离散数学-图的矩阵表示
《离散数学》复习提纲(2018)
《离散数学》期末复习大纲一、数理逻辑[复习知识点]1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价?),复合命题2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法)5、命题逻辑的推理理论6、谓词、量词、个体词(一阶逻辑3要素)、个体域、变元(约束出现与自由出现)7、命题符号化、谓词公式赋值与解释,谓词公式的类型(永真、永假、可满足)8、谓词公式的等值式(代换实例、消去量词、量词否定和量词辖域收与扩、量词分配)和置换规则(置换规则、换名规则)9、一阶逻辑前束范式(定义、求法)本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、公式类型的判定、命题逻辑的推理、谓词与量词、命题符号化、谓词公式赋值与解释、求前束范式。
[复习要求]1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法。
2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简其它公式,公式在解释下的真值。
3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法。
4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价方法。
5、掌握命题逻辑的推理理论。
6、理解谓词、量词、个体词、个体域、变元的概念;理解用谓词、量词、逻辑联结词描述一个简单命题;掌握命题的符号化。
7、理解公式与解释的概念;掌握在有限个体域下消去公式量词,求公式在给定解释下真值的方法;了解谓词公式的类型。
8、掌握求一阶逻辑前束范式的方法。
二、集合[复习知识点]1、集合、元素、集合的表示方法、子集、空集、全集、集合的包含、相等、幂集2、集合的交、并、差、补以及对称差等运算及有穷集的计数(文氏(Venn)图、包含排斥原理)3、集合恒等式(幂等律、交换律、结合律、分配律、吸收律、矛盾律、德摩根律等)及应用本章重点内容:集合的概念、集合的运算性质、集合恒等式的证明。
离散数学实验报告
“离散数学”实验报告目录一、实验目的 (3)二、实验内容 (3)三、实验环境 (3)四、实验原理和实现过程(算法描述) (3)1、实验原理........................................................................................................2、实验过程.......................................................................................................五、实验数据及结果分析 (13)六、源程序清单 (24)源代码 (24)七、其他收获及体会 (45)一、实验目的实验一:熟悉掌握命题逻辑中的联接词、真值表、主范式等,进一步能用它们来解决实际问题。
实验二:掌握关系的概念与性质,基本的关系运算,关系的各种闭包的求法。
理解等价类的概念,掌握等价类的求解方法。
实验三:理解图论的基本概念,图的矩阵表示,图的连通性,图的遍历,以及求图的连通支方法。
二、实验内容实验一:1. 从键盘输入两个命题变元P和Q的真值,求它们的合取、析取、条件和双条件的真值。
(A)2. 求任意一个命题公式的真值表(B,并根据真值表求主范式(C))实验二:1.求有限集上给定关系的自反、对称和传递闭包。
(有两种求解方法,只做一种为A,两种都做为B)2. 求有限集上等价关系的数目。
(有两种求解方法,只做一种为A,两种都做为B)3. 求解商集,输入集合和等价关系,求相应的商集。
(C)实验三:以偶对的形式输入一个无向简单图的边,建立该图的邻接矩阵,判断图是否连通(A)。
并计算任意两个结点间的距离(B)。
对不连通的图输出其各个连通支(C)。
三、实验环境C或C++语言编程环境实现。
四、实验原理和实现过程(算法描述)实验一:1.实验原理(1)合取:二元命题联结词。
离散数学图的矩阵表示
A4=
23321
01011
11010
22221
V4
v3
问每条:从vv33到到0 v0v1由1长1长0度上度0为可为22看的的路出路有A,n几中中条间元?02肯素11定a01经ij的11过10意1个义中:间结点vk,
A该 即 逐(G路个v)23=,k表遍v示历k,1为0201每=11111:个。a0101iv结每j=31100点k有1000表,v一k 示并个进v从vA1k,(,行Gv)在i3就乘到= 邻对法v接j应运长100矩一算302度阵个,111为中110v获3n110,,k取的v就从k路,1是=v3有1:到;kvv31条,k全=。1部,长vk度,1=为1,2 的路的数目:v3,1v1,1+v3,2其v中21+a3v2=3,33表v示3,1v+3到v3,v42长v4度,1+为v33,的5路v5,有1=3条v。3,ivi,1
由于,邻接矩阵的定义与关系矩阵表示定义相同,所以,可达性
矩阵P即为关系矩阵的MR+,因此P矩阵可用Warshall算法计算。
13
❖可达性矩阵的求解方法
23221 35332 58553 12111 46442
Br的任一元素bij表示的是从vi到vj长度不超过r的路的数目;
若bij 0,
若bij=0,
ij时,表示vi到vj可达, i=j时,表示vi到vi有回路;
ij时,表示vi到vj不可达, i=j时,表示vi到vi无回路;
在许多实际问题中,我们关心的往往是vi和vj之间是否存在路的 问题,而对路的数目不感兴趣,为此,引出可达矩阵。
由7.2.1推论,若从vi到vj存在一条路,则必存在一条边数小于n 的通路,(或边数小于等于n的回路)。即:如果不存在一条小
离散数学第七章图论习题课
P286 1、在无向图G中,从结点u到结点v有一条长度为 偶数的通路,从结点u到结点v又有一条长度为奇 数的通路,则在G中必有一条长度为奇数的回路。
证明 :
2、运用 (1) 判断有向图或无向图中通路(回路)的类型。 (2) 求短程线和距离。 (3) 判断有向图连通的类型。
三、图的矩阵表示
1、基本概念。 无向图的邻接矩阵A 根据邻接矩阵判断:各结点的度, 有向图结点 出,入度。 由Ak可以求一个结点到另一个结点长度为k 的路条数. 有向图的可达矩阵P 用P可以判定:各结点的度. 有向图的强分图。 关联矩阵M:是结点与边的关联关系矩阵. 用M判定:各结点的度
设给定图G(如由图所示),则图G的点割集
是
.
应该填写:{f},{c,e}。
定义 设无向图G=<V, E>为连通图,若有点集
V1V,使图G删除了V1的所有结点后,所得的子
图是不连通图,而删除了V1的任何真子集后,所
得的子图是连通图,则称V1是G的一个点割
集.若某个结点构成一个点割集,则称该结点为
割点。
a c
a c
b
d
b
d
a c
a c
b
d
b
d
推论:任何6人的人群中,或者有3人互相认识,或者有 3人彼此陌生。(当二人x,y互相认识,边(x,y)着红色, 否则着兰色。则6人认识情况对应于K6边有红K3或者 有兰K3。)
证明简单图的最大度小于结点数。
证明: 设简单图G有n个结点。对任一结点u,由于G没
离散数学CH04_图论_根树
4.6 树
4.6 树
图中的三棵树T1,T2和T3都是带权2,2,3,3,5
的二叉树,它们的权分别是:
W(T1)=2×2+2×2+3×3+5×3+3×2=38 W(T2)=3×4+5×4+3×3+2×2+2×1=47 W(T3)=3×3+3×3+5×2+2×2+2×2=36 以上三棵树都是带权2,2,3,3,5的赋权二叉树,但不 是最优树。
【例】求图所示的二叉树产 生的前缀码。 解:在图(a)中,每一个 分枝点引出的左侧边标记0, 右侧边标记1。由根结点到 树叶的路经上各边的标记组 成的0、1序列作为对应树叶 的标记,如图 (b)所示。产 生的前缀码为: 01,11,000,0010,0011
4.6 树
定理 任意一个前缀码,都对应一个二叉树。 证明:
4.6 树
给定了一个前缀码,设h是其中最长序列的长度。画出一个高为 h的正则二叉树。按定理9.6.7中描述的办法给各边标记0或1。 每一个结点对应一个0、1序列,它是由根结点到该结点的路经 上各边的标记组成的。如果某个0、1序列是前缀码的元素,则 标记该结点。将已标记结点的所有后代和该结点的射出边全部删 除,得到了一个二叉树,再删除未加标记的树叶,就得到要求的 二叉树。
在通信中常用0、1字符串表示英文字母,即用二进制 数表示英文字母。最少用多少位二进制数就能表示26
个英文字母呢?1位二进数可以表示2=21个英文字母
,两位二进制数可以表示4=22个英文字母,……,n 位二进制数可以表示2n个英文字母。如果规定,可以 用1位二进制数表示英文字母,也可以用两位二进制数 表示英文字母。
4.6 树
定理 在完全m叉树中,其树叶数为t,分枝点数为i,则 (m1)*i=t-1。 证明:
第7章 图论 [离散数学离散数学(第四版)清华出版社]
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
21
例:
a j i h c g d
1(a)
无 向 图
b
f
e
2(b)
7(j) 8(g) 9(d) 10(i)
6(e)
3(c) 4(h)
5(f)
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
22
例:
1(b)
有向图
第四部分:图论(授课教师:向胜军)
6
[定义] 相邻和关联
在无向图G中,若e=(a, b)∈E,则称a与 b彼此相邻(adjacent),或边e关联 (incident) 或联结(connect) a, b。a, b称为边e的端点或 结束顶点(endpoint)。 在有向图D中,若e=<a, b>∈E,即箭头 由a到b,称a邻接到b,或a关联或联结b。a 称为e的始点(initial vertex),b称为e的终点 (terminal/end vertex)。
证明思路:将图中顶点的度分类,再利用定理1。
6/27/2013 6:02 PM 第四部分:图论(授课教师:向胜军) 9
[定理3] 设有向图D=<V, E>有n个顶点,m 条边,则G中所有顶点的入度之和等于所 有顶点的出度之和,也等于m。
即:
d ( v i ) d ( v i ) m.
i 1 i 1
n
n
证明思路:利用数学归纳法。
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
10
一些特殊的简单图:
(1) 无向完全图Kn(Complete Graphs)
《离散数学》第6章 图的基本概念
E ' E )。
生成子图—— G ' G 且 V ' V 。
导出子图 ——非空 V ' V ,以 V ' 为顶点集, 以两端均在 V ' 中的边的全体为边集的 G 的 子图,称 V ' 的导出子图。 ——非空 E ' E ,以 E ' 为边集,以
E ' 中边关联的顶点的全体为顶点集的 G 的子
0 vi与ek 不关联 无向图关联的次数 1 vi与ek 关联1次 2 v 与e 关联2次(e 为环) i k k
1 vi为ek的始点 有向图关联的次数 0 vi与ek 不关联 1 v 为e 的终点 (无环) i k
点的相邻——两点间有边,称此两点相邻 相邻 边的相邻——两边有公共端点,称此两边相邻
孤立点——无边关联的点。 环——一条边关联的两个顶点重合,称此边 为环 (即两顶点重合的边)。 悬挂点——只有一条边与其关联的点,所
对应的边叫悬挂边。
(3) 平行边——关联于同一对顶点的若干条边 称为平行边。平行边的条数称为重数。 多重图——含有平行边的图。
简单图——不含平行边和环的图。
如例1的(1)中,
第六章 图的基本概念 第一节 无向图及有向图
内容:有向图,无向图的基本概念。
重点:1、有向图,无向图的定义, 2、图中顶点,边,关联与相邻,顶点 度数等基本概念,
3、各顶点度数与边数的关系
d (v ) 2m 及推论,
i 1 i
n
4、简单图,完全图,子图, 补图的概念, 5、图的同构的定义。
一、图的概念。 1、定义。 无序积 A & B (a, b) a A b B 无向图 G V , E E V & V , E 中元素为无向边,简称边。 有向图 D V , E E V V , E 中元素为有向边,简称边。
《离散数学》图论 (上)
无向图与有向图
v2
e1
e2
e3
v3
e4
v1
e5 (e1)={( v42, v24 )}
v4
(e2)={( v32, v23 )} (e3)={( v3, v4 )}
(e4)=({ v43, v34 )}
(e5)=({ v4,}v4 )
13
无向图与有向图
A B C
D E F
14
无向图与有向图
第八章 图论
第八章 图论
§8.1 基本概念
§8.1.1 无向图、有向图和握手定理 §8.1.2 图的同构与子图 §8.1.3 道路、回路与连通性 §8.1.4 图的矩阵表示
§8.2 欧拉图 §8.3 哈密尔顿图 §8.4 平面图 §8.5 顶点支配、独立与覆盖
2
无向图与有向图
3
无向图与有向图
一个无向图(undirected graph, 或graph) G 指一个三元组 (V, E, ),其中
vV
vV
24
特殊的图
假设 G=(V, E, ) 为无向图,若 G 中所有 顶点都是孤立顶点,则称 G 为零图(null graph)或离散图(discrete graph);若 |V|=n,|E|=0,则称 G 为 n 阶零图 所有顶点的度数均相等的无向图称为正 则图(regular graph),所有顶点的度数 均为 k 的正则图称为k度正则图,也记作 k-正则图 注:零图是零度正则图
19
握手定理
定理(图论基本定理/握手定理)
假设 G=(V, E, ) 为无向图,则deg(v) 2 E , vV
即所有顶点度数之和等于边数的两倍。
推论
在任何无向图中,奇数度的顶点数必是偶 数。
离散数学第8章 图论
为d(vi,vj)。
8.2
图的矩阵表示
一、图的邻接矩阵 二、图的连接矩阵
三、图的关联矩阵
二、图的连接矩阵 定义 8-9 设图 G= ( V , E ),其中 V={v1 ,
v2 , … , vn } , n 阶方阵 C= ( cij ),称为图 G 的连接 矩阵,其中第i行j列的元素
1 c ij 0
利用邻接矩阵,我们可以 (1)判断G中任意两个结点是否相连接;
方法是:对 l=1,2,…,n–1,依次检查Al的(i,j)
项元素
(l ( ) ij)是否为0,若都为0,那么结点v 与v 不 a ij i j
相连接,否则vi与vj有路相连接。 (2)计算结点vi与vj之间的距离。
(1) ( 2) ( n 1) 中至少有一个不为0, 若 aij , aij , , aij 则可断定vi与vj相连接,使 a (l ) 0 的最小的 l 即
若中有相同的结点,设为ur= uk(r<k),则子路ur+1…uk可以从 中删去而形成一条较短的路= viu1…ur uk+1…uh–1 vj,仍连接vi到 vj 。 若中还有相同的结点,那么重复上述过程又可形成一条 更短的路,…。这样,最后必得到一条真路,它连接vi到vj, 并短于前述任一非真路。因此,只有真路才能是短程。
非真 生成
真 生成
真 非生成
非真 非生成
真 非生成
七、路与回路 定义:图G中l条边的序列{v0,v1}{v1,v2}…{vl–1,vl}称为连
接v0到vl的一条长为 l 的路。它常简单地用结点的序列 v0v1v2…vl–1vl来表示。其中v0和vl分别称为这条路的起点和终点。 开路:若v0vl,则称路v0v1v2…vl–1vl为开路; 回路:若v0=vl,则称路v0v1v2…vl–1vl为回路; 真路:若开路v0v1v2…vl–1vl中,所有结点互不相同(此时所有 边也互不相同),则称该路为真路; 环:在回路v0v1v2…vl–1v0中,若v0,v1,v2,…,vl–1 各不相同 (此时所有边也互不相同),则称该回路为环。
离散数学平面图
又因为任取K3,3中三个结点,至少有两个点不邻接, 所以不能组成一个面,即K3,3中任何 一个面至少由四条边围成,即:所有面 的次数之和deg(r) >=4r=20 又由定理1知:deg(r)=2|E|=18 即18>=20矛盾不。论怎所么以画,K总3,有3不交是叉点平面图。
❖ 平面图基本性质
设G是一个有v个结点e条边的连通简单平面图,若v3, 则:e<=3v-6。等价于: 若不满足e<=3v-6,则G不是连通平面图。
例题:证明k5图不是平面图。
K5图中,v=5,e=10,10 3*v-6=35-6=9
但定理的条件只是必要条件。
如K3,3中v= 6,e =9, e<3v-6=12 满足条件,但K3,3不是平面图。
离散数学
❖ 图论
1 图的基本概念 2 路与回路 3 图的矩阵表示 4 欧拉图与汉密尔顿图 5 平面图 6 对偶图与着色 7 树与生成树
❖ 平面图基本概念
定义1:设G=<V,E>是一个无向图,如果能把G的所有结点和
边画在平面上,且使得任何两条边除了端点外没有其他的交点, 就称G是一个平面图。
(1)
G为k条边,再添加一条边,只有下述两种情况:
面数不变 点树加1 边数加1
点数不变 面数加1 边数加1
(Vk+1)-(ek+1)+rk=2成立
(Vk)-(ek+1)+(rk+1)=2成立
通过上述归纳法证明欧拉公式v-e+r=2成立。
❖ 平面图基本性质
例1:证明K3,3不是平面图
证:假设K3,3是平面图,
离散数学知识点(可编辑修改word版)
1.内容及范围主要来自 ppt,标签对应书本2.可能有错,仅供参考离散数学知识点说明:定义:红色表示。
定理性质:橙色表示。
公式:蓝色表示。
算法: 绿色表示页码:灰色表示数理逻辑:1.命题公式:命题,联结词(⌝,∧,∨,→,↔),合式公式,子公式2.公式的真值:赋值,求值函数,真值表,等值式,重言式,矛盾式3.范式:析取范式,极小项,主析取范式,合取范式,极大项,主合取范式4.联结词的完备集:真值函数,异或,条件否定,与非,或非,联结词完备集5.推理理论:重言蕴含式,有效结论,P 规则,T 规则, CP 规则,推理6.谓词与量词:谓词,个体词,论域,全称量词,存在量词7.项与公式:项,原子公式,合式公式,自由变元,约束变元,辖域,换名,代入8.公式语义:解释,赋值,有效的,可满足的,不可满足的9.前束范式:前束范式10.推理理论:逻辑蕴含式,有效结论,∀-规则(US),∀+规则(UG),∃-规则(ES),∃+规则(EG), 推理集合论:1.集合: 集合, 外延性原理, ∈, ⊆, ⊂, 空集, 全集, 幂集, 文氏图, 交, 并, 差, 补, 对称差2.关系: 序偶, 笛卡尔积, 关系, domR, ranR, 关系图, 空关系, 全域关系, 恒等关系3.关系性质与闭包:自反的, 反自反的, 对称的, 反对称的, 传递的,自反闭包 r(R),对称闭包 s(R), 传递闭包 t(R)4.等价关系: 等价关系, 等价类, 商集, 划分5.偏序关系:偏序, 哈斯图, 全序(线序), 极大元/极小元, 最大元/最小元, 上界/下界6.函数: 函数, 常函数, 恒等函数, 满射,入射,双射,反函数, 复合函数7.集合基数:基数, 等势, 有限集/无限集, 可数集, 不可数集代数结构:1.运算及其性质:运算,封闭的,可交换的,可结合的,可分配的,吸收律, 幂等的,幺元,零元,逆元2.代数系统:代数系统,子代数,积代数,同态,同构。
离散数学第七章图的基本概念
4.无向图的连通性
若无向图G中任何两顶点都连通,则称G是连通图.
对于任意的无向图G.设V1,V2,…,Vk是顶点之间连通关系的 等价类,则称他们的导出子图为G的连通分支.用p(G)表示G 的连通分支数.
V1 e1
e2 e3
V3
e4 V2
V4
a
de
h
i
b
c
f
g
5.有向图的连通性
若略去有向图D中各边的键头,所得无向图是无向连通图,则 称D是弱连通图(或称D是连通图).
(2) mij d (vi )(i 1,2,..., n)
j 1
mn
nm
n
(3) mij mij d(vi ) 2m
j1 i1
i1 j1
i 1
m
(4) mij 0 vi是孤立点 j 1
(5)若第j列与第k列相同, 则说明e j与ek为平行边.
2.有向图的关联矩阵
设有向图D=<V,E>,V={v1,v2,…,vn},E={e1,e2,…,em} 1, vi为ej的始点
e1,e2,e3},{e1,e2,
e2
e4},{e9}等边割集 ,e9是桥.
e3 V4
e5 e6
V5 e4
V6
e9
V7
7.3 图的矩阵表示
1.无向图的关联矩阵
设无向图G=<V,E>,V={v1,v2,…,vn},E={e1,e2,…,em}
令mij为顶点vi与ej的关联次数, 则称(mij)n×m为G的关联矩阵.记为M(G)
若Γ 满足:vi-1,vi为ei的端点(若G为有向图,vi-1是ei的始 点,vi是ei的终点)i=1,2,…,k,则称Γ 为G中通路,v0,vk分 别称为通路的始点和终点,Γ 中边的数目k称为通路长度.
离散数学第讲7
无向图 <V,E> (2) 若|V(G)| 、|E(G)|均为有限数,则称G为有限图。
一个 为A与B的无序积,记作A&B.
是一个有序的二元组
,记作G, 其中
1 , vi可达vj
第十四章 图的(基1本)概念V≠φ称为顶点集,其元素称为顶点或结点。
第十四章 图的基本概念
第十四章 图的(基2本)概念E称为边集,它是无序积V&V的多重子集,其元素称为
所有边互不相同),则称此回路为基本回路或者初级 则V1∪ V2 =V, V1∩V2= φ,由握手定理知
若回路中的所有边e1,e2,…,ek互不相同,则称此回路为简单回路或一条闭迹;
回路、圈。 26 设有向图D=<V,E>中无环, V={v1,v2,…,vn}, E={e1,e2,…,em}, 令aij(1)为顶点vi与邻接到顶点vj边的条数,称(aij(1))n×n为D的邻接矩
第十四章 图的基本概念
例14.1 画出下列 图形。
v1。
。v2
(1) G=<V,E>,其中
V={v1,v2,v3,v4,v5},
v3
。
(1)
E={(v1,v1), (v1,v2), (v2,v3),
v4 。
。v5
(v2,v3), (v1,v5),
(v2,v5), (v4,v5)}。
(2) D=<V,E>,其中
顶点的度数均小于3,问G中至少有多少个顶点?
第十四章 图的基本概念
定义14.5完全图
1. 设G=<V,E>为一个具有n个结点的无向简单图,如 果G中任一个结点都与其余n-1个结点相邻接,则称 G为无向完全图,简称G为完全图,记为Kn。
第五章 图的基本概念-离散数学
Co
e4
e7
bo
oc
8
图 论
无向完全图:每对顶点间均有边相连的无向 简单图。N阶无向完全图记作Kn.
o o K2 o K3 o o o o K4
1 2
o o
o o o K5 o o
无向完全图Kn, 有边数
n( n − 1)
竞赛图:在的每条边上任取一个方向的有 向图.
9
图 论
有向完全图:每对顶点间均有一对方向相反 的边相连的有向图。例如:
2
图 论
5.1 图的定义及相关术语 5.2 通路 回路 图的连通性 5.3 图的矩阵表示 5.4 无向树 5.5 欧拉图和哈密顿图 5.6 平面图
3
图 论
§5.1 图的定义及相关术语
例1. 多用户操作系统中的进程状态变换图:
就绪 r 进程调度 ro 执行 e o w V={r,e,w}
E={<r,e>,<e,w>,<w,r>}
图 论
2
2. 回路:如果一条路的起点和终点是一个顶 点,则称此路是一个回路. ov e e 如右图中的 v o ov e e L1=v0 e1v1 e5v3 e6v2e4v0 e e L2= v0 e1v1 e5v3e2v0
0 1 4 1 2 3 5 6
2
o v3
22
3. 迹与闭迹
图 论
简单通路(迹) 顶点可重复但边不可重复的通路。 简单回路(闭迹) 边不重复的回路。 4. 路径与圈 初级通路(路径) 顶点不可重复的通路。 初级回路(圈) 顶点不可重复的回路。 例如右图中: o v0 L1=v0 e1v1 e5v3 e6v2e4v0 e1 e4 L2= v0 e1v1 e5v3e2v0 o v2 e2 e3 L3=v0 e1v1 e5v3 e2v0 e3v3 e6v2e4v0 v1 o e5 e6 L1和L2是闭迹, 也是圈. o v3 L3是闭迹,而不是圈.
《离散数学》第七章_图论-第3-4节
图的可达性矩阵计算方法 (3) 无向图的可达性矩阵称为连通矩阵,也是对称的。 Warshall算法
例7-3.3 求右图中图G中的可达性矩 阵。 分析:先计算图的邻接矩阵A布尔乘法的的2、 v1
3、4、5次幂,然后做布尔加即可。
解:
v4
v2
v3 v5
P=A∨ A(2) ∨ A(3) ∨A(4)∨A(5)
图的可达性矩阵计算方法(2)
由邻接矩阵A求可达性矩阵P的另一方法: 将邻接矩阵A看作是布尔矩阵,矩阵的乘法运算和加 法运算中,元素之间的加法与乘法采用布尔运算 布尔乘:只有1∧1=1 布尔加:只有0∨0=0 计算过程: 1.由A,计算A2,A3,…,An。 2.计算P=A ∨ A2 ∨ … ∨ An P便是所要求的可达性矩阵。
v4
v3
v2
G中从结点v2到结点v3长度 为2通路数目为0,G中长 度为2的路(含回路)总数 为8,其中6条为回路。 G中从结点v2到结点v3长度 为3的通路数目为2, G中 长度为3的路(含回路)总
图的邻接矩阵的 应用 (2)计算结点vi与vj之间的距离。
中不为0的最小的L即为d<vi,vj>。
(一)有向图的可达性矩阵
可达性矩阵表明了图中任意两个结点间是否至少存在一条 路以及在任何结点上是否存在回路。
定义7-3.2 设简单有向图G=(V,E),其中V={v1, v2,…,vn },n阶方阵P=(pij)nn ,称为图G的可达 性矩阵,其中第i行j列的元素
p ij =
1 1 1 1 P v3 1 1 v4 0 0 v5 0 0 v1 v2 1 1 1 1 1 1
0 1 A(G)= 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0
离散数学-图的矩阵表示
使用压缩矩阵
对于稠密图(边数较多的 图),可以使用压缩矩阵 来减少存储空间和计算时 间。
使用动态规划
对于某些特定的问题,可 以使用动态规划来优化算 法,提高计算效率。
05
离散数学-图的矩阵表示的挑战和未
来发展方向
离散数学-图的矩阵表示的挑战
计算复杂性
图的矩阵表示的计算复杂性较高, 特别是对于大规模图,需要消耗 大量的计算资源和时间。
表示图中任意两个顶点之间距离的矩阵, 距离矩阵中的元素d[i][ j]表示顶点i和顶点j 之间的最短路径长度。
图的邻接矩阵
1
邻接矩阵是表示图中顶点之间连接关系的常用方 法,其优点是简单直观,容易理解和计算。
2
邻接矩阵的行和列都对应图中的顶点,如果顶点i 和顶点j之间存在一条边,则矩阵中第i行第j列的 元素为1,否则为0。
THANKS
感谢观看
3
通过邻接矩阵可以快速判断任意两个顶点之间是 否存在边以及边的数量。
图的关联矩阵
01
关联矩阵是表示图中边和顶点之间关系的常用方法,
其优点是能够清晰地展示图中边的连接关系。
02
关联矩阵的行和列都对应图中的边,如果边e与顶点i相
关联,则矩阵中第i行第e列的元素为1,否则为0。
03
通过关联矩阵可以快速判断任意一条边与哪些顶点相
图的矩阵表示的算法复杂度分析
创建邻接矩阵的时间复杂 度:O(n^2),其中n是顶 点的数量。
查找顶点之间是否存在边 的复杂度:O(1)。
创建关联矩阵的时间复杂 度:O(m),其中m是边的 数量。
查找边的权重复杂度: O(1)。
图的矩阵表示的算法优化策略
01
02
03
离散数学部分概念和公式总结(考试专用)
命题:称能判断真假的陈述句为命题。
命题公式:若在复合命题中,p、q、r等不仅可以代表命题常项,还可以代表命题变项,这样的复合命题形式称为命题公式。
命题的赋值:设A为一命题公式,p ,p ,…,p 为出现在A中的所有命题变项。
给p ,p ,…,p 指定一组真值,称为对A的一个赋值或解释。
若指定的一组值使A的值为真,则称成真赋值。
真值表:含n(n≥1)个命题变项的命题公式,共有2^n组赋值。
将命题公式A在所有赋值下的取值情况列成表,称为A的真值表。
命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。
(2)若A在它的赋值下取值均为假,则称A为矛盾式或永假式。
(3)若A至少存在一组赋值是成真赋值,则A是可满足式。
主析取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合取式全是极小项,则称该析取范式为A的主析取范式。
主合取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合析式全是极大项,则称该析取范式为A的主析取范式。
命题的等值式:设A、B为两命题公式,若等价式A↔B是重言式,则称A与B是等值的,记作A<=>B。
约束变元和自由变元:在合式公式∀x A和∃x A中,称x为指导变项,称A为相应量词的辖域,x称为约束变元,x的出现称为约束出现,A中其他出现称为自由出现(自由变元)。
一阶逻辑等值式:设A,B是一阶逻辑中任意的两公式,若A↔B为逻辑有效式,则称A与B是等值的,记作A<=>B,称A<=>B为等值式。
前束范式:设A为一谓词公式,若A具有如下形式Q1x1Q2x2Q k…x k B,称A为前束范式。
集合的基本运算:并、交、差、相对补和对称差运算。
笛卡尔积:设A和B为集合,用A中元素为第一元素,用B中元素为第二元素构成有序对组成的集合称为A和B的笛卡尔积,记为A×B。
二元关系:如果一个集合R为空集或者它的元素都是有序对,则称集合R是一个二元关系。
第六章 图的矩阵表示
•一个图的完全关联矩阵是不是唯一的?
•完全关联矩阵是不是唯一的确定一个图?
•用完全关联矩阵来表示图有什么好处?
•图的哪些性质可以从完全关联矩阵上一目了然?
•矩阵的运算是否会有相应的图的变化?
•反过来,图的哪些变化对应着完全关联矩阵的哪些变 化?
一般地说,我们把一个 n 阶方阵 A 的某些
列作一置换,再把相应的行作同样的置换,得
(1)
n i 1 m ij j 1 ij i m j 1 ij i ij i, j
(4) 平行边对应的列相同。 (5) 不能表示自环。
v2
e2
v3
e1
v1
e5
e4
e3
v1 M (G ) v2 v3 v 4
v4
e1 e2 1 1 1 1
e3
e4 1
1 1
0 0 1 1 1 1 0 0 0 0 → 1 1 0 1 0 0 0 0 0 0
1 0 M ' (G ) M ' (G1 ) 0
1 1 0 0
0 0 1 1 1 1 0 0 0 0 → 1 1 0 1 0 0 1 1 0 0
( )
( )
(3) (5)
1 0 0 0 0
1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 0 4 0 0 0 0 1 1 0 0 0 0 1 1
6
1 0 0 0 0
1 0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1
0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 0
离散数学图的矩阵表示
例(续)
1 0 0 0
1 0 0 0
A 2 1
0 0
1 0
0 1
A2 3 2
0 0
0 1
1长度 0
通路
1
回路
8
1
1 0 1 0
2 0 0 1
2 3
11 3 14 1
1 A3 4
0 0
0 1
0 0
1 A4 5
0 0
0 0
0 1
4 合计
17 50
3 8
3 0 0 1
4 0 1 0
3 0 1 0
的可达性矩阵P:
B=E+A+A2+…+A n-1 =(b ij ) n×n 其中 E 是单位矩阵。则
pij
1 0
bij 0 bij 0
19
图9.24邻接矩阵A和A2,A3,A4如下:
0 1 0 0 0
1 0 1 0 0
A
0
1
0
0
0
0 0 0 0 1
0
0
0
1
0
20
1 0 1 0 0
0 2 0 0 0
注 无向图也有相应的邻接矩阵,一般只考 虑简单图,无向图的邻接矩阵是对称的, 其性质基本与有向图邻接矩阵的性质相同。
15
例如:下图邻接矩阵为:
0 1 0 1
A(G)
1 0 1
0 1 1
1 0 1
1
1 0
16
有向图的可达矩阵
定义 设D=<V,E>为有向图, V={v1, v2, …, vn}, 令
无向图的关联矩阵
定义 设无向图G=<V,E>, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令mij为vi与ej的关联次数,称(mij)nm为G 的关联矩阵,记为M(G).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析:从 到 长度为2的路,中间必须经过 如果图G 中有路 存在,则肯定有 ,反之如果 图G中不存在路 ,那么 或者 ,即 于是从结点 到 的长度为2的路的数目就 等于:
按照矩阵的乘法规则,上式恰好等于矩阵 的元素,即 表示从 到 ; 的长度为2的路的数目
中第i行,第j列
考虑从vi到v j的长度为3的路的数目,可以看作是由vi到vk的长度为1的路,再 联结vk 到v j的长度为2的路,则类似可知从vi到v j的长度为3的路的数目为: a
( 3) ij ( 2) aik akj ,即为( A(G )) 3的第i行,第j列元素。 k 1 n
行相加运算: 有向图:对应分量普通加法运算; 无向图:对应分量模2加法运算。 行相加相当于G中对应结点的合并。 air a jr 1 ,说明v 和v 中只有一个结点是边e 的端点,合并 i j r 后仍是er的端点。
air a jr 0 ,有两种情况:
a、vi,vj都不是er的端点; b、vi,vj都是er的端点,合并后删去自回路。 若合并后完全关联矩阵中出现元素全为0的列,表明对应的 边消失。 有了这种运算,就可以运用这种运算求关联矩阵的秩
1 0 1 0
0 1 0 0
0 1 ,求G的可达性矩阵。 1 0
Байду номын сангаас
0 2 A2 1 0
0 1 1 1
1 0 1 0
1 1 1 0
2 1 A3 2 0
4 5 7 2 2 4 4 1
1 2 2 0
3 6 7 2
0 1 1 1
由前面的定理7-2.1的推论可知,如果在vi到vj之间存在路,必定存在 一条长度不超过n的通路,所以l只需计算到n就可以了。
推论: G有n个结点, A是邻接矩阵, Bn A A2 An,bij 为Bn的i行,j列元素,若bij>0,则表明vi,vj中存在路。 对于简单有向图的任意两个结点之间的可达性,也可以用矩阵 表示出来,即可达性矩阵
例:计算右图对应的完全关联矩阵的秩。
v4 e1 v5
e2 e3
v3 e4 e5 e6 e7 v1 v2
推论: G有r个结点,w个极大连通子图,则图G的完全关联 矩阵的秩为r-w。 可用之求图的最大连通子图数目。
谢谢
矩阵的秩:矩阵中所有非零子式的最高阶数;就是将矩阵 通过初等变换化为行阶梯后非零行的行数。
定理: G为连通图,有r个结点,则其完全关联矩阵M(G)的秩为 r-1,即rank M(G)=r-1。 证明:对无向图,用数学归纳法 ( 1 )r 1, 2,显然; (2)假设r 1时成立。即连通图G有r 1个结点,则rank M (G ) r 2 (3)证明结点数为r时成立 设M(G)的第一列对应边e,e的端点为vi 和v j,调整行使得第i行成为
第一行,则M(G)首列仅第一行和第j行为1,将第一行加到第j行,得
1 0 ,M (G1 )是G1的完全关联矩阵,而G1是G M (G) M (G1 ) 0 合并vi 和v j 得到的,G是连通图,则G1也是连通图,所以rank M (G1 ) r 2 rank M (G ) rank M (G ) 1 rank M (G1 ) r 1
e4
e3 v4
e6
v2
e2
v3
有向图的完全 关联矩阵也有类似于无向图的一些性质
(1)M(G)中每一列中有且仅有两个1, 对应图中每一边关联两个结点。 (2)每一行中元素的和为对应结点的度数。 (3)一行中若元素全为0,则其对应的结 点为孤立结点。 (4)平行边对应的列相同。 (5)结点或边编序不同,对应完全关联矩 阵只有行序、列序的差别。 (1)每一列中一个值为1,一个为-1, 对应图中的一条有向边。 (2)把一行中的值为1的元素相加,得 到顶点的出度,把值为-1的元素相加, 得到顶点的入度。 (3)一行中元素全为0,对应孤立结点。 (4)平行边对应的列相同。 (5)结点或边编序不同,对应完全关联 矩阵只有行序、列序的差别。
1 1 2 1 A4 2 3 1 2
1 1 P 1 1
2 2 3 1
1 1 1 1 1 1 1 1
1 2 2 0
1 1 1 1
1 3 3 1
3 5 B4 A A1 A2 A3 A4 7 3
v1 e1 e2 e6 e3 v3
1 2 3 4 5 6
e5 v4
v2 v5
e4
v1 v2 v3 v4 v5
1 1 0 0 0
1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0
1 0 1 0 0
从关联矩阵中看出图形的一些性质:
(1)M(G)中每一列中有且仅有两个1,对应图中每一边关联两 个结点。 (2)每一行中元素的和为对应结点的度数。 (3)一行中若元素全为0,则其对应的结点为孤立结点。 (4)平行边对应的列相同。 (5)结点或边编序不同,对应完全关联矩阵只有行序、列序的 差别。 类似,给出有向图的完全关联矩阵的定义: v1 e1 (b)G为有向图 G=<V,E>, ,e1 e2 e3 e4 e5 e6 v1 1 1 0 0 1 1 e2 v2 pX q 阶矩阵 M(G)=(m ) 为 G 的完全关联矩阵,其中: ij e v
2、可达性矩阵: G=<V,E>是简单有向图,|V|=n,定义nxn矩阵 P=(pij)为可达性矩阵,其中
1 pij 0 从vi到v j 存在路 从vi到v j 不存在路
将Bn中不为零的元素值改为1,就可得到可达性矩阵P。
例1: 解:
0 0 设图G的邻接矩阵为A 1 1
图的矩阵表示
对于给定集合A上的关系R,可以用有向图来表示,而对于关 1. 邻接矩阵: 系图,又可以用一个矩阵表示,所以对于一般形式的图,也 给出其矩阵表示。 V {v , v ,, v } 是G的n个结点, • 设G=<V,E>是一个简单图,
1 2 n
则n阶方阵A(G)=(aij)称为G的邻接矩阵。其中:
5
e6
v4
e4
mij v -1 3 0
e3 1 v5
vi是e j的起点 vi是e j的终点 若vi不关联e j
2
v3 v4 v5
1 0 0 0
1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 0
0 1 0 0
例
e1
v1
e5
e7
v5
关联矩阵:
e1 e2 e3 e4 e5 e6 e7 v1 v2 v3 v4 v5 1 0 -1 1 0 -1 0 0 0 0 0 0 1 -1 0 0 0 0 1 -1 1 0 0 0 -1 1 0 -1 0 0 1 0 0 -1 0
由归纳假设法可得下面定理。
定理: A(G)是图G的邻接矩阵,则(A(G))l中的i行,j列元素 aij(l)等于G中联结vi与vj的长度为l的路的数目。
证明:用数学归纳法 当l=2时,由上面证明知显然成立
假设命题对l成立,只需证明当l=l+1时也成立即可 由 所以
在实际问题中,常需要考虑到结点之间是否存在路的问题。 2 n l 可以通过计算A,A ,...,A ,...,当发现某个A 的第i行,第j列不为0, 就表明vi到vj可达。
1 aij 0
v1
v2
vi vi
adjvj nadjvj或i j
adj表是邻接,nadj表示不邻接。
v5
v3
v4
简单图是无向图,邻接矩阵是对称的; 简单图是有向图时,邻接矩阵不一定对称。
在邻接矩阵A中,第i行中值为1的元素个数等于vi的出度; 第j列中值为1的元素个数等于vj的入度。 零矩阵对应零图;(仅有孤立结点组成的图称为零图)
对于无向图,邻接矩阵是一个对称矩阵,其可达性矩阵也是对称的。
上面我们介绍了图的邻接矩阵表示和可达性矩阵表示,可知 这两种表示方法都是跟结点相关的。 还可以给出结点和边的关联矩阵,在给出点和边的关联关系 时,假定图中无自回路。下面给出完全关联矩阵的概念。
3、完全关联矩阵:
E {e1 , e2 ,, eq } (a)G为无向图 设 V {v1, v2 ,, v p } 为G的结点集, 为G的边集,称矩阵M(G)=(mij)为完全关联矩阵,其中: 若vi关联e j 1 mij 若vi不关联e j 0 完全关联矩阵为: 例: e e e e e e