B 1—→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|. 其中正确的序号是________.11.已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)若|c |=3,且c ∥BC →,求向量c ; (2)求向量a 与向量b 的夹角的余弦值.12.如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →; (2)EG 的长;(3)异面直线AG 与CE 所成角的余弦值.13.在空间四边形ABCD 中,AB →·CD →+AC →·DB →+AD →·BC →等于( ) A .-1 B .0 C .1D .不确定14.若{a ,b ,c }是空间的一个基底,且向量p =x a +y b +z c ,则(x ,y ,z )叫向量p 在基底{a ,b ,c }下的坐标,已知{a ,b ,c }是空间的一个基底,{a +b ,a -b ,c }是空间的另一个基底,一向量p 在基底{a ,b ,c }下的坐标为(4,2,3),则向量p 在基底{a +b ,a -b ,c }下的坐标是( ) A .(4,0,3) B .(3,1,3) C .(1,2,3)D .(2,1,3)15.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,则该四边形为( ) A .平行四边形 B .梯形 C .长方形D .空间四边形16.已知O 点为空间直角坐标系的原点,向量OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),且点Q 在直线OP 上运动,当QA →·QB →取得最小值时,OQ →的坐标是____________.。
高中数学 第七章 第六节_空间向量及其运算课件(理) 新人教版
向量m和n用该组基底表示出来,再求他们的数量积及自
身长度,最后利用公式cos〈m,n〉=
.
2.在向量性质中|a|2=a·a提供了向量与实数相互转化的 工具,运用此公式,可使线段长度的计算问题转化成 两个相等向量的数量积的计算问题.
[特别警示] 求向量的数量积关键是求出两个向量的模 和夹角.
在平行四边形ABCD中,AB=AC=1,∠ACD= 90°,将它沿对角线AC折起,使AB和CD成60°角(见 下图).求B、D间的距离.
谢谢观赏
You made my day!我们还在路上……∴cos〈
〉=
=.
即异面直线CE与AC′所成角的余弦值为 .
1.若空间三点A(1,5,-2),B(2,4,1),C(p,3,q+2)共线,
则
()
A.p=3,q=2
B.p=2,q=3
C.p=-3,q=-2
D.p=-2,q=-3
解析: =(1,-1,3), =(p-2,-1,q+1), 由题意知,存在实数λ,使 =λ ,即λ=1,p=3,q =2. 答案:A
〉=120°,〈
〈
〉=90°.
〉=60°,
1
1
1
= 2 (-2×2·2 +2×2×2 +0)=0,
∴
,即异面直线AM与BC所成角为90°. ┄┄┄12分
[自主体验] 直三棱柱ABC-A′B′C′中, AC=BC=AA′,∠ACB=90°,D、 E分别为AB、BB′的中点. (1)求证:CE⊥A′D; (2)求异面直线CE与AC′所成角的余弦值.
( + )等于
()
A.
B.
C.
D.
解析: + ( + )= + = . 答案:A
人教版高一数学课件-空间向量的概念及运算
3 2.
OE=OB-BD·cos 60°=1-12=12.
所以 D 点坐标为(0,-12, 23),
即向量O→D的坐标为(0,-12, 23).
1
学海导航
理数
(2)依题意:O→A=( 23,12,0),O→B=(0,-1,0),O→C= (0,1,0).所以A→D=O→D-O→A=(- 23,-1, 23),
1
学海导航
理数
二 共線、共面向量定理的運用
【例 2】设 A,B,C 及 A1,B1,C1 分别是异面直线 l1, l2 上的三点,而 M,N,P,Q 分别是线段 AA1,BA1,BB1, CC1 的中点.求证:M、N、P、Q 四点共面.
1
学海导航
证明:依题意有B→A=2N→M,A→1B1=2N→P,则 P→Q=P→B1+B→1C1+C→1Q =12B→B1+B→1C1+12C→1C =12(B→C+C→C1+C→1B1)+B→1C1+12C→1C =12(B→C+B→1C1).(*)
(1)MG 两点间的距离|M→G|; (2)cos 〈M→G,B→S〉的值.
1
学海导航
理数
解析:由已知得 S 的坐标为(0,0,6),B(2,2,0),C(-2,2,0),
又因为 M 是 SO 的中点,G 是△SBC 的重心,
所以 M(0,0,3),G(0,43,2).
(1)|MG|= 02+432+3-22=53. (2)M→G=(0,43,-1),B→S=(-2,-2,6),
学海导航
理数
第49講 空間向量的概念及運算
1
学海导航
理数
1
学海导航
理数
1.与向量 a=(1,-3,2)平行的一个向量的坐标是
第1章 1.1 1.1.1 空间向量及其线性运算课件(共71张PPT)
·
情
课
景
堂
导
小
学
解答空间向量有关概念问题的关键点及注意点
结
·
探
提
新 知
(1)关键点:紧紧抓住向量的两个要素,即大小和方向.
素 养
合
(2)注意点:注意一些特殊向量的特性.
作
课
探 究
①零向量不是没有方向,而是它的方向是任意的,且与任何向
时 分
层
释 疑
量都共线,这一点说明了共线向量不具备传递性.
作 业
难
返 首 页
·
结 提
新
素
知
(2)若空间任意一点 O 和不共线的三点 A,B,C,满足O→P=13O→A 养
合
作
课
探 究
+13O→B+13O→C,则点 P 与点 A,B,C 是否共面?
时 分 层
释
作
疑
业
难
返 首 页
·
17
·
情 景
[提示]
(1)空间中任意两个向量都可以平移到同一个平面内,成
课 堂
导
小
学 为同一个平面的两个向量,因此一定是共面向量.
课 时
究
分
层
释
作
疑
业
难
返 首 页
·
12
·
情
课
景
堂
导
小
学
结
探
思考:向量运算的结果与向量起点的选择有关系吗?
·
提
新
素
知
养
[提示] 没有关系.
合
作
课
探
时
究
分
层
释
空间向量与立体几何复习课ppt课件
一、空间向量及其运算
(一)基本概念 1. 空间向量:空间中具有大小和方向的量 叫做向量. 2. 空间向量也用有向线段表示,并且同向且 等长的有向线段表示同一向量或相等的向量.
3. 向量的模:向量的大小叫向量的长度或 模。即表示向量的有向线段的长度。 4. 单位向量:模是 1 的向量。
5. 零向量:模是 0 的向量。零向量的方向 是任意的。有向线段的起点与终点重合。
a b
2.共面向量定理:如果两个向量 a 、b 不共线,则向 量 p 与向量 a 、b 共面的充要条件是存在唯一的有 序实数对 ( x, y) 使 p xa yb .
3.空间向量基本定理:如果两个向量 a 、b、c 不共面, 则对空间中的任意向量 p ,存在唯一的有序实数对 (x, y , z) 使 p xa yb zc .
(二)、空间角的向量方法:
设直线 l, m 的方向向量分别为 a, b ,平面 ,
的法பைடு நூலகம்量分别为 u, v ,则
两直线 l , m 所成的角为 ( 0 ≤ ≤ ), cos cosa b ;
2
直线 l 与平面 所成角 ( 0 ≤ ≤ ), sin cosa u ;
2
二面角 ─l ─ 的为 ( 0≤ ≤ ), cos cosu v.
中国历史上吸烟的历史和现状、所采 取的措 施以及 由此带 来的痛 苦和灾 难,可 以进一 步了解 吸烟对 人民健 康的危 害,提 高师生 的控烟 意识
理论知识点
一、空间向量及其运算
1、基本概念;
2、空间向量的运算;
3、三个定理;
4、坐标表示。
二、立体几何中的向量方法
1、判断直线、平面间的位置关系; 2、求解空间中的角度; 3、求解空间中的距离。
空间向量PPT课件
空间向量
1
一、平面向量复习
1.向量:既有大小又有方向的量。
D1
A1
DG O
A
C1 B1
C B
21
rr
r rr
例3:已知向量 a b ,向量 c 与a, b 的夹角都为
且 600
r a
1,
r b
,2,计cr 算 3:
r r r r
(1) 3a 2b b 3c
7 2
r rr
(2) a 2b c
11
r rrr
(3)a 2b c与b的夹角
4、求两异面直线AB与CD的夹角:
cos | AB CD |
| AB | | CD |
5、求直线l与平面 所成的角:
| sin | | PM n | | PM || n|
,( PM l M n 为 的法向量)
6、求二面角的平面角 :
ur uur
cos urn1 nu2ur
| n1 | | n2 |
空间向量知识结构图
空
间
建
坐
立
标
坐
系
标
概
系
坐 标 运 算
念
空间直角坐标系
角
空
证 明
间 向 量
求 解
距
离
异面直线夹角 线面夹角
二面角 异面直线距离 点面距离 面面距离
空间向量运算
空
空
空间向量及其线性运算(26张PPT)——高中数学人教A版选择性必修第一册
2.已知空间任一点O 和不共线的三点A,B,C, 下列能得到P,A,B,C四点共面的是(B )A.OP=OA+OB+OC
解 析 :若点P,A,B,C 共面,设OP=xOA+yOB+zOC,则x+y+z=1, 满足条件的只有B, 故选B.
D. 以上都不对
(2)∵M 是AA的中点,
又N 是BC的中点,
回顾一下本节课学习了哪些新知识呢?1.空间向量的概念2.空间向量的运算律3.共线向量和共面向量
小结:
同学们再见!
授课老师:
时间:2024年9月1日
2024课件
同学们再见!
授课老师:
时间:2024年9月1日
的充要条件是
如图,0是直线1上一点,在直线1上取非零向量a, 则对于直线1上任意一 点P, 由数乘向量的定义及向量共线的充要条件可知,存在实数λ,使得
直线的方向向量
OP=λa. 把与向量a 平行的非零向量称为直线l的方向向量.
共面向量如图,如果表示向量a 的有向线段OA 所在的直线OA 与直线1平行或重合,那么称向量α平行于直线l.如果直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.平行于同一个平面的向量,叫做共面向量.a0 Aa 1aa如果两个向量a,b 不共线,那么向量p 与 向 量a,b 共面的充要条件是存在唯一的有序实数对(x,y), 使 P=xa+yb.
证明:设 DA=a,DC=b.则DB=DC+CB=b+a,
10.如图,在平行六面体ABCD-A₁B₁CD₁中,设AA M,N,P 分别是AA,BC,C₁D₁的中点,试用a,b,c
=a,AB=b,AD=c,表示以下向量:
课件:向量及其运算(15)
∴a(bc)0 ,故a,
b, c
共面。
B b
a
.a b 0
A
24
运算规律
1. a b b a;
反交换律
2.( a) b a ( b) (a b); 与数乘向量的结合律
3. (a b) c a c b c
分配律
c(a b) c a c b
例3 已知 a 2, b 3, 且a b 3, 则a b _____3______.
22
3)两个向量的向量积
(由两个向量造一个新的特殊的向量)
在 并b,且许需要多要求方找面c另的,一模对个有于同某给时种定与特的a性两,.个b不垂共直线的l 的非非零零向向量量
a
,
c
,
如图, 由直观, 同时与 a ,
c B b
b 垂直的非零向量 c 在
O
直线 l 上,有无限多个,但 方向可指向方上或下方.
三角形法则可推广到多个向量相加 .
4
s a1 a2 a3 a4 a5
a4
a5
a3 s
a2 a1
5
2. 向量的减法 三角不等式
b
a
6
3. 向量与数的乘法
是一个数 , 与 a 的乘积是一个新向量, 记作 a .
规定 :
总之:
a
a
运算律 : 结合律 ( a) ( a) a
若 k (≥3)个向量经平移可移到同一平面上 , 则称此 k 个向量共面 .
3
二、向量的线性运算
1. 向量的加法 平行四边形法则:
b ab
(a b) c
c
bc
a (bc)
a
三角形法则:
ab b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
→ 即O→An
=
→ OA1
+
→ A1A2
+
…
+
An-1An
=a1+a2+…
+an.此即为空间向量的多边形法则.
(2)用折线作向量的和时,若折线的终点与起点重
合,则和向量为零向量.
自我挑战 1 已知 ABCD-A′B′C′D′是平 行六面体. (1)化简12AA→′+B→C+23A→B,并在图中标出其结 果; (2)设 M 是 底 面 ABCD 的 中 心 , N 在 侧 面 BCC′B′的对角线 BC′上,且 BN=3NC′,
知新益能
1.空间向量 (1)空间向量的定义 在空间,把具有_大__小___和__方__向__的量叫作空间向 量,向量的__大__小___叫作向量的长度或模.
(2)空间向量及其模的表示方法 空间向量用有向线段表示,有向线段的_长__度___ 表示向量的模.如图,a 的起点是 A,终点是 B,
则 a 也可记作__A→_B__,其模记作|A→B|或|a|.
线线垂直.
例3 如 图 所 示 , 已 知 平 行 六 面 体 ABCD - A1B1C1D1中,底面ABCD是边长为a的正方形,侧 棱AA1的长为b,∠A1AB=∠A1AD=120°, (1)求AC1的长; (2)证明:AC1⊥BD.
【解】 (1)∵A→C12=(A→C+C→C1)2
=(A→B+A→D+A→A1)2
λ<0
方向关系
模的关系
方向相同 λa=0,其方向是任意
的 方向相反
λa的模是 a的模的
|λ|倍
(3)空间向量的数乘运算律 设 λ、μ 是实数,则有①分配律:λ(a+b)= ___λ_a_+__λ_b_____. ②结合律:λ(μ a)=(λμ)a. 5.空间向量的数量积 (1)定义:从空间任意一点 O 出发作O→A=a,O→B =b,则 θ=__∠_A_O__B___就是 a,b 所成的角,a, b 的数量积 a·b=|a||b|cosθ.
2.空间向量的加减法 从任意一点 O 出发作O→A=a,O→B=b.并且从 A
出发作A→C=b(如图所示),则 a+b=_O→_C__,a-b =___B_→_A_.
思考感悟 1.空间两向量的加减法与平面内两向量的加减 法完全一样吗? 提示:一样.因为空间中任意两个向量均可平 移到同一个平面内,所以空间向量与平面向量 加减法均可以用三角形或平行四边形法则,是 一样的.
•
10、阅读一切好书如同和过去最杰出 的人谈 话。2021/3/52021/3/52021/3/53/5/2021 8:32:42 AM
•
11、越是没有本领的就越加自命不凡 。2021/3/52021/3/52021/3/5M ar-215- Mar-21
•
12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/3/52021/3/52021/3/5Fr iday, March 05, 2021
设M→N=αA→B+βA→D+γA→ A′,试求 α、β、γ 的
值.
解:(1)如图所示,取 AA′的中点为 E,则12A→ A′
=E→ A′. 又B→C=A′→D′, A→B=D′→C′,
取
F
为
D′C′
的
一
个
三
等
分
点
( D→′F
=
2 3
D′→C′),
则D→′F=23A→B.
∴12A→ A′+B→C+23A→B=E→ A′+A′→D′+D→′F
∴S→C⊥A→B,即 SC⊥AB.
方法感悟
1.在运用空间向量的运算法则化简向量表达式 时,要结合空间图形,观察分析各向量在图形中 的表示,运用运算法则,化简到最简为止. 2.证明两向量共线的方法为:首先判断两向量中 是否有零向量.若有,则两向量共线;若两向量 a,b中,b≠0,且有a=λb(λ∈R),则a,b共线.
=
→ (AB
+A→D
+
→ AA1
→ )·(AD
-
→ AB)
=
→ AB
→ ·AD
+
→ AD
2
+
→ AA1
→ ·AD
-
→ AB
2
-
→ AD
→ ·AB
-
→ AA1
·A→B=A→A1
·A→D-A→A1·A→B
=bacos120°-bacos120°=0.
∴A→C1⊥B→D,即 AC1⊥BD.
【名师点评】 (1)求两点间的距离或某条线段 的长度的方法:将此线段用向量表示后,利用|a| = |a|2= a·a求解. (2)证明两直线垂直可转化为证明两直线的方向
3.两向量的数量积,其结果是个数量,而不是向 量,它的值为两向量的模与两向量夹角的余弦值 的乘积,其符号由夹角的余弦值决定. 4.当a≠0时,由a·b=0不能推出b一定是零向量, 这是因为任一个与a垂直的非零向量b,都有a·b= 0,这由向量的几何意义就可以理解.
•
9、有时候读书是一种巧妙地避开思考 的方法 。2021/3/52021/3/5Fr iday, March 05, 2021
所
以D→M
=D→A
+
→ AM
=12
(a
+b)-
c
=12
(a+
b-
2c).
(2)在△BCD 中,G→M=13D→M=13·12(a+b-2c)
=16a+16b-13c.
(3)在△ADG 中,注意到三角形重心的性质,得
A→G=A→D+D→G=c+23
→
DM
=c+23(12D→B+12D→C)
=c+13(A→B-A→D+A→C-A→D)
(2)数量积的运算律:
数乘向量与向量 数量积的结合律
交换律
分配律
(λa)·b=λ(a·b)
a·b=b·a a·(b+c)=a·b+
a·c
思考感悟
2.(1)两个向量a、b垂直的充要条件是a·b= 0,对吗? (2)若a·b=0,则a=0或b=0,对吗? 提示:(1)不对;(2)不对.
考点一
课堂互动讲练
3.1 空间中向量的概念和运算
学习目标
课前自主学案 3.1
课堂互动讲练
知能优化训练
学习目标
1.理解空间向量的概念,掌握空间向量的几何表示 方法和字母表示方法. 2.掌握空间向量的线性运算,数量积. 3.能运用运算法则及运算律解决一些简单几何问 题.
课前自主学案
温故夯基
1.平面上有_大__小___和_方__向___的量叫作向量,方向 相同且模_相__等__的向量称为相等向量. 2.向量可以进行加减和数乘运算,向量加法满足 __交__换___律和_结__合___律.
=
→ AB
2
+
→ AD
2
+
→ AA1
2
+
2
→ AB
→ ·AD
+
2
→ AB
→ ·AA1
+
→→ 2AD·AA1
= a2 + a2 + b2 + 2a·acos90°+ 2abcos120°+
2abcos120° =2a2+b2-2ab.
∴|A→C1|= 2a2+b2-2ab.
(2)证
明:
∵A→C1
→ ·BD
3.空间向量加法的运算律 (1)交换律:a+b=__b_+__a__. (2)结合律:(a+b)+c=a+(b+c). 4.空间向量的数乘运算 (1)定义:实数λ与空间向量a的乘积__λ_a___仍然是 一个___向__量___,称为向量的数乘运算. (2)向量a与λa的关系
λ的范 围 λ>0
λ=0
→ 得出结论
【解】 (1)A→ A′-C→B=AA→′-D→A
=A→ A′+A→D=AD→′.
(2)A→ A′+A→B+B′→C′ =(A→ A′+A→B)+B′→C′ =A→ B′+B′→C′=A→C′.
向量AD→′、AC→′如图所示.
【名师点评】 化简向量表达式主要是利用平行 四边形法则或三角形法则.在化简过程中遇到减 法时可灵活应用相反向量转化成加法,也可按减 法法则进行运算,加、减法之间可相互转化.
例1 如图,已知长方体 ABCD-A′B′C′D′, 化简下列向量表达式,并在图中标出化简结果的向 量. (1)A→A′-C→B; (2)A→A′+A→B+B′→C′.
【思路点拨】 (1) 分析题意 → 将C→B等价转化为D→A → D→A转化为-A→D → 平行四边形法则 → 得出结论 (2) 应用平行四边形法则先求A→ A′+A→B → 应用三角形法则求AB→′+B′→C′
=E→F.(说明:表示方法不唯一)
Hale Waihona Puke (2)连接 BD,依题意知 M 为 BD 的中点,则M→N =M→B+B→N =12D→B+34B→ C′=12(D→A+A→B)+34(B→C+C→ C′) =12(-A→D+A→B)+34(A→D+A→ A′) =12A→B+14A→D+34AA→′.
∴α=12,β=14,γ=34.
向量垂直,即证明两向量的数量积为零.
自我挑战2 在三棱锥SABC中,SA⊥BC, SB⊥AC,求证:SC⊥AB.
证明:如图, S→C=S→A+A→C,A→B=A→S+S→B, 则S→C·A→B=(S→A+A→C)·(A→S+S→B) =-S→A2+S→A·S→B+A→C·A→S+A→C·S→B =S→A·(S→B-S→A-A→C)+0 =S→A·(A→B-A→C)=S→A·C→B=0.
考点二
空间向量的线性运算
空间向量加法、减法、数乘向量的意义及运算 律与平面向量类似.
例2 如图所示,已知空间四边形 ABCD 中,向量 A→B=a,A→C=b,A→D=c,若 M 为 BC 中点,G 为 △BCD 的重心,试用 a、b、c 表示下列向量: (1)D→M;(2)G→M;(3)A→G.