离散数学深刻复知识题(全)

合集下载

离散数学复习题含答案

离散数学复习题含答案

离散数学复习题含答案1. 集合论基础集合A和集合B的交集表示为A∩B,它包含所有既属于A又属于B的元素。

请写出集合{1, 2, 3}和{2, 3, 4}的交集。

答案:{2, 3}2. 逻辑运算设命题p为“今天是周一”,命题q为“明天是周三”。

请判断复合命题“p且q”的真值。

答案:假3. 图论初步在无向图中,若存在一条路径使得起点和终点相同,则称该图为欧拉图。

请判断一个有5个顶点且每个顶点的度均为2的无向图是否一定是欧拉图。

答案:是4. 组合数学从5个不同的球中选取3个,有多少种不同的选取方法?答案:10种5. 布尔代数在布尔代数中,逻辑或运算符表示为∨,逻辑与运算符表示为∧。

请计算表达式(A∨B)∧(¬A∨¬B)的值。

答案:¬(A∧B)6. 归纳与递归给定递归关系式T(n) = 2T(n-1) + 1,初始条件为T(1) = 1,求T(3)的值。

答案:T(3) = 2T(2) + 1 = 2(2T(1) + 1) + 1 = 2(2*1 + 1) + 1 =2(3) + 1 = 77. 有限状态机在有限状态机中,状态转移可以通过一个转移函数来描述。

若状态转移函数定义为δ(q, a) = q',其中q和q'是状态,a是输入符号,请说明该函数的作用。

答案:该函数定义了在给定当前状态q和输入符号a的情况下,有限状态机将转移到新的状态q'。

8. 正则表达式正则表达式用于描述字符串的模式。

请写出匹配任意长度的数字串的正则表达式。

答案:\d*9. 命题逻辑命题逻辑中的等价关系是指两个命题逻辑表达式在所有可能的真值赋值下具有相同的真值。

请判断命题p∨¬p和命题¬(p∧¬p)是否等价。

答案:是10. 树的遍历在计算机科学中,树的遍历有前序、中序和后序三种方式。

请简述后序遍历的步骤。

答案:后序遍历的步骤是先访问左子树,然后访问右子树,最后访问根节点。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。

答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。

答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。

答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。

答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。

解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。

反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。

由于R是自反的,所以(a, a) ∈ R,与假设矛盾。

因此,R一定是反自反的。

答案完整证明了该结论。

2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。

解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。

所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。

(完整版)离散数学题目及答案

(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。

C.2是偶数。

D.铅球是方的。

2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。

离散数学复习题及答案

离散数学复习题及答案

总复习题(一)一.单选题1 (C)。

一连通的平面图,5个顶点3个面,则边数为()。

、4 、5 、6 、72、 (A)。

如果一个简单图,则称为自补图,非同构的无向4阶自补图有()个。

、1 、2 、3 、43、 (D)。

为无环有向图,为的关联矩阵,则()。

、是的终点、与不关联、与关联、是的始点4、 (B)。

一连通的平面图,8个顶点4个面,则边数为。

、9 、10 、11 、125、 (D)。

如果一个简单图,则称为自补图,非同构的3阶有向完全图的子图中自补图有个。

、1 、2 、3 、46、21条边,3个4度顶点,其余顶点为3度的无向图共有个顶点。

、13 、12 、11 、107、 (D)。

有向图的通路包括。

、简单通路、初级通路、复杂通路、简单通路、初级通路和复杂通路8、 (D)。

一连通的平面图,9个顶点5个面,则边数为。

、9 、10 、11 、12A B C D G G ≅G A B C D E ,V D =[]m n ij m ⨯D 1m ij =A i v j e B i v j e C i v j e D i v j e A B C D G G ≅G A B C D A B C D A B C D A B C D9、21条边,3个4度顶点,其余顶点为3度的无向图共有个顶点。

、13 、12 、11 、1010、 (D)。

有向图的通路包括。

、简单通路、初级通路、复杂通路、简单通路、初级通路和复杂通路11、 (D)。

一连通的平面图,9个顶点5个面,则边数为。

、9 、10 、11 、1212、 (B)。

为有向图,为的邻接矩阵,则。

、邻接到的边的条数是5、接到的长度为4的通路数是5、长度为4的通路总数是5、长度为4的回路总数是513、 (C)。

在无向完全图中有个结点,则该图的边数为()。

A 、B 、C 、D 、14、 (C)。

任意平面图最多是()色的。

A 、3B 、4C 、5D 、615、 (A)。

对与10个结点的完全图,对其着色时,需要的最少颜色数为()。

离散数学复习题集

离散数学复习题集

离散数学复习题集一、单项选择题 (1)二、填空题 (10)三、计算题 (13)四、其他 (15)一、单项选择题1.下列语句中不.是命题的只有( ) A .鸡毛也能飞上天?B .或重于泰山,或轻于鸿毛。

C .不经一事,不长一智。

D .牙好,胃口就好。

2.下列语句中为命题的是( )A .这朵花是谁的?B .这朵花真美丽啊!C .这朵花是你的吗?D .这朵花是他的。

3.下列句子不是..命题的是( ) A .中华人民共和国的首都是北京B .张三是学生C .雪是黑色的D .太好了! 4下列句子为命题的是( )A.全体起立!B.x =0C.我在说谎D.张三生于1886年的春天 5.下列句子为命题的是( )A.走,看电影去B.x+y>0C.空集是任意集合的真子集D.你明天能来吗? 6.下列语句中是真命题的是( )A .我正在说谎B .严禁吸烟C .如果1+2=3,那么雪是黑的D .如果1+2=5,那么雪是黑的 7.下列命题为假.命题的是( ) A.如果2是偶数,那么一个公式的析取范式惟一B.如果2是偶数,那么一个公式的析取范式不惟一C.如果2是奇数,那么一个公式的析取范式惟一D.如果2是奇数,那么一个公式的析取范式不惟一读书是掌握知识的捷径,勤奋是开启知识大门的钥匙, 思考是理解知识的利器,练习是巩固知识的方法,讨论是理解知识的妙招,探求是创新知识的途径。

8.设p :天下大雨,q :他在室内运动,命题“除非天下大雨,否则他不.在室内运动”可符合化为( )A.⎤p ∧qB.⎤p →qC.⎤p →⎤qD.p →⎤q9.设p :我们划船,Q :我们跑步。

命题“我们不能既划船又跑步”符号化为( )A .⎤ p ∧⎤ qB .⎤ p ∨⎤ qC .⎤(p ↔q )D .⎤(⎤ p ∨⎤ q )10.令p :今天下雪了,q :路滑,则命题“虽然今天下雪了,但是路不.滑”可符号化为( ) A .p →q B .p ∨q C .p ∧q D .p ∧q11.设p :他聪明,q :他用功,命题“他虽聪明但不用功”的符号化正确的是( )A .⎤ p ∧qB .p ∧⎤ qC .p →⎤ qD .p ∨⎤ q12.令p :今天下雪了,q :路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( )A .p →┐qB .p ∨┐qC .p ∧qD .p ∧┐q13.在命题演算中,语句为真为假的一种性质称为( )A.真值B.陈述句C.命题D.谓词14.设p :明天天晴;q :我去爬山;那么“除非明天天晴,否则我不去爬山。

离散数学复习资料

离散数学复习资料

1.证明永真公式Q14,Q15,Q16,Q17和Q18。

2.证明P(x)∧任意xQ(x)==>存在x(P(x)∧Q(x))3.设论述域是{a1,a2,a3,…an},试证明下列关系式。

(a) 任意xA(x)∧P<==>任意x(A(x)∧P)(b) 任意x(A(x)∧B(x))<==>任意xA(x)∧任意xB(x)(c) 存在x(A(x)∧B(x))<==>存在xA(x)∧存在xB(x)4.证明下列关系式(a) 任意x任意y(P(x)∨P(y))<==>任意xP(x)∨任意yP(y)(b) 存在x存在y(P(x)∧Q(y))==>存在xP(x)(c) 任意x任意y(P(x)∧Q(y))<==>任意xP(x)∧任意yQ(y)(d) 存在x存在y(P(x)->P(y)) <==>任意xP(x)->存在yP(y)(e) 任意x任意y(P(x) ->Q(y)) <==>(存在xP(x)->任意yQ(y))5.写出limf(x)=k的定义的符号形式,并用形成定理两边的否定的方法,找出limf(x)不等x->c x->c于k的条件。

6.给定自然数集合N的下列子集:A={1,2,7,8}B={i|i平方<50}C={i|i可被30整除}D={i|i=2的k次方∧k∈I∧0≤k≤6}求下列集合(a)A∪(B∪(C∪D))(b)A∩(B∩(C∩D))(c)B-(A∪C)(d)(非A∩B) ∪D7.假定A≠空集和A∪B=A∪C,证明这不能得出B=C,假设中增加A∩B=A∩C,你能得出B=C吗?8.(a)证明“相对补”不是一个可交换运算,即证明存在一个论述域包含集合A和B,使A-B≠B-A。

(b)A-B=B-A可能吗?刻划上式出现的全部条件。

(c)“相对补”是一个可结合的运算马?证明你的断言。

9.证明下列恒等式(a)A∪(A∩B)=A(b)A∩(A∪B)=A(c)A-B=A∩非B(d)A∪(非A∩B)=A∪B(e)A∩(非A∪B)=A∩B10.设Sn={a0,a1,…,an}和Sn+1={a0,a1, …,an,an+1},试用p(Sn)和an+1表达出p(Sn+1)。

离散数学复习题有答案

离散数学复习题有答案

离散数学复习题有答案1. 什么是集合的子集?子集是指一个集合中的所有元素都属于另一个集合。

如果集合A中的每一个元素都是集合B的元素,那么集合A就是集合B的子集。

2. 描述有限集合和无限集合的区别。

有限集合是指元素数量有限的集合,可以被一一列举。

无限集合则包含无限多个元素,无法被完全列举。

3. 什么是二元关系?二元关系是集合A和集合B之间的一种对应关系,它由有序对(a, b)组成,其中a属于集合A,b属于集合B。

4. 什么是函数?函数是一种特殊的二元关系,其中每个定义域中的元素都与值域中的一个且仅一个元素相关联。

5. 什么是等价关系?等价关系是一种自反的、对称的、传递的二元关系。

在集合A上的等价关系将A划分为若干个不相交的等价类。

6. 什么是偏序关系?偏序关系是一种自反的、反对称的、传递的二元关系。

它在集合上定义了一个部分顺序。

7. 什么是有向图和无向图?有向图是一种图,其中的边有方向,表示从一个顶点指向另一个顶点。

无向图的边没有方向,表示两个顶点之间的双向连接。

8. 什么是强连通分量?在有向图中,强连通分量是指图中的一组顶点,这些顶点中的每一个顶点都可以到达集合中的其他任何顶点。

9. 什么是二进制数?二进制数是一种基数为2的数制,只使用0和1两个数字来表示数值。

10. 什么是逻辑运算?逻辑运算是对逻辑值(真或假)进行的操作,包括与(AND)、或(OR)、非(NOT)等运算。

11. 什么是归纳法?归纳法是一种数学证明方法,通过证明一个基本情况,然后假设某个情况成立,再证明下一个情况也成立,从而证明整个命题。

12. 什么是图的遍历?图的遍历是指按照一定的规则访问图中的每个顶点,确保每个顶点都被访问一次。

常见的遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。

13. 什么是正规表达式?正规表达式是一种描述字符串集合的模式,用于文本搜索和文本处理。

它由一系列字符和元字符组成,定义了字符串的匹配规则。

离散数学复习题参考带答案

离散数学复习题参考带答案

一、选择题:(每题2’)1、下列语句中不是命题的有()。

A.离散数学是计算机专业的一门必修课。

B.鸡有三只脚。

C.太阳系以外的星球上有生物。

D.你打算考硕士研究生吗?2、命题公式A与B是等价的,是指()。

A.A与B有相同的原子变元B.A与B都是可满足的C.当A的真值为真时,B的真值也为真D.A与B有相同的真值3、所有使命题公式P∨(Q∧¬R)为真的赋值为()。

A.010,100,101,110,111 B.010,100,101,111C.全体赋值D.不存在4、合式公式⌝(P∧Q)→R的主析取式中含极小项的个数为()。

A.2 B.3 C.5 D.05、一个公式在等价意义下,下面哪个写法是唯一的()。

A.析取式B.合取式C.主析取式D.以上答案都不对6、下述公式中是重言式的有()。

A.(P∧Q)→ (P∨Q) B.(P↔Q) ↔ ((P→Q)∧(Q→P))C.⌝(P→Q)∧QD.P→(P∧Q)7、命题公式(⌝P→Q) →(⌝Q∨P)中极小项的个数为(),成真赋值的个数为()。

A.0B.1C.2D.38、若公式(P∧Q)∨(⌝P∧R) 的主析取式为m001∨m011∨m110∨m111则它的主合取式为()。

A.m001∧m011∧m110∧m111B.M000∧M010∧M100∧M101C.M001∧M011∧M110∧M111D.m000∧m010∧m100∧m1019、下列公式中正确的等价式是()。

A.⌝(∃x)A(x) ⇔ (∃x)⌝A(x)B.(∀x) (∀y)A(x, y) ⇔ (∃y) (∀x) A(x, y)C.⌝(∀x)A(x) ⇔ (∃x)⌝A(x) D.(∀x) (A(x)∧B(x)) ⇔ (∀x) A(x) ∨(∀x) B(x)10、下列等价关系正确的是()。

A.∀x ( P(x) ∨Q(x) ) ⇔∀x P(x) ∨∀x Q(x) B.∃x ( P(x) ∨Q(x) ) ⇔∃x P(x) ∨∃x Q(x)C.∀x ( P(x) →Q ) ⇔∀x P(x) → Q D.∃x ( P(x) →Q ) ⇔∃x P(x) → Q11、设个体域为整数集,下列真值为真的公式是()。

离散数学复习题答案

离散数学复习题答案

离散数学复习题答案一、逻辑与证明1. 命题逻辑的真值表:- 对于命题P和Q,给出所有可能的真值组合,并确定复合命题的真值。

2. 命题逻辑的等价性:- 证明两个命题逻辑表达式是等价的,即它们在所有可能的真值组合下都具有相同的真值。

3. 直接证明:- 给出一个逻辑命题,并使用直接证明方法证明其正确性。

4. 反证法:- 描述如何使用反证法证明一个命题的否定。

二、集合论1. 集合的基本运算:- 给出两个集合A和B,计算它们的并集、交集、差集和补集。

2. 子集和幂集:- 确定一个集合的所有子集,并构造它的幂集。

3. 集合的表示法:- 使用描述法和列举法表示集合。

三、关系与函数1. 关系的表示:- 给出一个关系R,并使用有序对集合的形式表示它。

2. 关系的性质:- 确定一个关系是否是自反的、对称的、传递的或反对称的。

3. 函数的定义:- 给出一个函数f的定义域和值域,并描述其性质。

4. 函数的复合:- 给出两个函数f和g,并计算它们的复合。

四、图论1. 图的基本概念:- 定义图的顶点、边、路径、回路等基本概念。

2. 图的分类:- 区分有向图、无向图、加权图和平面图。

3. 图的遍历:- 描述深度优先搜索(DFS)和广度优先搜索(BFS)算法。

4. 最短路径问题:- 使用Dijkstra算法或Floyd-Warshall算法求解图中的最短路径。

五、代数结构1. 群的定义:- 给出一个代数结构,并判断它是否构成一个群。

2. 子群和陪集:- 确定一个群的子群,并计算它的左陪集和右陪集。

3. 环和域:- 描述环和域的定义,并给出它们的性质。

六、布尔代数1. 布尔代数的基本运算:- 给出布尔代数中的逻辑运算:AND、OR、NOT。

2. 布尔表达式的简化:- 使用代数恒等式简化布尔表达式。

3. 布尔函数的真值表:- 为一个布尔函数构造真值表,并确定其等价的最小形式。

七、组合数学1. 排列组合:- 计算给定条件下的排列数和组合数。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。

在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。

2. 下列哪个命题是真命题?A. 所有偶数都是整数。

B. 所有整数都是偶数。

C. 所有整数都是奇数。

D. 所有奇数都是整数。

答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。

选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。

二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。

答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。

如果输入为真,则输出为假;如果输入为假,则输出为真。

2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。

答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。

三、简答题1. 解释什么是等价关系,并给出一个例子。

答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。

例如,考虑整数集合上的“同余”关系。

对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。

这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。

2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。

一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。

(完整word版)离散数学复习提纲(完整版)

(完整word版)离散数学复习提纲(完整版)

《离散数学》期末复习大纲(完整版)(含例题和考试说明)一、命题逻辑[复习知识点]1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价↔),复合命题2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法)5、命题逻辑的推理理论本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、公式类型的判定、命题逻辑的推理[复习要求]1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法.2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简其它公式,公式在解释下的真值。

3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法.4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价方法。

5、掌握命题逻辑的推理理论。

[疑难解析]1、公式类型的判定判定公式的类型,包括判定公式是重言的、矛盾的或是可满足的。

具体方法有两种,一是真值表法,二是等值演算法。

2、范式求范式,包括求析取范式、合取范式、主析取范式和主合取范式。

关键有两点:一是准确理解掌握定义;另一是巧妙使用基本等值式中的分配律、同一律和互补律(排中律、矛盾律),结果的前一步适当使用幂等律,使相同的短语(或子句)只保留一个.3、逻辑推理掌握逻辑推理时,要理解并掌握12个(除第10,11)推理规则和3种证明法(直接证明法、附加前提证明法和归谬法). 例1.试求下列公式的主析取范式:(1)))()((P Q Q P P ⌝∨⌝⌝∧→→;(2))))((R Q Q P P →⌝∨→⌝∨())()(())()((:)1P Q Q P Q P P P Q Q P P ∧∧∨∧∧⌝∨⌝=∧∧∨⌝∨⌝=原式解Q P P P Q P P Q P ∨⌝=∨⌝∧∨⌝=∧∨⌝=)()()())(())((Q P P Q Q P ∧∨⌝∨∨⌝∧⌝=)()()(Q P Q P Q P ∧∨∧⌝∨⌝∧⌝=)))((()))(((:)2R Q Q P P R Q Q P P ∨∨∨∨=→⌝∨→⌝∨解)()()()(R Q P R Q P R Q P R Q P R Q P ∧⌝∧∨∧∧⌝∨⌝∧∧⌝∨∧⌝∧⌝=∨∨=)()()(R Q P R Q P R Q P ∧∧∨⌝∧∧∨⌝∧⌝∧∨)2.用真值表判断下列公式是恒真?恒假?可满足?(1)(PP )Q (2)(P Q)Q (3)((P Q)(Q R ))(P R) 解:(1) 真值表 P QP P P (P P)Q 0 01 0 1 0 11 0 0 1 00 0 1 1 1 0 0 0因此公式(1)为可满足.(2) 真值表P Q P Q (P Q) (P Q)Q0 0 1 0 00 1 1 0 01 00 1 01 1 1 0 0因此公式(2)为恒假。

离散数学题库及复习资料

离散数学题库及复习资料

《离散数学》题库与答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( A )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)可用蕴含等值式证明3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式4、公式x((A(x)B(y,x))z C(y,z))D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z(考察定义在公式x A和x A中,称x为指导变元,A为量词的辖域。

在x A和x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。

于是A(x)、B(y,x)和z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x 为自由变元)5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1)北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是(命题必须满足是陈述句,不能是疑问句或者祈使句。

)6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。

(完整版)《离散数学》试题及答案解析,推荐文档

(完整版)《离散数学》试题及答案解析,推荐文档
3. 设 R 是实数集合,,,是 R 上的三个映射,(x) = x+3, (x) = 2x, (x) = x/4, 试求复合映射•,•, •, •,••.
4. 设 I 是如下一个解释:D = {2, 3},
a
b
f (2) f (3)
3
2
3
2
试求 (1) P(a, f (a))∧P(b, f (b));
WORD 整理版
一、填空题 1 设集合 A,B,其中 A={1,2,3}, B= {1,2}, 则 A - B=____________________;
(A)
- (B)= __________________________ . 2. 设有限集合 A, |A| = n, 则 |(A×A)| = __________________________. 3. 设集合 A = {a, b}, B = {1, 2}, 则从 A 到 B 的所有映射是 __________________________ _____________, 其中双射的是
专业资料学习参考
WORD 整理版
0 1 1 1 1
15. 设图 G 的相邻矩阵为 1 0 1 0 0 ,则 G 的顶点数与边数分别为(
).
1 1 0 1 1
1 0 1 0 1
1 0 1 1 0
(A)4, 5 (B)5, 6 三、计算证明题
(C)4, 10
(D)5, 8.
1.设集合 A={1, 2, 3, 4, 6, 8, 9, 12},R 为整除关系。
则在解释 I 下取真值为 1 的公式是( ).
(A)xyP(x,y) (B)xyP(x,y) (C)xP(x,x) (D)xyP(x,y). 6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ).

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案离散数学考试试题及答案离散数学是计算机科学和数学中的一门重要学科,它研究的是离散的结构和对象。

离散数学的理论和方法在计算机科学、信息科学、通信工程等领域具有广泛的应用。

下面将为大家提供一些离散数学考试试题及答案,希望对大家的学习和复习有所帮助。

1. 集合论题目(1) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∪B的结果。

答案:A∪B={1,2,3,4,5,6,7}(2) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∩B的结果。

答案:A∩B={3,4,5}(3) 设A={1,2,3,4,5},B={3,4,5,6,7},求A-B的结果。

答案:A-B={1,2}2. 图论题目(1) 给定一个无向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(A,C),(B,D),(C,D),(D,E)},求该图的邻接矩阵。

答案:邻接矩阵为:A B C D EA 0 1 1 0 0B 1 0 0 1 0C 1 0 0 1 0D 0 1 1 0 1E 0 0 0 1 0(2) 给定一个有向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(B,C),(C,D),(D,E),(E,A)},求该图的邻接表。

答案:邻接表为:A ->B ->C ->D ->E -> AB -> CC -> DD -> EE -> A3. 命题逻辑题目(1) 判断以下命题是否为永真式:(p∨q)∧(¬p∨r)∧(¬q∨¬r)。

答案:是永真式。

(2) 给定命题p:如果天晴,那么我去游泳;命题q:我没有去游泳。

请判断以下命题的真假:(¬p∨q)∧(p∨¬q)。

答案:是真命题。

4. 关系代数题目(1) 给定关系R(A,B,C)和S(B,C,D),求R⋈S的结果。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、单项选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1,2,3}B. {2,3}C. {1,4}D. {3,4}答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。

B. 有些天鹅不是白色的。

C. 所有天鹅都不是白色的。

D. 没有天鹅是白色的。

答案:B3. 函数f: A→B的定义域是A,值域是B,那么f是:A. 单射B. 满射C. 双射D. 既不是单射也不是满射答案:D4. 逻辑表达式(p∧q)→r的逆否命题是:A. ¬r→¬(p∧q)B. ¬r→¬p∨¬qC. r→(p∧q)D. ¬r∧¬p∨¬q答案:B5. 有限集合A={a, b, c}的子集个数为:A. 3B. 4C. 7D. 8答案:D二、填空题(每题3分,共15分)1. 如果一个关系R在集合A上是自反的,那么对于A中的每一个元素a,都有___________。

答案:(a, a)∈R2. 命题逻辑中,合取(AND)的逻辑运算符用___________表示。

答案:∧3. 在图论中,一个连通图是指图中任意两个顶点之间都存在___________。

答案:路径4. 集合{1, 2, 3}的幂集包含___________个元素。

答案:85. 如果一个函数f是单射,那么对于任意的x1, x2∈A,如果f(x1)=f(x2),则x1___________x2。

答案:=三、解答题(每题10分,共20分)1. 证明:若p是q的充分条件,q是r的充分条件,则p是r的充分条件。

证明:假设p成立,由于p是q的充分条件,所以q成立。

又因为q是r的充分条件,所以r成立。

因此,p成立可以推出r成立,即p是r的充分条件。

2. 给定一个有向图,其中包含顶点A、B、C、D,边为(A, B),(B, C),(C, D),(D, A),(A, C)。

离散数学复习资料试卷习题与答案

离散数学复习资料试卷习题与答案

离散数学总复习资料一、鸽笼原理与容斥原理1.求证边长为1的正方形中放9个点,由这些点构成的三角形中,必有一个三角形面积小于18。

证:把该正方形均分成四个相同的小正方形,则由鸽笼原理知,必有一个小正方形内存在三个点,且这三个点构成的三角形面积小于18。

# 2.对一列21n +个不同整数,任意排列,证明一定存在长为1n +的上升子序列或下降子序列。

证:设此序列为:2121,,,,,k n a a a a +,从k a 开始上升子序列最长的长度为k x ,下降子序列最长的长度为k y ,每一个k a 2(1,2,,1)k n =+都对应了(,)k k x y 。

若不存在长为1n +的上升子序列或下降子序列,那么,k k x n y n ≤≤,形如(,)k k x y 的不同点对至多有2n 个,而k a 有21n +个,则由鸽笼原理知,必有,i j a a 2(11)i j n ≤<≤+同时对应(,)i i x y =(,)j j x y ,由于i j a a ≠,若i j a a <,则i x 至少比j x 大1,若i j a a >,则i y 至少比j y 大1,这均与(,)i i x y =(,)j j x y 矛盾。

故原命题成立。

#3.求}100,,2,1{ 中不被3、4、5整除的个数。

解: 设A 表示}100,,2,1{ 中被3整除的数的集合,B 表示}100,,2,1{ 中被4整除的数的集合,C 表示}100,,2,1{ 中被5整除的数的集合,则20,25,33===C B A6,5,8=⋂=⋂=⋂A C C B B A , 1=⋂⋂C B A ,进而有C B A A C C B B A C B A C B A ⋂⋂+⋂-⋂-⋂-++=⋃⋃601658202533=+---++= 故有4060100=-=⋃⋃-=⋃⋃C B A U C B A即}100,,2,1{ 中不被3、4、5整除的个数为40。

离散数学深刻复知识题(全)

离散数学深刻复知识题(全)

离散数学深刻复知识题(全)离散数学复习资料⼀、填空1. 命题“对于任意给定的正实数,都存在⽐它⼤的实数”令F(x):x 为实数,yx y x L >:),(则命题的逻辑谓词公式为。

2. 设p :王⼤⼒是100⽶冠军,q :王⼤⼒是500⽶冠军,在命题逻辑中,命题“王⼤⼒不但是100⽶冠军,⽽且是500⽶冠军”的符号化形式为。

命题“存在⼀个⼈不但是100⽶冠军,⽽且是500⽶冠军”的符号化形式为____。

3. 选择合适的论域和谓词表达集合A=“直⾓坐标系中,单位元(不包括单位圆周)的点集”则A= 。

4. 设 P (x ):x 是素数, E(x):x 是偶数,O(x):x 是奇数 N (x,y):x 可以整数y 。

则谓词(()(()(,)))x P x y O y N y x ?→?∧的⾃然语⾔是对于任意⼀个素数都存在⼀个奇数使该素数都能被整除。

5. 设个体域是{a,b},谓词公式()()()()x P x x P x ??∨?写成不含量词的形式是。

6. 谓词(((,)(,))(,,))x y z P x z P y z uQ x y u ∧→?的前束范式为。

7. 命题公式)))(((R Q Q P P A →?∧→?∨?的主合取范式为,其编码表⽰为。

8. 设E 为全集,,称为A 的绝对补,记作~A ,且~(~A )= ,~E = ,~Φ= 。

9. 设={256},{234},{134}A B C ==,,,,,,,则A-B= ,A ⊕B = ,A ×C = 。

10. 设},,{c b a A =考虑下列⼦集}},{},,{{1c b b a S =,}},{},,{},{{2c a b a a S =,}},{},{{3c b a S =,}},,{{4c b a S =,}}{},{},{{5c b a S =,}},{},{{6c a a S =则A 的覆盖有,A 的划分有。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学复习资料一、填空1. 命题“对于任意给定的正实数,都存在比它大的实数”令F(x):x 为实数,yx y x L >:),(则命题的逻辑谓词公式为 。

2. 设p :王大力是100米冠军,q :王大力是500米冠军,在命题逻辑中,命题“王大力不但是100米冠军,而且是500米冠军”的符号化形式为 。

命题“存在一个人不但是100米冠军,而且是500米冠军”的符号化形式为____。

3. 选择合适的论域和谓词表达集合A=“直角坐标系中,单位元(不包括单位圆周)的点集”则A= 。

4. 设 P (x ):x 是素数, E(x):x 是偶数,O(x):x 是奇数 N (x,y):x 可以整数y 。

则谓词(()(()(,)))x P x y O y N y x ∀→∃∧ 的自然语言是 对于任意一个素数都存在一个奇数使该素数都能被整除 。

5. 设个体域是{a,b},谓词公式()()()()x P x x P x ∀⌝∨∀写成不含量词的形式是 。

6. 谓词(((,)(,))(,,))x y z P x z P y z uQ x y u ∀∀∃∧→∃的前束范式为 。

7. 命题公式)))(((R Q Q P P A →⌝∧→⌝∨⇔的主合取范式为 ,其编码表示为 。

8. 设E 为全集, ,称为A 的绝对补,记作~A ,且~(~A )= ,~E = ,~Φ= 。

9. 设={256},{234},{134}A B C ==,,,,,,,则A-B= ,A ⊕B = ,A ×C = 。

10. 设},,{c b a A =考虑下列子集}},{},,{{1c b b a S =,}},{},,{},{{2c a b a a S =,}},{},{{3c b a S =,}},,{{4c b a S =,}}{},{},{{5c b a S =,}},{},{{6c a a S =则A 的覆盖有 ,A 的划分有 。

11. 设}2,121{Z x x x x M ∈≤≤=整除,被,}3,121{Z x x x x N ∈≤≤=整除,被,则=⋂N M ,=-N M 。

12. 设A={<1,2>,<2 , 4 >,<3 , 3 >} , B={<1,3>,<2,4>,<4,2>},则B A ⋃= ,B A = 。

13. A={1,2,3,4,5,6},A 上二元关系}|,{是素数y x y x T ÷><=,则用列举法 T= ;T 的关系图为 ,T 具有 性质。

14. 偏序集><≤R A ,的哈斯图为,则≤R = 。

15. 设},2|{N n x x A n∈==,定义A 上的二元运算为普通乘法、除法和加法,则代数系统<A,*>中运算*关于 运算具有封闭性。

16. A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。

17. 设图G = < V ,E >,},,,{4321v v v v V =的邻接矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=00010*******1010A ,则1v 的入度 A BC)(deg 1v -= ,4v 的出度)(deg 4v += ,从2v 到4v 的长度为2的路径有 条。

18. 结点数n (3≥n )的简单连通平面图的边数为m ,则m 与n 的关系为 m<=3n-6 。

19. 设 f ,g 是自然数集N 上的函数x x g x x f N x 2)(,1)(,=+=∈∀,则=)(x g f 。

20. 设I 是整数集合,Z 3是由模3的同余类组成的同余类集,在Z 3上定义+3如下:]3m od )[(][][3j i j i +=+,则+3的运算表为 ;<Z +,+3>是否构成群 。

21. 集合S={α,β,γ,δ}上的二元运算*为那么,代数系统<S, *>中的幺元是 ,α的逆元是。

22. 设< {a,b,c}, * >为代数系统,* 运算如下:则它的幺元为 ;零元为 。

23. 设A={a ,b ,c},A 上二元关系R={< a, a > , < a, b >,< a, c >, < c, c>} , 则s (R )= 。

24. 设A={<1,2>,<2 , 4 >,<3 , 3 >} , B={<1,3>,<2,4>,<4,2>},则B A ⋃= ,B A = 。

25. 设集合X={1,2,3},下列关系中 不是等价的。

A= {<1,1>,<2 , 2 >,<3 , 3 >}B= {<1,1>,<2 , 2 >,<3 , 3 >,<3,2>,<2 ,3 >} C= {<1,1>,<2 , 2 >,<3 , 3 >,<1,4>}D= {<1,1>,<2 , 2 >,<1 , 2 >,<2,1>,<1 ,3 >,<3,1>,<3 , 3 >,<2 , 3 >,<3,2>}26. 设{1,2,3,4},{1,2,2,43,3}X R ==<><><>,,则r (R)= ;s (R)= ;t (R) = 。

27. 设G 是n 阶完全图,则G 的边数m= 。

28. 设A={a ,b ,c ,d},其上偏序关系R 的哈斯图如右图所示:则R= 。

29. n 阶完全图Kn 的边数为 。

30. 结点数n (3≥n )的简单连通平面图的边数为m ,则m 与n 的关系为 。

31. 图的补图为 。

32. 有向图 中从v 1到v 2长度为2的通路有 条。

33. 设G 为9阶无向图,每个结点度数不是5就是6,则G 中至少有 个5度结点。

34. n 阶完全图结点v 的度数d(v) = n-1 。

二、证明1. 不构造真值表证明蕴涵式Q R P P R R P P Q →⇒⌝∧→→→⌝∧→)))((())((2. 证明,A B C D D E F A F ∨→∧∨→⇒→3. 证明(P ∧Q)∨(P ∧⌝Q) ⇔ P4. 证明(())()P Q R P Q R →∨⇔∧⌝→5. 证明)()())()((x xQ x xP x Q x P x ∀→∀⇒→∀6. 证明(()())()()x P x Q x xP x xQ x ∀∨⇒∀∨∃7. 用推理规则证明下式:前提: )()(,)()(,))())()((()()(x Q x x P x x R x Q x P x x P x ∃∃→∨∀→∃ 结论:))()()()((y R x P y x ∧∃∃8. 设论域D={a , b , c},求证:))()(()()(x B x A x x xB x xA ∨∀⇒∀∨∀。

9. 设f g 是复合函数,如果f g 满射,则g 也是满射。

10. 假定C B g B A f →→:,:,且f g 是一个满射,g 是个入射,则f 是满射。

11. 用反证法证明R S S Q R P Q P ∨⇒→∧→∧∨)()()(。

12. 设< I ,+ >是一个群,设I E ={ x|x=2n ,n ∈I },证明< I E ,+ >是< I ,+ >的一个子群。

三、按要求解答1. 将谓词公式)()())()()()((y R y y Q y x P x ∀→∀∨∃化为前束析取范式与前束合取范式。

2. 用推理规则论证:如果今天是星期六,我们就要到颐和园或圆明园玩,如果颐和园游人太多,我们就不去颐和园玩。

今天是星期六,颐和园游人太多,所以,我们去圆明园玩。

3. 符号化语句:“有些人喜欢所有的花,但是人们不喜欢杂草,那么花不是杂草”。

并推证其结论。

4. 用推理规则论证:或者逻辑难学,或者有少数学生不喜欢它;如果数学容易学,那么逻辑并不难学。

因此,如果许多学生喜欢逻辑,那么数学并不难学。

5. 设有下列情况,用推理规则论证结论是否有效? (a )或者天晴,或者下雨。

(b )如果天晴,我去看电影。

(c )如果我去看电影,我就不看书。

结论:如果我在看书则天在下雨。

6. 符号化语句:“有些病人相信所有的医生,但是病人都不相信骗子,所以医生都不是骗子”。

并推证其结论。

7. 给定3个命题:P :北京比天津人口多;Q :2大于1;R :15是素数。

求复合命题:)()(R P R Q ⌝∧↔→的真值。

8. 将(((,))(()()))x yP x y zQ z R x ∃⌝∃→∃→化为与其等价的前束范式。

9. 把公式()()()()x Q x x P x ∃→∀转化为前束范式 10. 求)()(Q P P Q ∧⌝∧→的主合取范式。

11. 求(A →B ∧C) ∧(⌝A ↔(⌝B ⌝∧C))的主析取范式与主合取范式。

12. 求(P ∨Q )→R 的主析取范式与主合取范式。

13. 设命题A 1,A 2的真值为1,A 3,A 4真值为0,求命题)()))(((421321A A A A A A ⌝∨↔⌝∧→∨的真值。

14. 求集合),3,2,1(10 =⎭⎬⎫⎩⎨⎧≤<=n n x x A n 的并与交。

15. 设X={1,2,3,4,5},X 上的关系R={<1,1> , < 1 , 2 > , <2 , 4 > , < 3 , 5 > , < 4 , 2 > },求R 的传递闭包t (R)。

16. 设集合{}X a b c d =,,,上的关系{},,,,,,,R a b b a b c c c =<><><><>。

求R 的传递闭包()t R 。

17. 在实数平面上,画出关系{}0202,<--∧>+-><=y x y x y x R ,并判定关系的特殊性质。

18. 设X ={ a ,b ,c ,d },R 是X 上的二元关系,R ={< a ,c >,< a ,d >,< b ,c >,< b ,d >,< c ,d >}设S={1 , 2 , 3 , 4, 6 , 8 , 12 , 24},“≤”为S 上整除关系,问:(1)偏序集≤><,S 的哈斯图如何?(2)偏序集(1) 画出R 的关系图。

相关文档
最新文档