二次函数最大利润公式
二次函数与实际问题 利润问题
二次函数与实际问题利润问题二次函数与实际问题利润问题实用问题与二次函数——利润问题教案(1)一、利润公式一种商品的购买价是40元,现在是60元。
每周可以卖出50件。
本周销售商品的利润是多少?小结:总利润=二、问题探究问题1:某种商品的购买价格是30元/件。
如果你在一段时间内以每件x元的价格出售,你可以卖出(200-x)件。
你应该如何定价以实现利润最大化?问题2:已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。
市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。
该商品应定价为多少元时,商场能获得最大利润?分析问题:设每件涨价x元,则每星期售出商品的利润为y 元。
(1)将价格提高X元,每周销量减少;实际上卖了几件。
(2)商品的现行价格是元,购买价格是元。
跟据上面的两个问题列出函数表达式为:自变量x的取值范围解答过程:问题3:目前一种商品的售价是60元/件,每周可以卖出300件。
根据市场调查,每涨1元,每周就少卖10件;每降价1元,每周可多卖出18件。
已知商品的购买价格为40元/件。
如何定价以实现利润最大化?三、课堂练习1.据了解,一件商品的购买价格为40元/件,销售价格为60元/件,每周可销售300件。
市场调查显示,如果价格调整,每降低一元,每周就会多卖出18件。
当商品的价格应该是多少元时,商场能获得最大的利润吗?2、某商场销售某种品牌的纯牛奶,已知进价为每箱40元,市场调查发现:若每箱以50元销售,平均每天可销售100箱.价格每箱降低1元,平均每天多销售25箱;价格每箱升高1元,平均每天少销售4箱。
如何定价才能使得利润最大?3.旅行社组织30人组团出国旅游,单价为每人800元。
旅行社对30人以上的组团提供折扣,即每增加一人,每人的单价将减少10元。
你能帮我分析一下当旅行团数量减少时旅行社能获得的最大营业额吗?4、某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满。
二次函数利润最大问题
1. (2011湖南怀化,16,3)出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x =________元时,一天出售该种手工艺品的总利润y 最大.【答案】4【思路分析】总利润=单件产品利润×销售数量,因此y =x (8-x )=-(x -4)2+16,当x =4时,总利润y 有最大值16.【方法规律】①了解总利润的计算方法;②运用配方法求二次三项式的最值是解本题的难点;③解实际问题,要考虑所求的解是否符合实际意义.【易错点分析】配方过程易出现错误.【关键词】二次函数,二次函数与实际问题.【推荐指数】★★★☆☆【题型】常规题1. (2011广东佛山,24,10)商场对某种商品进行市场调查,1至6月份该种商品的销售情况如下:①销售成本p (元/千克)与销售月份x 的关系如图所示:②销售收入q (元/千克)与销售月份x 满足q=-32x+15 ③销售量m (千克)与销售月份x 满足m=100x+200.试解决以下问题:(1)根据图形,求与p 与x 之间的函数关系式:(2)求该种商品每月的销售利润y (元)与销售月份X 的函数关系式,并求出哪个月的销售利润最大?【答案】解:(1)根据图形可知;p 与x 之间的关系符合一次函数.故可设为p=kx+b ,并有946k b k b =+⎧⎨=+⎩解得110k b =-⎧⎨=⎩故p 与x 的函数关系式为p=-x +10.(2)根据题意,月销售利润y=(q-p)m=[(-32x+15)-(-x+10)](100x+200),化简得y=-50x²+400x+10000,所以4月份销售利润最大。
【思路分析】(1)观察图象,可以判断p 与x 之间的关系符合一次函数,于是设出其解析式,选取其中两组点坐标,利用待定系数法求解.(2)依题意,有月销售利润y=(q-p)m ,进而可以得到二次函数,并利用二次函数的性质求解.【方法规律】利用对问题的转化和待定系数法,结合函数性质求解.【易错点分析】对于(2)容易错误地认为销售利润y=pm.【关键词】一次函数、二次函数的应用 【难度】★★★★☆ 【题型】好题、综合题.3. (2011湖北荆州,23,10分)(本题满分10分)2011年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定民农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额与政府补贴的额度存在下表所示的函数对应关系.16p (元/千克)x (月份) 49o型 号金 额Ⅰ型设备 Ⅱ型设备 投资金额x (万元)x 5 x 2 4 补贴金额y (万元) y 1=kx(k≠0)2 y 2=ax 2+bx(a≠0) 2.4 3.2 (1)分别求出1y 和2y 的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.【答案】解:(1)由题意得:①5k =2,k =52 ∴x y 521= ②⎩⎨⎧=+=+2.34164.224b a b a ,解之得:⎪⎪⎩⎪⎪⎨⎧=-=5851b a ,∴x x y 585122+-= (2)设购Ⅱ型设备投资t 万元,购Ⅰ型设备投资(10-t )万元,共获补贴Q 万元 ∴t t y 524)10(521-=-=,t t y 585122+-= 529)3(5158515242221+--=+--=+=t t t t y y Q ∴当t =3时,Q 有最大值为529,此时10-t =7(万元) 即投资7万元购Ⅰ型设备,投资3万元购Ⅱ型设备,共获最大补贴5.8万元.【思路分析】第(1)小题考查学生求函数解析式的能力,坡度设置合理,学生上手容易,只需根据函数的解析式,直接代入就可求出,对于(2)主要考查了学生自己用函数关系表示题目中的数量关系,并进一步求二次函数的极值的方法.【方法规律】掌握待定系数法求解析式的基本方法,以及求二次函数最值的方法,即当ab x 2-=时,y 有最大(小)值a b ac 442-. 【易错点分析】对于第(2)不能正确列出函数关系式【关键词】待定系数法求函数解析式 二次函数的极值【推荐指数】★★★☆☆【题型】常规题 好题4. (2011湖北随州,23,12分)我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x 万元,可获得利润()216041100P x =--+(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x 万元,可获利润()()299294101001601005Q x x =--+-+(万元) ⑴若不进行开发,求5年所获利润的最大值是多少?⑵若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?⑶根据⑴、⑵,该方案是否具有实施价值?【答案】解:⑴当x =60时,P 最大且为41,故五年获利最大值是41×5=205万元. ⑵前两年:0≤x ≤50,此时因为P 随x 增大而增大,所以x =50时,P 值最大且为40万元,所以这两年获利最大为40×2=80万元.后三年:设每年获利为y ,设当地投资额为x ,则外地投资额为100-x ,所以y =P +Q =()216041100x ⎡⎤--+⎢⎥⎣⎦+2992941601005x x ⎡⎤-++⎢⎥⎣⎦=260165x x -++=()2301065x --+,表明x =30时,y 最大且为1065,那么三年获利最大为1065×3=3495万元,故五年获利最大值为80+3495-50×2=3475万元.⑶有极大的实施价值.【思路分析】(1)由代数式()216041100P x =--+可知当x =60时,可获得利润最大值,即可求出5年所获利润的最大值;3495万元.所以有实施价值.(2)前两年得利润加上后三年的利润再除去前两年每年拨出的利润50万元即可.(3)不开发5年所获利润的最大值是205万元;若按规划实施,5年所获利润(扣除修路后)的最大值是3475元,有极大的实施价值.【方法规律】二次函数的实际应用问题的解题关键是理解题意,找到合适函数;取得最大值,是解此题的关键,还要注意后三年的最大值的求解方法,要考虑其它的费用.【易错点分析】配方时易出现计算错误.6. (2011江苏常州,26,7分)某商店以6元/千克的价格购进某干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售,这批干果销售结束后,店主从销售统计中发现:甲级干果与乙级干果在销售过程中每天都有销售量,且在同一天卖完;甲级干果从开始销售至销售的第x 天的总销售量1y (千克)与x 的关系为2140y x x =-+;乙级干果从开始销售至销售的第t 天的总销售量2y (千克)与t 的关系为22y at bt =+,且乙级干果的前三天的销售量的情况见下表:t 1 2 32y21 44 69 (1)求a 、b 的值.(2)若甲级干果与乙级干果分别以8元/千克和6元/千克的零售价出售,则卖完这批干果获得的毛利润为多少元?(3)此人第几天起乙级干果每天的销售量比甲级干果每天的销售量至少多千克?(说明:毛利润=销售总金额-进货总金额.这批干果进货至卖完的过程中的损耗忽略不计.)【答案】(1)选取表中两组数据,如当t=1时,y 2=21当t=2时,y 2=44;分别代入22y at bt =+,得⎩⎨⎧+=+=ba b a 244421,解得a=1,b=20. (2)设甲级干果与乙级干果n 天销完这批货.则1140204022=+++-n n n n ,即60n=1140,解之得n=19,当n=19时,1399y =,2y =741.毛利润=399×8+741×6-1140×6=798(元).(3)第n 天甲级干果的销售量为-2n+41,第n 天乙级干果的销售量为2n+19.(2n+19)-(-2n+41)≥6解之得n≥7.【思路分析】(1)选取表中两组数据,求得a=1,b=20.(2)设n 天消完这批货,根据“甲级干果销售量+乙级干果销售量=总量”可求出n ,计算出销售量,从而可求出毛利润.(3)用前n 天的销售量减去前(n-1)天的销售量,即可求出甲、乙两种干果第n 天的的销售量,从而可列出不等式求解.【方法规律】本题第(1)问考查利用待定系数法,求二次函数关系式;(2)、(3)需要根据题目中提供的有关信息建立数学模型,进而解决问题.【易错点分析】第n 天的销售量会直接用总的销售量除以天数,从而导致错误.【关键词】待定系数法、二次函数【推荐指数】★★★☆☆【题型】应用题7. (2011江苏徐州,25,8分)某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销售量就减少10件.(1)请写出每月销售该商品的利润y (元)与单价上涨x (元)间的函数关系式;(2)单价定为多少元时,每月销售商品的利润最大?最大利润为多少?【答案】(1)y=(x -60)[300-10(x -80)]=(x -60)(300-10x+800)=(x -60)(1100-10x )=210170066000x x -+-即y=210170066000x x -+-(2)y=210170066000x x -+-=210(85)6250x --+.因为-10<0,所以当x =85时,y 有最大值,y 最大值=6250.即单价定为85元时,每月销售商品的利润最大,最大利润为6250元.【思路分析】(1)上涨x 元后,所销售的件数是[300-10(x -80)];每件的销售利润为(x -60)所以y=(x -60)[300-10(x -80)],整理得y=210170066000x x -+-;(2)根据二次函数的配方法可以求得最大利润.【方法规律】本题是综合考查二次函数的最值问题,需要熟悉二次函数的相关基本概念和配方法即可解题.要注意解题过程的完整性.【易错点分析】每件销售利润=每件销售收入-每件购进成本,这里销售利润只与进价 60元,不要把利润与定价80直接联系起来误把利润写成(x -80)元.【关键词】二次函数的应用.【推荐指数】★★★★★9. (2011山东菏泽,20,9分)我市一家电子计算器专卖店每只进价13元,售价20元,多买优惠 ;凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元.(1) 求一次至少买多少只,才能以最低价购买?(2) 写出该专卖店当一次销售x (只)时,所获利润y (元)与x (只)之间的函数关系式,并写出自变量x 的取值范围;(3)若店主一次卖的只数在10至50只之间,问一次卖多少只获得的利润最大?其最大利润为多少?【答案】解:(1)设一次购买x 只,才能以最低价购买,则有:0.1(x -10)=20-16,解这个方程得x =50;答:一次至少买50只,才能以最低价购买.(2) 220137(001[(2013)0.1(10)]8(1050)101613=3(50)x x x x y x x x x x x x x -=⎧⎪⎪=---=-+⎨⎪⎪-⎩<≤1)<<≥. (说明:因三段图象首尾相连,所以端点10、50包括在哪个区间均可)(3)将21810y x x =-+配方得21(40)16010y x =--+,所以店主一次卖40只时可获得最高利润,最高利润为160元.(也可用公式法求得)【思路分析】(1)由题意知最低价是16元,则可优惠4元,凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,可设一次购买x 只,才能以最低价购买,则可列方程0.1(x -10)=20-16求解;(2)由题意可知分3种情况,当0<x ≤10时不优惠,当10<x <50时,每多买1只,所买的全部计算器每只就降低0.10元,当x ≥50时,每只都是最低价16元;(3)当只数在10至50只之间时,y 是x 的二次函数,求出最大值即可.【方法规律】本题是考查学生用方程,函数的思想解决实际问题,本题关键要想到由自变量的取值不同分情况讨论.【易错点分析】学生不易想到分类讨论的思想【关键词】一元一次方程,函数,分类讨论【推荐指数】★★★★☆【题型】、新题,好题,难题10.(2011山东泰安,28 ,10分)某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为每件25元时,可卖出105件,而售价每上涨1元,就少卖5元.(1)当售价定为每件30元时,一个月可获利多少元?(2)当倍价定为每件多少元时,一个月的获利最大?最大利润是多少元?【答案】(1)获利:(30-20)[105-5(30-25)]=800(元)(2)设售价为每件x 元时,一个月的获利为y 元由题意,得:y =(x -20)[105-5(30-25)]=-5x 2+330x -4600=-5(x -33)2+845当x =33时,y 的最大值是845故当售价为定价格为33元时,一个月获利最大,最大利润是845元.【思路分析】(1)可根据题意列出算术,并进行计算;(2)根据题意列出二次函数关系式,用配方法求得最值.【方法规律】考查了有理数的运算,二次函数最值的求法,运用了配方法求二次函数的最大值.【易错点分析】 最值时,凭直觉求得;列错算式.【关键词】二次函数的最值【推荐指数】★☆☆【题型】常规题.11. (2011山东潍坊,22,10分)2010年上半年,某种农产品受不良炒作的影响,价格一路上扬,8月初国家实施调控措施后,该农产品的价格开始回落.其中,1月份至7月份,该农产品的月平均价格y 元/千克与月份x 呈一次函数关系;7月份至12月份,月平均价格元/千克与月份x 呈二次函数关系.已知1月、7月、9月和12月这四个月的月平均价格分别为8元/千克、26元/千克、14元/千克、11元/千克.(1)分别求出当1≤x ≤7和7≤x ≤12时,y 关于x 的函数关系式;(2)2010年的12个月中,这种农产品的月平均价格哪个月最低?最低为多少?(3)若以12个月份的月平均价格的平均数为年平均价格,月平均价格高于年平均价格的月份有哪些?【解】(1)当17x ≤≤时,设y kx m =+,将点(1,8)、(7,26)分别代入y kx m =+,得8,726.k m k m +=⎧⎨+=⎩解之,得5,3.m k =⎧⎨=⎩ ∴函数解析式为35y x =+.当712x ≤≤时,设2y ax bx c =++,将(7,26)、(9,14)、(12,11)分别代入2y ax bx c =++,得: 49726,81914,1441211.a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩解之,得1,22,131.a b c =⎧⎪=-⎨⎪=⎩∴函数解析式为222131y x x =-+.(2)当17x ≤≤时,函数35y x =+中y 随x 的增大而增大,∴当1x =最小值时,3158y =⨯+=最小值.当712x ≤≤时,()22221311110y x x x =-+=-+, ∴当11x =时,10y =最小值.所以,该农产品平均价格最低的是1月,最低为8元/千克.(3)∵1至7月份的月平均价格呈一次函数,∴4x =时的月平均价格17是前7个月的平均值.将8x =,10x =和11x =分别代入222131y x x =-+,得19y =,11y =和10y =. ∴后5个月的月平均价格分别为19,14,11,10,11. ∴年平均价格为17719141110114615.3123y ⨯+++++==≈(元/千克). 当3x =时,1415.3y =<,∴4,5,6,7,8这五个月的月平均价格高于年平均价格.【思路分析】(1)当1≤x ≤7时,y 与x 间成一次函数关系,当7≤x ≤12时,y 与x 间成二次函数关系,运用待定系数法可求出相应的函数关系式.(2)分别结合一次函数与二次函数的性质,可确定在(1)中所求得的两个函数解析式中y 的最小值,由此可以进行分析判断.(3)要求年平均价格,需要知道该年月平均价格的和,由于1月份至7月份月平均价格呈一次函数,所以可取4x =时的月平均价格作为前7个月的平均值,在后5个月中,9月和12月的月平均价格一直,而其余3个月(8月,10月,11 月)的月平均价格可利用(1)中所求得的函数解析式求得.求出年平均价格后,把每月的平均价格与之相比即可作出判断.【规律总结】对于分段函数,在确定函数解析式时,要根据自变量的取值范围确定相对应的函数值,运用待定系数法确定函数解析式,利用函数解析式确定函数的最值时,要充分利用相应函数的性质.【易错点分析】计算量较大,在具体计算时易出现数据错误.【关键词】待定系数法,一次函数,二次函数,最值问题,平均数【推荐指数】★★★★☆【题型】新题,易错题13. (2011重庆,25,10分)某企业为重庆计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y 1(元)与月份x (1≤x ≤9,且x 取整数)之间的函数关系如下表:月份x 1 2 3 45 6 7 8 9 价格y 1(元/件) 560 580 600620 640 660 680 700 720 随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y 2(元)与月份x (10≤x ≤12,且x 取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=-0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1 a%.这样,在保证每月上万件配件销量的前提下,完成1至5月的总利润1700万元的任务,请你参考以下数据,估算出a 的整数值.(参考数据:992=9801,982=9604,972=9409,962=9216,952=9025) 【解】(1)y1与x之间的函数关系式为y1=20x+540,y2与x之间满足的一次函数关系式为y2=10x+630.(2)去年1至9月时,销售该配件的利润w=p1(1000-50-30-y1)=(0.1x+1.1)(1000−50−30−20x−540)=(0.1x+1.1)(380−20x)=-2x2+160x+418=-2( x-4)2+450,(1≤x≤9,且x取整数)∵-2<0,1≤x≤9,∴当x=4时,w最大=450(万元);去年10至12月时,销售该配件的利润w=p2(1000-50-30-y2)=(-0.1x+2.9)(1000-50-30-10x-630)=(-0.1x+2.9)(290-10x)=( x-29)2,(10≤x≤12,且x取整数),当10≤x≤12时,∵x<29,∴自变量x增大,函数值w减小,∴当x=10时,w最大=361(万元),∵450>361,∴去年4月销售该配件的利润最大,最大利润为450万元.(3)去年12月份销售量为:-0.1×12+0.9=1.7(万件),今年原材料的价格为:750+60=810(元),今年人力成本为:50×(1+20﹪)=60(元),由题意,得5×[1000(1+a﹪)-810-60-30]×1.7(1-0.1a﹪)=1700,设t= a﹪,整理,得10t2-99t+10=0,解得t=99940120,∵972=9409,962=9216,而9401更接近9409.∴9401=97.∴t1≈0.1或t2≈9.8,∴a1≈10或a2≈980.∵1.7(1-0.1a ﹪)≥1,∴a 2≈980舍去,∴a ≈10.答:a 的整数值为10.【思路分析】(1)用待定系数法求一次函数关系式;(2)分时间段求出销售该配件的利润w 关于的函数,再求出各自的最大值,最后通过比较求出去年12个月中利润的最大值;(3) 根据1至5月的总利润1700万元列一元二次方程,通过一元二次方程的解找出符合条件的答案.【方法规律】本题主要考查了用待定系数法求一次函数解析式、列代数式求二次函数的解析式,列一元二次方程求符合条件的解、二次函数的最值、合理估算等代数知识,采用了先局部后整体的思维策略解决问题,用到了待定系数法、方程思想、函数思想等数学思想方法,是一道综合性较强的题目.【易错点分析】不会分析分时间段列出二次函数的解析式,不会求分段函数的最值,不会根据题意列一元二次方程.【关键词】一次函数,二次函数及最值,一元二次方程 【难度】★★★★★ 【题型】常规题,易错题,难题,新题,综合题15. (2011湖北黄冈,23,12分)我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x 万元,可获得利润()216041100P x =--+(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x 万元,可获利润()()299294101001601005Q x x =--+-+(万元) ⑴若不进行开发,求5年所获利润的最大值是多少?⑵若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?⑶根据⑴、⑵,该方案是否具有实施价值?【答案】解:⑴当x=60时,P 最大且为41,故五年获利最大值是41×5=205万元. ⑵前两年:0≤x ≤50,此时因为P 随x 增大而增大,所以x=50时,P 值最大且为40万元,所以这两年获利最大为40×2=80万元.后三年:设每年获利为y ,设当地投资额为x,则外地投资额为100-x ,所以y=P +Q =()216041100x ⎡⎤--+⎢⎥⎣⎦+2992941601005x x ⎡⎤-++⎢⎥⎣⎦=260165x x -++=()2301065x --+,表明x=30时,y 最大且为1065,那么三年获利最大为1065×3=3495万元,故五年获利最大值为80+3495-50×2=3475万元.⑶有极大的实施价值.【思路分析】(1)根据题意把x = 60代入解析式就可以计算求出最大值;(2)根据二次函数的性质,利用其性质求解;(3)通过比较利润即可明晰何种方案的实施价值较大。
求最大利润问题
求最大利润问题
学习目标
1.经历探索T恤衫销售中最大利润等问题 的过程,体会二次函数是一类最优化问题 的数学模型,并感受数学的应用价值。 2.能够分析和表示实际问题中变量之间的 二次函数,并运用二次函数是知识求出实 际问题的最大(小)值,发展解决问题的 能力。
情境导入
将二次函数y=ax2+bx+c(a≠0)改写为顶点式, 并写出它的对称轴和顶点坐标。
顶点式、对称轴和顶点坐标公式:
y a x
b
2
4ac
b2
.
2a
4a
直线x b
顶点(
b
4ac b2
,
)
2a
2a 4a
利润= 售价-进价 总利润= 每件利润×销售额
做一做
某商店经营T恤衫,已知成批购进时单价是6.5元. 根据市场调查,销售量与单价满足如下关系:在一段 时间内,单价是13.5元时,销售量是500件,而单价每降 低1元,就可以多售出200件.请你帮助分析,销售单价 是多少时,可以获利最多?
运用新知
还记得章一开始涉及的“种多少棵橙子树” 的问题吗?
我们还曾经利用列表的方法得到一个数据,现 在请你验证一下你的猜测(增种多少棵橙子树时,总产 量最大?)是否正确.
与同伴进行交流你是怎么做的.
议一议: 何时橙子总产量最大
某果园有100棵橙子树,每一棵树平均结600个橙子. 现准备多种一些橙子树以提高产量,但是如果多种树,那 么树之间的距离和每一棵树所接受的阳光就会减少.根据 经验估计,每多种一棵树,平均每棵树就会少结5个橙子.
若设销售价为x元(x≤13.5元),那么
销售量可表示为 : 500 20013.5 x 件;
二次函数最大利润公式
二次函数最大利润公式
二次函数最大利润公式通常用于解决关于某个产品销售价格的最
优定价问题,其一般形式为:
P(x) = -ax^2 + bx + c
其中,P(x)表示定价为x时的利润,a、b、c是常数,a是负数且
绝对值较大。
二次函数最大利润公式通过求解二次函数求导后为0的解,找到
二次函数的极值点,从而确定最优价格,进而实现最大化利润的目的。
拓展:除了二次函数最大利润公式,还有其他数学模型和方法来
解决企业制定最优定价问题,比如管见法、增量收益分析法、市场竞
争分析法等。
企业在制定价格策略时,应根据不同的实际情况和市场
需求选择合适的模型和方法,以获得更好的经济效益。
二次函数最大利润问题
二次函数最大利润问题44.这家企业制作一种工艺品,每件成本50元。
为了合理定价,他们进行市场试销。
市场调查表明,当销售单价为100元时,每天销售50件。
如果销售单价每降低1元,每天就会多售出5件,但是销售单价不能低于成本。
1) 求出每天销售利润y(元)与销售单价x(元)之间的函数关系式。
2) 求出销售单价为多少元时,每天销售利润最大?最大利润是多少?3) 如果该企业要使每天销售利润不低于4000元,且每天总成本不超过7000元,那么销售单价应控制在什么范围内?(每天总成本=每件的成本×每天的销售量)45.一家水果批发商场销售一种高档水果,每千克盈利10元,每天可售出500千克。
市场调查发现,在进货价不变的情况下,如果每千克涨价1元,日销售量将减少20千克。
1) 设每天盈利w元,求出w关于x的函数关系式,并说明每天盈利是否可以达到8000元?2) 如果该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?46.某市政府大力扶持大学生创业。
___在政府的扶持下投资销售一种进价为每件20元的护眼台灯。
销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.1) 设___每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?2) 如果___想要每月获得2000元的利润,那么销售单价应定为多少元?3) 根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果___想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)47.某商场将每件进价为160元的某种商品原来按每件200元出售,一天可售出100件。
后来经过市场调查,发现这种商品单价每降低2元,其销量可增加10件。
1) 求商场经营该商品原来一天可获利润多少元?2) 设后来该商品每件降价x元,商场一天可获利润y元。
人教版九年级数学上册(教案):22.3实际问题与二次函数-利润
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数在解决实际问题中的应用,尤其是如何计算最大利润。通过实践活动和小组讨论,我们加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在总结回顾环节,我尝试让学生自己总结课堂所学,并提出疑问。这种方式有助于巩固知识,也让我了解到学生在学习过程中存在的问题。今后,我会更加注重课堂小结,让学生在总结中不断提升自己。
5.培养学生对数学美的鉴赏能力,激发学习兴趣,树立正确的数学观念。
三、教学难点与重点
1.教学重点
(1)掌握利用二次函数解决实际生活中的利润问题。
举例:根据实际情境,构建二次函数模型,求解最大利润及对应的销售量。
(2)熟练运用二次函数的性质,分析并解决实际问题。
举例:通过二次函数的顶点公式,求解最值问题,并将其应用于实际利润问题中。
(2)在实际问题中,如何正确确定二次函数的系数。
难点解析:学生需要掌握根据实际问题情境,分析并确定二次函数各系数的方法。
(3)将实际问题转化为二次函数模型,并求解出具有实际意义的答案。
难点解析:学生需要学会将现实问题抽象成数学模型,然后运用数学知识求解,并解释结果的实际意义。
在教学过程中,教师应针对这些重点和难点内容,采用适当的教学方法,如实例演示、分组讨论、问题引导等,帮助学生理解并掌握这些核心知识。同时,注重引导学生将数学知识应用于实际生活,提高学生的数学应用能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次函数在解决实际问题中的应用。二次函数是描述变量间二次关系的一种数学模型。它在解决最大值或最小值问题,如成本、收益和利润等方面具有重要作用。
二次函数的实际应用之利润最大(小)值问题
1二次函数的实际应用——利润最大(小)值问题知识要点:二次函数的一般式c bx ax y ++=2(0≠a )化成顶点式ab ac a b x a y 44)2(22-++=, 如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).即当0>a 时,函数有最小值,并且当a b x 2-=,ab ac y 442-=最小值; 当0<a 时,函数有最大值,并且当a b x 2-=,ab ac y 442-=最大值. 如果自变量的取值范围是21x x x ≤≤,如果顶点在自变量的取值范围21x x x ≤≤内,则当a b x 2-=,ab ac y 442-=最值, 如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小.商品定价一类利润计算公式:经常出现的数据:商品进价;商品售价1;商品销售量1;商品售价2(商品定价);商品销售量2;其他成本。
◆单价商品利润=商品定价-商品进价 ◆△(价格变动量)=商品定价-商品售价1(或者直接等于商品调价); ◆销售量变化率=销售变化量÷引起销售量变化的单位价格; ◆商品总销售量=商品销售量1±△×销售量变化率; ◆ 总利润(W )=单价商品利润×总销售量-其他成本其他成本单位价格变动销售量变化商品销售量)商品售价(商品定价)总利润(-⨯∆±⨯-=]1[1W[例]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?2 [练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?2.(2011十堰市)市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30 x )存在如下图所示的一次函数关系式.⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?3、某服装公司试销一种成本为每件50元的T 恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y (件)与销售单价x (元)的关系可以近似的看作一次函数(如图) (1)求y 与x 之间的函数关系(2)设公司获得的总利润为 W 元,求 W 与x 之间的函数关系式,并写出自变量 的取值范围;根据题意判断:当x 取何值时,W 的值最大?最大值是多少?4.(2011湖北)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?。
二次函数最大利润求法经典
一、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价2元,每星期少卖出20件。
商品的进价为每件40元,如何定价才能使利润最大?分析:此题用到的数量关系是:〔1〕利润=售价-进价〔2〕销售总利润=单件利润×销售数量问题1:售价为x 元时,每件的利润可表示为 〔x-40〕问题2:售价为x 元,售价涨了多少元?可表示为 〔x-60〕问题3:售价为x 元,销售数量会减少,减少的件数为 -60202x ⨯ 〔件〕 问题4:售价为x 元,销售数量为y 〔件〕,那么y 与x 的函数关系式可表示为-60300202x y =-⨯=30010(60)x --=10900x -+因为0600x x ⎧⎨-≥⎩ 自变量x 的取值X 围是 60x ≥问题4:售价为x 元,销售数量为y 〔件〕,销售总利润为W 〔元〕,那么W 与x 的函数关系式为(40)W x y =-⋅=(40)(10900)x x --+=210130036000x x -+-问题5:售价为x 元,销售总利润为W 〔元〕时,可获得的最大利润是多少?因为 (40)W x y =-⋅=(40)(10900)x x --+=210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦ =210(65)4225036000x --+-=210(65)6250x --+所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元二、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每降价2元,每星期可多卖出40件,商品的进价为每件40元,如何定价才能使利润最大?分析:此题用到的数量关系是:〔1〕利润=售价-进价〔2〕销售总利润=单件利润×销售数量问题1:售价为x 元时,每件的利润可表示为 〔x-40〕问题2:售价为x 元,售价降了多少元?可表示为 〔60-x 〕问题3:售价为x 元,销售数量会增加,增加的件数为 60402x -⨯ 〔件〕 问题4:售价为x 元,销售数量为y 〔件〕,那么y 与x 的函数关系式可表示为60300402x y -=+⨯=30020(60)x +-=201500x -+因为0600x x ⎧⎨-≥⎩所以,自变量x 的取值X 围是 060x ≤≤问题4:售价为x 元,销售数量为y 〔件〕,销售总利润为W 〔元〕,那么W 与x 的函数关系式为(40)W x y =-⋅=(40)x -〔201500x -+〕=220230060000x x -+-问题5:售价为x 元,销售总利润为W 〔元〕时,可获得的最大利润是多少?因为 (40)W x y =-⋅=(40)x -〔201500x -+〕=220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ =211520()66125600002x --+- =220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元三、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价2元,每星期少卖出20件;每降价2元,每星期可多卖出40件,商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况,即:〔1〕涨价时,虽然销售数量减少了,但是每件的利润增加了,所以可以使销售过程中的总利润增加〔2〕降价时,虽然每件的利润减少了,但是销售数量增加了,所以同样可以使销售过程中的总利润增加此题用到的数量关系是:〔1〕利润=售价-进价〔2〕销售总利润=单件利润×销售数量根据题目内容,完成以下各题:1、涨价时〔1〕售价为x 元,销售数量为y 〔件〕,那么y 与x 的函数关系式可表示为-60300202x y =-⨯=30010(60)x --=10900x -+因为0600x x ⎧⎨-≥⎩ 自变量x 的取值X 围是 60x ≥〔2〕售价为x 元,销售数量为y 〔件〕,销售总利润为W 〔元〕,那么W 与x 的函数关系式为1(40)W x y =-⋅=(40)(10900)x x --+=210130036000x x -+-〔3〕售价为x 元,销售总利润为W 〔元〕时,可获得的最大利润是多少? 1W =(40)(10900)x x --+=210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦ =210(65)4225036000x --+-=210(65)6250x --+2、降价时:〔1〕售价为x 元,销售数量为y 〔件〕,那么y 与x 的函数关系式可表示为60300402xy -=+⨯=30020(60)x +-=201500x -+因为0600x x ⎧⎨-≥⎩所以,自变量x 的取值X 围是 060x ≤≤〔2〕售价为x 元,销售数量为y 〔件〕,销售总利润为W 〔元〕,那么W 与x 的函数关系式为2W =(40)x -y=(40)x -〔201500x -+〕=220230060000x x -+-〔3〕售价为x 元,销售总利润为W 〔元〕时,可获得的最大利润是多少?因为2W =(40)x -〔60300402x-+⨯〕=(40)x -〔201500x -+〕=220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=211520()66125600002x --+-=220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元此题解题过程如下:解:设售价为x 元,利润为W〔1〕涨价时,1W =(40)x -〔300 --60202x ⨯〕 =(40)(10900)x x --+=210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦ =210(65)4225036000x --+-=210(65)6250x --+所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元〔2〕降价时,2W =(40)x -〔300+60402x -⨯〕 =(40)x -〔201500x -+〕=220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ =211520()66125600002x --+- =220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元综上所述,售价为65元或售价为57.5元时,都可得到最大利润,最大利润分别为6250元或6125元。
二次函数与最大利润问题解题技巧
二次函数与最大利润问题解题技巧
1. 先了解二次函数的一般式和标准式。
2. 确定题目中涉及的自变量和因变量,并建立解题模型。
3. 求出二次函数的极值点,即最大或最小值点,这可以通过求导或配方法等方式得到。
4. 判断极值点是否为最大值点,如果是,则说明达到最大利润;如果不是,则需根据实际情况进行分析。
5. 最后通过代入数值验证答案是否正确。
举例:
某企业生产一种产品,售价为x元,该企业总成本为:
C(x)=10000+200x+0.02x²元,求该企业的最大利润及最大利润
的售价。
1. 一般式:y=ax²+bx+c;标准式:y=a(x-h)²+k。
2. 总利润P(x)=R(x)-C(x),其中,R(x)为总收入,C(x)为总成本。
因此,P(x)=x(100-0.02x)-10000-200x-0.02x²=-(0.02x²-
80x+10000)。
3. 求P(x)的极值点:P'(x)=-0.04x+80=0,得到x=2000,表示产量在2000时利润最大。
4. 检查2000是否为最大值点,此处可以通过求P''(x)判断。
P''(x)=-0.04<0,说明x=2000时是P(x)的最大值点。
5. 最大利润为P(2000)=-(0.02×2000²-80×2000+10000)=96000元,最大利润的售价为200元。
人教版二次函数与最大利润
二次函数与实际问题
——何时获最大利润
一、复习引入
求二次函数最值的方法: 1、利用配方法化为顶点式,求最值
y=ax2+bx+c
y=a(x+ b )2+ 4ac-b2
2a
4a
2、代入顶点坐标公式,求最值
(-
b 2a
,4ac-b2 4a
)
3、观察二次函数图象,找最高点或最低点, 求最值
y=(60+x-40)(300-10x)
y \元
=-10x2+100x+6000
6250
=-10(x-5)2+6250
6000
因为a=-10<0 开口向下 所以x=5时 y最大=6250
05
30
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
分析:
法2:设每件售价x元,利润为y元。
60
300 自变量的取值范围 60≤x≤90
x 300-10(x-60)
y=(x-40)[300-10(x-60)]
二、问题再探究
小明的父母开了一家服装店,出售一种进价为 40元的服装,现以每件60元出售,每星期可卖出 300件. 小明对市场进行了调查,得出如下报告:
若物价局规定每件服 装获利不得高于 60%,则销售单价 定为多少时,商场 可获得最大利润?
如果调整价格:每件涨价 1元,每星期要少卖出10 件服装
(3)怎样定价才能使每星期利润y达到最大?
y\元
6250 6000
0 45
y=-10(x-5)2+6250 (0≤x≤4)
注意: 取值范 围改变 了
30
二次函数与实际问题中利润问题(附答案)
②T恤衫何时获得最大利润,销售量与单价满足如下关系:在一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.当销售单价为多少元时,可以获得最大利润,最大利润是多少元?
(1)写出售价x(元/件)与每天所得利润y(元)之间的函数关系式;
(2)每件定价多少元时,才能使一天的利润最大?
⑥纯牛奶何时利润最大:
6.某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40元~70元之间.市场调查发现:若每箱发50元销售,平均每天可售出90箱,价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱.
(2)当销售单价定为55元时,计算出月销售量和销售利润;
(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
(1)
(2)
(3)
⑧化工材料何时利润最大:
8 .某化工材料经销公司购进了一种化工原料共700千克,已知进价为30元/千克,物价部门规定其销售价在30元~70元之间.市场调查发现:若单价定为70元时,日均销售60千克.价格每降低1元,平均每天多售出2千克.在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算).
设销售价为x元(x≤13.5元),利润是y元,则
③日用品何时获得最大利润:
3.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?
设销售价为x元(x≥30元),利润为y元,则
二次函数y=ax2+bx+c(a≠0)的性质:
二次函数的应用第二课时最大利润学年北师大版九年级数学下册课件
(2)如果李明想要每月获得2000元的利润,那么销售单价应定 为多少元?
解:(2)由题意,得:- 10x²+700x-10000=2000 解得x1=30,x2=40
∴李明想要每月获得2000元的利润, 销售单价应定为30元或40元.
2.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投 放市场进行试销.据市场调查,销售单价是100元时,每天的销售量 是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单 价不得低于成本. (1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系
y=a(x-h)2+k顶点坐标是(h,k),对称轴是直线x=h 当x=h时,y有最大值或最小值k
y=ax2+bx+c中顶点式,对称轴和顶点坐标公式:
y a x
b
2
4ac
b2
.
2a
4a
顶点坐标是
b 2a
,
4ac 4a
b2
对称轴是直线x b 2a
当x b 时, y有最大或最小值 4ac b2 .
(2)当1≤x<50时,二次函数开口下,二次函数对称轴为x=45, 当x=45时,y最大=﹣2×452+180×45+2000=6050, 当50≤x≤90时,y随x的增大而减小, 当x=50时,y最大=6000,
综上所述,该商品第45天时,当天销售利润最大利润是6050元;
(3)当20≤x≤60时,每天销售利润不低于4800元.
设旅行团人数为x人,营业额为y元,则 y= x [800-10(x-30)]
= - 10x2+1100x
= - 10(x-55)2+30250
初三中考二次函数应用题最大利润问题
初三数学中的二次函数,是中考的必考考点,而且是必出大题的,而对于二次函数的应用,也是常考的知识点,尤其是最近几年,销售利润问题也是非常的热门,其实对于销售利润问题,如果同学们能够掌握关于销售的公式,牢牢掌握随着售价的变化,销售数量也随之变化这个关键点,这类问题也是非常简单的。
解决这类问题一般是先运用“总利润=单件商品的利润*销售的总数量”或“总利润=总售价-总成本”,建立利润与价格之间的二次函数解析式,然后求出这个函数解析式的顶点坐标,即求得最大利润。
初三数学二次函数应用专题,销售问题,牢记公式、抓住变化关键点例题1:某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若以每箱50元价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数解析式;(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数解析式;(3)当每箱苹果的销售价为多少元时,可以获得最大利润?初三数学二次函数应用专题,销售问题,牢记公式、抓住变化关键点【解析】:此题是最常见的,也是最基本的利润问题,从题目中“价格每提高1元,平均每天少销售3箱”,可知价格提高a元时,每天少销售3a箱。
因此销售价x(元/箱)时,每天销售量y=90-3(x-50)=-3x+240。
然后根据利润公式,总利润=单件商品的利润*销售的总数量,得W=(x-40)(-3x+240)=-3x^2+360x-9600=-3(x-60)^2+1200。
所以当x<60时,w随x的增大而增大,又由题意可知x≤55,∴当x=55时,可获得利润最大,最大利润为w=1125元。
例题2:某商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为:初三数学二次函数应用专题,销售问题,牢记公式、抓住变化关键点(1)已知y与t之间的变化规律符合一次函数关系,试求一次函数关系是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n元利润(0﹤n<9)给“精准扶贫”对象。
二次函数与实际问题中利润问题(附答案)
(2)每箱定价多少元时,才能使平均每天的利润最大?最大利润是多少?
⑦水产品何时利润最大:
.某商店销售一种销售成本为40元的水产品,若按50元/千克销售,一月可售出5000千克,销售价每涨价1元,月销售量就减少10千克.
(1)写出售价x(元/千克)与月销售利润y(元)之间的函数关系式;
二次函数y=ax2+bx+c(a≠0)的性质:
顶点式,对称轴和顶点坐标公式:
利润=售价-进价
总利润=每件利润×销售数量
①何时橙子总产量最大:
1.某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.增种多少棵橙子树时,总产量最大?
求销售单价为x(元/千克)与日均获利y(元)之间的函数关系式,并注明x的取值范围(提示:日均获利=每千克获利与×均销售量-其它费用)和获得的最大利润.
(2)当销售单价定为55元时,计算出月销售量和销售利润;
(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
(1)
(2)
(3)
⑧化工材料何时利Βιβλιοθήκη 最大:8 .某化工材料经销公司购进了一种化工原料共700千克,已知进价为30元/千克,物价部门规定其销售价在30元~70元之间.市场调查发现:若单价定为70元时,日均销售60千克.价格每降低1元,平均每天多售出2千克.在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算).
如果设果园增种x棵橙子树,总产量为y个,则
最大利润与二次函数
y x 20400 20x 20
20x2 140x 20000
20x 352 4500.
结束寄语
生活是数学的源泉.
回味无穷 驶向胜利
二次函数y=ax2+bx+c(a≠0)的性质的彼岸
顶点式,对称轴和顶点坐标公式:
y a x b 2 4ac b2 .
2a
4a
直线x b 2a
b 2a
,
4ac 4a
b2
利润=售价-进价.
总利润=每件利润×销售数量.
T恤衫何时获得最大利润
驶向胜利 的彼岸
பைடு நூலகம்
1.某商店经营T恤衫,已知成批购进时单价是2.5元.根据市 场调查,销售量与单价满足如下关系:在一时间内,单价是 13.5元时,销售量是500件,而单价每降低1元,就可以多售出 200件.当销售单价为多少元时,可以获得最大利润,最大利 润是多少元?
设销售价为x元(x≤13.5元),利润是y元,则
y x 2.5500 20013.5 x
200x2 3700x 8000
200x 9.252 9112.5.
日用品何时获得最大利润
驶向胜利 的彼岸
2.某商店购进一批单价为20元的日用品,如果以单价30元销 售,那么半个月内可以售出400件.根据销售经验,提高单价会 导致销售量的减少,即销售单价每提高1元,销售量相应减少 20件.如何提高售价,才能在半个月内获得最大利润?
二次函数利润问题万能公式(一)
二次函数利润问题万能公式(一)二次函数利润问题万能公式介绍在经济学和数学中,利润问题通常可以用二次函数来描述和求解。
二次函数是一种常见的数学模型,可以帮助我们分析和预测各种经济问题中的利润关系。
本文将介绍二次函数利润问题的万能公式,并通过列举相关公式和举例来解释和说明。
二次函数的一般形式二次函数的一般形式可以表示为:f(x) = ax^2 + bx + c其中,a、b、c为常数,且a不等于0。
利润问题中,x通常表示销售量,f(x)表示利润。
利润公式利润问题中,利润与销售量之间的关系可以通过二次函数来描述。
以下是二次函数利润问题中的几个常见公式:利润最大值公式利润最大值一般发生在二次函数的顶点处。
利润最大值公式可以表示为:x = -b/(2a)其中,a、b为二次函数的系数。
利润最大值处的销售量可以通过这个公式来计算。
零利润点公式零利润点是指利润为零的销售量。
零利润点公式可以表示为:ax^2 + bx + c = 0通过解这个方程,可以计算出零利润点的销售量。
利润区间公式利润区间是指利润为正的销售量范围。
利润区间公式可以表示为:ax^2 + bx + c > 0通过解这个不等式,可以得到利润为正的销售量范围。
举例说明假设一家公司生产并销售某种产品,该公司的销售利润与销售量之间的关系可以通过以下二次函数表示:f(x) = -2x^2 + 5x + 20利用二次函数利润问题的公式,我们可以进行以下计算和分析:计算利润最大值利润最大值发生在顶点处。
根据利润最大值公式,可以计算出:x = -5/(2*(-2)) =即当销售量为时,利润最大。
计算零利润点利润为零时,根据零利润点公式,可以解得:-2x^2 + 5x + 20 = 0解这个方程可以得到两个解,即销售量为-2和销售量为5时,利润为零。
计算利润区间利润为正时,根据利润区间公式,可以解得:-2x^2 + 5x + 20 > 0解这个不等式可以得到销售量在-2和5之间时,利润为正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数最大利润公式
二次函数最大利润公式是在市场营销领域中应用较多的一种工具。
当
企业生产一种产品时,它的成本和销售量可以表示为二次函数。
其中,成
本是随生产量增加而增加的,而销售量则随着产品价格的变化而改变。
企
业追求的是利润最大化,因此需要找到销售最大量对应的价格,也就是二
次函数的顶点。
利用二次函数最大利润公式,企业可以计算出最大利润所
对应的生产量和价格,从而进行生产决策。
二次函数最大利润公式的基本形式为y=a某²+b某+c,其中a、b、c
是常数,某是变量,y表示利润。
在这个公式中,a是二次项系数,它代
表着产品的成本变化率;b是一次项系数,它代表着产品的售价变化率;
c是常数项,它代表着固定成本。
如果我们知道a、b、c的具体值,就可
以通过求导数的方法,找到二次函数顶点的位置,从而确定价格和销售量。
求解二次函数最大利润公式的方法有两种:一种是代数法,另一种是
几何法。
代数法是通过求解一次函数的导数来寻找最大利润所对应的销售
量和价格。
对于二次函数y=a某²+b某+c来说,它的导数为dy/d某=2a
某+b。
当dy/d某=0时,就可以得到二次函数的顶点位置某0=-b/2a。
然
后可以通过将某0代入二次函数y=a某²+b某+c中,求出最大利润所对应
的成本、销售量和价格等信息。
几何法是通过绘制二次函数的图像来确定最大利润。
二次函数的图像
是一个开口向上或向下的抛物线,在顶点处具有最大值或最小值。
当我们
知道二次函数的顶点坐标时,可以通过测量图像来确定最大利润所对应的
销售量和价格。
如果商家需要考虑不同产品的生产成本和销售情况,还可
以通过绘制多条二次函数的图像,同时比较它们的顶点位置,从而找到最
佳的生产组合方式,使得利润最大化。
总之,二次函数最大利润公式是市场营销领域中一个十分有用的工具。
它可以帮助企业决策者找到最大利润所对应的销售量和价格,从而进行生
产策略的调整。
不过,在实际应用中,还需要注意二次函数所对应的条件
和假设是否成立,以及市场环境和竞争对手的因素等。
只有充分考虑这些
因素,才能够得到更准确和可靠的策略建议。