稳恒磁场作业答案
大学物理第六章稳恒磁场习题参考答案
第六章稳恒磁场作业集第37讲毕奥-萨伐儿定律一、Ⅰ类作业:解:根据毕奥萨伐尔定律20sin d 4d r l I B θπμ=,方向由右手定则决定。
(1)202020d 490sin d 4sin d 4d L l I L l I r l I B πμπμθπμ=︒==方向垂直纸面向里(沿z 轴负向)。
(2)00sin d 4sin d 4d 2020=︒==L l I r l I B πμθπμ(3)202020d 490sin d 4sin d 4d L l I L l I r l I B πμπμθπμ=︒==,方向沿x 轴正向。
(4)因为2245sin sin ,2222=︒==+=θL L L r ,所以2020d 82sin d 4d Ll I r l I B πμθπμ==,方向垂直纸面向里(沿z 轴负向)。
37.2教材223页第6.2、6.4、6.6题解:(1)6.2:(2)6.4:(3)6.6:二、Ⅱ类作业:解:根据磁场叠加原理可知,中心点O 的磁感应强度是两根半无限长载流导线的B 和41载流圆弧的B 的矢量和。
即321B B B B ++=其中,半无限长载流导线在其延长线上的031==B B ,41载流圆弧的R I B 802μ=,方向垂直纸面向外。
所以RI B B 802μ==,方向垂直纸面向外第38讲磁场的性质一、Ⅰ类作业:38.1一块孤立的条形磁铁的磁感应线如图所示,其中的一条磁感线用L 标出,它的一部分在磁铁里面,你能根据安培环路定理判断磁铁里面是否有电流吗?如果有穿过L 的电流方向是怎样的?解:因为磁感应强度沿L 的线积分不为零,即环量不为零,根据安培环路定理,有电流穿过环路L 。
根据右手定则,电流是垂直纸面向里。
38.2教材229页6.7、6.9题二、Ⅱ类作业:38.3如图所示,有一根很长的同轴电缆,由两层厚度不计的共轴圆筒组成,内筒的半径为1r 1,外筒的半径为r 2,在这两导体中,载有大小相等而方向相反的电流I ,计算空间各点的磁感应强度.解:该电流产生的磁场具有轴对称性,可用安培环路定理计算磁感应强度。
习题第06章(稳恒磁场)-参考答案.
第六章 稳恒磁场思考题6-1 为什么不能把磁场作用于运动电荷的力的方向,定义为磁感强度的方向?答:对于给定的电流分布来说,它所激发的磁场分布是一定的,场中任一点的B 有确定的方向和确定的大小,与该点有无运动电荷通过无关。
而运动电荷在给定的磁场中某点 P 所受的磁力F ,无论就大小或方向而言,都与运动电荷有关。
当电荷以速度v 沿不同方向通过P 点时,v 的大小一般不等,方向一般说也要改变。
可见,如果用v 的方向来定义B 的方向,则B 的方向不确定,所以我们不能把作用于运动电荷的磁力方向定义为磁感应强度B 的方向。
6-2 从毕奥-萨伐尔定律能导出无限长直电流的磁场公式aIB πμ2=。
当考察点无限接近导线(0→a )时,则∞→B ,这是没有物理意义的,如何解释?答:毕奥-萨伐尔定律是关于部分电流(电流元)产生部分电场(dB )的公式,在考察点无限接近导线(0→a )时,电流元的假设不再成立了,所以也不能应用由毕奥-萨伐尔定律推导得到的无限长直电流的磁场公式aIB πμ2=。
6-3 试比较点电荷的电场强度公式与毕奥-萨伐尔定律的类似与差别。
根据这两个公式加上场叠加原理就能解决任意的静电场和磁场的空间分布。
从这里,你能否体会到物理学中解决某些问题的基本思想与方法?答:库仑场强公式0204dqr dE rπε=,毕奥一萨伐定律0024Idl r dB r μπ⨯= 类似之处:(1)都是元场源产生场的公式。
一个是电荷元(或点电荷)的场强公式,一个是电流元的磁感应强度的公式。
(2)dE 和dB 大小都是与场源到场点的距离平方成反比。
(3)都是计算E 和B 的基本公式,与场强叠加原理联合使用,原则上可以求解任意分布的电荷的静电场与任意形状的稳恒电流的磁场。
不同之处: (1)库仑场强公式是直接从实验总结出来的。
毕奥一萨伐尔定律是从概括闭合电流磁场的实验数据间接得到的。
(2)电荷元的电场强度dE 的方向与r 方向一致或相反,而电流元的磁感应强度dB 的方向既不是Idl 方向,也不是r 的方向,而是垂直于dl 与r 组成的平面,由右手螺旋法则确定。
第十一章稳恒电流的磁场作业答案
章 稳恒电流的磁场(一)一、利用毕奥一萨法尔定律计算磁感应强度解法:在距离P 点为r 处选取一个宽度为dr 的电流元(相当于一根无限长的直 导线),电流为dl 它在P 处产生的dB =些巴,方向垂直纸面向内;根 据B = fdB,B 的方向也垂直纸面向内,2打 ‘B 的大小为:B "2^=±L b;^=±ln 心、2;ir 2na b r2Jia b【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则 P , Q , 0各点磁感强度的大小B p , B Q , B o 间的关系为,-出 Idl x r毕奥一萨法尔定律:dB = 01.有限长载流直导线的磁场 4兀r 34兀a B = ——(COSS -cosg ),无限长载流直导线 B 2i :a半无限长载流直导线B =亠,直导线延长线上 4旧MR 2・一2 ・~2、3 2 ,圆环中心B =0B= ---- ,圆弧中心B =2R2.圆环电流的磁场B =2(R 2+x 2)32电荷转动形成的电流:1=9=—^T 2兀/⑷】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a I •如图若两个线圈的中心 01、02处的磁感强度大小 a 1与边长a 2之比a 1 : a ?为【通有相同电流相同,则半径(A) 1 :解法:q c(B) 72兀:1 (C) J 2兀:4 (D)血兀:8B o =4x'0IX (COS450 -COS13504 兀2【 】基础训练3、有一无限长通电流的扁平铜片,宽度为 a ,厚度不计, 均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度 2R *2兀= Bo 2,得旦a 2I 在铜片上B 的大小为(A)a +b ln——• (C) 2旧 b(D)兀(a + 2b)=—dr,a(A) B P > B Q > B o . B Q > B o > B p .解法:(B) B Q > B P > B o • (D) B o > B Q > B p •-浮f 卫j aAB 段在D 处的磁感强度B 2屮o l/(4兀讪(1血)I根据直线电流的磁场公式B = ——( c o6s -coS ?)和圆弧电流产生磁场公式点的磁感强度B 的大小。
第7章 稳恒磁场习题解答
40 第7章 稳恒磁场7-1 如图,一个处在真空中的弓形平面载流线圈acba ,acb 为半径cm 2=R 的圆弧,ab 为圆弧对应的弦,圆心角090aob ∠=, A 40=I ,试求圆心O 点的磁感应强度的大小和方向。
解 由例7-1 线段ba 的磁感应强度 o o 40140(cos45-cos135) =410T4π0.02cos45B μ-=⨯⨯︒方向垂直纸面向外。
由例7-2 圆弧 acb的磁感应强度 4002π1402 3.1410T 2π2420.02I μB R μ-==⨯=⨯方向垂直纸面向内。
4120.8610TB B B -=-=⨯方向垂直纸面向外。
7-2 将载流长直导线弯成如图所示的形状,求圆心O 点处磁感应强度。
解 如图,将导线分成1(左侧导线)、2(半圆导线)、3(右侧导线)三部分,设各部分在O 点处产生的磁感应强度分别为1B 、2B 、3B。
根据叠加原理可知,O 点处磁感应强度321B B B B ++=。
01=B024I B Rμ=,方向垂直于纸面向里034πI B Rμ=,方向垂直于纸面向里O 点处磁感应强度大小为0O 23(1π)4πIB B B Rμ=+=+ ,方向垂直于纸面向里。
7-3 一圆形载流导线圆心处的磁感应强度为1B ,若保持导线中的电流强度不变,而将导线变成正方形,此时回路中心处的磁感应强度为2B ,试求21:B B解 设导线长度为l ,为圆环时, 2πl R = 001π2I I B R l μμ==为正方形时,边长为4l,由例7-100024(cos 45cos135)4π8IBlμ=⨯-=⨯习题7-1图41212 :πB B =7-4 如图所示,一宽为a 的薄长金属板,均匀地分布电流I ,试求在薄板所在平面、距板的一边为a 的点P 处的磁感应强度。
解 取解用图示电流元,其宽度为d r ,距板下边缘距离为r ,其在P 点处激发的磁感应强度大小为00d d d 2π22π(2)II r B (a r)a r aμμ==--,方向垂直于纸面向外。
第7章 稳恒磁场习题解答
第7章 稳恒磁场7-1 如图,一个处在真空中的弓形平面载流线圈acba ,acb 为半径cm 2=R 的圆弧,ab 为圆弧对应的弦,圆心角090aob ∠=,A 40=I ,试求圆心O 点的磁感应强度的大小和方向。
解 由例7-1 线段ba 的磁感应强度 o o 40140(cos45-cos135) =410T4π0.02cos45B μ-=⨯⨯︒方向垂直纸面向外。
由例7-2 圆弧acb 的磁感应强度4002π1402 3.1410T 2π2420.02I μB R μ-==⨯=⨯方向垂直纸面向内。
4120.8610TB B B -=-=⨯方向垂直纸面向外。
7-2 将载流长直导线弯成如图所示的形状,求圆心O 点处磁感应强度。
解 如图,将导线分成1(左侧导线)、2(半圆导线)、3(右侧导线)三部分,设各部分在O 点处产生的磁感应强度分别为1B 、2B 、3B 。
根据叠加原理可知,O 点处磁感应强度321B B B B++=。
01=B024I B Rμ=,方向垂直于纸面向里034πI B Rμ=,方向垂直于纸面向里O 点处磁感应强度大小为习题7-1图0O 23(1π)4πIB B B Rμ=+=+ ,方向垂直于纸面向里。
7-3 一圆形载流导线圆心处的磁感应强度为1B ,若保持导线中的电流强度不变,而将导线变成正方形,此时回路中心处的磁感应强度为2B ,试求21:B B解 设导线长度为l ,为圆环时, 2πl R = 001π2I I B R l μμ==为正方形时,边长为4l,由例7-100024(cos 45cos135)4π8IB lμ=⨯-=⨯212 :πB B =7-4 如图所示,一宽为a 的薄长金属板,均匀地分布电流I ,试求在薄板所在平面、距板的一边为a 的点P 处的磁感应强度。
解 取解用图示电流元,其宽度为d r ,距板下边缘距离为r ,其在P 点处激发的磁感应强度大小为00d d d 2π22π(2)II r B (a r)a r aμμ==--,方向垂直于纸面向外。
第十章 稳恒磁场 部分习题参考答案
第十章 习题9-1 在同一磁感应线上,各点B v的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B v的方向?解: 在同一磁感应线上,各点B v的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B v的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B v的方向.题9-2图9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B v的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B r v=∑∫==−=⋅0d 021I bc B da B l B abcdµvv∴ 21B B rv=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B v方向相反,即21B B r v≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0µ=,外面B =0,所以在载流螺线管 外面环绕一周(见题9-4图)的环路积分∫外B L v·d l v =0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为∫外B L v·d l v =I 0µ这是为什么?解: 我们导出nl B 0µ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是∫∑==⋅LI l B 0d 0µv v外,与∫∫=⋅=⋅Ll l B 0d 0d v v v外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B v 的轴向分量为零,而垂直于轴的圆周方向分量rIB πµ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m -2的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=××=⋅=S B vv ΦWb(2)通过befc 面积2S 的磁通量022=⋅=S B vv Φ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=×××=θ×××=⋅=S B v v ΦWb (或曰24.0−Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B )为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B )、CD 三部分电流产生.其中AB 产生 01=B vCD 产生RIB 1202µ=,方向垂直向里 CD 段产生 231(2)60sin 90(sin 24003−πµ=−πµ=°°R I R I B ,方向⊥向里 ∴)6231(203210ππµ+−=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题9-8图解:如题9-8图所示,A B v方向垂直纸面向里42010102.105.02)05.01.0(2−×=×+−=πµπµI I B A T(2)设0=B v在2L 外侧距离2L 为r 处 则02)1.0(220=−+rIr I πµπµ解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
大学物理稳恒磁场习题及答案
衡水学院理工科专业《大学物理B 》稳恒磁场习题解答 【1 】一.填空题(每空1分)1.电流密度矢量的界说式为:dIj n dS ⊥=,单位是:安培每平方米(A/m2). 2.真空中有一载有稳恒电流I 的细线圈,则经由过程包抄该线圈的关闭曲面S 的磁通量=0 .若经由过程S 面上某面元d S 的元磁通为d,而线圈中的电流增长为2I 时,经由过程统一面元的元磁通为d ',则d ∶d '=1:2 .3.一曲折的载流导线在统一平面内,外形如图1(O 点是半径为R1和R2的两个半圆弧的配合圆心,电流自无限远来到无限远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=.4.一磁场的磁感强度为k c j b i a B++= (SI),则经由过程一半径为R,启齿向z 轴正偏向的半球壳概况的磁通量的大小为πR2cWb. 5.如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情形下,等于: 对环路a :d B ⋅⎰=____μ0I__;对环路b :d B ⋅⎰=___0____; 对环路c :d B ⋅⎰=__2μ0I__.6.两个带电粒子,以雷同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,活动轨迹半径之比是_____1∶2_____. 二.单项选择题(每小题2分)( B )1.平均磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S,则经由过程S 面的磁通量的大小为( C )2.有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中间产生的磁感强度的大小之比B1 / B2为(D )3.如图3所示,电流从a 点分两路经由过程对称的圆环形分路,会合于b 点.若ca.bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 偏向垂直环形分路地点平面且指向纸内B. 偏向垂直环形分路地点平面且指向纸外C .偏向在环形分路地点平面内,且指向aD .为零( D )4.在真空中有一根半径为R 的半圆形细导线流过的电流为I,则圆心处的磁感强度为 A.R 140πμ B. R120πμ C .0D .R 140μ ( C )5.如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度绕AC 轴扭转时,在中间O 点产生的磁感强度大小为B1;此正方形同样以角速度绕过O 点垂直于正方形平面的轴扭转时,在O 点产生的磁感强度的大小为B2,则B1与B2间的关系为A. B1= B2B. B1= 2B2C .B1=21B2D .B1= B2 /4O IR 1 R 2图1b⊗ ⊙ cI I c a图2c I db a图3A CqqqqO图4(B )6.有一半径为R 的单匝圆线圈,通以电流I,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中间的磁感强度和线圈的磁矩分离是本来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4.(D) 2倍和1/2. 三.断定题(每小题1分,请在括号里打上√或×)( × )1.电源的电动势是将负电荷从电源的负极经由过程电源内部移到电源正极时,非静电力作的功. ( √ )2.磁通量m SB dS φ=⋅⎰的单位为韦伯.( × )3.电流产生的磁场和磁铁产生的磁场性质是有区此外. ( × )4.电动势用正.负来暗示偏向,它是矢量.( √ )5.磁场是一种特别形态的物资,具有能量.动量和电磁质量等物资的根本属性. ( × )6.知足0m SB dS φ=⋅=⎰的面积上的磁感应强度都为零.四.简答题(每小题5分)1.在统一磁感应线上,各点B 的数值是否都相等?为何不把感化于活动电荷的磁力偏向界说为磁感应强度B的偏向?答:在统一磁感应线上,各点B 数值一般不相等.(2分)因为磁场感化于活动电荷的磁力偏向不但与磁感应强度B 的偏向有关,并且与电荷速度偏向有关,即磁力偏向其实不是独一由磁场决议的,所以不把磁力偏向界说为B 的偏向.(3分)2.写出法拉第电磁感应定律的数学表达式,解释该表达式的物理意义. 答:法拉第电磁感应定律的数学表达式r lS BE dl dS t∂⋅=-⋅∂⎰⎰(2分) 物理意义:(1)感生电场是由变更的磁场激发的;(1分)(2)感生电场r E 与Bt∂∂组成左手螺旋关系;(1分)(3)右侧的积分面积S 为左侧积分路径L 包抄的面积.(1分)五.盘算题(每题10分,写出公式.代入数值.盘算成果.)1.如图5所示,AB.CD 为长直导线,BC 为圆心在O 点的一段圆弧形导线,其半径为R.若通以电流I,求O 点的磁感应强度. 解:如图所示,O 点磁场由AB .C B.CD 三部分电流产生.个中AB 产生01=B(1分)CD 产生RIB 1202μ=,(2分)偏向垂直向里(1分)CD 段产生)231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,(2分)偏向⊥向里(1分)∴)6231(203210ππμ+-=++=R I B B B B ,(2分)偏向⊥向里.(1分) 2.如图6所示.半径为R 的平均带电圆盘,面电荷密度为σ.当盘以角速度ω绕个中间轴OO '扭转时,求盘心O 点的B 值.解法一:当带电盘绕O 轴迁移转变时,电荷在活动,因而产生磁场.可将圆盘算作很多齐心圆环的组合,而每一个带电圆环迁移转变时相当图5于一圆电流.以O 为圆心,r 为半径,宽为dr 的圆环,此环上电量rdr ds dq πσσ2⋅==(2分)此环迁移转变时,其等效电流rdr dq dI ωσπω=⋅=2(3分) 此电流在环心O 处产生的磁感应强度大小2200drrdIdB ωσμμ==(2分)其偏向沿轴线,是以全部圆盘在盘心O 处产生的磁感应强度大小是R dr dBB Rωσμωσμ0002121==⎰⎰(3分) 解法二:依据活动电荷的磁场公式304r rv q B ⨯=πμ,(2分)求解,在圆盘上取一半径为r,宽为dr 的圆环,电量rdr dq πσ2=,ωr v =(2分)dr rdr r r dq r dB 22440020σωμπσπωμπωμ=⋅==(3分)偏向垂直于盘面向上,同样RqRdr dB B Rπωμωσμσωμ2220000====⎰⎰(3分) 3.图7所示,在一长直载流导线旁有一长为L 导线ab,其上载电流分离为I1和I2,a 端到直导线距离为d 求当导线ab 与长直导线垂直,求ab 受力.解:取如图8所示坐标系直导线在距其为x 处,产生的磁场xI B πμ210=(2分) 其偏向垂直低面向里,电流之I2dx 受安培力大小为dx xI I Bdx I df πμ22102==(3分) df 偏向垂直向上,且各电流之受力偏向雷同,(2分)故,ab 受力为012012ln22d L LdI I I I d Lf df dx x dμμππ++===⎰⎰(3分) 4.一长直导线通有电流120A I =,旁边放一导线ab,个中通有电流210A I =,且两者共面,如图8所示.求导线ab 所受感化力对O 点的力矩.解:如图9所示,在ab 上取r d ,它受力ab F ⊥d 向上,(2分)大小为rI rI F πμ2d d 102=(2分) F d 对O 点力矩F r M⨯=d (2分)图6I 1I2dL图7Md 偏向垂直纸面向外,大小为r I I F r M d 2d d 210πμ==(2分) ⎰⎰-⨯===ba bar II M M 6210106.3d 2d πμm N ⋅(2分)5.两平行长直导线相距d=40cm,每根导线载有I1=I2=20A 如图10所示.求: ⑴两导线地点平面内与该两导线等距的一点A 处的磁感应强度; ⑵经由过程图中斜线所示面积的磁通量.(r1=r3=10cm,l=25cm)解: (1)图中的A 点的磁场122222O O A I I B d d μμππ=+⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭()512124010O O OI I I I T d d dμμμπππ-=+=+=⨯(4分) (2)在正方形中距中间x 处,取一窄条ds ldx =,则经由过程ds 的磁通量m d B ldx φ=()1222O O I I ldxx d z μμππ⎛⎫=+ ⎪ ⎪-⎝⎭ 122O l I I dx x d x μπ⎛⎫=+ ⎪-⎝⎭(3分)31122d r O m m r l I I d dx x d x μφφπ-⎛⎫==+ ⎪-⎝⎭⎰⎰311213ln ln 2O l d r d r I I r r μπ⎛⎫--=+ ⎪⎝⎭ ()121ln 2O l d n I I r μπ⎛⎫-=+ ⎪⎝⎭6111ln 2.210O l d r I wb r μπ--==⨯(3分) 6.已知磁感应强度B=2.0Wb ·m -2的平均磁场, 偏向沿X 轴正偏向,如图11所示,试求:(1) 经由过程abcd 面的磁通量; (2) 经由过程图中befc 面的磁通量; (3)经由过程图中aefd 面的磁通量. 解:(1)经由过程abcd 面的磁通量mabcd abcd B S φ= 2.00.40.3=⨯⨯ 0.24wb =(4分)(2)经由过程ebfc 面的磁通量,因为B 线擦过此面 故0mbdfc φ=(3分)(3)经由过程aefd 面的磁通量图110.24 maefd mabcd wbφφ==(3分)。
(完整版)稳恒磁场作业习题及参考答案.doc
赵近芳编大学物理学 ch9. 稳恒磁场 作业习题及参考答案9-6 已知磁感应强度B 2.0 Wb ·m -2 的均匀磁场,方向沿x 轴正方向,如题 9-6 图所示.试求:(1) 通过图中 abcd 面的磁通量; (2) 通过图中 befc 面的磁通量; (3)通过图中 aefd 面的磁通量.解: 如题 9-6 图所示(1) 通过 abcd 面积 S 1 的磁通是 : 1B S 1 2.0i (0.3 0.4)i 0.24 ( Wb )(2) 通过 befc 面积 S 2 的磁通量 :2B S 22.0i (0.3 0.3)k(3) 设 aefd 面积 S 3 的法线正方向如图,则通过aefd 面积 S 3 的磁通量:3 B S 32 (0.30.5)cos20.15 4 0.24 ( Wb )题 9-6 图59-7 如题 9-7图所示, AB 、 CD 为长直导线, BC 为圆心在 O 点的一段圆弧形导线,其半径为R .若通以电流 I ,求 O 点的磁感应强度.解:如题9-7 图所示, O 点磁场由 AB 、 BC 、 CD 三部分电流产生.其中AB 段产生: B 1BC 段产生:B 2 0I60I(即垂直纸面向里)2R 360,方向题 9-7 图12 RCD 段产生: B 3I (sin 90 sin 60 ) 0I (13) ,方向4 R2 R 22【或: B 3I(cos120cos180 )I(13) ,方向 】4 R2 R22∴B 0B 1B 2B 30 I(13 ) , 方向 .2 R2 69-8 在真空中,有两根互相平行的无限长直导线L 1 和 L 2 ,相距 0.1m ,通有方向相反的电流, I 1 =20A,I 2 =10A ,如题 9-8图所示. A , B 两点与导线在同一平面内.这两点与导线L 2 的距离均为 5.0cm .试求 A , B 两点处的磁感应强度,以及磁感应强度为零的点的位置.解:如题 9-8 图所示, B A 方向垂直纸面向里,大小为:B A0 I120 I21.2 10 4 T2 (0.1 0.05)0.05B B 方向垂直纸面向外,大小为:0 I10 I21.33 10 5 T题 9-8 图B B22 (0.1 0.05) 0.05设 B0在 L 2 外侧距离 L 2 为 r 处,则II 20 , 解得: r 0.1 m9-12 两平行长直导线相距d =40cm ,每根导线载有电流 I 1 = I 2 =20A ,如题 9-12图所示.求:(1) 两导线所在平面内与该两导线等距的一点A 处的磁感应强度;(2) 通过图中斜线所示面积的磁通量. ( r 1 = r 3 =10cm, l =25cm) .解: (1) B A0 I10 I24 105 (T) 方向纸面向外2 ( d) 2 ( d)22题 9-12 图(2)dS ldr ,则: dB dS Bldr取面元d r 1 r 2 0 I 1 0 I 2]ldr0 I 1lln 30 I 2 lln1I 1lln 3 2.2 106( Wb )r 1 [S2 r2 (d r )2239-13 一根很长的铜导线载有电流 10A ,设电流均匀分布。
稳恒磁场答案
第9章 稳恒磁场一、选择题1、一个电流元Id l⃑放在磁场中的某点,当它沿x 轴放置时不受力,如把它转向y 轴正方向时,则受到的力沿z 轴负向,则该点的磁感应强度方向指向( A )(A )x 轴正向 (B )x 轴负向 (C )z 轴正向 (D )z 轴负向 2、两个载有相等电流I 的半径为R 的圆线圈如图,一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,则在圆心O 处的磁感应强度大小为( C )(A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ3、均匀磁场的磁感应强度B 垂直于半径为r 的圆面,今以该圆面为边界,作以半球面S ,则通过S 面的磁通量的大小为( B )(A )B r 22π (B) B r 2π (C )0 (D )无法确定 4、如图所示,两根相互平行的载流长直导线,通有相同方向、大小相等的电流I 。
矩形线框abcd 与两直线共面,ab ̅̅̅=h ,bc ̅̅̅=l 1,ab 边到左边导线的垂直距离等于cd 边到右边导线的垂直距离,均为l 0,通过此矩形线框的磁通量为( B ) (A )μ0Ih πln l1l 0(B ) 0 (C )μ0Ih πlnl 1+l 0l 0(D )μ0Ihl 1π(l 1+l 0)5、电子以一定的速度通过空间某一区域,则以下说法正确的是( D ) (A )如果电子发生偏转,则该区域一定有磁场 (B )如果电子发生偏转,则该区域一定有电场 (C )如果电子不发生偏转,则该区域一定没有磁场 (D )尽管电子不发生偏转,但该区域可能有磁场存在6、均匀磁场B⃑⃑中,两个面积均为S 且同有同样电流I 的线圈,一个是三角形,另一个是矩形,则关于线圈所受的最大磁力矩以及磁场力之和,以下说法正确的是( A ) (A )两线圈所受最大磁力矩均为BIS ,磁场力之和均为0(B )两线圈所受磁力矩总是为BIS ,磁场力之和不相等 (C )两线圈所受最大磁力矩不相等,磁场力之和也不相等 (D )两线圈所受最大磁力矩不相等,磁场力之和均为0。
大学物理第七章稳恒磁场习题答案
第七章 稳恒磁场习题7-1 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为多少?解:取平面S ’与半球面S 构成闭合曲面,根据高斯定理有 0m mS mS ΦΦΦ'=+=2cos mS mS r E ΦΦπα'=-=-球面外法线方向为其正方向7-2 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感应强度各为多少?08IR μ垂直画面向外0022II RR μμπ-垂直画面向里 00+42I IR Rμμπ垂直画面向外 7-3 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。
已知圆环的粗细均匀,求环中心O 的磁感应强度。
解: 如图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
且θ-πθ==21221R R I I 电阻电阻 1I 产生1B 方向⊥纸面向外πθπμ2)2(2101-=R I B2I 产生2B 方向⊥纸面向里πθμ22202R I B =∴1)2(2121=-=θθπI I B B 有0210=+=B B B7-4 如图所示,已知地球北极地磁场磁感强度B 的大小为6.0×10-5T 。
如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大?流向如何?(已知圆电流轴线上北极点的磁感强度()R IRR IR B 24202/32220μμ=+=)解:9042 1.7310A RBI μ==⨯方向如图所示7-5 有一同轴电缆,其尺寸如题图所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑。
试计算以下各处的磁感应强度:(1)r<R 1;(2)R 1<r<R 2;(3)R 2<r<R 3;(4)r>R 3。
解:同轴电缆的电流分布具有轴对称性在电缆各区域中磁感应线是以电缆轴线为对称轴的同心圆。
稳恒磁场习题答案
稳恒磁场习题答案稳恒磁场习题答案磁场是物理学中一个重要的概念,它在我们日常生活中扮演着重要的角色。
稳恒磁场习题是物理学中常见的练习题,通过解答这些习题,我们可以更好地理解磁场的性质和应用。
下面是一些常见的稳恒磁场习题及其答案,希望对大家的学习有所帮助。
1. 一根长直导线产生的磁场强度与距离的关系是怎样的?答:根据安培定律,长直导线产生的磁场强度与距离成反比关系。
即磁场强度随着距离的增加而减小。
2. 一根长直导线中心点的磁场强度为B,如果将导线弯成一个半径为r的圆环,中心点的磁场强度会发生怎样的变化?答:当将导线弯成一个半径为r的圆环后,中心点的磁场强度会变为零。
这是因为在圆环的中心点,由于对称性的原因,导线上的每一段磁场强度都会相互抵消,最终导致中心点的磁场强度为零。
3. 一个平面线圈中心的磁场强度与电流的关系是怎样的?答:根据比奥-萨伐尔定律,平面线圈中心的磁场强度与电流成正比关系。
即磁场强度随着电流的增加而增加。
4. 一个平面线圈中心的磁场强度与线圈的面积的关系是怎样的?答:一个平面线圈中心的磁场强度与线圈的面积成正比关系。
即磁场强度随着线圈的面积的增加而增加。
5. 一个平面线圈中心的磁场强度与距离的关系是怎样的?答:一个平面线圈中心的磁场强度与距离成反比关系。
即磁场强度随着距离的增加而减小。
6. 一个匀强磁场中,一个带电粒子的运动轨迹是怎样的?答:在一个匀强磁场中,一个带电粒子的运动轨迹是一个半径为r的圆。
这是因为带电粒子在匀强磁场中受到洛伦兹力的作用,该力垂直于带电粒子的速度和磁场方向,导致粒子做圆周运动。
7. 在一个匀强磁场中,一个带电粒子的运动速度对轨道半径的影响是怎样的?答:在一个匀强磁场中,一个带电粒子的运动速度对轨道半径没有影响。
这是因为带电粒子的运动速度只会影响圆周运动的周期,而不会影响圆周运动的半径。
8. 一个匀强磁场中,一个带电粒子的运动轨迹会受到哪些因素的影响?答:一个匀强磁场中,一个带电粒子的运动轨迹受到带电粒子的电荷量、质量、速度以及磁场的强度和方向的影响。
稳恒磁场习题(包含答案)
练习八磁感应强度毕奥—萨伐尔定律(黄色阴影表示答案) 一、选择题如图所示,边长为l的正方形线圈中通有电流I,则此线圈在: AlIπμ220.(C)lIπμ2(D) 以上均不对.电流I由长直导线1沿对角线AC方向经A点流入一电阻均匀分布的正方形导线框,再由D点沿对角线BD方向流出,经长直导线2返回电源, 如图所示. 若载流直导线1、2和正方形框在导线框中心O点产生的磁感强度分别用B1、B2和B3表示,则O点磁感强度的大小为:A(A) B = 0. 因为B1 = B2 = B3 = 0 .(B) B = 0. 因为虽然B1 0, B2 0, B1+B2 = 0, B3=0(C) B 0. 因为虽然B3 = 0, 但B1+B2 0(D) B0. 因为虽然B1+B2 = 0, 但B3 03. 如图所示,三条平行的无限长直导线,垂直通过边长为a 的正三角形顶点,每条导线中的电流都是I,这三条导线在正三角形中心O点产生的磁感强度为:B(D) B=30I/(3a) . .如图所示,无限长直导线在P处弯成半径为R的圆,当通以电流I时,则在圆心O 点的磁感强度大小等于:C(A)RIπμ20.(B)Iμ.(D) )11(4πμ+RI.二、填空题如图所示,在真空中,电流由长直导线1沿切向经a点流入一电阻均匀分布的圆环,再由b点沿切向流出,经长直导线2返回电源.已知直导线上的电流强度为I,圆环半径为R,aob=180.则圆心O点处的磁感强度的大小B = .0图图图图图I练习九毕奥—萨伐尔定律(续)一、选择题1. 在磁感强度为B的均匀磁场中作一半径为r的半球面S,S边线所在平面的法线方向单位矢量n与B的夹角为,如图所示. 则通过半球面S的磁通量为:(A) r2B.(B) 2r2B.(C) r2B sin.(D) r2B cos.如图,载流圆线圈(半径为R)与正方形线圈(边长为a)通有相同电流I ,若两线圈中心O1与O2处的磁感应强度大小相同,R: a为(A) 1:1.(B) π2:1.三、计算题1.在无限长直载流导线的右侧有面积为S1和S2的两个矩形回路,回路旋转方向如图所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S1回路的磁通量与通过S2回路的磁通量之比.(此题作为悬赏题)练习十安培环路定理一、选择题2. 无限长直圆柱体,半径为R,沿轴向均匀流有电流. 设圆柱体内(r< R)的磁感强度为B1,圆柱体外(r >R)的磁感强度为B2,则有:(A) B1、B2均与r成正比.(B) B1、B2均与r成反比.(C) B1与r成正比, B2与r成反比.(D) B1与r成反比, B2与r成正比.在图(a)和(b)中各有一半径相同的圆形回路L1和L2,圆周内有电流I2和I2,其分布相同,且均在真空中,但在图(b)中,L2回路外有电流I3,P1、P2为两圆形回路上的对应点,则:(A) ⎰⋅1dLlB=⎰⋅2dLlB,21PPBB=.(B) ⎰⋅dLlB⎰⋅dLlB,21PPBB=.图图图图P1L(a)3P2(b)图(D)⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B≠.如图所示,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,恒定电流I 从a 端流入而从d 端流 出,则磁感强度B 沿图中闭合路径的积分⎰⋅Ll B d 等于:(A) 0I . (B) 0I /3. (C) 0I /4. (D) 20I /3 . 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理(B) 0 d =⋅⎰L l B ,且环路上任意点B =0. (C) 0 d ≠⋅⎰Ll B ,且环路上任意点B 0. (D) 0 d ≠⋅⎰Ll B,且环路上任意点B =0.二、填空题两根长直导线通有电流I ,图所示有三种环路,对于环路a ,=⋅⎰a L l B d ;对于环路b , =⋅⎰bL l B d ;对于环路c ,=⋅⎰cL l B d . 0I , 0, 20I .练习十一安培力 洛仑兹力一、选择题如图所示. 匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是:B(A) ab 边转入纸内,cd 边转出纸外. (B) ab 边转出纸外,cd 边转入纸内. (C) ad 边转入纸内,bc 边转出纸外. (D) ad 边转出纸外,cd 边转入纸内.5. 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动的轨道所围的面积内的磁通量是(A) 正比于B ,反比于v 2. (B) 反比于B,正比于v 2.图图图(C) 正比于B ,反比于v. (D) 反比于B ,反比于v练习十三 静磁场习题课一、选择题1. 一质量为m 、电量为q 的粒子,以与均匀磁场B 垂直的速度v 射入磁场中,则粒子运动轨道所包围范围内的磁通量m 与磁场磁感强度B 的大小的关系曲线是图中的哪一条 D边长为l 的正方形线圈,分别用图所示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为:(A) B 1 = 0 . B 2 = 0.(B) B 1 = 0 . lIB πμ0222=lπ01l Iπμ0222.如图, 质量均匀分布的导线框abcd 置于均匀磁场中(B 的方向竖直向上),线框可绕AA 轴转动,导线通电转过 角后达到稳定平衡.如果导线改用密度为原来1/2的材料做,欲保持原来的稳定平衡位置(即 角不变),可以采用哪一种办法(A) 将磁场B 减为原来的1/2或线框中电流减为原来的1/2. (B) 将导线的bc 部分长度减小为原来的1/2. (C) 将导线ab 和cd 部分长度减小为原来的1/2. (D)将磁场B 减少1/4,线框中电流强度减少1/4.图图l (1)d图(A)(D) (C)(B) (E)。
稳恒电流的磁场(习题答案)
稳恒电流的磁场一、判断题3、设想用一电流元作为检测磁场的工具,若沿某一方向,给定的电流元l d I0放在空间任意一点都不受力,则该空间不存在磁场。
×4、对于横截面为正方形的长螺线管,其内部的磁感应强度仍可用nI 0μ表示。
√5、安培环路定理反映了磁场的有旋性。
×6、对于长度为L 的载流导线来说,可以直接用安培定理求得空间各点的B。
×7、当霍耳系数不同的导体中通以相同的电流,并处在相同的磁场中,导体受到的安培力是相同的。
×8、载流导体静止在磁场中于在磁场运动所受到的安培力是相同的。
√9、安培环路定理Il d B C 0μ=∙⎰中的磁感应强度只是由闭合环路内的电流激发的。
×10、在没有电流的空间区域里,如果磁感应线是一些平行直线,则该空间区域里的磁场一定均匀。
√二、选择题1、把一电流元依次放置在无限长的栽流直导线附近的两点A 和B ,如果A 点和B 点到导线的距离相等,电流元所受到的磁力大小(A )一定相等 (B )一定不相等(C )不一定相等 (D )A 、B 、C 都不正确 C2、半径为R 的圆电流在其环绕的圆内产生的磁场分布是: (A )均匀的 (B )中心处比边缘处强 (C )边缘处比中心处强 (D )距中心1/2处最强。
C3、在均匀磁场中放置两个面积相等而且通有相同电流的线圈,一个是三角形,另一个是矩形,则两者所受到的(A )磁力相等,最大磁力矩相等 (B )磁力不相等,最大磁力矩相等 (C )磁力相等,最大磁力矩不相等 (D )磁力不相等,最大磁力矩不相等 A4、一长方形的通电闭合导线回路,电流强度为I ,其四条边分别为ab 、bc 、cd 、da 如图所示,设4321B B B B 及、、分别是以上各边中电流单独产生的磁场的磁感应强度,下列各式中正确的是:LI()()121101111234000C C C A B dl I B B dl C B B dl D B BB B dl Iμμ⋅=⋅=+⋅=+++⋅=⎰⎰⎰⎰()()()()A5、两个载流回路,电流分别为121I I I 设电流和单独产生的磁场为1B,电流2I 单独产生的磁场为2B ,下列各式中正确的是:(A )()21012C B dl I I μ⋅=+⎰(B )1202C B dl I μ⋅=⎰(C )()()112012C B B dlI I μ+⋅=+⎰(D )()()212012C B B dlI I μ+⋅=+⎰ D 6、半径为R 的均匀导体球壳,内部沿球的直线方向有一载流直导线,电线I 从A 流向B 后,再沿球面返回A 点,如图所示下述说法中正确的是:(A )在AB 线上的磁感应强度0=B(B )球外的磁感应强度0=B(C )只是在AB 线上球内的部分感应强度0=B(D )只是在球心上的感应强度0=BA7、如图所示,在载流螺线管的外面环绕闭合路径一周积分ld B L ∙⎰等于(A )0 (B )nI 0μ(C )20nIμ (D )I 0μD8、一电量为q 的点电荷在均匀磁场中运动,下列说法正确的是 (A )只要速度大小相同,所受的洛伦兹力就相同。
稳恒磁场练习题及答案
稳恒磁场练习题及答案一、 选择题1、在一个平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流相等,方向如图所示。
问哪个区域中有些点的磁感应强度可能为零 ( D ) (A )仅在象限1 (B )仅在象限2(C )仅在象限1、3 (D )仅在象限2、42、关于洛仑兹力,下列说法错误的是:( D ) (A )带电粒子在磁场中运动,不一定受洛仑兹力 (B )洛仑兹力不做功(C )洛仑兹力只改变粒子运动方向(D )当磁场方向与粒子运动方向一致时,洛仑兹力对粒子作正功 3、一电量为q 的粒子在匀强磁场中运动,下面哪种说法是正确的:( B ) (A )只要速度大小相同,粒子所受的洛仑兹力就相同(B )在速度不变的前提下,若电荷电量q 变为-q ,则粒子受力方向相反,数值不变 (C )粒子进入磁场后,其动量和动能都不改变(D )洛仑兹力与速度方向垂直,所以带电粒子运动的轨迹一定是圆4、由磁场的高斯定理可知 (D )(A )穿入闭合曲面的磁感应线条数必然多于穿出的磁感应线条数; (B )穿入闭合曲面的磁感应线条数必然少于穿出的磁感应线条数; (C )一根磁感应线可以始于闭合曲面外,终止在闭合曲面内; (D )一根磁感应线可以完全处于闭合曲面内。
5、对于某一回路L ,安培环路积分等于零,则可以断定(D )(A) 回路L 内一定有电流。
(B) 回路L 内可能有电流,且代数和不为零。
(C) 回路L 内一定无电流。
(D) 回路L 内可能有电流,但代数和为零。
6、电流I 1穿过一回路L ,而电流I 2则在回路的外面,于是有 ( C )(A) L 上各点的磁感应强度及积分⎰⋅Ll d B都只与I 1有关。
(B) L 上各点的磁感应强度B 只与I 1有关,积分⎰⋅Ll d B与I 1、I 2有关。
(C) L 上各点的磁感应强度B 与I 1、I 2有关,积分⎰⋅L l d B只与I 1有关。
(D) L 上各点的磁感应强度B 及积分⎰⋅Ll d B都与I 1、I 2有关。
大学物理稳恒磁场作业题参考答案
8.3.7 设题8.3.7图中两导线中的电流均为8A,对图示的三条闭合曲线 a , b , c ,
分别写出安培环路定理等式右边电流的代数和.并讨论:
(1)在各条闭合曲线上,各点 的磁感应强度 B 的大小是否相等?
(2)在闭合曲线 c 上各点的 B 是否为 零?为什么?
解:
B a
dl
8
0
b
B
dl
80
cB dl 0
∴
Fab
b
Idl
B
I
(
b
dl
)
2 B
I ab B
a
a
方向⊥ ab 向上,大小 Fab BI ab
题 8.3.11 图
8.3.11 如题8.3.11图所示,在长直导线 AB 内通以电流 I1 =20A,在矩形线圈 CDEF 中通有电流 I 2 =10 A, AB 与线圈共面,且 CD , EF 都与 AB 平行.已知 a =9.0cm, b =20.0cm, d =1.0 cm,求:
(C)内外部磁感应强度 B 都与 r 成反比;
(D)内部磁感应强度 B 与 r 成反比,外部磁感应强度 B 与 r 成正比。
[答案:B]
(5)在匀强磁场中,有两个平面线圈,其面积 A1 = 2 A2,通有电流 I1 = 2 I2,它
们所受的最大磁力矩之比 M1 / M2 等于 [
]
(A) 1;
(B) 2;
(1)导线 AB 的磁场对矩形线圈每边所作用的力;
(2)矩形线圈所受合力和合力矩. 解:(1) FCD 方向垂直 CD 向左,大小
FCD
I2b
0 I1 2d
8.0 104
N
同理 FFE 方向垂直 FE 向右,大小
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I
0
(对于环路 ; 对于环路a); 对于环路 (对于环路 ; 对于环路b); 对于环路 (对于环路 . 对于环路c). 对于环路
I
b
c
I
2 I
a
3. 如图,在真空中有一半径为 的 3/4 圆弧形的 如图,在真空中有一半径为a 导线, 导线,其中通以稳恒电流 I ,则O点磁感应强度 点磁感应强度 大小为 3 I / 8R .
细圆环均匀带电, 5.半径为R细圆环均匀带电,电荷线密度为 . 半径为 细圆环均匀带电 电荷线密度为λ. 若圆环以角速度ω绕过环心且垂直于环面转轴作 r 匀速转动, 匀速转动,则环心处的磁感应强度 B 的大小 ω 0 I = 0 ωλ / 2 为 0ωλ / 2 . I = nq = λ 2πR B =
一,选择题 1.安培环路定理 ∫ H dl = ∑I i 中,说明 说明( .
1
)
A. H 的环流仅由环路 所包围的传导电流决定 的环流仅由环路L所包围的传导电流决定
B. H 仅由环路 所包围的传导电流决定 仅由环路L所包围的传导电流决定
C. H应由环路内与环路外的全部传导电流决定
2.下列说法正确的是 ( . ) A. 一个电流元能够在它的周围任一点激起磁场 B. 圆电流在其环绕的平面内,产生磁场是均匀场 圆电流在其环绕的平面内, C. 方程式 =0nI对横截面为正方形或其他形状 方程式B= 对横截面为正方形或其他形状 的无限长螺线管内的磁场都成立
S
α
v n
v B
7.如图,两根直导线ab和cd 沿半径方向被接到 .如图,两根直导线 和 一个截面处处相等铁环上,稳恒电流I从 一个截面处处相等铁环上,稳恒电流 从a 端流入 而从d 端流出, 则磁感应强度沿图中闭合路径L 而从 端流出, 则磁感应强度沿图中闭合路径 v v a 的积分 ∫L B d l 等于 I b 1 A.0 I . B. 0 I .
9. 一无限长通有电流 ,宽度 ,厚度不计扁平铜 一无限长通有电流I,宽度a, 电流在铜片上均匀分布,铜片外与铜片共面, 片,电流在铜片上均匀分布,铜片外与铜片共面, r B 离铜片右边缘b处 点磁感应强度 离铜片右边缘 处P点磁感应强度 大小为
u0 I A 2π (a + b )
u0 I a + b C ln 2π b b
2π 2R
6. 一均匀带电圆环,带电量为+q,其半径为 , 一均匀带电圆环,带电量为+ ,其半径为R, 置于均匀磁场 中B 的方向与圆环所在平面成 , B 60°角.使圆环绕通过圆心垂直环面的轴转动 使圆环绕通过圆心垂直环面的轴转动, ° ωqR2,其所受到 /2 角速度为ω, 角速度为 ,则圆环磁矩为 r B/ ωqR2. 4 的磁力矩为 B ω
Φ C. = IBPm , M = BPm .
r 6.在磁感应强度为 B 均匀磁场中作一半径为 半r 均匀磁场中作一半径为r半 . r 球面S, 边线所在平面法线方向单位矢量 球面 ,S边线所在平面法线方向单位矢量 n 与 B
I BP m D. = . , M = BP m Φ I
则通过半球面S的磁通量为 夹角为α ,则通过半球面 的磁通量为 则通过半球面 2 2 A. π r B B. 2π r B 2 C. π r 2 B sinα . D. π r B cosα .
R
L L内
L r
0Ir B = 内 2 2πR
Φm = ∫
R
0
0 IL B Ldr = 内 4π
3. 如图,AB,CD为长直导线,BC弧为圆心在 如图, , 为长直导线 为长直导线, 弧为圆心在 弧为圆心在O 点一段圆弧形导线,其半径为R.若通以电流I, 点一段圆弧形导线,其半径为 .若通以电流 , 点的磁感应强度. 求O点的磁感应强度. 点的磁感应强度
r r ∫ H dl = ∑Ii
L L内
L
H L = I = nq ω σ 2πRL = 2π
H = ωσ , R B = 0ωσ R
2.一根很长的铜导线载有电流10A,设电流均匀 分布.在导线内部作一平面S ,如图所示.试计算 如图所示. 如图所示 通过S平面的磁通量 沿导线长度方向取长为1m的 平面的磁通量(沿导线长度方向取长为 通过 平面的磁通量 沿导线长度方向取长为 的 一段作计算).铜的磁导率 一段作计算 .铜的磁导率=0. r r ∫ H dl = ∑Ii
C O 2 B A 1
三,计算题 1.如图所示,一半径为 的均匀带电无限长直圆 如图所示, 如图所示 一半径为R的均匀带电无限长直圆 电荷面密度为σ 该筒以角速度ω 筒,电荷面密度为σ ,该筒以角速度ω绕其轴线 匀速旋转,试求圆筒内部的磁感应强度. 匀速旋转,试求圆筒内部的磁感应强度.
ω
R
等效于长直螺线管. 等效于长直螺线管.
1 ω 2 =q ×π R = ω qR2 pm = IS 2 2π 1 Mm = pmBcosα = ω qR2 B
4
R
60o
7.用均匀细金属丝构成一半径为R圆环 ,电流 .用均匀细金属丝构成一半径为 圆环 圆环C, I由导线 流入圆环A点,而后由圆环B流出,进入 由导线1流入圆环 点 而后由圆环 流出, 由导线 流入圆环 流出 导线2,设导线1和导线 与圆环共面,则环心O处 和导线2与圆环共面 导线 ,设导线 和导线 与圆环共面,则环心 处 0 I 的磁感应强度大小 4πR ,方向 . 方向
B D
u0 I a+b ln 2π a b
u0 I 1 2π ( a + b) 2
I
b
I 0dI dI = dx → dB = a 2πx a+b I 0 B = ∫ dB = ∫ dx b 2πax
a
P
10. 磁介质有三种,用相对磁导率 r 表征它们各 磁介质有三种, 自的特性时 A. 顺磁质 r > 0 ,抗磁质 r < 0 ,铁磁质 r >> 1 B. 顺磁质 r > 1 ,抗磁质 r = 0 ,铁磁质 r >> 1 C. 顺磁质 r > 1 ,抗磁质 r < 1 ,铁磁质 r >> 1 D. 顺磁质 r > 0 ,抗磁质 r < 0 ,铁磁质 r > 1 11.如图,一半径为 圆线圈通有电流 1,在圆线 圆线圈通有电流I .如图,一半径为R圆线圈通有电流 在圆线 圈轴线上有一长直导线通有电流I , 圈轴线上有一长直导线通有电流 2,则圆形电流 受到的作用力 A.沿半径向外 沿半径向外 B.沿半径向里 沿半径向里 C.沿I1方向 D.沿I2方向 E.无作用力 沿 沿 无作用力
0
5.载流为I,磁矩为 m的线圈,置于磁感应强度 .载流为 ,磁矩为P 的线圈, 方向相同, 的均匀磁场中. 方向相同 为B的均匀磁场中.若Pm与B方向相同,则通过线 的均匀磁场中 圈的磁通量Ф与线圈所受的磁力矩 与线圈所受的磁力矩M的大小为 圈的磁通量 与线圈所受的磁力矩 的大小为 BP m Φ = IBPm , M = 0 A. B. = . . ,M = 0 Φ
a
I
O
4.有一磁矩为Pm的载流线圈,置于磁感应强度 .有一磁矩为 的载流线圈, 的均匀磁场中, 的夹角为φ, 为B的均匀磁场中,Pm与B的夹角为 ,则 的均匀磁场中 的夹角为 0 时,线圈处于稳定平衡状态; (1)当φ= ) = 线圈处于稳定平衡状态; 线圈处于稳定平衡状态 线圈所受的力矩最大. (2)当φ= π / 2 时,线圈所受的力矩最大. ) =
B2 = ∫
R
ωσ
2 QB1 = B2
r
dr =
ωσ
2 1 ∴r = R 2
( R r )
5. 矩形波导是一根截面为矩形的空心金属管,用来传输波长很 矩形波导是一根截面为矩形的空心金属管, 短的电磁波.由于管内总存在一定的游离带电粒子, 短的电磁波.由于管内总存在一定的游离带电粒子,当这些带电 粒子受到电磁波电场的作用而加速运动时,最后击中相对的管壁, 粒子受到电磁波电场的作用而加速运动时,最后击中相对的管壁, 把能量交给管壁,并产生许多次级电子, 把能量交给管壁,并产生许多次级电子,结果导致电磁波能量的 损失(常称为波导的电流负载).为了减小这种能量的损失, ).为了减小这种能量的损失 损失(常称为波导的电流负载).为了减小这种能量的损失,常 采用沿波导管轴方向加一强磁场的所谓'磁绝缘法' 采用沿波导管轴方向加一强磁场的所谓'磁绝缘法'.试估算一 至少要加多大的磁场才能造成磁绝缘, 下,至少要加多大的磁场才能造成磁绝缘,估计出的截止磁场大 小用波导管的边长,带电粒子的质量m和电量 和电量q以及电场波的最 小用波导管的边长,带电粒子的质量 和电量 以及电场波的最 大电场强度E表示 表示. 大电场强度 表示. 轴上, 解:开始时带正电荷的粒子在x轴上, 开始时带正电荷的粒子在 轴上 速度为0, r 速度为 ,这种情况可以认为带电粒子 r r 两个速度, vi 同时具有 vi 和- vi 两个速度,- r 引 起的洛伦兹力恰好抵消电场力, 引 起的洛伦兹力恰好抵消电场力, vi 起的洛伦兹力使带电粒子做圆周运动, 起的洛伦兹力使带电粒子做圆周运动, 亦就是说, 亦就是说,带电粒子的运动是圆周运 动和x方向的匀速直线运动的合运动 方向的匀速直线运动的合运动. 动和 方向的匀速直线运动的合运动.
3.半径为 的长直导线,通有恒定电流 0,设有一 半径为a的长直导线 通有恒定电流i 半径为 的长直导线, 半径为2a圆与导线同心圆的平面与导体正交 圆与导线同心圆的平面与导体正交, 半径为 圆与导线同心圆的平面与导体正交,问 通过此圆的磁通量Ф 是多少? 通过此圆的磁通量 m是多少? C. ai 0 . 2 4. 有两束阴极射线向同一方向发射,关于它们相 有两束阴极射线向同一方向发射, 互作用有下面几种说法, 互作用有下面几种说法,指出哪一种说法正确 A.二射线有三种相互作用力,安培力,库仑力 二射线有三种相互作用力, 二射线有三种相互作用力 安培力, 和洛仑兹力 B.只有库仑力和洛仑兹力 只有库仑力和洛仑兹力 C.只有三种中某一种 只有三种中某一种 A.0 . B.无法确定 .