人教版小学数学六年级上册知识点归纳
人教版小学数学六年级上册知识点归纳
人教版小学数学六年级上册知识点归纳
本文将对人教版小学数学六年级上册的知识点进行归纳和总结,帮助学生们更好地掌握课本内容。
一、整数的认识
整数是由自然数、0和负数组成,可以在数轴上表示。
正整数用红色表示,负整数用蓝色表示。
二、小数的认识
小数是用分数形式表示的有限小数和无限小数,可以通过数轴来表示。
三、数的倍数和因数
一个数可以被另一个数整除,那么前者就是后者的倍数,后者就是前者的因数。
四、质数和合数
质数只有1和自身两个因数的数,而合数有多个因数。
五、图形的认识
了解矩形、正方形、三角形和梯形等各种图形的特点,并能根据给出的条件进行判断和分类。
六、一百以内的加减法
加法和减法是最基本的运算,通过练习一百以内的加减法,能够提高计算能力和思维能力。
七、一百以内的乘法和除法
通过掌握一百以内的乘法和除法,培养学生的快速计算能力和数学思维能力。
八、长度、面积和体积的认识
通过实物和图形的比较,了解长度、面积和体积的概念,能够进行简单的计算和转换。
九、时间的认识
学习时钟的使用,能够准确地读取时间和计算时间的过程。
十、钱币和价格的认识
认识各种钱币的面值和常见商品的价格,能够进行简单的货币换算和价格比较。
十一、数据的收集和整理
通过观察和统计,能够对数据进行收集和整理,并用图表的形式进行展示和分析。
以上是人教版小学数学六年级上册的主要知识点归纳。
希望同学们能够认真学习和掌握这些知识,为接下来的学习打下坚实的基础。
(人教版)小学六年级数学上册全册各单元重要知识点梳理详解汇总
(人教版)小学六年级数学上册全册各单元重要知识点梳理详解汇总第一单元 分数乘法(一)分数乘法的意义1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6.表示: 6个512相加是多少.还表示:512的6倍是多少。
2.一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
(二)分数乘法的计算法则1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数.所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)解决实际问题。
1、分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量512 例如:6×512,表示:6的是多少。
的27×512.27 表示: 512 是多少。
(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2、乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数、求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找.注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思.那么谁比谁多,应该是“多比少多”,“多”的是指800千克.“少”的是指750千克.即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
六年级上册数学知识点(人教版)
六年级上册数学知识点(人教版)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!六年级上册数学知识点(人教版)小学六年级的学生准备升初中的时候,这时做好复习整理是十分重要的,下面本店铺为大家带来六年级上册数学知识点,希望对您有帮助,欢迎参考阅读!六年级上册数学知识点一、算术1、加法交换律:两数相加交换加数的位置,和不变。
人教版小学数学六年级上册知识点整理归纳完整版
人教版小学数学六年级上册知识点整理归纳 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】六年级上册数学知识点第一单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以) 例如:53×61表示: 求53的61是多少? 9 × 61表示: 求9的61是多少? A × 61表示: 求a 的61是多少? (二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数, 这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a ×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数。
a ×b=c,当b <1时,c<a (b ≠0).一个数(0除外)乘等于1的数,积等于这个数。
人教版六年级数学上册总复习资料知识点
六年级数学上册总复习小学六年级数学上册知识点汇总第一单元:位置1、用数对确定点的位置,第一个数表示列,第二个数表示行。
如(3,5)表示(第三列,第五行)2、图形左、右平移: 列变,行不变 图形上、下平移: 行变,列不变第二单元 分数乘法一、分数乘法的意义:1、分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
例如:65×5表示求5个65的和是多少? 2、分数乘分数是求一个数的几分之几是多少。
例如:65×41表示求65的四分之一是多少。
二、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。
三、乘法中比较大小时规律:一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
四、分数混合运算的运算顺序和整数的运算顺序相同。
五、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a ×b = b ×a乘法结合律:( a ×b )×c = a ×( b ×c )乘法分配律:( a + b )×c = a×c + b×c六、分数乘法的解决问题(已知单位“1”的量,求单位“1”的几分之几是多少(具体量)用乘法)一个数的几分之几= 一个数×几分之几1、找单位“1”:在分数句中分数的前面; 或“占”、“是”、“比”的后面;2、看有没有多或少的问题;3、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“= ”(2)分数前是“的”:单位“1”的量×分数=具体量(3)分数前是“多或少”的意思:单位“1”的量×(1-分数)=具体量;单位“1”的量×(1+分数)=具体量(已知具体量求单位“1”的量,用除法)七、倒数1、倒数的意义:乘积是1的两个数互为倒数。
人教版六年级数学上册(全)复习知识点【精品】
小学数学六年级上册期末复习知识点归纳1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
人教版小学数学六年级上册知识点
小学数学六年级上册主要包括以下几个知识点:一、整数的加减运算1.整数的概念:正整数、负整数、零。
2.整数的加法与减法:同号相加减,异号相加减。
3.整数的加减法的计算方法:先忽略符号,使用正整数的加减法,最后根据正负的规则确定符号。
4.整数的加减法的性质:结合律、交换律、加法的逆元、减法的逆元。
二、乘法与除法1.乘法的概念:加法与乘法的关系,乘法的运算规则。
2.数字的倍数与约数:倍数的概念,约数的概念与判断方法。
3.倍数与约数的性质:一个数的因数是它的约数,一个数的倍数是它的倍数。
4.乘法的计算方法:乘数、被乘数、积,乘法的性质(交换律、结合律、分配率)。
5.除法的概念与计算方法:被除数、除数、商、余数,除法的计算方法、性质。
三、分数1.分数的概念:分子、分母,分数与整数的关系,分数的读法。
2.分数的大小比较:同分母比较大小,同分子比较大小,分子与分母为相同数的比较,整数与分数的比较。
3.分数的转化:分数与整数,真分数与假分数,带分数与假分数,带分数与整数,相互之间的转化。
4.分数的加减运算:同分母的分数相加减,分母不同的分数相加减。
5.分数乘法与除法:分数的乘法运算,分数的除法运算。
四、小数1.小数的概念:小数的读法,小数点的作用,小数点后面的数字位数。
2.小数的大小比较:整数与小数的比较,小数与小数的比较。
3.小数的加减法:同数位相加减。
4.小数的乘法:小数与整数相乘,小数与小数相乘。
5.小数的除法:小数除以整数,小数除以小数。
五、几何1.图形的分类:点、线、线段、直线、射线的概念,图形的分类。
2.角的概念:角的分类,角的顶点、边、角度的读法。
3.角的比较与分类:角的大小比较,角的分类。
4.直线与平行线:平行线的概念与判断方法。
5.图形的相同与相似:图形的相同与相似的概念。
6.直角、直线与线段的关系:垂直线的概念,直线与线段的关系。
以上仅为主要的知识点概括,具体的内容还需根据教材进行系统学习。
人教版小学六年级数学上册各单元知识点整理归纳复习总结
第一单元 位置1、什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位置。
经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X 轴上的坐标表示列,y 轴上的坐标表示行。
如:数对(3,2)表示第三列,第二行。
(2)数对(X ,5)的行号不变,表示一条横线,(5,Y )的列号不变,表示一条竖线。
(有一个数不确定,不能确定一个点)( 列 , 行 )↓ ↓竖排叫列 横排叫行(从左往右看)(从下往上看)(从前往后看)2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
第二单元 分数乘法12 3 4 0行号(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以) 例如:53×61表示: 求53的61是多少?9 ×61表示: 求9的61是多少? A × 61表示: 求a 的61是多少? (二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
六年级上册数学知识点(概念)归纳与整理(人教版)
六年级数学上册知识点整理第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。
用括号把代表列和行的数字或字母括起来,再用逗号隔开。
例如:(7,9)表示第七列第九行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。
如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。
如:(3,6)和(1,6)都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
人教版小学六年级数学上册各单元知识点整理归纳总结
人教版小学六年级数学上册各单元知识点整理归纳总结六年级上册数学知识点第一单元 位置1、什么是数对? ——数对:由两个数组成,中间用逗号隔开,用括号括起来°括号里面的数由左至右为列数和行数,即“先列后行”° 作用:确定一个点的位置°经度和纬度就是这个原理° 例:在方格图〈平面直角坐标系〉中用数对〈3,5〉表示〈第三列,第五行〉°注:〈1〉在平面直角坐标系中X 轴上的坐标表示列,y 轴上的坐标表示行°如:数对〈3,2〉表示第三列,第二行°〈2〉数对〈X ,5〉的行号不变,表示一条横线,〈5,Y 〉的列号不变,表示一条竖线°〈有一个数不确定,不能确定一个点〉〈 列 , 行 〉 3 4行号↓ ↓竖排叫列 横排叫行〈从左往右看〉〈从下往上看〉〈从前往后看〉2、图形左右平移行数不变;图形上下平移列数不变°3、两点间的距离与基准点〈0,0〉的选择无关,基准点不同导致数对不同,两点间但距离不变°第二单元 分数乘法〈一〉分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算°注:“分数乘整数”指的是第二个因数必须是整数,不能是分数° 例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少°注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数°〈第一个因数是什么都可以〉 例如:53×61表示: 求53的61是多少?9 ×61表示: 求9的61是多少? A × 61表示: 求a 的61是多少?〈二〉分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变°注:〈1〉为了计算简便能约分的可先约分再计算°〈整数和分母约分〉〈2〉约分是用整数和下面的分母约掉最大公因数°〈整数千万不能与分母相乘,计算结果必须是最简分数〉2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母°〈分子乘分子,分母乘分母〉注:〈1〉如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算°〈2〉分数化简的方法是:分子、分母同时除以它们的最大公因数°〈3〉在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数°〈约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数〉〈4〉分数的基本性质:分子、分母同时乘或者除以一个相同的数〈0除外〉,分数的大小不变°〈三〉积与因数的关系:一个数〈0除外〉乘大于1的数,积大于这个数°a×b=c,当b >1时,c>a.一个数〈0除外〉乘小于1的数,积小于这个数°a ×b=c,当b <1时,c<a (b ≠0).一个数〈0除外〉乘等于1的数,积等于这个数°a ×b=c,当b =1时,c=a .注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况° 附:形如)(1b a a +⨯的分数可折成〈b a a +-11〉×b1 〈四〉分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的°2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便°乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c〈五〉倒数的意义:乘积为1的两个数互为倒数°1、倒数是两个数的关系,它们互相依存,不能单独存在°单独一个数不能称为倒数°〈必须说清谁是谁的倒数〉2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”°例如:a×b=1则a 、b 互为倒数°3、求倒数的方法:①求分数的倒数:交换分子、分母的位置°②求整数的倒数:整数分之1°③求带分数的倒数:先化成假分数,再求倒数°④求小数的倒数:先化成分数再求倒数°4、1的倒数是它本身,因为1×1=10没有倒数,因为任何数乘0积都是0,且0不能作分母°5、任意数a(a ≠0),它的倒数为a 1;非零整数a 的倒数为a 1;分数a b 的倒数是b a °6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身° 假分数的倒数小于或等于1°带分数的倒数小于1°〈六〉分数乘法应用题 ——用分数乘法解决问题1、求一个数的几分之几是多少?〈用乘法〉“1”× a b = ?例如:求25的53是多少? 列式:25×53=15甲数的53等于乙数,已知甲数是25,求乙数是多少? 列式:25×53=15 注:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘°2、〈 什么〉是〈什么 〉的)()(几几° 〈 〉= ( “1” ) ×)()(几几 例1: 已知甲数是乙数的53,乙数是25,求甲数是多少?甲数= 乙数 ×53 即25×53=15注:〈1〉“是”“的”字中间的量“乙数”是53的单位“1”的量,即53是把乙数看作单位“1”,把乙数平均分成5份,甲数是其中的3份°〈2〉“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”°〈3〉单位“1”的量×分率=分率对应的量例2:甲数比乙数多〈少〉53,乙数是25,求甲数是多少? 甲数=乙数 ±乙数×53 即25±25×53=25×〈1±53〉=40〈或10〉3、巧找单位“1”的量:在含有分数〈分率〉的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”°4、什么是速度?——速度是单位时间内行驶的路程°速度=路程÷时间 时间=路程÷速度 路程=速度×时间——单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等°5、求甲比乙多〈少〉几分之几?多:〈甲-乙〉÷乙 = 比字后面的量乙)—甲( 少:〈乙-甲〉÷乙第三单元 分数除法一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算°二、分数除法计算法则:除以一个数〈0除外〉,等于乘上这个数的倒数°1、被除数÷除数=被除数×除数的倒数°例53÷3=53×31=51 3÷53=3×35=5 2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数°3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算°4、被除数与商的变化规律:①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c<a (a ≠0)=比后差②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a ≠0 b ≠0) ③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角°2、运算顺序:①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算°加、减法为一级运算,乘、除法为二级运算° ②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面°注:〈a±b 〉÷c=a÷c±b÷c四、比:两个数相除也叫两个数的比1、比式中,比号〈∶〉前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值°注:连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几°例:122012=12÷20=53=0.6 12∶20读作:12比20 注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数°后项 前项 前项 后项 比号 比值比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式°3、比的基本性质:比的前项和后项同时乘以或除以相同的数〈0除外〉,比值不变°4、化简比:化简之后结果还是一个比,不是一个数°〈1〉、用比的前项和后项同时除以它们的最大公约数°〈2〉、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简°也可以求出比值再写成比的形式°〈3〉、两个小数的比,向右移动小数点的位置,也是先化成整数比°5、求比值:把比号写成除号再计算,结果是一个数〈或分数〉,相当于商,不是比°6、比和除法、分数的区别:附:商不变性质:被除数和除数同时乘或除以相同的数〈0除外〉,商不变°分数的基本性质:分子和分母同时乘或除以相同的数〈0除外〉,分数的大小不变°五、分数除法和比的应用1、已知单位“1”的量用乘法°例:甲是乙的53,乙是25,求甲是多少?即:甲=乙×53〈15×53=9〉 2、未知单位“1”的量用除法°例: 甲是乙的53,甲是15,求乙是多少?即:甲=乙×53〈15÷53=25〉〈建议列方程答〉 3、分数应用题基本数量关系〈把分数看成比〉〈1〉甲是乙的几分之几?甲=乙×几分之几 〈例:甲是15的53,求甲是多少?15×53=9〉乙=甲÷几分之几 〈例:9是乙的53,求乙是多少?9÷53=15〉 几分之几=甲÷乙 〈例:9是15的几分之几?9÷15=53〉〈“是”字相当“÷”号,乙是单位“1”〉〈2〉甲比乙多〈少〉几分之几?A 差÷乙=乙差〈“比”字后面的量是单位“1”的量〉 〈例:9比15少几分之几?〈15-9〉÷15=15915 =156=52〉B 多几分之几是:乙甲–1 〈例: 15比9少几分之几?15÷9=915-1=35–1=32〉 C 少几分之几是:1–乙甲 〈例:9比15少几分之几?1-9÷15=1–159=1–53=52〉 D 甲=乙±差=乙±乙×乙差=乙±乙×几几=乙〈1±几几〉 〈例:甲比15少52,求甲是多少?15–15×52=15×〈1–52〉=9〈多是“+”少是“–”〉E 乙=甲÷(1±几几 ) 〈例:9比乙少52,求乙是多少?9÷〈1-52〉=9 ÷53=15〉〈多是“+”少是“–”〉〈例:15比乙多32,求乙是多少?15÷〈1+32〉=15 ÷35=9〉〈多是“+”少是“–”〉4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配° 例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分别是多少?方法一:56÷〈3+5〉=7 甲:3×7=21 乙:5×7=35 方法二:甲:56×533+=21 乙:56×535+=35 例如:已知甲是21,甲、乙的比3∶5,求乙是多少?方法一:21÷3=7 乙:5×7=35方法二:甲乙的和:21÷533+=56 乙:56×535+=35 方法三:甲÷乙=53 乙=甲÷53=21÷53=355、画线段图:〈1〉找出单位“1”的量,先画出单位“1”,标出已知和未知° 〈2〉分析数量关系°〈3〉找等量关系°〈4〉列方程°注:两个量的关系画两条线段图,部分和整体的关系画一条线段图°第四单元 圆一、.圆的特征1、圆是平面内封闭曲线围成的平面图形,.2、圆的特征:外形美观,易滚动°3、圆心o :圆中心的点叫做圆心.圆心一般用字母O 表示.圆多次对折之后,折痕的相交于圆的中心即圆心°圆心确定圆的位置°半径r :连接圆心到圆上任意一点的线段叫做半径°在同一个圆里,有无数条半径,且所有的半径都相等°半径确定圆的大小° 直径d: 通过圆心且两端都在圆上的线段叫做直径°在同一个圆里,有无数条直径,且所有的直径都相等°直径是圆内最长的线段°同圆或等圆内直径是半径的2倍:d=2r 或 r=d÷2=21d=2d 4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合° 同心圆:圆心重合、半径不等的两个圆叫做同心圆°5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形°折痕所在的直线叫做对称轴°有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角有二条对称轴的图形:长方形有三条对称轴的图形:等边三角形有四条对称轴的图形:正方形有无条对称轴的图形:圆,圆环6、画圆〈1〉圆规两脚间的距离是圆的半径°〈2〉画圆步骤:定半径、定圆心、旋转一周°二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C 表示°1、圆的周长总是直径的三倍多一些°2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示°周长=周长÷直径≈3.14即:圆周率π=直径所以,圆的周长(c)=直径(d)×圆周率(π) ——周长公式:c=πd, c=2πr 注:圆周率π是一个无限不循环小数,3.14是近似值°3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同°如果r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c31×2πr=πr+d4、半圆周长=圆周长一半+直径=2三、圆的面积s1、圆面积公式的推导如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形°圆的半径= 长方形的宽圆的周长的一半= 长方形的长长方形面积= 长×宽所以:圆的面积= 长方形的面积= 长×宽= 圆的周长的一半〈πr〉×圆的半径〈r〉S圆= πr ×rS圆= πr×r = πr22、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小°周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形°3、圆面积的变化的规律:半径扩大多少倍直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍°如果: r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3=2∶3∶4则:S1∶S2∶S3=4∶9∶164、环形面积= 大圆–小圆=πr大2 - πr小2=π〈r大2 - r小2〉n〈n表示扇形圆心角的度数〉扇形面积= πr2×3605、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和°因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度°注:一个圆的半径增加a厘米,周长就增加2πa厘米一个圆的直径增加b厘米,周长就增加πb 厘米6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π7、常用数据π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7第五单元、百分数一、百分数的意义:表示一个数是另一个数的百分之几°注:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比,所以,百分数又叫百分比或百分率,百分数不能带单位°1、百分数和分数的区别和联系:〈1〉联系:都可以用来表示两个量的倍比关系°〈2〉区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位°分数不仅表示倍比关系,还能带单位表示具体数量°百分数的分子可以是小数,分数的分子只以是整数°注:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的°“%”的两个0要小写,不要与百分数前面的数混淆°一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%°一般出粉率在70、80%,出油率在30、40%°2、小数、分数、百分数之间的互化〈1〉百分数化小数:小数点向左移动两位,去掉“%”°〈2〉小数化百分数:小数点向右移动两位,添上“%”°〈3〉百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数°〈4〉分数化百分数:分子除以分母得到小数,〈除不尽的保留三位小数〉然后化成百分数°〈5〉小数化分数:把小数成分母是10、100、1000等的分数再化简°〈6〉分数化小数:分子除以分母°二、百分数应用题1、求常见的百分率如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几2、求一个数比另一个数多〈或少〉百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度°求甲比乙多百分之几〈甲-乙〉÷乙求乙比甲少百分之几〈甲-乙〉÷甲3、求一个数的百分之几是多少一个数〈单位“1”〉×百分率4、已知一个数的百分之几是多少,求这个数部分量÷百分率=一个数〈单位“1”〉5、折扣折扣、打折的意义:几折就是十分之几也就是百分之几十6、 纳税 缴纳的税款叫做应纳税额°〈应纳税额〉÷〈总收入〉=〈税率〉〈应纳税额〉=〈总收入〉×〈税率〉7、 利率〈1〉存入银行的钱叫做本金°〈2〉取款时银行多支付的钱叫做利息°〈3〉利息与本金的比值叫做利率° 利息=本金×利率×时间 税后利息=利息-利息的应纳税额=利息-利息×5%注:国债和教育储蓄的利息不纳税8、百分数应用题型分类〈1〉求甲是乙的百分之几——〈甲÷乙〉×100% = 乙甲×100% = 百分之几〈2〉求甲比乙多(少)百分之几——比字后面差×100% = 乙差×100% 例① 甲是50,乙是40,甲是乙的百分之几?〈50是40的百分之几?〉50÷40=125%② 甲是50,乙是40,乙是甲的百分之几?〈40是50的百分之几?〉40÷50=80%③乙是40,甲是乙的125%,甲数是多少?〈40的125%是多少?〉40×125%=50④甲是50,乙是甲的80%,乙数是多少?〈50的80%是多少?〉50×80%=40⑤乙是40,乙是甲的80%,甲数是多少?〈一个数的80%是40,这个数是多少?〉40÷80%=50⑥甲是50,甲是乙的125%,乙数是多少?〈一个数的125%是50,这个数是多少?〉50÷125%=40⑦甲是50,乙是40,甲比乙多百分之几?〈50比40多百分之几?〉(50-40)÷40×100%=25%⑧甲是50,乙是40,乙比甲少百分之几?〈40比50少百分之几?〉(50-40)÷50×100%=20%⑨甲比乙多25%,多10,乙是多少?10÷25%=40⑩甲比乙多25%,多10,甲是多少?10÷25%+10=50⑪乙比甲少20%,少10,甲是多少?10÷20%=50⑫乙比甲少20%,少10,乙是多少?10÷20%-10=40⑬乙是40,甲比乙多25%,甲数是多少?〈什么数比40多25%?〉40×〈1+25%〉=50⑭甲是50,乙比甲少20%,乙数是多少?〈什么数比50多25%?〉50×〈1-20%〉=40⑮乙是40,比甲少20%,甲数是多少?〈40比什么数少20%?〉40÷〈1-20%〉=50⑯甲是50,比乙多25%,乙数是多少?〈50比什么数多25%?〉40÷〈1+25%〉=40第六单元、统计1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图°2、常用统计图的优点:〈1〉、条形统计图直观显示每个数量的多少°〈2〉、折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少°〈3〉、扇形统计图直观显示部分和总量的关系°第七单元、数学广角一、研究中国古代的鸡兔同笼问题°1、用表格方式解决有局限性,数目必须小,例:头数鸡〈只〉兔〈只〉腿数35 1 3435 2 3335 3 32……〈逐一列表法、腿数少,小幅度跳跃;腿数多,大幅度跳跃°跳跃逐一相结合、取中列表〉2、用假设法解决〈1〉假如都是兔〈2〉假如都是鸡〈3〉假如它们各抬起一条腿〈4〉假如兔子抬起两条前腿3、用代数方法解〈一般规律〉注释:这个问题,是我国古代著名趣题之一°大约在1500年前,《孙子算经》中就记载了这个有趣的问题°书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚°求笼中各有几只鸡和兔?二、和尚分馒头100个和尚吃100个馒头,大和尚一人吃3个,小和尚三人吃一个°大小和尚各多少人?国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?"如果译成白话文,其意思是:有100个和尚分100只馒头,正好分完°如果大和尚一人分3只,小和尚3人分一只,试问大、小和尚各有几人?方法一,用方程解:解:设大和尚有x 人,则小和尚有(100-x)人,根据题意列得方程: 3x +31 (100-x)=100 x =25100-25=75人方法二,鸡兔同笼法:(1)假设100人全是大和尚,应吃馒头多少个?3×100=300(个).(2)这样多吃了几个呢?300-100=200(个).(3)为什么多吃了200个呢?这是因为把小和尚当成大和尚°那么把小和尚当成大和尚时,每个小和尚多算了几个馒头?3-31=38〈个〉 (4)每个小和尚多算了8/3个馒头,一共多算了200个,所以小和尚有:小和尚:200÷38=75〈人〉 大和尚:100-75=25〈人〉方法三,分组法:由于大和尚一人分3只馒头,小和尚3人分一只馒头°我们可以把3个小和尚与1个大和尚编为一组,这样每组4个和尚刚好分4个馒头,那么100个和尚总共分为100÷〈3+1〉=25组,因为每组有1个大和尚,所以有25个大和尚;又因为每组有3个小和尚,所以有25×3=75个小和尚°这是《直指算法统宗》里的解法,原话是:"置僧一百为实,以三一并得四为法除之,得大僧二十五个°"所谓"实"便是"被除数","法"便是"除数"°列式就是:100÷〈3+1〉=25〈组〉大和尚:25×1=25〈人〉小和尚:100-25=75〈人〉或25×3=75〈人〉我国古代劳动人民的智慧由此可见一斑°三、整数、分数、百分数应用题结构类型〈一〉求甲是乙的几倍〈或几分之几或百分之几〉的应用题°解法:甲数除以乙数例:校园里有杨树40棵,柳树有50棵,杨树的棵树占柳树的百分之几?〈或几分之几?〉〈二〉求甲数的几倍〈或几分之几或百分之几〉是多少的应用题°解答分数应用题,首先要确定单位“1”,在单位“1”确定以后,一个具体数量总与一个具体分数〈分率〉相对应,这种关系叫“量率对应”,这是解答分数应用题的关键°求一个数的几倍〈几分之几或百分之几〉是多少用乘法,单位“1”×分率=对应数量例:六年级有学生180人,五年级的学生人数是六年级人数的56 °五年级有学生多少人?180×56 =150〈三〉已知甲数的几倍〈或几分之几或百分之几〉是多少,求甲数〈即求标准量或单位“1”〉的应用题°解法:对应数量÷对应分率=单位“1”例:育红小学六年级男生有120人,占参加兴趣活动小组人数的35 . 六年级参加兴趣活动小组人数共有学生多少人?120÷35 =200〈人〉。
人教版小学六年级数学上册知识点总结
人教版小学六年级数学上册知识点总结人教版小学六年级数学上册知识要点总结一、引言人教版小学六年级数学上册的知识要点总结旨在帮助学生更好地掌握所学内容,提高学习效率,并为初中数学学习奠定基础。
本总结涉及分数乘法、位置与方向(二)、分数除法、比、圆、百分数(一)和扇形统计图等方面的知识。
二、分数乘法1.概念:分数乘法是指两个或多个分数相乘得到一个新的分数的运算。
2.性质:o交换律:a × b = b × ao结合律:a × (b × c) = (a × b) × co分配律:a × (b + c) = a × b + a × c3.解题方法:o将分数相乘,约分得到最简结果。
o整数与分数相乘,将整数化成分数再相乘。
o乘法的交换律、结合律和分配律同样适用于分数乘法。
4.应用实例:o计算面积:长方形面积 = 长×宽,其中宽为分数。
o计算路程:速度×时间 = 路程,其中速度为分数。
三、位置与方向(二)1.知识点:o相对位置:通过方向角和距离描述两个物体之间的相对位置关系。
o方向角:描述物体相对于参考点在平面上的方向。
o距离:描述两个物体之间的直线距离。
2.应用实例:在地图上标注物体位置时,需要确定其相对于已知点的方向和距离。
四、分数除法1.概念:分数除法是指将一个分数除以另一个分数得到一个新的分数的运算。
2.性质:o倒数性质:a ÷ b = a × 1/b,其中1/b是b的倒数。
o除法的交换律、结合律和分配律同样适用于分数除法。
3.解题方法:o将除法转化为乘法,约分得到最简结果。
o整数与分数相除,将整数化成分数再相除。
4.应用实例:o计算数量:总数÷部分数 = 部分数所占总数的比例。
o计算平均数:总和÷个数 = 平均数。
五、比1.概念:比是指两个数相除得到的一个数值,表示两个数之间的比例关系。
人教版小学六年级数学知识点归纳
小学六年级数学知识点归纳六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
新人教版小学数学6年级上册六年级数学上册各单元知识点归纳
新课标人教版六年级数学上册各单元知识点归纳第一单元分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如:65×5表示求5个65的和是多少? 1/3×5表示求5个1/3的和是多少?2、一个数乘分数的意义是求一个数的几分之几是多少。
例如:1/3×4/7表示求1/3的4/7是多少。
4×3/8表示求4的3/8是多少.(二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3、为了计算简便,能约分的要先约分,再计算。
(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
(三)、乘法中比较大小的规律一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b ×a乘法结合律:( a × b )×c = a ×( b ×c )乘法分配律:( a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。
(2)部分和整体的关系:画一条线段图。
人教版小学六年级上册数学知识点总结
人教版小学六年级上册数学知识点总结一、数与代数(一)分数的运算1.分数的加减法•同分母分数:分母保持不变,分子进行加减运算。
例如:2/5 + 3/5 = 5/5 或1;4/7 - 2/7 = 2/7。
•异分母分数:首先找到两个分母的最小公倍数,然后进行通分,使两个分数具有相同的分母,接着进行加减运算。
例如:1/2 + 1/3 = 3/6 + 2/6 =5/6;3/4 - 1/5 = 15/20 - 4/20 = 11/20。
2.分数的乘法•分子乘分子,分母乘分母。
例如:2/3 × 4/5 = 8/15。
•分数与整数相乘,整数可以看作是分母为1的分数,然后与另一个分数相乘。
例如:2 × 3/4 = 6/4 = 3/2。
3.分数的除法•将除数颠倒后与被除数相乘。
例如:4/5 ÷ 2/3 = 4/5 × 3/2 = 12/10 = 6/5。
4.带分数与假分数的互化•带分数转化为假分数:分母不变,分子为整数部分与分母的乘积加上原分数的分子。
例如:2(1/2) = 2 × 2 + 1 = 5/2。
•假分数转化为带分数:分母不变,分子除以分母得到的商为整数部分,余数作为新分数的分子。
例如:7/3 = 2...1,所以7/3 = 2(1/3)。
5.分数与小数的互化•分数转化为小数:直接进行除法运算,得到的结果即为小数形式。
例如:1/2 = 0.5;3/4 = 0.75。
•小数转化为分数:将小数表示为分数形式,能简化的要简化。
例如:0.5 = 1/2;0.75 = 3/4。
(二)百分数1.百分数的概念•百分数是表示一个数是另一个数的百分之几的数,也叫百分率或百分比。
百分数通常不会写成分数的形式,而采用符号“%”(百分号)来表示。
2.百分数与小数、分数的互化•百分数转化为小数:去掉百分号,小数点左移两位。
例如:75% = 0.75。
•小数转化为百分数:加上百分号,小数点右移两位。
人教版小学数学六年级上册知识点总结
人教版小学数学六年级上册知识点总结第一章:整数整数是由正整数、0和负整数组成的数。
1. 整数的表示方法整数可以用数轴表示,数轴上0点表示正整数和负整数之间的分界点。
2. 整数的比较比较两个整数的大小时,可以通过它们在数轴上的位置关系来判断。
3. 整数的运算整数的加法、减法、乘法和除法运算规则与正整数相同,需要特别注意负数的运算规则。
4. 整数的绝对值整数的绝对值是该数到0点的距离,绝对值大于0的整数称为正整数。
5. 整数的借位和进位在整数的加法和减法中,可能会涉及到借位和进位的操作。
第二章:分数1. 分数的基本概念分数表示了一个整体被分成若干等分,其中的分子表示被分的部分,分母表示整体被分成的等分数。
2. 分数的大小比较比较两个分数的大小时,可以通过找出它们的公共分母,然后比较分子的大小来判断。
3. 分数的运算分数的加法、减法、乘法和除法运算规则可以通过分子、分母的相应运算来得出。
4. 分数的化简将一个分数化简到最简形式,即分子和分母没有公共因子。
5. 分数的整数部分和小数部分分数可表示为整数部分和真分数部分之和,也可以表示为小数的形式。
第三章:小数小数是整数和分数之间的数。
1. 小数的读法小数的读法与整数相似,小数点后的数按照数位读取。
2. 小数的大小比较比较两个小数的大小时,可以按照数位从左到右逐个比较。
3. 小数的运算小数的加法、减法、乘法和除法运算规则与整数和分数类似,需要注意小数点的对齐。
4. 小数的化简将一个小数化简到最简形式,即去掉尾部0后使得剩余数字最少。
5. 小数与分数的转换小数可以转化为分数,分数可以转化为小数。
第四章:几何图形几何图形是由点、线、面组成的图形。
1. 点、线和线段点是几何图形的最基本单位,线是连接两个点的直线轨迹,线段是连接两个点并且包含这两个点的线。
2. 直线、射线和角直线是一条连续的无限延伸的线,射线是起点是一个点,向一个方向无限延伸的线,角是由两条射线共享一个端点组成的图形。
新人教版小学数学六年级上册知识点整理归纳
第一单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义:(与整数乘法的意义相同) 就是求几个相同加数的和的简便运算。
◆“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少 或表示:53的7倍是多少 2、一个数乘分数的意义:就是求一个数的几分之几是多少。
◆“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
第一个因数是什么都可以。
例如:53×61表示: 求53的61是多少 A× 61表示: 求A 的61是多少 (二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
@2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
◆为了计算简便,能约分的先约分再计算。
3、分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:1、一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a.2、一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a (b ≠0).3、一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a .◆在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
)(四)分数混合运算1、分数合运算顺序:(与整数相同),先乘、除后加、减,有括号的先算括号里面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)分数乘法应用题 ——用分数乘法解决问题◆已知单位“1”的量,求它的几分之几是多少,用单位“1”的量与分数相乘。
人教版六年级上册数学重点知识点归纳
人教版六年级上册数学重点知识点归纳人教版六年级上册数学重点知识点归纳篇1小数1、小数的意义:把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……2、一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数是整数部分,小数点右边的数叫做小数部分。
3、在小数里,每相邻两个计数单位之间的进率都是10。
小数部分的分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
分数1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
2、把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
3、分数的分类真分数:分子比分母小的分数叫做真分数。
真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。
假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。
5、分子分母是互质数的分数叫做最简分数。
6、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
约分和通分1、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
2、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
数学0的性质1、0既不是正数也不是负数,而是介于—1和+1之间的整数。
2、0的相反数是0,即—0=0。
3、0的绝对值是其本身。
4、0乘任何实数都等于0,除以任何非零实数都等于0,任何实数加上0等于其本身。
5、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。
人教版六年级数学上册要记、背的知识点
1六年级数学上册要记、背的知识点一、分数乘法(一)分数乘法的意义和计算法则1、分数乘整数的意义 112×3 表示:① 求3个112是多少? ② 求112的3倍是多少?2、分数乘整数的计算方法分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
(能约分的要先约分再乘)3、一个数乘分数的意义:就是求这个数的几分之几是多少。
53×41 表示:求53的41是多少。
4、分数乘分数的的计算方法分数乘分数,用分子乘分子,分母乘分母。
(能约分的要先约分再乘) (二)求一个数的几分之几是多少的问题1、找单位“1”的方法(1)是谁的几分之几,就把谁看作单位“1”。
(2)一般把“比”字、“是”字、“占”字、“相当于”后面的量看作单位“1”。
注意:① 找单位“1”在分率句里找,有分率的句子称为分率句。
② 分率不带单位,具体数量带有单位。
2、求一个数的几倍、几分之几是多少,用乘法计算。
15的53是多少? 15×53=93、已知单位“1”用乘法计算单位“1”×分率=分率的对应量注意:(1) 乘上什么样的分率就等于什么样的数量。
(2) 乘上谁占的分率就等于谁的数量。
(3) 是谁的几分之几,就用谁乘上几分之几。
4、已知A 比B 多(或少)几分之几,求A 的解题方法 5、积与因数的大小关系大于1的数,积大于A 。
A(0除外)乘上小于1的数,积小于A 。
二、位置与方向1、确定物体的位置:(上北下南,左西右东)+-B ×(1 几分之几)=A2(1)北偏东30°就是从北向东移,夹角靠北。
(2)东偏北30°就是从东向北移,夹角靠东。
2、物体位置的相对性(1)两地的位置关系是相对的,方向刚好相反,距离是一样的。
例如:少年宫在学校南偏东35°的方向上,相距250米,(在学校是以学校为观测点) 南对北 东对西则学校在少年宫北偏西35°的方向上,相距250米。
人教版本小学六年级的上册的数学学习知识点整理
人教版六年级数学上册知识点整理第一单元地点1、用数对表示地点,应当先写列数,再写行数,前后次序不可以颠倒,要用小括号把列数和行数括起来,并在列数和行数之间写一个逗号,把两个数分开。
比如:数对(5,3 )表示第 5 列第3行,读作:五三。
2、竖排叫列(从左往右看),横排叫行(实质生活中是以前去后看)(在图上是从下往上看)。
3、图形左右平移,列数变化,行数不变;图形上下平移,行数变化,列数不变。
第二单元分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
就是求几个相同加数的和的简易运算。
8×5 表示求 5 8 8的 5 倍是多少?比如:9 个9 的和是多少?或表示:92、一个数乘分数是求一个数的几分之几是多少。
8 3 8 3 3 3比如:9 ×4 表示求9 的4 是多少?9 ×4 表示求 9 的4 是多少?(二)、分数乘法的计算法例:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母能约分的, 能够先约分 , 再计算 . )2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简易,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
4、分数的基天性质:分子、分母同时乘或许除以一个相同的数(0 除外),分数的大小不变。
(三)规律:(乘法中比较大小时)一个数( 0 除外)乘大于 1的数,积大于这个数。
一个数( 0 除外)乘小于 1 的数( 0 除外),积小于这个数。
一个数( 0 除外)乘 1 ,积等于这个数。
(四)分数混淆运算的运算次序和整数的运算次序相同。
先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
(五)整数乘法的互换律、联合律和分派律,关于分数乘法也相同合用。
乘法互换律: a × b = b× a乘法联合律: ( a× b )×c = a× ( b× c )乘法分派律:(a±b)× c = a c± b c二、分数乘法的解决问题(已知单位“1”的量)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版小学数学六年级上册知识点归纳GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-GEIHUA1688】六年级上册数学知识点第一单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)例如:53×61表示: 求53的61是多少?9 × 61表示: 求9的61是多少?A × 61表示: 求a 的61是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a ×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数。
a ×b=c,当b <1时,c<a (b ≠0).一个数(0除外)乘等于1的数,积等于这个数。
a ×b=c,当b =1时,c=a .注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
附:形如)(1b a a +⨯的分数可折成(b a a +-11)×b1(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。
单独一个数不能称为倒数。
(必须说清谁是谁的倒数)2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。
例如:a×b=1则a、b互为倒数。
3、求倒数的方法:①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=10没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、任意数a(a ≠0),它的倒数为a1;非零整数a 的倒数为a1;分数ab 的倒数是ba 。
6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。
带分数的倒数小于1。
(六)分数乘法应用题 ——用分数乘法解决问题1、求一个数的几分之几是多少?(用乘法)“1”× ab =例如:求25的53是多少?列式:甲数的53等于乙数,已知甲数是25,求乙数是多少?列式:注:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、( 什么)是(什么 )的)()(几几。
( )= ( “1” ) ×)()(几几 例1: 已知甲数是乙数的53,乙数是25,求甲数是多少?甲数=乙数×53 即25×53=15注:(1)“是”“的”字中间的量“乙数”是53的单位“1”的量,即53是把乙数看作单位“1”,把乙数平均分成5份,甲数是其中的3份。
(2)“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”。
(3)单位“1”的量×分率=分率对应的量例2:甲数比乙数多(少)53,乙数是25,求甲数是多少?甲数=乙数 ± 乙数×53 即25±25×53=25×(1±53)=40(或10)3、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
4、求甲比乙多(少)几分之几?多:(甲-乙)÷乙少:(乙-甲)÷乙第二单元位置与方向1.确定物体在图上的位置时,应注意什么?怎样确定?比字后面的量乙)—甲(=比后差(1)确定平面图中东、西、南、北的方向。
(2)确定观测点。
(3)根据所给的度数定出所画物体所在的方向。
(4)根据比例尺,定出所画物体与观测点之间的图上距离。
2. 要确定物体的位置,关键需要方向和距离两个条件。
3.描述路线的方法。
描述路线时要讲清楚“从哪里出发”“沿什么方向”“移动多少距离”“到达哪里”。
例如:用自己的语言说说台风的移动路线台风生成以后,先是沿正西方向移动 km ,然后改变方向,向西偏北 方向移动了 km ,到达A市。
接着,台风又改变了方向,向 偏 30度方向移动了 km ,到达B市。
第三单元 分数除法一、分数除法的意义:分数除法是分数乘法的逆运算,二、已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。
例53÷3=53×31=51 3÷53=3×35=52、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c<a (a≠0)②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0 b≠0)③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。
加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
注:(a±b)÷c=a÷c±b÷c四、比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20=2012=12÷20=53=0.6 12∶20读作:12比20注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
4、化简比:化简之后结果还是一个比,不是一个数。
(1)、用比的前项和后项同时除以它们的最大公约数。
(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
也可以求出比值再写成比的形式。
(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。
5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
6、比和除法、分数的区别:附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
五、分数除法和比的应用1、已知单位“1”的量用乘法。
例:甲是乙的53,乙是25,求甲是多少?即:甲=乙×53(15×53=9)2、未知单位“1”的量用除法或方程。
例: 甲是乙的53,甲是15,求乙是多少?即:甲=乙×53(15÷53=25)(建议列方程)3、分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几?甲=乙×几分之几 (例:甲是15的53,求甲是多少?15×53=9)乙=甲÷几分之几 (例:9是乙的53,求乙是多少?9÷53=15)几分之几=甲÷乙 (例:9是15的几分之几?9÷15=53)(“是”字相当“÷”号,乙是单位“1”)(2)甲比乙多(少)几分之几?A 、差÷乙=乙差(“比”字后面的量是单位“1”的量)(例:9比15少几分之几?(15-9)÷15=15915 =156=52)B 、多几分之几是:乙甲–1(例: 15比9少几分之几?15÷9=915-1=35–1=32)C 、 少几分之几是:1–乙甲(例:9比15少几分之几?1-9÷15=1–159=1–53=52)D 、甲=乙±差=乙±乙×乙差=乙±乙×几几=乙(1±几几)(例:甲比15少52,求甲是多少?15–15×52=15×(1–52)=9(多是“+”少是“–”)E 、 乙=甲÷(1±几几 )(例:9比乙少52,求乙是多少?9÷(1-52)=9 ÷53=15)(多是“+”少是“–”)(例:15比乙多32,求乙是多少?15÷(1+32)=15 ÷35=9)(多是“+”少是“–”)4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分别是多少?方法一:56÷(3+5)=7 甲:3×7=21 乙:5×7=35 方法二:甲:56×533+=21 乙:56×535+=35例如:已知甲是21,甲、乙的比3∶5,求乙是多少?方法一:21÷3=7 乙:5×7=35方法二:甲乙的和21÷533+=56 乙:56×535+=35方法三:甲÷乙=53 乙=甲÷53=21÷53=355、画线段图:(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。