带电粒子在圆形磁场中的运动

合集下载

带电粒子在磁场中的运动旋转圆问题

带电粒子在磁场中的运动旋转圆问题

带电粒子在磁场中的运动是一个充满深度和广度的问题,涉及到物理学中的许多重要概念和原理。

从宏观到微观,从经典到量子,这一主题的探讨可以帮助我们更深入地理解粒子在磁场中的行为,以及相关的物理规律。

一、带电粒子在磁场中的受力和运动1.受力分析当带电粒子进入磁场时,它会受到洛伦兹力的作用,这个力会使粒子发生偏转,并导致其在磁场中运动。

洛伦兹力的大小和方向取决于粒子的电荷大小、速度方向以及磁场的强度和方向。

2.运动轨迹在磁场中,带电粒子的运动轨迹通常是圆形或螺旋形的,具体取决于粒子的速度和磁场的强度。

这种运动旋转圆问题是研究带电粒子在磁场中行为的重要内容之一。

二、经典物理学对带电粒子运动的描述1.运动方程根据洛伦兹力和牛顿定律,可以建立带电粒子在磁场中的运动方程。

通过对这个方程的分析,可以得到粒子在磁场中的运动轨迹和运动规律。

2.圆周运动对于静止的带电粒子,它会在磁场中做匀速圆周运动;而对于具有初始速度的带电粒子,它会做螺旋运动。

这种经典的描述为我们理解带电粒子在磁场中的运动提供了重要参考。

三、量子物理学对带电粒子运动的描述1.量子力学效应在微观尺度下,带电粒子在磁场中的运动会受到量子力学效应的影响,比如磁量子效应和磁旋效应等。

这些效应对带电粒子的运动规律产生重要影响,需要通过量子力学来描述。

2.自旋和磁矩带电粒子除了具有电荷和质量外,还具有自旋和磁矩。

这些特性在磁场中会影响粒子的运动,使得其运动规律更加复杂和微妙。

四、个人观点和理解对于带电粒子在磁场中的运动旋转圆问题,我认为它不仅具有重要的理论意义,还在许多实际应用中发挥着关键作用。

比如在核磁共振成像技术中,正是利用了带电粒子在外加磁场中的运动规律,实现了对人体组织和器官进行高分辨率成像。

深入理解这一问题,不仅可以帮助我们认识自然界的规律,还有助于科学技术的发展和进步。

总结回顾一下,带电粒子在磁场中的运动旋转圆问题是一个充满深度和广度的物理学问题,涉及到经典物理学和量子物理学的交叉领域。

带电粒子在匀强磁场中的匀速圆周运动

带电粒子在匀强磁场中的匀速圆周运动

洛伦兹力提供向心力,使带电 粒子绕固定点做圆周运动。
运动过程中,带电粒子的速度 方向时刻改变,但速度大小保 持不变。
周期和半径公式
周期公式
$T = frac{2pi m}{qB}$,其中$m$是带电粒子的质量,$q$是带电粒子的电荷 量,$B$是匀强磁场的磁感应强度。
半径公式
$r = frac{mv}{qB}$,其中$v$是带电粒子运动的速度。
偏转方向和速度大小不变
偏转方向
带电粒子在匀强磁场中做匀速圆周运 动时,其偏转方向与磁场方向垂直。
速度大小不变
由于洛伦兹力始终与带电粒子的速度 方向垂直,因此洛伦兹力不做功,带 电粒子的速度大小保持不变。
04 带电粒子在磁场中的运动 规律
周期与速度的关系
总结词
带电粒子在匀强磁场中做匀速圆周运动时,其周期与速度无关,即T=恒定值。
域。
核聚变反应
在高温高压条件下,带电粒子在匀 强磁场中高速旋转,可以引发核聚 变反应,为未来的清洁能源提供可 能。
磁流体发电
利用高温导电流体在匀强磁场中做 高速旋转运动,可以将机械能转化 为电能,具有高效、环保的优点。
对未来研究的展望
1 2 3
探索极端条件下的运动特性
随着实验技术的不断发展,未来可以进一步探索 带电粒子在更高温度、更高磁感应强度等极端条 件下的运动特性。
详细描述
带电粒子在匀强磁场中受到洛伦兹力作用,该力提供向心力使粒子做匀速圆周运 动。根据牛顿第二定律和向心力公式,粒子的周期T与速度v无关,只与磁场强度 B和粒子的质量m有关。
周期与磁场强度的关系
总结词
带电粒子在匀强磁场中做匀速圆周运 动时,其周期与磁场强度成正比。
详细描述

带电粒子在磁场中做圆周运动的分析方法

带电粒子在磁场中做圆周运动的分析方法

带电粒子在磁场中做圆周运动的分析方法湖北省郧西县第二中学王兴青带电粒子在有界、无界磁场中的运动类试题在高考试题中出现的几率几乎为l00%,涉及临界状态的推断、轨迹图象的描绘等。

试题综合性强、分值大、类型多,能力要求高,有较强的选拔功能,故平时学习时应注意思路和方法的总结。

解答此类问题的基本规律是“四找”:找圆心、找半径、找周期或时间、找几何关系。

一、知识点:若v⊥B,带电粒子在垂直于磁感线的平面内以入射速度v做匀速圆周运动,如右图所示。

1、轨道半径带电粒子在磁场中受到的洛伦兹力: F=qvB粒子做匀速圆周运动的向心力:v2F向=mrv2粒子受到的洛伦兹力提供向心力: qvB=mrm v所以轨道半径公式: r=Bq带电粒子在匀强磁场中做匀速圆周运动的半径跟粒子的运动速率成正比.速率越大.轨道半径也越大.2、周期由r=Bqm v 和T=v r π2得:T= qB m π2 带电粒子在匀强磁场中做匀速圆周运动的周期T 跟轨道半径r 和运动速度v 无关.二、带电粒子在磁场中做圆周运动的分析方法1、圆心的确定带电粒子进入一个有界磁场后的轨道是一段圆弧,如何确定圆心是解决问题的前提,也是解题的关键。

首先,应有一个最基本的思路:即圆心一定在与速度方向垂直的直线上。

在实际问题中圆心位置的确定极为重要,通常有四种情况:(1)已知入射方向和出射方向,通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图l 所示,图中P 为入射点,M 为出射点)(2)已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图2所示,P为入射点,M 为出射点)。

(3)两条弦的中垂线:如图3所示,带电粒子在匀强磁场中分别经过0、A 、B 三点时,其圆心O ’在OA 、OB 的中垂线的交点上. (4)已知入射点、入射方向和圆周的一条切线:如图4所示,过入射点A 做v 垂线A0.延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交A0于0点,0点即为圆心,求解临界问题常用。

带电粒子在磁场中的运动(磁聚焦和磁扩散)

带电粒子在磁场中的运动(磁聚焦和磁扩散)
Q
θR O/
OM
x
图 (b)
(3)带电微粒在y轴右方(X> O)的区域离开磁场并做 匀速直线运动.靠近上端发射出来的带电微粒在穿出 磁场后会射向X轴正方向的无穷远处,靠近下端发射 出来的带电微粒会在靠近原点之处穿出磁场.所以, 这束带电微粒与X轴相交的区域范围是X> 0.
装带 置点
微 粒 发 射
Pv Cr
(2)这束带电微粒都通过坐标原点。 如图(b)所示,从任一点P水平进入磁场的 带电微粒在磁场中做半径为R 的匀速圆周运动,圆 心位于其正下方的Q点,设微粒从M 点离开磁 场.可证明四边形PO’ MQ是菱形,则M 点就是坐 标原点,故这束带电微粒都通过坐标原点0.
y
v AC
R O/
O
x
图 (a)
y
Pv R
y
D
C
v0
O
x
A
B
S=2(πa2/4-a2/2) =(π-2)a2/2
解:(1)设匀强磁场的磁感应强度的大小为B。令圆弧AEC是自C点垂直于 BC入射的电子在磁场中的运行轨道。依题意,圆心在A、C连线的中垂线上, 故B点即为圆心,圆半径为a,按照牛顿定律有 ev0B= mv02/a,得B= mv0/ea。 (2)自BC边上其他点入射的电子运动轨道只能在BAEC区域中。因而,圆弧 AEC是所求的最小磁场区域的一个边界。
(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区
域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感
应强度的大小与方向。
y
(2)请指出这束带电微粒与x轴相 带
交的区域,并说明理由。
点 微

(3)在这束带电磁微粒初速度变为
发 射

带电粒子在磁场中的运动动态圆法课件

带电粒子在磁场中的运动动态圆法课件
应用潜力。
探索动态圆法与其他物理方法的结合, 以解决更复杂、更广泛的物理问题。
开发基于动态圆法的计算机模拟软件, 为实验研究和工程应用提供更准确、更
便捷的工具。
THANKS
感谢观看
稳定性
动态圆在磁场中的运动是稳定的 ,只要洛伦兹力与向心力平衡, 带电粒子就会做稳定的圆周运动 。
05
动态圆法在物理实验中的应用
实验原理和步骤
• 实验原理:动态圆法是一种通过观察带电粒子在磁场中的运动 轨迹来研究磁场特性的实验方法。通过改变磁场强度或粒子速 度,可以观察到轨迹圆半径的变化,从而得到磁场与粒子运动 之间的关系。
课程目标和意义
掌握动态圆法的基本原理和计算 方法,能够运用动态圆法解决实
际问题。
理解带电粒子在磁场中运动的物 理机制,提高对电磁学原理的理
解和应用能力。
通过学习动态圆法,培养学生的 逻辑思维和数学分析能力,为进 一步学习物理学和相关领域打下
基础。
02
带电粒子在磁场中的基本性质
电荷在磁场中的受力
在等离子体物理实验中,动态圆法也 被用来研究等离子体的特性和行为。
在粒子加速器、回旋加速器、核聚变 装置等实验设备中,需要利用动态圆 法来研究带电粒子的运动轨迹和行为。
04
带电粒子在磁场中的动态圆运动
动态圆在磁场中的受力分析
洛伦兹力
带电粒子在磁场中受到的力称为洛伦兹力,其方向由左手定则确定,大小为$F = qvBsintheta$,其中$q$是带电粒子的电荷量,$v$是速度,$B$是磁感应 强度,$theta$是速度与磁感应强度的夹角。
实验结果和结论
实验结果
通过动态圆法实验,可以观察到带电粒子在磁场中的运动轨迹呈现圆形,并且随着磁场强度的增加或粒子速度的 减小,轨迹圆的半径逐渐减小。实验结果与理论值基本一致。

带电粒子在圆形匀强磁场中的运动规律

带电粒子在圆形匀强磁场中的运动规律

带电粒子在圆形匀强磁场中的运动规律作者:张敏来源:《知识窗·教师版》2020年第08期摘要:带电粒子在匀强磁场中的运动是高中物理常见的问题,其中有界磁场是经常考查的知识点,也是学生学习的难点。

究其根源,是学生不理解其中的规律。

关键词:圆形匀强磁场; ;軌迹圆; ;磁场圆; ;磁发散; ;磁聚焦处理带电粒子在匀强磁场中的圆周运动问题,本质是平面几何知识与物理知识的综合运动。

带电粒子在圆形匀强磁场中的运动,主要是从带电粒子射入磁场的方向是否沿着磁场圆的半径、轨迹圆半径与磁场圆半径的大小关系这两个方面入手研究。

一、入射方向沿半径方向射入带电粒子入射速度方向是沿着圆形匀强磁场的半径射入,则出射速度方向的反向延长线必过区域圆的圆心,也就是沿着径向入,必沿着径向出。

如图1所示,设正离子从磁场区域的b 点射出,射出速度方向的延长线与入射方向的直径交点为O’。

正离子在磁场中运动的轨迹为一段圆弧,该轨迹圆弧对应的圆心O’位于初、末速度方向垂线的交点,也在弦ab的垂直平分线上,O’b与区域圆相切,弦ab既是轨迹圆弧对应的弦,又是区域圆的弦。

由此可知,OO’就是弦ab的垂直平分线,O点就是磁场区域圆的圆心。

二、入射方向不沿半径方向射入入射速度方向(不一定指向磁场圆的圆心)与轨迹圆弧对应的弦的夹角为θ(弦切角),则出射速度方向与入射速度方向的偏转角为2θ,轨迹圆强对应的圆心角也为2θ,并且初末速度方向的交点,轨迹圆的圆心,磁场圆的圆心都在孤弦的要直平分线上。

如图2所示,带电粒子从a点射入匀强磁场区城,初速度方向不指向区域圆圆心,若出射点为b,轨迹圆的圆心O’在初速度v0方向的垂线和弦ab的垂直平分线的交点上,入射速度方向与该中垂线的交点为d,可以证明:出射速度方向的反向延长线也过d点,O、d、O’都在弦ab的垂直平分线上。

三、比较磁场圆的半径与轨迹圆的半径大小关系1.当轨迹圆的半径与磁场圆的半径相等时,存在两条特殊规律磁发散是指带电粒子从圆形有界磁场边界上某点射入磁场,若圆周运动的半径与磁场半径相同,则无论在磁场内的速度方向如何,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如图3所示。

高中物理 带电粒子在圆形有界磁场中的运动之磁聚焦与磁发散

高中物理 带电粒子在圆形有界磁场中的运动之磁聚焦与磁发散

高中物理 带电粒子在圆形有界磁场中的运动之--磁聚焦与磁发散模型概述带电粒子在圆形有界匀强磁场中运动时,会出现一束平行粒子经磁场偏转后会聚于边界一点,此现象为磁聚焦;一束粒子从边界一点向不同方向经磁场偏转后平行射出,此现象为磁发散。

等半径原理:圆形磁场半径与粒子运动半径相等时,会出现菱形,如下图所示。

当粒子入射方向指向磁场区域圆心,或粒子入射方向不指向磁场区域圆心,根据几何关系,易证明四边形AOCO'为菱形。

物理建模:模型:如图所示。

当圆形磁场区域半径R 与轨迹圆半径r 相等时,从磁场边界上任一点向各个方向射入圆形磁场的粒子全部平行射出,出射方向与过入射点的磁场圆直径垂直(磁发散);反之,平行粒子束射入圆形磁场必会聚在磁场边界上某点,且入射方向与过出射点的磁场圆直径垂直(磁聚焦)。

O A证明:如图所示,任意取一带电粒子以速率v从A点射入时,粒子在磁场中的运动轨迹圆半径为R,有界圆形磁场的半径也为R,带电粒子从区域边界C点射出,其中O为有界圆形磁场的圆心,B为轨迹圆的圆心。

图中AO、OC、CO'、O'A的长度均为R,故AOCO'为菱形。

由几何关系可知CO'∥AO,即从C点飞出的粒子速度方向与OA垂直,因此粒子飞出圆形有界磁场时速度方向均与OA垂直。

反之也成立。

解题切入点:分析发现粒子轨道半径与磁场区域圆半径的关系,二者相等为磁聚焦或磁发散,否则不满足该关系,但满足怎么进入怎么出去的角度关系,借助几何关系解答。

【典例1】(磁聚焦)如图所示,x轴正方向水平向右,y轴正方向竖直向上。

在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场。

在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒。

发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g。

(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向。

带电粒子在磁场中的运动半径

带电粒子在磁场中的运动半径

带电粒子在磁场中的运动半径
当带电粒子进入一个磁场时,它会受到洛伦兹力的作用,这个力会使粒子在磁场中做圆周运动。

这种运动的半径可以用以下公式来描述:
r = mv / (|q|B)。

其中,r是运动半径,m是粒子的质量,v是粒子的速度,q是粒子的电荷量,B是磁场的磁感应强度。

这个公式揭示了带电粒子在磁场中运动半径与粒子的质量、速度、电荷量以及磁场的强度之间的关系。

从这个公式可以看出,当粒子的速度增大或者磁场的强度增大时,运动半径也会增大;而当粒子的质量增大时,运动半径则会减小。

带电粒子在磁场中的运动半径不仅仅是一个理论概念,它还有着许多实际的应用。

例如,在粒子加速器中,科学家们需要精确地控制带电粒子的运动轨迹,从而需要准确地计算出粒子在磁场中的运动半径。

另外,在核磁共振成像技术中,也需要利用带电粒子在磁场中的运动规律来获取图像信息。

总之,带电粒子在磁场中的运动半径是一个重要的物理概念,它不仅有着深刻的理论意义,而且在许多实际应用中都发挥着重要作用。

对这一概念的深入理解和研究,将有助于推动物理学和相关领域的发展。

带电粒子在圆形有界磁场中运动的两个重要结论

带电粒子在圆形有界磁场中运动的两个重要结论

带电粒子在圆形有界磁场中运动的两个重要结论莫尔定律和牛顿定律是描述带电粒子在圆形有界磁场中运动的两个重要结论,他们是理解电磁学的重要关联,正是由它们的联合作用才有了良好的物理现象。

首先,莫尔定律申明了微粒子在圆形有界磁场中运动的轨迹及磁场中粒子具有持续平衡状态。

从表面上看,粒子在曲线上定时变化,每次完成弧形循环,时期性地回到原来地方。

非常规趜势,莫尔定律把运动周期视为运动圆定律,由磁链间距决定,即只要有磁场存在,就会存在周期性运动。

从物理学角度上来说,由莫尔定律可以观测出,带电粒子在受到磁场作用的情况下,它的运动可以被划分成给定的部分,越是向磁场中心旋转,给粒子的加速度就越大,给到粒子的力就越大,使其旋转速度更快,可以比两个出发时间相同的粒子,得到更多的运动平衡状态,获得更多的速度。

因此,这一定律不仅可以应用于带电粒子的运动,还可以应用于旋转体系中的直线运动。

其次,牛顿定律研究了带电粒子在圆形有界磁场中运动的动量守恒。

从观测上看,穿越磁场时粒子受到一个恒定的力,这种力在物体运动过程中是恒定的,它描述了受磁场作用的带电粒子在运动过程中运动规律,说明由力磁场所使得的动量具有守恒性质。

这一定律可以用来分析带电粒子在受磁场作用的情况下非定向运动的物理效应,计算出恒定力,牛顿第二定律所描述的情形,它用力和加速度关系描述了圆磁场中由磁力诱导的粒子运动过程。

因此,莫尔定律和牛顿定律对描述带电粒子在圆形有界磁场中的运动具极其重要的意义,他们的联合作用能产生多种物理现象,深刻地改善了电磁学研究。

莫尔定律指出,受磁场作用的粒子具有周期性的运动状态,通过改变磁链间距来改变其运动速度;牛顿定律提出,受磁场作用的粒子具有动量守恒性质,计算出粒子运动过程中所受力的大小,从而产生更为优雅的物理现象。

最终,这两个重要的定律所承载的丰厚理论赋予科学家们一份重要的探索、研究、思考与创新的力量,为具体技术实现提供了依据。

确定带电粒子在磁场中做圆运动的圆心的方法

确定带电粒子在磁场中做圆运动的圆心的方法

确定带电粒子在磁场中做圆运动的圆心的方法带电粒子在磁场中圆运动的问题综合性较强,是高中物理的一个难点,也是高考的热点。

解这类问题既要用到物理中的洛仑兹力、圆周运动的规律,又要用到数学中的平面几何的知识。

其中关键是确定圆运动的圆心,只有找到圆心的位置,才能正确运用物理规律和数学知识。

下面给出几种找圆心常用的方法。

方法一:利用两个速度垂线的交点找圆心由于向心力的方向与线速度方向互相垂直,洛伦兹力(向心力)沿半径指向圆心,知道两个速度的方向,画出粒子轨迹上两个对应的洛伦兹力,其延长线的交点即为圆心。

例1 、如图1所示,一个质量为m电荷量为q的带电粒子从x轴上的P(a,0)点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。

求匀强磁场的磁感应强度B和射出点的坐标。

方法二:利用速度的垂线与弦的中垂线的交点找圆心带电粒子在匀强磁场中做匀速运动时,如果已知轨迹上的两点的位置和其中一点的速度方向,可用联结这两点的弦的中垂线与一条半径的交点确定圆心的位置。

例2、电子自静止开始经M、N板间(两板间的电压为U)的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图2所示,求:(1)正确画出电子由静止开始直至离开磁场时的轨迹图;(2)匀强磁场的磁感应强度.(已知电子的质量为m,电量为e)方法三、利用速度的垂线与角的平分线的交点找圆心当带电粒子通过圆形磁场区后又通过无场区,如果只知道射入和射出时的速度的方向和射入时的位置,而不知道射出点的位置,应当利用角的平分线和半径的交点确定圆心。

例3、一质量为m、带电量为+q 的粒子以速度v 从O点沿y 轴正方向射入磁感应强度为B 的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从B 处穿过x轴,速度方向与x 轴正方向的夹角为30°,同时进入场强为E、方向沿与x轴负方向成60°角斜向下的匀强电场中,通过了B点正下方的C点。

带电粒子在圆形磁场中运动

带电粒子在圆形磁场中运动

带电粒子在“圆形磁场区域”中的运动粒子沿圆形磁场区的半径方向垂直磁场射入,由对称性可知出射线的反向延长线必过磁场圆的圆心。

由几何关系可得:偏向角与两圆半径间的关系:t a n r Rθ=2 偏转时间的关系式:m t T qBθθπ=∙=2 O 、O ′分别为 磁场圆与轨迹圆的圆心;r 、R 分别为 磁场圆与轨迹圆的半径 。

例1、如图所示,在圆心为O ,半径为r 的圆形区域内,有匀强磁场,磁感应强度为B ,方向垂直纸面向里.一个带电粒子以速度v 射入磁场,初速度方向指向圆心O ,它穿过磁场后,速度方向偏转α角,则该带电粒子的荷质比______=mq .例2、 在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。

一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界与y轴的交点C 处沿+y 方向飞出。

(1)请判断该粒子带何种电荷,并求出其比荷q/m ;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求:磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少?例3、如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角。

现将带电粒子的速度变为,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为( ) A.Δt B.2Δt C.Δt D.3Δt例4、如图所示,在纸面内半径为R 的圆形区域中充满了垂直于纸面向里、磁感应强度为B 的匀强磁场,一点电荷从图中A 点以速度v 0垂直磁场射入,当该电荷离开磁场时,速度方向刚好改变了180°,不计电荷的重力,下列说法正确的是( )A. 该点电荷离开磁场时速度方向的反向延长线通过O 点B. 该点电荷的比荷为q m =2v 0BRC. 该点电荷在磁场中的运动时间t =πR 3v 0D. 该点电荷带正电1、如图,半径为R 的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B ,方向垂直于纸面向外,一电荷量为q (q >0)。

带电粒子在磁场中的运动(磁聚焦)

带电粒子在磁场中的运动(磁聚焦)

例1、在xoy平面内有很多质量为m,电量为e的电子,从坐
标原点O不断以相同速率沿不同方向射入第一象限,如 图所示.现加一垂直于xOy平面向里、磁感强度为B的匀 强磁场,要求这些入射电子穿过磁场都能平行于x轴且 沿x轴正向运动,试问符合该条件的磁场的最小面积为 多大?(不考虑电子间的相互作用)
y
v0
例3放置在坐标原点O的粒子源,可以向第二象限内放射出质量为m、电荷量为q
的带正电粒子,带电粒子的速率均为v,方向均在纸面内,如图所示.若在某区域内
存在垂直于xOy平面的匀强磁场(垂直纸面向外),磁感应强度大小为B,则这些粒子
都能在穿过磁场区后垂直射到垂直于x轴放置的挡板PQ上,求:
(1)挡板PQ的最小长度; (2)磁场区域的最小面积.
On
x2 + (r-y)2=r2。
即所有出射点均在以坐标(0,r)为圆心的圆弧abO上,显然,
磁场分布的最小面积应是实线1和圆弧abO所围的面积,由几何
关系得
Smin
2(1 r2
4
1 2
r2)
(
2
1)( mv0 eB
)2
解2: 磁场上边界如图线1所示。
y
设P(x,y)为磁场下边界上的一 点,经过该点的电子初速度与x轴
子最后扩展到 -2H<y<2H 范围内,继续沿 x 轴正向平行地
Байду номын сангаас
以相同的速率 v0向远处射出。已知电子的电量为 e,质量为
m,不考虑电子间的相互作用。
y
v0
2H
v0
H
对称思想
O -H v0 -2H
x 图形象什么?
v0
蝴蝶
如图,在xoy平面上-H<y<H的范围内有一片稀疏的电子.从x轴的负半轴的

带电粒子在圆形磁场区域运动规律

带电粒子在圆形磁场区域运动规律

带电粒子在圆形磁场区域的运动规律处理带电粒子在匀强磁场中的圆周运动问题,关键就是综合运用平面几何知识与物理知识。

最重要的是,画出准确、清晰的运动轨迹。

对于带电粒子在圆形磁场区域中做匀速圆周运动,有下面两个规律,可以帮助大家准确、清晰画出带电粒子的圆周运动的轨迹。

规律一:带电粒子沿着半径方向射入圆形边界内的匀强磁场,经过一段匀速圆周运动偏转后,离开磁场时射出圆形区域的速度的反向延长通过边界圆的圆心。

规律二:入射速度方向(不一定指向区域圆圆心)与轨迹圆弧对应的弦的夹角为θ(弦切角),则出射速度方向与入射速度方向的偏转角为2θ,轨迹圆弧对应的圆心角也为θ2,并且初末速度方向的交点、轨迹圆的圆心、区域圆的圆心都在弧弦的垂直平分线上。

以上两个规律,利用几何知识很容易证明,在解题时,可以直接应用,请看下面的两个例子:例1如图1所示,在平面坐标系xoy 内,第Ⅱ、Ⅲ象限内存在沿y 轴正方向的匀强电场,第I 、Ⅳ象限内存在半径为L的圆形匀强磁场,磁场圆心在M (L ,0)点,磁场方向垂直于坐标平面向外.一带正电粒子从第Ⅲ象限中的Q (一2L ,一L )点以速度0v 沿x 轴正方向射出,恰好从坐标原点O 进入磁场,从P (2L ,O )点射出磁场.不计粒子重力,求: (1)电场强度与磁感应强度大小之比 (2)粒子在磁场与电场中运动时间之比 解析:(1)设粒子的质量和所带正电荷分别为m 和q ,粒子在电场中运动,由平抛运动规律得:102t v L =2121at L =,又牛顿运动定律得:ma qE = 粒子到达O 点时沿y +方向分速度为0v at v y ==,1tan 0==v v y α 故045=α,粒子在磁场中的速度为02v v =,应用规律二,圆心角为:0902=α,画出的轨迹如图2所示,由rm v Bqv 2=,由几何关系得L r 2=得:2v B E = (2)在磁场中运动的周期vrT π2=粒子在磁场中运动时间为02241v L T t π==图2图1得412π=t t 例2如图3所示,真空中有一以(r ,O )为圆心,半径为r 的圆柱形匀强磁场区域,磁场的磁感应强度大小为B ,方向垂直于纸面向里,在y ≤一r 的范围内,有方向水平向右的匀强电场,电场强度的大小为E 。

高中物理-“带电粒子在磁场中的圆周运动”解析

高中物理-“带电粒子在磁场中的圆周运动”解析

高中物理-“带电粒子在磁场中的圆周运动”解析“带电粒子在磁场中的圆周运动”解析处理带电粒子在匀强磁场中的圆周运动问题,其本质是平面几何知识与物理知识的综合运用。

重要的是正确建立完整的物理模型,画出准确、清晰的运动轨迹。

下面我们从基本问题出发对“带电粒子在磁场中的圆周运动”进行分类解析。

一、“带电粒子在磁场中的圆周运动”的基本型问题找圆心、画轨迹是解题的基础。

带电粒子垂直于磁场进入一匀强磁场后在洛仑兹力作用下必作匀速圆周运动,抓住运动中的任两点处的速度,分别作出各速度的垂线,则二垂线的交点必为圆心;或者用垂径定理及一处速度的垂线也可找出圆心;再利用数学知识求出圆周运动的半径及粒子经过的圆心角从而解答物理问题。

【例1】图示在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁场的磁感应强度为B;一带正电的粒子以速度V从O点射入磁场中,入射方向在xy平面内,与x轴正方向的夹角为θ;若粒子射出磁场的位置与O点的距离为L。

求①该粒子的电荷量和质量比;②粒子在磁场中的运动时间。

分析:①粒子受洛仑兹力后必将向下偏转,过O点作速度V的垂线必过粒子运动轨迹的圆心O’;由于圆的对称性知粒子经过点P时的速度方向与x轴正方向的夹角必为θ,故点P作速度的垂线与点O处速度垂线的交点即为圆心O’(也可以用垂径定理作弦OP的垂直平分线与点O处速度的垂线的交点也为圆心)。

由图可知粒子圆周运动的半径由有。

再由洛仑兹力作向心力得出粒子在磁场中的运动半径为故有,解之。

②由图知粒子在磁场中转过的圆心角为,故粒子在磁场中的运动时间为。

【例2】如图以ab为边界的二匀强磁场的磁感应强度为B1=2B2,现有一质量为m带电+q的粒子从O点以初速度V沿垂直于ab 方向发射;在图中作出粒子。

带电粒子在磁场中的圆运动的轨迹画法及其计算

带电粒子在磁场中的圆运动的轨迹画法及其计算

--
--
带电粒子在磁场中的圆运动的轨迹画法及其计算
米易中学物理组
易良录
首先,带电粒子在磁场中的运动,本质是洛伦兹力提供向心力(粒子不受重力),粒

做匀速圆周运动(整圆或部分圆),故只有洛伦兹力,没有重力、电场力等,与带电物体在复合场的题目有明显差别,运动形式仅限于匀速圆周运动,没有其他运动形式(如直线、匀加速、平抛)。

其次,本类题目用到的主要公式及结论为:
v
2
2
m v
2 m 2 得 R

qvB m
mR
qB
T
R
T
qB
再次认识到,本类题目通常为大的计算题,分值大,难度大,必须处理好。

难点之一,就是如何画出运动轨迹,如何找到圆心,如何找到旋转半径与已知长度、角度的数量关系。

难点之二,就是极限条件的取得。

一、
圆轨迹的画法
:
画圆的轨迹时,遵循下面的一些原则:1.过进入点作速度的垂线 ----- 半径垂直于速度(速度沿圆的切线方向)2.作进出点连线的中垂线 ----
对称性
3.进入直线边界时夹
θ角,出来时也夹
θ角----
对称性4.
沿半径方向进入圆形磁场区域,出来时也沿半径方向
----
对称性
通常,根据上述几点,可以画出带电粒子在磁场中的运动轨迹。

二、
旋转半径的计算:
在正确画出带电粒子在磁场中的运动轨迹后,
下一步的主要任务是,
求出旋转半径与已。

带电粒子在圆形有界磁场中的运动PPT课件

带电粒子在圆形有界磁场中的运动PPT课件
匀强磁场中的匀速圆周运动专题
数学知识准备
1.已知两相交圆的有关边角关系
2.逆向思维的应用
一.沿半径方向飞入匀强磁场
沿半径方向飞入磁场,必沿半径方向飞出磁场
例1.(2002年全国) 、电视机的显像管中,电子束的偏 转是用磁偏转技术实现的。电子束经过电压为U的加速 电场后,进入一圆形匀强磁场区,如图所示。磁场方向 垂直于圆面。磁场区的中心为O,半径为r。当不加磁场 时,电子束将通过O点而打到屏幕的中心M点。为了让 电子束射到屏幕边缘P,需要加磁场,使电子束偏转一 已知角度θ ,此时的磁场的磁感应强度B应为多少?
如图所示,匀强磁场分布在半径为R的圆内, 磁感应强度为B,CD是圆的直径,质量为m, 电量为q的带电粒子,由静止开始经加速电场 加速后,沿着与直径CD平行且相距0.6R的直 线从A点进入磁场,若带电粒子在磁场中运动 时间是πm/2qB。求加速电场的加速电压
A 0.6R D
C
【解题回顾】数学方法与物理知识相结合是解决 物理问题的一种有效途径.本题还可以用下述方 法求出下边界.设P(x,y)为磁场下边界上的一点, 经过该点的电子初速度与x轴夹角为,则由图3-8 可知:x=rsin, y=r-rcos 得: x2+(y-r)2=r2 所以磁场区域的下边界也是半径为r,圆心为 (0,r)的圆弧
巩固练习. 如图所示,带负电的粒子垂直磁场 方向进入圆形匀强磁场区域,出磁场时速度方 向偏离原方向60°已知带电粒子质量m=3×10 -20kg,电荷量为q=10-13c,速度v =105m/s磁场 0 区域的半径为R=0.3m,不计重力,求磁场的磁 感强度。
巩固练习.在半径为r的圆筒内有匀强磁场,质量 为m、带电量为q的带电粒子在小孔S处以速度 v0向着圆心射入,问施加的磁感强度为多大, 此粒子才能在最短的时间内从原孔射出?(高 相碰时电量和动能均无损失)

带电粒子在磁场中运动的极值问题

带电粒子在磁场中运动的极值问题

解析 (1)由粒子的运行轨迹,利用左手定则可
知,该粒子带负电荷.
粒子由A点射入,由C点飞出,其速度方向改变了90°,
则粒子轨迹半径R =r
又qvB=m v 2
R 则粒子的比荷
q
v
m Br
(2)粒子从D点飞出磁场速度
方向改变了60°角,故AD弧所
对圆心角为60°,如右图所示.
粒子做圆周运动的半径
R′=rcot 30°= r 3 又R′= mv
(3)带电粒子在磁场中的运动周期
T= 2 π m
qB
粒子在两个磁场中偏转的角度均为
π 4
,在磁场中的运动
总时间
t= 1 T π m 4 2qB
=
3.14 6.641027 2 3.21019 5102
s
=6.5×10-7 s
反思总结
返回
小 结 1.带电粒子进入有界磁场,运动 轨迹为一段弧线. 2.当同源粒子垂直进入磁场的运动轨迹
又由几何关系知磁场区域的半 径为 R 3 L 3
y
30°
P
LO’ A
x O vQ
12月23日作业
1.如图14所示,边长为L的等边三角形ABC为两个
有界匀强磁场的理想边界,三角形内的磁场方向
垂直纸面向外,磁感应强度大小为B,三角形外
的磁场(足够大)方向垂直纸面向里,磁感应强度
大小也为B.把粒子源放在顶点A处,它将沿∠A
(1)荧光屏上光斑的长度.
(2)所加磁场范围的最小面积.
解析 (1)如右图所示,
求光斑的长度,关键是找
到两个边界点沿弧OB运
动到P,初速度方向沿y轴
正方向的电子,初速度方向沿x轴正方向的电子,沿

带电粒子在环形磁场中的运动

带电粒子在环形磁场中的运动

Bθ = Bθ (r) , r = x2 + y2 ,
由螺线管电流线圈产生的环向场 Bϕ ,因
安匝数相同、由安路环路定理得


1 R

图 2-5-5

Bϕ = B0R0 / R ,
B0 为轴心上的环向磁场,因为等离子体半径 a R0 ,所以等离子体中 P 点的
坐标 x R0 , x / R0 1,则环向场
在 xy 平面投影,仍然是(2.5.12)方程,即
dr dx
=
±
vDB v Bθ

(2.5.16)
v 但是,现在(2.5.16)式中的 是随 x 变化的,
即 v ( x) 。因为捕获粒子的 v 比通行粒子的 v 小很多,而且在两个反射点 M1、
M2 处 v = 0 ,另外(2.5.16)式中“+”号对应于顺时针旋转,“-”号对应于逆
= v Bθ sinθ = v Bθ
B
B
= −v Bθ cosθ = −v By来自r Bθ Bx r
(3.5.9)
52
如果是逆时针方向旋转,上面两式都变个符号。导向中心运动
v = v +vD,
(2.5.10)
于是,将(2.5.9)式代入(2.5.10)式,得导向中心的 xy 平面上投影的运运方程 为
B ≈ Bϕ ≈ B0 (1− x / R0 ) ,

v
= v0
1− 1− x / R0 1− xM / R0
≈ v0
x − xM R0
(2.5.17)
这里 xM 为反射点 M1,M2 的横坐标,上式应用了 x / R0 1, xM R0 1条件。将
(2.5.17)式代入(2.5.16)方程,得
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档