「聚类分析与判别分析」
第11章 聚类分析与判别分析
![第11章 聚类分析与判别分析](https://img.taocdn.com/s3/m/8efa60f384868762caaed5fa.png)
第十一章聚类分析与判别分析聚类分析与判别分析是两类常用多元分析方法。
聚类分析可以将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强;而判别分析则可以根据已掌握的样本信息建立判别函数,当遇到新的样本点时根据判别函数可以判断该样本点所属的类别。
第一节聚类分析一、聚类分析的基本思想“物以类聚,人以群分”。
分类处理,在现实中极为普遍。
在生物、经济、社会、人口等领域的研究中,存在着大量量化分类研究。
例如:在生物学中,为了研究生物的演变,生物学家需要根据各种生物不同的特征对生物进行分类;在经济研究中,为了研究不同地区城镇居民生活中的收入和消费情况,往往需要划分不同的类型去研究;在人口学研究中,需要构造人口生育分类模式、人口死亡分类状况,以此来研究人口的生育和死亡规律。
历史上,这些分类方法多半是人们主要依靠经验作定性分类,致使许多分类带有主观性和任意性,特别是对于多因素、多指标的分类问题,定性分类的准确性不好把握。
为了克服定性分类存在的不足,人们把数学方法引入分类中,形成了数值分类学,进而产生了聚类分析这一最常用的技巧。
聚类分析将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强。
其目的在于:使类内对象的同质性最大化和类间对象的异质性最大化。
聚类分析通常可以分为两种:Q型聚类和R型聚类。
Q型聚类是对观测个体的分类,R 型聚类是对变量的分类。
二者在数学上是对称的,没有本质区别。
二、符号说明多元统计分析中要注意区分样本和变量。
每个样品有p个指标(变量)从不同方面描述其性质,形成一个p维的向量,可以把n 个样品看成p维空间中的n个点。
X表示第k个变量第j次观测值(或称第j个项目的测量值),即:我们用记号jkX=第k个变量第j次观测值jkp个变量的n个观测值可表示如下:11121121222212121212k p k pj j jk jp n n nknpkp X X X X X X X X j X X X X nX X XX 变量变量变量变量观测观测观测观测记为:1112112122221212k p k p j j jk jp n n nknp X X X X X X X X X X X X X X X X ⎛⎫⎪ ⎪⎪=⎪ ⎪⎪ ⎪ ⎪⎝⎭X 记12(,,,)'jp j j jp X X X X R =∈,表示第j 个样品,它表示p 维空间的一个点。
聚类分析与判别分析
![聚类分析与判别分析](https://img.taocdn.com/s3/m/2b9037a74431b90d6d85c744.png)
(xi yi )2
i
平方欧氏距离(Squared Euclidean) (xi yi )2 i
绝对距离(Block): Si|xi-yi|
切比雪夫距离 (Chebychev ) Maxi|xi-yi|
1
明考夫斯基距离(Minkowski)
(
xi
yi
)q
q
i
10
(2)相似系数
向量x =(x1,…, xp)与y =(y1,…, yp)之间的相似系数:
夹角余弦cosine
Cxy (1) cos xy
xi yi i
xi2 yi2
i
i
cosθ =1,说明x和y完全相似;接近1,x和y比较相似。
cosθ=0,说明x和y完全不一样;接近0,x和y差别很大。
相关系数
(xi x )( yi y)
Pearson correlation Cxy (2) rxy
1
提纲
1 聚类分析
1-1 概述
1-1-1聚类分析的原理 1-1-2 距离和相似系数 1-1-3 类间距离的算法
1-2系统聚类分析(Hierarchical clustering) 1-2-1 基本思想
1-2-2 分类
1-2-3 SPSS 实现
1-3 k-均值聚类 ( K-Means Cluster)
每一种样品都具有多种特性,或称之为具有多种变量。聚类分析是基于
多变量数据,对n个样品进行分类的一种方法,即将那些相似的样品归为一类, 不相似的样品分别归到各自不容的类别中。
目的:寻找数据中潜在的自然分组结构 和感兴趣的关系。
3
自然分组结构 Natural grouping : 例如:有16张牌,如何将他们分为一组一组的牌?
7聚类与判别分析
![7聚类与判别分析](https://img.taocdn.com/s3/m/03d57c368f9951e79b89680203d8ce2f006665b7.png)
7聚类与判别分析聚类分析(Cluster analysis)是将相似的对象归类到同一个类别或群组的过程,它是无监督学习的一种常用方法,用于发现数据之间的内在结构和模式。
而判别分析(Discriminant Analysis),又称为鉴别分析,是一种有监督学习的方法,旨在确定将数据正确分类到预定义的类别中的最佳方法。
本文将对聚类分析和判别分析进行详细讨论。
聚类分析主要包括层次聚类和划分聚类两种方法。
层次聚类将数据集中的对象通过一系列分裂与合并的步骤聚成一个层次结构,可以采用“自底向上”(凝聚性聚类)和“自顶向下”(分裂性聚类)的方法进行操作。
凝聚性聚类首先将每个数据点作为一个独立的簇,然后通过计算相似性度量将最相似的两个簇合并成一个新的簇,反复进行直到只剩下一个簇为止。
分裂性聚类则是相反的过程,从一个包含所有数据点的簇开始,逐步将其分裂成更小的簇,直到每个簇只包含一个或少数几个数据点为止。
划分聚类方法则将数据集划分成多个互不重叠的簇,每个簇中的对象之间具有较高的相似度,而不同簇之间的对象具有较低的相似度。
其中最常用的方法是K-means算法,其步骤为:首先选择k个随机的质心(簇中心)作为初始的聚类中心,然后通过计算每个数据点到这些质心的距离,将数据点分配到最近的质心的簇中。
然后重新计算每个簇的质心位置,继续迭代上述步骤直到簇中心不再发生变化或者达到预定的迭代次数为止。
在线性判别分析中,通过找出数据类别间的最佳投影方向(线性判别向量),将高维数据点映射到一维或低维空间中,从而实现分类。
二次判别分析则将线性判别分析中的决策面扩展为二次曲面,可以更好地适应非线性数据集。
聚类分析和判别分析在实际中有不同的应用。
聚类分析广泛应用于市场细分、社交网络分析、图像分析和基因组学等领域,用于发现相似群组或子集,从而提高数据理解和决策。
而判别分析则常用于模式识别、图像分类、文本分类等任务,通过训练分类模型进行预测和分类。
聚类分析与判别分析区别
![聚类分析与判别分析区别](https://img.taocdn.com/s3/m/9f1fb0741711cc7931b71613.png)
表示
:
cos
!
ij
=
p
a
=
1
!
x
ia
x
ja
p
a
=
1
!
x
2
・
p
a
=
1
!
x
2
"
ia
ja
1
≤
cos
!
ij
≤
1
当
cos
!
ij
=1
,
说明两个样品
x
i
与
x
j
完全相似
;
cos
!
ij
接
近
1
,
说
明
两
个
样
品
x
i
与
x
j
相
似
密
切
;
cos
!
ij
=0
,
说明
x
i
与
x
j
完全不一样
;
cos
!
ij
接近
0
,
说
明
x
i
与
x
j
差别大。把所有两两样品的相似系数都
通过聚类分析可以达到简化数据的目的
,
将
众多的样品先聚集成比较好处理的几个类别或子
集
,
然后再进行后续的多元分析。
比如在回归分析
中
,
有时不对原始数据进行拟合
,
而是对这些子集
的中心作拟合
,
可能会更有意义。又比如
,
为了研
究不同消费者群体的消费行为特征
,
聚类分析和判别分析
![聚类分析和判别分析](https://img.taocdn.com/s3/m/84fb19e8524de518964b7d2e.png)
18
24 30 36 42 48 54 60 66 72
0.69
0.77 0.59 0.65 0.51 0.73 0.53 0.36 0.52 0.34
1.33
1.41 1.25 1.19 0.93 1.13 0.82 0.52 1.03 0.49
0.48
0.52 0.30 0.49 0.16 0.35 0.16 0.19 0.30 0.18
i i
( xi x ) 2 ( yi y ) 2
i i
i
当变量的测量值相差悬殊时,要先进行 标准化. 如R为极差, s 为标准差, 则标 准化的数据为每个观测值减去均值后 再除以R或s. 当观测值大于0时, 有人 采用Lance和Williams的距离
1 | xi yi | x y p i i i
Number of Cases in each Cluster Cluster 1 2 3 4 1.000 1.000 2.000 15.000 19.000 .000
Valid Missing
结果解释
参照专业知识,将儿童生长发育分期定为: 第一期,出生后至满月,增长率最高; 第二期,第2个月起至第3个月,增长率次之; 第三期,第3个月起至第8个月,增长率减缓; 第四期,第8个月后,增长率显著减缓。
k-均值聚类:案例
为研究儿童生长发育的分期,调查1253名1月至7岁儿 童的身高(cm)、体重(kg)、胸围(cm)和坐高(cm) 资料。资料作如下整理:先把1月至7岁划成19个月份段, 分月份算出各指标的平均值,将第1月的各指标平均值与出 生时的各指标平均值比较,求出月平均增长率(%),然后 第2月起的各月份指标平均值均与前一月比较,亦求出月平 均增长率(%),结果见下表。欲将儿童生长发育分为四期, 故指定聚类的类别数为4,请通过聚类分析确定四个儿童生 长发育期的起止区间。
聚类分析与判别分析
![聚类分析与判别分析](https://img.taocdn.com/s3/m/8098e6eb6bd97f192379e987.png)
第一节聚类分析统计思想一、聚类分析的基本思想1.什么是聚类分析俗语说,物以类聚、人以群分。
当有一个分类指标时,分类比较容易。
但是当有多个指标,要进行分类就不是很容易了。
比如,要想把中国的县分成若干类,可以按照自然条件来分:考虑降水、土地、日照、湿度等各方面;也可以考虑收入、教育水准、医疗条件、基础设施等指标;对于多指标分类,由于不同的指标项对重要程度或依赖关系是相互不同的,所以也不能用平均的方法,因为这样会忽视相对重要程度的问题。
所以需要进行多元分类,即聚类分析。
最早的聚类分析是由考古学家在对考古分类中研究中发展起来的,同时又应用于昆虫的分类中,此后又广泛地应用在天气、生物等方面。
对于一个数据,人们既可以对变量(指标)进行分类(相当于对数据中的列分类),也可以对观测值(事件,样品)来分类(相当于对数据中的行分类)。
2.R型聚类和Q型聚类对变量的聚类称为R型聚类,而对观测值聚类称为Q型聚类。
这两种聚类在数学上是对称的,没有什么不同。
聚类分析就是要找出具有相近程度的点或类聚为一类;如何衡量这个“相近程度”?就是要根据“距离”来确定。
这里的距离含义很广,凡是满足4个条件(后面讲)的都是距离,如欧氏距离、马氏距离…,相似系数也可看作为距离。
二、如何度量距离的远近:统计距离和相似系数1.统计距离距离有点间距离好和类间距离2.常用距离统计距离有多种,常用的是明氏距离。
3.相似系数当对个指标变量进行聚类时,用相似系数来衡量变量间的关联程度,一般地称为变量和间的相似系数。
常用的相似系数有夹角余弦、相关系数等。
夹角余弦:相关系数:对于分类变量的研究对象的相似性测度,一般称为关联测度。
第二节如何进行聚类分析一、系统聚类1.系统聚类的基本步骤2.最短距离法3.最长距离法4.重心法和类平均法5.离差平方和法二、SPSS中的聚类分析1、事先要确定分多少类:K均值聚类法;2、事先不用确定分多少类:分层聚类;分层聚类由两种方法:分解法和凝聚法。
聚类和判别分析
![聚类和判别分析](https://img.taocdn.com/s3/m/a67afa905122aaea998fcc22bcd126fff6055d47.png)
市场细分
在市场营销中,判别分析可用于 识别消费者群体的特征和行为模 式,以便进行更有效的市场细分 和定位。
04
判别分析算法
线性判别分析(LDA)
01
基本思想:通过找到一个投影方向,使得同类样本在该方 向上投影后尽可能接近,不同类样本在该方向上投影后尽 可能远离。
02
算法步骤
03
1. 计算各类样本均值。
04
2. 计算类间散度矩阵和类内散度矩阵。
05
3. 计算投影方向,使得类间散度矩阵最大,类内散度矩 阵最小。
06
4. 将样本投影到该方向上,得到判别结果。
支持向量机(SVM)
算法步骤
2. 计算支持向量所构成的法向量 。
基本思想:通过找到一个超平面 ,使得该超平面能够将不同类样 本尽可能分开,同时使得离超平 面最近的样本距离尽可能远。
目的
聚类分析的目的是揭示数据集中的内在结构,帮助我们更好地理解数据的分布 和特征,为进一步的数据分析和挖掘提供基础。
聚类方法分类
01
基于距离的聚类
根据对象之间的距离进行聚类,常见的算法有K-means 、层次聚类等。
02
基于密度的聚类
根据数据点的密度进行聚类,将密度较高的区域划分为 一类,常见的算法有DBSCAN、OPTICS等。
聚类和判别分析
目录
• 聚类分析概述 • 聚类分析算法 • 判别分析概述 • 判别分析算法 • 聚类与判别分析的比较与选择
01
聚类分析概述
定义与目的
定义
聚类分析是一种无监督学习方法,旨在将数据集中的对象按照它们的相似性或 差异性进行分组,使得同一组内的对象尽可能相似,不同组之间的对象尽可能 不同。
判别分析与聚类分析
![判别分析与聚类分析](https://img.taocdn.com/s3/m/9bf4c241591b6bd97f192279168884868762b836.png)
判别分析与聚类分析判别分析与聚类分析是数据分析领域中常用的两种分析方法。
它们都在大量数据的基础上通过统计方法进行数据分类和归纳,从而帮助分析师或决策者提取有用信息并作出相应决策。
一、判别分析:判别分析是一种有监督学习的方法,常用于分类问题。
它通过寻找最佳的分类边界,将不同类别的样本数据分开。
判别分析可以帮助我们理解和解释不同变量之间的关系,并利用这些关系进行预测和决策。
判别分析的基本原理是根据已知分类的数据样本,建立一个判别函数,用来判断未知样本属于哪个分类。
常见的判别分析方法包括线性判别分析(LDA)和二次判别分析(QDA)。
线性判别分析假设各类别样本的协方差矩阵相同,而二次判别分析则放宽了这个假设。
判别分析的应用广泛,比如在医学领域可以通过患者的各种特征数据(如生理指标、疾病症状等)来预测患者是否患有某种疾病;在金融领域可以用来判断客户是否会违约等。
二、聚类分析:聚类分析是一种无监督学习的方法,常用于对数据进行分类和归纳。
相对于判别分析,聚类分析不需要预先知道样本的分类,而是根据数据之间的相似性进行聚类。
聚类分析的基本思想是将具有相似特征的个体归为一类,不同类别之间的个体则具有明显的差异。
聚类分析可以帮助我们发现数据中的潜在结构,识别相似的群组,并进一步进行深入分析。
常见的聚类分析方法包括层次聚类分析(HCA)和k-means聚类分析等。
层次聚类分析基于样本间的相似性,通过逐步合并或分割样本来构建聚类树。
而k-means聚类分析则是通过设定k个初始聚类中心,迭代更新样本的分类,直至达到最优状态。
聚类分析在市场细分、社交网络分析、图像处理等领域具有广泛应用。
例如,可以将客户按照他们的消费喜好进行分组,以便为不同群体提供有针对性的营销活动。
总结:判别分析和聚类分析是两种常用的数据分析方法。
判别分析适用于已知分类的问题,通过建立判别函数对未知样本进行分类;聚类分析适用于未知分类的问题,通过数据的相似性进行样本聚类。
聚类分析与判别分析的区别
![聚类分析与判别分析的区别](https://img.taocdn.com/s3/m/1d30d73743323968011c92c9.png)
武汉学刊 2006 年第 1 期
经济研究
聚类分析与判别分析的区别
邓海燕
上世纪 60 年代末到 70 年代初, 人们把大量 因变量的各个类别。
义如下:
m
"! 2
dij=
( Xik- Xjk)
k= 1
其中: Xik: 第 i 个样品的第 k 个指标的观测值
Xjk: 第 j 个样品的第 k 个指标的观测值
dij: 第 i 个样品与第 j 个样品之间的欧氏距离
依次求出任何两个点的距离系数 dij( i, j=1, 2,
…, n) 以后, 则可形成一个距离矩阵:
或“ 相 似 系 数 ”较 小 的 点 归 为 不 同 的 类 。
“距离”常用来度量样品之间的相似性 ,“相似
系 数 ”常 用 来 度 量 变 量 之 间 的 相 似 性 。
a、根 据 不 同 的 需 要 , 距 离 可 以 定 义 为 许 多 类
型, 最常见、最 直 观 的 距 离 是 欧 几 里 德 距 离 , 其 定
目的决定 , 一般 可 用 背 景 变 量 、生 活 形 态 变 量 、产 品使用变量或消费者行为变量等。
b 、研 究 消 费 者 行 为 同一类别的消费者或购买者可能有着相似的 购买行为, 通过对不同类别的消费者的研究, 可以 深入地探讨各类消费者的消费行为。 c 、设 计 抽 样 方 案 在大规模的抽样调查中, 常常采用分层抽样, 以提高抽样的精度。例如: 湖北省的消费者调查的 抽样方案, 首先将城市或地区按一些可能影响消 费水平和行为的变量分层, 然后在各层中再实行 多级抽样, 分层所采用的方法之一就是聚类分析。 d 、寻 找 新 的 潜 在 市 场 按照同一类的产品或品牌聚类, 可将竞争的 产 品 或 品 牌 分 类 。竞 争 更 为 激 烈 的 会 在 同 一 类 内 。 通过考察和比较目前自己的情况和竞争对手的情 况, 就有可能发现潜在的新产品机会。 e 、选 择 试 验 的 市 场 为了推出某项新的市场策略, 例如开发新的 产品、实行新的 促 销 方 式 、新 的 广 告 创 意 等 , 需 要 进行事先的实验。通过聚类分析, 可将实验的对象 ( 例如商店、城市、居民区等) 分成同质的几个组作 为实验组和控制组。 f、作 为 多 元 分 析 的 预 处 理 通过聚类分析可以达到简化数据的目的, 将 众多的样品先聚集成比较好处理的几个类别或子 集, 然后再进行后续的多元分析。比如在回归分析 中, 有时不对原始数据进行拟合, 而是对这些子集 的中心作拟合, 可能会更有意义。又比如, 为了研 究不同消费者群体的消费行为特征, 可以先聚类, 然后再利用判别分析进一步研究各个群体之间的 差异。 ( 2) 判别分析在市场研究中主要用于对一个 企业进行市场细分, 以选择目标市场, 有针对性地 进行广告、促销等活动。例如, 根据消费者的一些 背景资料如何判定他们中的哪些会是某种品牌的 忠诚用户, 哪些不是? 或者想要知道, 忠诚用户和 非忠诚用户在人口的基本特征方面到底有哪些不 同? 如何区分价格敏感型的顾客和非敏感型的顾 客? 哪些心里特征或生活形态特征可以用作判别 或区分的标准? 各种目标消费群体在媒介接触方 面是否有显著的差异? 等等这类均可以通过判别
判别和聚类分析1
![判别和聚类分析1](https://img.taocdn.com/s3/m/f4a0124ff02d2af90242a8956bec0975f465a4f1.png)
判别和聚类分析1判别和聚类分析1一、判别分析1.概念判别分析(Discriminant Analysis)是一种统计分析方法,主要用于研究如何根据已知的数据集来预测未知样本所属类别的方法。
判别分析的目标是找到一个分类函数,将数据集中的样本分为不同的类别,使得同类别内的样本尽可能相似,不同类别之间的样本尽可能不同。
2.方法判别分析的方法包括线性判别分析(Linear Discriminant Analysis,LDA)和二次判别分析(Quadratic Discriminant Analysis,QDA)。
线性判别分析通过找到一个线性变换将原始数据映射到低维空间中,最大化不同类别的类间离散度,最小化同一类别内的类内离散度。
二次判别分析则允许类别之间的协方差矩阵不同。
3.应用判别分析可以应用于各个领域的问题,例如医学诊断、金融风险评估和图像分类等。
在医学领域,判别分析可以通过对患者的症状和检测指标进行统计分析,预测患者是否患有其中一种疾病。
在金融风险评估中,判别分析可以根据企业的财务指标和市场环境数据,对企业的债务违约风险进行预测。
在图像分类中,判别分析可以通过从图像中提取特征,训练一个分类器来识别不同的物体和场景。
二、聚类分析1.概念聚类分析(Cluster Analysis)是一种无监督学习方法,主要用于将数据集中的样本分成若干个类别。
聚类分析的目标是找到一种合理的方式将数据样本划分为组内相似度高,组间相似度低的若干簇。
2.方法聚类分析的方法包括层次聚类(Hierarchical Clustering)和非层次聚类(Non-hierarchical Clustering)。
层次聚类通过构建树状结构将样本逐步合并或分裂,直到得到最终的簇划分。
非层次聚类则根据其中一种相似度度量,将样本分成预定的簇数。
3.应用聚类分析广泛应用于许多领域,例如市场细分、社交网络分析和推荐系统等。
在市场细分中,聚类分析可以根据消费者的购买行为和偏好将市场细分为不同的目标群体,从而制定对应的市场策略。
第九章 聚类分析和判别分析 讲过
![第九章 聚类分析和判别分析 讲过](https://img.taocdn.com/s3/m/65f31f55b80d6c85ec3a87c24028915f814d8416.png)
第九章 聚类分析与判别分析在实际工作中, 我们经常遇到分类问题.若事先已经建立类别, 则使用判别分析, 若事先没有建立类别, 则使用聚类分析.聚类分析主要是研究在事先没有分类的情况下,如何将样本归类的方法.聚类分析的内容包含十分广泛,有系统聚类法、动态聚类法、分裂法、最优分割法、模糊聚类法、图论聚类法、聚类预报等多种方法.聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。
它是一种重要的人类行为。
聚类分析的目标就是在相似的基础上收集数据来分类。
聚类源于很多领域, 包括数学, 计算机科学, 统计学, 生物学和经济学。
在不同的应用领域, 很多聚类技术都得到了发展, 这些技术方法被用作描述数据, 衡量不同数据源间的相似性, 以及把数据源分类到不同的簇中。
聚类与分类的不同在于, 聚类所要求划分的类是未知的。
聚类是将数据分类到不同的类或者簇这样的一个过程, 所以同一个簇中的对象有很大的相似性, 而不同簇间的对象有很大的相异性。
从统计学的观点看, 聚类分析是通过数据建模简化数据的一种方法。
§9.1 聚类分析基本知识介绍在MA TLAB 软件包中, 主要使用的是系统聚类法.系统聚类法是聚类分析中应用最为广泛的一种方法.它的基本原理是:首先将一定数量的样品(或指标)各自看成一类, 然后根据样品(或指标)的亲疏程度, 将亲疏程度最高的两类合并, 然后重复进行, 直到所有的样品都合成一类.衡量亲疏程度的指标有两类:距离、相似系数.一、常用距离1)欧氏距离假设有两个 维样本 和 , 则它们的欧氏距离为∑=-=nj j jx xx x d 122121)(),(2)标准化欧氏距离假设有两个 维样本 和 , 则它们的标准化欧氏距离为T x x D x x x x sd )()(),(2112121--=-其中: 表示 个样本的方差矩阵, , 表示第 列的方差. 3)马氏距离假设共有 个指标, 第 个指标共测得 个数据(要求 ):⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=im i i i x x x x 21, 11211122121212(,,,)n n n mmnn x x x xx x X x x x x x x ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭于是, 我们得到 阶的数据矩阵 , 每一行是一个样本数据. 阶数据矩阵 的 阶协方差矩阵记做.两个 维样本 和 的马氏距离如下:T x x X Cov x x x x mahal )())()((),(2112121--=-马氏距离考虑了各个指标量纲的标准化, 是对其它几种距离的改进.马氏距离不仅排除了量纲的影响, 而且合理考虑了指标的相关性.4)布洛克距离两个 维样本 和 的布洛克距离如下:∑=-=nj j j x x x x b 12121||),(5)闵可夫斯基距离两个 维样本 和 的闵可夫斯基距离如下:pn j p j j x x x x m 112121||),(⎪⎪⎭⎫ ⎝⎛-=∑= 注: 时是布洛克距离; 时是欧氏距离.6)余弦距离⎪⎪⎭⎫⎝⎛-=TT T x x x x x x x x d 221121211),( 这是受相似性几何原理启发而产生的一种标准, 在识别图像和文字时, 常用夹角余弦为标准. 7)相似距离TTTx x x x x x x x x x x x x x d ))(())(())((1),(22221111221121-------=二、MATLAB 中常用的计算距离的函数假设我们有 阶数据矩阵 , 每一行是一个样本数据.在MATLAB 中计算样本点之间距离的内部函数为y=pdist(x) 计算样本点之间的欧氏距离y=pdist(x,'seuclid') 计算样本点之间的标准化欧氏距离 y=pdist(x,'mahal') 计算样本点之间的马氏距离 y=pdist(x,'cityblock') 计算样本点之间的布洛克距离 y=pdist(x,'minkowski') 计算样本点之间的闵可夫斯基距离y=pdist(x,'minkowski',p) 计算样本点之间的参数为p 的闵可夫斯基距离 y=pdist(x,'cosine') 计算样本点之间的余弦距离 y=pdist(x,'correlation') 计算样本点之间的相似距离另外, 内部函数yy=squareform(y)表示将样本点之间的距离用矩阵的形式输出.三、常用的聚类方法常用的聚类方法主要有以下几种: 最短距离法、最长距离法、中间距离法、重心法、平方和递增法等等.四、创建系统聚类树假设已经得到样本点之间的距离y, 可以用linkage函数创建系统聚类树, 格式为z=linkage(y).其中: z为一个包含聚类树信息的(m-1) 3的矩阵.例如:z=2.000 5.000 0.23.0004.000 1.28则z的第一行表示第2.第5样本点连接为一个类, 它们距离为0.2;则z的第二行表示第3.第4样本点连接为一个类, 它们距离为1.28.在MA TLAB中创建系统聚类树的函数为z=linkage(y) 表示用最短距离法创建系统聚类树z=linkage(y,'complete') 表示用最长距离法创建系统聚类树z=linkage(y,'average') 表示用平均距离法创建系统聚类树z=linkage(y,'centroid') 表示用重心距离法创建系统聚类树z=linkage(y,'ward') 表示用平方和递增法创建系统聚类树§9.2 聚类分析示例例1 在MA TLAB中写一个名为opt_linkage_1的M文件:x=[3 1.7;1 1;2 3; 2 2.5; 1.2 1; 1.1 1.5; 3 1];y=pdist(x,'mahal');yy=squareform(y)%Reformat a distance matrix between upper triangular and square form z=linkage(y,'centroid')h=dendrogram(z) %Plot dendrogram graphs 画树状图存盘后按F5键执行, 得到结果如下:yy =0 2.3879 2.1983 1.6946 2.1684 2.2284 0.88952.3879 0 2.6097 2.0616 0.2378 0.6255 2.37782.1983 2.6097 0 0.6353 2.5522 2.0153 2.98901.69462.0616 0.6353 0 1.9750 1.5106 2.41722.1684 0.2378 2.5522 1.9750 0 0.6666 2.14002.2284 0.6255 2.0153 1.5106 0.6666 0 2.45170.8895 2.3778 2.9890 2.4172 2.1400 2.4517 0z =2.0000 5.0000 0.23786.0000 8.0000 0.63533.00004.0000 0.63531.0000 7.0000 0.88959.0000 10.0000 2.106311.0000 12.0000 2.0117按重心距离法得到的系统聚类树为其中: h=dendrogram(z)表示输出聚类树形图的冰状图.一、根据系统聚类树创建聚类假设已经求出系统聚类树z, 我们根据z来创建聚类, 使用cluster函数.例2 在MA TLAB中写一个名为opt_cluster_1的M文件:x=[3 1.7;1 1;2 3; 2 2.5; 1.2 1; 1.1 1.5; 3 1];y=pdist(x,'mahal');yy=squareform(y)z=linkage(y,'centroid')h=dendrogram(z)t=cluster(z,3)其中: “t=cluster(z,3)”表示分成3个聚类, 需要分成几个由人工选择.存盘后按F5键执行, 得到结果如下:t =3122113即第1.第7样本点为第3类, 第2.第5.第6样本点为第1类, 第3.第4样本点为第2类.二、根据原始数据创建分类在MA TLAB软件包中, 内部函数clusterdata对原始数据创建分类, 格式有两种:1)clusterdata(x,a), 其中0<a<1, 表示在系统聚类树中距离小于a的样本点归结为一类;2)clusterdata(x,b), 其中b>1是整数, 表示将原始数据x分为b类.例3 在MA TLAB中写一个名为opt_clusterdata_1的M文件:x=[3 1.7;1 1;2 3; 2 2.5; 1.2 1; 1.1 1.5; 3 1];t= clusterdata(x,0.5)z= clusterdata(x,3)存盘后按F5键执行, 得到结果如下:t =4322314z =2311332其中: t的结果表示距离小于0.5的样本点归结为一类, 这样, 共有四类, 第1类: 样本点6;第2类: 样本点3.4;第3类: 样本点2.5;第4类: 样本点1.7.而z的结果表示首先约定将原始数据x分为3类, 然后计算, 结果如下: 第1类: 样本点3.4;第2类: 样本点1.7;第3类: 样本点2.5.6.利用内部函数clusterdata对原始数据创建分类, 其缺点是不能更改距离的计算法.比较好的方法是分步聚类法.三、分步聚类法假设有样本数据矩阵x,第一步对于不同的距离, 利用pdist函数计算样本点之间的距离:y1=pdist(x)y2=pdist(x,'seuclid')y3=pdist(x,'mahal')y4=pdist(x,'cityblock')第二步计算系统聚类树以及相关信息:z1=linkage(y1)z2=linkage(y2)z3=linkage(y3)z4=linkage(y4)第三步利用cophenet函数计算聚类树信息与原始数据的距离之间的相关性, 这个值越大越好: %cophenet Cophenetic correlation coefficient 同表象相关系数, 同型相关系数, 共性分类相关系数CPCCt1=cophenet(z1,y1)t2=cophenet(z2,y2)t3=cophenet(z3,y3)t4=cophenet(z4,y4)注: z在前, y在后, 顺序不能颠倒.第四步选择具有最大的cophenet值的距离进行分类.利用函数clusterdata(x,a)对数据x进行分类, 其中0<a<1, 表示在系统聚类树中距离小于a的样本点归结为一类.例4 在MA TLAB中写一个名为opt_cluster_2的M文件:x=[3 1.7;1 1;2 3; 2 2.5; 1.2 1; 1.1 1.5; 3 1];y1=pdist(x);y2=pdist(x,'seuclid');y3=pdist(x,'mahal');y4=pdist(x,'cityblock');z1=linkage(y1);z2=linkage(y2);z3=linkage(y3);z4=linkage(y4);t1=cophenet(z1,y1)t2=cophenet(z2,y2)t3=cophenet(z3,y3)t4=cophenet(z4,y4)存盘后按F5键执行, 得到结果如下:t1 =0.9291t2 =0.9238t3 =0.9191t4 =0.9242结果中t1=0.9291最大, 可见此例利用欧式距离最合适.于是, 在MA TLAB中另写一个名为opt_cluster_3的M文件:x=[3 1.7;1 1;2 3; 2 2.5; 1.2 1; 1.1 1.5; 3 1];y1=pdist(x);z1=linkage(y1)存盘后按F5键执行, 得到结果如下:z1 =2.0000 5.0000 0.20003.00004.0000 0.50006.0000 8.0000 0.50991.0000 7.0000 0.70009.0000 11.0000 1.280610.0000 12.0000 1.3454矩阵z1的第1行表示样本点2.5为一类, 在系统聚类树上的距离为0.2, 其它类推.考察矩阵z1的第3列, 系统聚类树上的6个距离, 可以选择0.5作为聚类分界值.在MATLAB中另写一个名为opt_cluster_4的M文件:x=[3 1.7;1 1;2 3; 2 2.5; 1.2 1; 1.1 1.5; 3 1];y1=pdist(x);z1=linkage(y1)b1=cluster(z1,0.5)存盘后按F5键执行, 得到结果如下:b1 =4322314结果表示将原始数据x分为4类, 第1类: 样本点6;第2类: 样本点3.4;第3类: 样本点2.5;第4类: 样本点1.7.主要应用商业聚类分析被用来发现不同的客户群, 并且通过购买模式刻画不同的客户群的特征。
聚类分析与判别分析
![聚类分析与判别分析](https://img.taocdn.com/s3/m/bf79a4c60912a21615792910.png)
该例可以借用层次聚类Q型聚类的实例,分析某班级中语文成绩、数学成绩、化 学成绩和外语快速聚类分析的概念 Ø 快速聚类分析的计算过程及公式 Ø快速聚类分析应用实例
10.3.1 快速聚类分析的概念
快速聚类分析是由用户指定类别数的大样本资料的逐步聚类分析。它先对数据进 行初始分类,然后逐步调整,得到最终分类。快速聚类分析的实质是K-Mean聚类。
10.3.2 快速聚类分析的计算过程及公式
快速聚类分析的计算过程如下:
1.指定聚类的类数
在SPSS中确定 个类的初始类中心点。SPSS会根据样本数据的实际情况,选择 个 由代表性的样本数据作为初始类中心。初始类中心也可以由用户自行指定,需要指定 组样本数据作为初始类中心点。
2. 确定中心点
接着,SPSS重新确定 个类的中心点。SPSS计算每个变量的变量值均值, 并以均值点作的类中心点;最后重复上面的两步计算过程,直到达到指定的 迭代次数或终止迭代的判断要求为止。
10.3.3 快速聚类分析应用实例
本实例调查了全国10个学校的校风、校纪、领导角色和教师态度4个指标, 希望使用快速聚类分析将这10个学校按照其各自的特点分成4种类型。
10.4 判别分析
Ø 判别分析的概念 Ø 判别分析应用实例
10.4.1 判别分析的概念
判别分析先根据已知类别的事物的性质建立函数式,然后对未知类别的新事物进 行判断以将之归入已知的类别中。 在判别分析中有如下假定:
预测变量服从正态分布。 预测变量之间没有显著的相关。 观测变量的平均值和方差不相关。 预测变量之间的相关性在不同类中是一样的。
10.1.1 聚类分析的意义
聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个 分类的标准,聚类分析能够从样本数据出发,自动进行分类分析,所得到的聚 类数未必一致。因此,这里所说的聚类分析是一种探索性的分析方法。
判别分析与聚类分析
![判别分析与聚类分析](https://img.taocdn.com/s3/m/f488d103de80d4d8d15a4fdc.png)
判别分析(Discriminant Analysis)一、概述:判别问题又称识别问题,或者归类问题。
判别分析是由Pearson于1921年提出,1936年由Fisher首先提出根据不同类别所提取的特征变量来定量的建立待判样品归属于哪一个已知类别的数学模型。
根据对训练样本的观测值建立判别函数,借助判别函数式判断未知类别的个体。
所谓训练样本由已知明确类别的个体组成,并且都完整准确地测量个体的有关的判别变量。
训练样本的要求:类别明确,测量指标完整准确。
一般样本含量不宜过小,但不能为追求样本含量而牺牲类别的准确,如果类别不可靠、测量值不准确,即使样本含量再大,任何统计方法语法弥补这一缺陷。
判别分析的类别很多,常用的有:适用于定性指标或计数资料的有最大似然法、训练迭代法;适用于定量指标或计量资料的有:Fisher二类判别、Bayers多类判别以及逐步判别。
半定量指标界于二者之间,可根据不同情况分别采用以上方法。
类别(有的称之为总体,但应与population的区别)的含义——具有相同属性或者特征指标的个体(有的人称之为样品)的集合。
如何来表征相同属性、相同的特征指标呢?同一类别的个体之间距离小,不同总体的样本之间距离大。
距离是一个原则性的定义,只要满足对称性、非负性和三角不等式的函数就可以称为距绝对距离马氏距离:(Manhattan distance)设有两个个体(点)X与Y(假定为一维数据,即在数轴上)是来自均数为μ,协方差阵为∑的总体(类别)A的两个个体(点),则个体X与Y的马氏距离为(,)X与总体(类别)A的距离D X Y=(,)为D X A=明考斯基距离(Minkowski distance):明科夫斯基距离欧几里德距离(欧氏距离)二、Fisher两类判别一、训练样本的测量值A类训练样本编号 1x 2xm x1 11A x 12A x 1A m x 221A x22A x2A m xA n1A An x 2A An xA An m x 均数1A x2A xAm xB 类训练样本编号 1x 2x m x1 11B x 12B x 1B m x 221B x22B x2B m xB n1B Bn x 2B Bn x B Bn m x 均数1B x2B xBm x二、建立判别函数(Discriminant Analysis Function)为:1122m m Y C X C X C X =+++其中:1C 、2C 和m C 为判别系数(Discriminant Coefficient ) 可解如下方程组得判别系数。
聚类分析 判别分析
![聚类分析 判别分析](https://img.taocdn.com/s3/m/0901e82b915f804d2b16c1c2.png)
快速聚类
当要聚成的类确定时,是用快速聚类过程可 以很快将观测量分到各类中去。其特点是处 理速度快,占用内存少,是用于大样本的聚 类分析。 我们在建模中,如果是要把相应的数据归类 并且分的类数也确定,比如4类。就可以是用 快速聚类。
快速聚类实例分析
对游泳运动员进行聚类,以便分项。仅以10 名运动员的三项测试数据为例。3个变量分别 是运动员的肩宽为x1;胸围为x2;腿长为x3,按 姿势分为蝶泳、仰泳、蛙泳、自由泳四类。
如果若干观测对象的特性指标和分类情况已经知道,就 可由这些已知的信息用判别分析的方法来建立判别函数。 对建立的判别函数的要求是用它来判别新的观测对象的 归类时。错判率要减到最小。 判别函数的一般形式是 Y=a1x1+a2x2+……+anxn 这里Y是判别分数,x1、x2、…xn为反映研究对象特 Y x1 x2 …xn 征的变量, a1、a2、…an为各变量的系数。 根据已知观测量的分类和表明观测量特征的变量值推导 出判别函数。在进行判别时,把各个观测量的值代入判 别函数中,得出判别分数,最后确定该属于哪一类。
Fisher线性判别函数的系数 刚毛鸢尾花 F1=1.687*花萼长+2.695*花萼宽-0.880*花瓣长-2.284*花瓣 宽-80.268 变色鸢尾花 F2=1.1018花萼长+1.070*花萼宽+1.001*花瓣长+0.197*花瓣 宽-71.196 费吉尼亚鸢尾花 F3=0.865*花萼长=0.7478花萼宽+1.647*花瓣长+1.695花瓣 宽-103.896
Q型聚类实例分析
例:一组有关12盎司啤酒成分和价格的数据, 变量包括beername(啤酒名称)、calorie (热量 卡路里) 、sodium (纳含量) 、alcohol (酒精 含量) 、cost (价格)。 要求根据12盎司啤酒的各成分含量及12盎司 啤酒的价格对20种啤酒进行分类。由于没有 要求具体分成几类,所以不能应用快速聚类 的方法,要使用分层聚类的办法。
聚类分析和判别分析
![聚类分析和判别分析](https://img.taocdn.com/s3/m/e07d3f12964bcf84b9d57b3e.png)
西安科技大学
数学建模
Mathematical Modeling
1. 系统聚类法核心思想
设有 n 个样品,每个样品测得 m 项指标。系统 聚类法的基本思想是:首先定义样品间的距离(或 相似系数)和类与类之间的距离。初始将 n 个样品 看成 n 类(每一类包含一个样品) ,这时类间的距离 与样品间的距离是等价的;然后将距离最近的两类 合并成为新类,并计算新类与其它类的类间距离, 再按最小距离准则并类。这样每次缩小一类,直到 所有的样品都并成一类为止。
聚类分析和判别分析 张守刚
西安科技大学
数学建模
Mathematical Modeling
• 总体来说,聚类分析就是把没有分类信息 的资料按照相似程度进行归类; • 两类:系统聚类法和非系统聚类法,系统 聚类法是应用最广泛的一种方法; • 聚类分析的核心是确定“度量==分类的准 则”;
聚类分析和判别分析
聚类分析和判别分析
张守刚
西安科技大学
数学建模
Mathematical Modeling
• 逐步判别法:与逐步回归法思想类似,都 是逐步引入变量,每引入一个“最重要” 的变量进入判别式,同时也考虑较早引入 判别式的某些变量,若其判别能力不显著 了,就剔除,知道判别式中没有不重要的 变量需要剔除,且没有重要的变量需要引 入为止。这个筛选过称的本质就是假设检 验。
聚类分析和判别分析
张守刚
西安科技大学
数学建模
Mathematical Modeling
案例1
• 中国统计年鉴,2005,主要城市日照时数。 变量有: City—城市名称; 月份—Jan、Feb、……、Dec。 注:聚类可分为变量聚类和观测量聚类, 本案例采用变量聚类方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
「聚类分析与判别分析」
聚类分析和判别分析是数据挖掘和统计学中常用的两种分析方法。
聚类分析是一种无监督学习方法,通过对数据进行聚类,将相似的样本归为一类,不同的样本归入不同的类别。
判别分析是一种有监督学习方法,通过学习已知类别的样本,构建分类模型,然后应用模型对未知样本进行分类预测。
本文将对聚类分析和判别分析进行详细介绍。
聚类分析是一种数据探索技术,其目标是在没有任何先验知识的情况下,将相似的样本聚集在一起,形成互相区别较大的样本群。
聚类算法根据样本的特征,将样本分为若干个簇。
常见的聚类算法有层次聚类、k-means聚类和密度聚类。
层次聚类是一种自下而上或自上而下的层次聚合方法,通过测量样本间的距离或相似性,不断合并或分裂簇,最终形成一个聚类树状结构。
k-means聚类将样本划分为k个簇,通过优化目标函数最小化每个样本点与其所在簇中心点的距离来确定簇中心。
密度聚类基于样本点的密度来判断是否属于同一簇,通过划定一个密度阈值来确定簇的分界。
聚类分析在很多领域中都有广泛的应用,例如市场分割、医学研究和社交网络分析。
在市场分割中,聚类分析可以将消费者按照其购买行为和偏好进行分组,有助于企业制定更精准的营销策略。
在医学研究中,聚类分析可以将不同患者分为不同的亚型,有助于个性化的治疗和药物开发。
在社交网络分析中,聚类分析可以将用户按照其兴趣和行为进行分组,有助于推荐系统和社交媒体分析。
相比之下,判别分析是一种有监督学习方法,其目标是通过学习已知类别的样本,构建分类模型,然后应用模型对未知样本进行分类预测。
判别分析的目标是找到一个决策边界,使得同一类别内的样本尽可能接近,
不同类别之间的样本尽可能远离。
常见的判别分析算法有线性判别分析(LDA)和逻辑回归(Logistic Regression)。
LDA是一种经典的线性分
类方法,它通过对数据进行投影,使得同类样本在投影空间中的方差最小,不同类样本的中心距离最大。
逻辑回归是一种常用的分类算法,通过构建
一个概率模型,将未知样本划分为不同的类别。
判别分析在很多领域中都有广泛的应用,例如信用评分、欺诈检测和
医疗诊断。
在信用评分中,判别分析可以根据借款人的相关特征,预测其
违约风险,帮助银行判断是否应该批准贷款申请。
在欺诈检测中,判别分
析可以根据用户的行为特征,识别潜在的欺诈行为,保护用户的财产安全。
在医疗诊断中,判别分析可以根据患者的临床特征和医疗数据,辅助医生
进行病症诊断和治疗决策。
总结而言,聚类分析和判别分析是数据挖掘和统计学中常用的两种分
析方法。
聚类分析是一种无监督学习方法,通过对数据进行聚类,将相似
的样本归为一类。
判别分析是一种有监督学习方法,通过学习已知类别的
样本,构建分类模型,然后应用模型对未知样本进行分类预测。
这两种方
法在不同的应用领域中都有广泛的应用,并可以相互补充,提高数据分析
和决策的准确性和效果。