加速度传感器振动测量实验总结

合集下载

加速度传感器测振动位移

加速度传感器测振动位移

加速度传感器测振动速度与位移方案1. 测量方法(基本原理)设加速度传感器测量振动所得的加速度为:()a t (单位:m/s 2) 对加速度积分一次可得速率: 11()()[]2Ni i i a a v t a t dt t -=+==∆∑⎰ (单位:m/s) 对速率信号积分一次可得位移:11()()[]2N i i i v v s t v t dt t -=+==∆∑⎰ (单位:m) 其中:()a t 为连续时域加速度波形()v t 为连续时域速率波形 ()s t 为连续位移波形 i a 为i 时刻的加速度采样值 i v 为i 时刻的速率值0a =0;0v =0t ∆为两次采样之间的时间差2. 主要误差分析误差主要存在以下几个方面: 1)零点漂移所带来的积分误差由于加速度传感器的输出存在固定的零点漂移。

即当加速度为0g 时传感器输出并不一定为0,而是一个非零输出error A 。

传感器的输出值为:()a t +error A 。

对error A 二次积分会产生积分累计效应。

2)积分的初始值所带来的积分误差0a 和0v 的值并不为零,同样会产生积分累计效应。

3)高频噪声信号所带来的误差高频噪声信号会对瞬时位移值测量精度带来影响,但积分值能相互抵销而不会带来累计。

3. 解决办法1)零点漂移和积分初始值不为零可以加高通滤波器的方法滤除。

2)高频噪声信号的影响并不大,为了达到更高的精度,可以加一个低通滤波器。

选择高通滤波器和低通滤波器合理的截至频率,可以得到较理想的结果。

(注:高通滤波即去除直流分量;低通滤波即平滑滤波算法)。

4. 仿真研究4.1 问题的前提背景1.本课题研究的对象是桥梁振动的加速度()a t ,速度()v t 和位移()s t ,可以认为桥梁的加速度,速度,位移的总和为0。

即:0()0a t dt ∞=⎰0()0v t dt ∞=⎰()0s t dt ∞=⎰其离散表达式为:00()Ni i a N ===∞∑0()Nii vN ===∞∑0()Nii sN ===∞∑2.加速度传感器测量值存在误差,它主要是在零点漂移和测量噪声两个方面。

加速度传感器实验报告

加速度传感器实验报告

加速度传感器实验报告
加速度传感器实验报告
加速度传感器是一种应用广泛的测量传感器,各种型号的加速度传感器都可以用来测量振动或者加速度。

本文将介绍加速度传感器的实验,以及分析实验结果的一些重要指标。

一、实验环境
本次实验环境为实验室内,空气温度为25°C,实验使用的加速度传感器为精密型加速度传感器,量程为±15g,滤波为50Hz,高通滤波器带宽为10Hz,频率范围125kHz至2kHz。

二、实验原理
加速度传感器主要是通过测量物体运动方向(上升/下降)以及速度的变化来实现的,它可以实时测量到物体的加速度,进而检测到物体的动作、位移等信息。

实验测试结果为:温度变化0.1°C会引起加速度传感器的输出经0.18 g/°C变化。

三、实验结果
加速度传感器实验结果表明,实测值满足要求,温度变化引起的加速度传感器输出变化也满足实验要求的0.18 g/°C。

这些结果表明,加速度传感器的计算能力、精度以及可靠性都较高,在不同环境条件下能够满足较高精度的要求。

四、实验分析
通过实验结果可以看出,加速度传感器输出精度较高,准确性可靠,能够稳定满足要求。

在此基础上,未来可以基于加速度传感器的输出,进行各种类型的测量或者运动的监测,从而获得更全面的测量结果。

振动传感器性能测试及振动测试系统建模与性能分析实验

振动传感器性能测试及振动测试系统建模与性能分析实验

振动传感器性能测试及振动测试系统建模与性能分析实验一、 实验目的1. 了解各类型振动传感器的工作原理、掌握压阻式加速度传感器的动态校准过程。

2. 掌握正弦、随机振动控制的基本过程,能够根据实际情况合理设计校准过程中的参考谱。

3. 掌握振动传感器的动态校准方法并能计算出振动传感器的各项动态特性指标。

4. 了解振动测试系统的组成,掌握振动测试系统的建模方法5. 对于测试后未达到设计指标的系统,应当能够设计出动态补偿滤波器以补偿系统的动态特性。

二、实验系统组成振动测试系统由两部分组成,一部分是振动控制系统,另外一部分就是远程数据采集、处理系统。

实验系统中,振动控制系统的振动台按照预先设定的参考谱进行振动。

标准传感器和被校传感器感受相同的振动,经过相应的变送器或放大器输出的电压信号送入数据采集系统,实验工作站(包括实验者开发的数据处理软件)通过网络中的服务器获得所采集的数字信号,进行后续的动态校准、建模与性能分析工作,如图1所示。

● ● ● ● ●●实验工作站(数据处理软件)图1 振动测试系统动态校准、建模与性能分析三、实验系统工作原理1、振动控制系统工作原理振动控制系统中的振动台产生动态校准、动态测试所需的标准振动信号。

振动控制系统由振动控制仪、功率放大器、振动台和反馈传感器构成,目的是使振动台按照预先设定的参考谱进行振动。

振动控制仪安装在工控机中,振动控制信号从工控机发出,经过功率放大器对控制信号进行放大,驱动振动台振动。

而振动台的振动情况由安装在台面中心的反馈传感器获取,经过电荷放大器传送至工控机中的振动控制仪,从而形成闭环控制使振动台能够按照设定参考谱进行振动。

在振动台的夹具台面上采用背靠背方式安装标准传感器与被校传感器,这样保证了它们感受的是相同的振动信号,通过采集两个传感器的输出并将其送入实验工作站,参与实验的人员就可以在远程计算机上进行振动传感器的校准、建模及性能分析了。

2 数据采集系统工作原理数据采集系统配有NI公司的数字化仪(PXI-5122),可以实现双通道信号的同步采样。

振动测量实验报告

振动测量实验报告

振动测量实验报告振动测量实验报告引言振动是物体在空间中周期性的运动,广泛存在于自然界和工程实践中。

对振动的测量和分析对于了解物体的结构和性能具有重要意义。

本实验旨在通过振动测量实验,探究振动现象的特性和相关参数的测量方法。

实验目的1. 了解振动的基本概念和特性;2. 掌握振动参数的测量方法;3. 学习振动测量仪器的使用和操作;4. 分析振动测量结果,得出相应结论。

实验仪器和材料1. 振动测量仪器:包括加速度传感器、振动传感器、振动分析仪等;2. 实验样品:可选取弹簧振子、悬臂梁等。

实验步骤1. 准备工作:检查仪器是否正常工作,确保传感器与分析仪器连接良好;2. 安装样品:根据实验要求,选择合适的样品并固定在测量平台上;3. 连接传感器:将加速度传感器或振动传感器与样品连接,并确保传感器位置合适;4. 开始测量:启动振动分析仪器,进行振动测量;5. 记录数据:根据实验要求,记录振动参数的数值,包括振幅、频率、相位等;6. 分析结果:根据测量数据,进行振动特性的分析和对比;7. 结论和讨论:根据实验结果,得出相应结论,并进行讨论。

实验结果与讨论通过实验测量和分析,我们得到了一系列振动参数的数值。

以弹簧振子为例,我们观察到随着振动频率的增加,振幅逐渐减小,这符合振动能量逐渐耗散的特性。

同时,我们还发现在某些频率下,振幅会出现明显的共振现象,这是由于外界激励与振动系统的固有频率相吻合所致。

通过对不同样品的振动测量和对比分析,我们还可以得出不同结构和材料的振动特性差异。

例如,悬臂梁相比弹簧振子更容易发生共振现象,这是由于其固有频率较低,容易与外界激励相吻合。

这些实验结果有助于我们理解和优化工程结构的振动性能。

实验误差分析在实验过程中,可能存在一些误差,例如传感器的位置不准确、测量仪器的精度限制等。

这些误差可能对测量结果产生一定影响。

为了减小误差,我们应该在实验前进行充分的准备工作,确保仪器和样品的状态良好,并在测量过程中注意操作细节。

加速度传感器振动测量实验3页

加速度传感器振动测量实验3页

加速度传感器振动测量实验3页实验目的:1.了解加速度传感器的原理和使用方法;2.掌握利用加速度传感器进行振动测量的基本方法和技巧;3.通过实验测量,理解和验证振动信号的基本参数和特性。

仪器设备:1.加速度传感器2.数据采集卡3.计算机4.振动发生器5.电缆和连接器实验原理:加速度信号可以用来测量物体的振动运动状态。

基于牛顿第二定律,物体的加速度与所受的外力成正比,因此可以通过测量物体受到的加速度信号来反推其所受的外力信号,从而了解其振动状态。

加速度传感器是一种常用的测量振动信号的传感器,它可以通过对物体运动状态的微小变化进行测量,进而反推出物体受到的外力信号。

加速度传感器中通常采用压电效应进行测量,即物体受到外力时会产生微小的形变,从而在压电材料上产生电势差,通过这个电势差就可以测量出物体所受的加速度信号。

在进行加速度传感器测量时,需要注意一些基本原则:1.测量前要校准传感器,确保其输出信号的稳定和准确;2.传感器的安装位置和方向应该固定,并在进行测量前进行校准;3.测量时应注意消除环境干扰信号,保证测量结果的准确性。

实验步骤:1.将加速度传感器与信号采集卡连接起来,连接电缆和连接器,并将信号采集卡插入计算机中。

2.将振动发生器与被测物体连接起来,设置合适的振动参数,启动振动发生器。

3.使用计算机软件进行数据采集和测量。

4.根据测量结果,分析得出被测物体的振动特性和参数,如振幅、频率、周期等。

注意事项:1.进行实验前要对仪器设备进行检查和保养,确保其工作正常;2.操作过程中要注意安全,避免仪器设备损坏或个人受伤;3.实验结束后要及时关闭仪器设备,将其存放在干燥、通风、安全的地方。

振动传感器校准实验

振动传感器校准实验
b. 用力锤敲击某点,在数字存储示波器 中观察力脉冲的时间历程。记录力的电压值 并根据所设定的参数计算出力的大小;然后 改用不同的力度及换用不同的锤帽敲击;分 别观察并记录数据。将结果填入下表中
2021/2/21
25
力传感器 序列号
电荷放大器 放大倍数
锤帽
测试电压值 换算冲击力值
(V)
(N)
灵敏度 PC / N
4. 调整第一通道“伏/格”为1.00V(屏幕左下角显示,
“秒/格”为25ms(屏幕下中显示);
2021/2/21
27
六、注意事项
1. 拔插传感器导线时,一定要关闭仪器电源, 否则容易将放大器输入端烧毁。
2. 调节各输出旋钮时要缓慢,调节过程中应
随时观察仪器是否有异常情况,如有异常应立即 关闭仪器电源。
9
1. 压电型加速度传感器
压电式加速度传感器最常见的类型有三种,即中
心压缩型、剪切型和三角剪切型。中心压缩型压电加
速度传感器的敏感元件由两个压电晶体片组成,其上
放有一重金属制成的惯性质量块,用一预紧硬弹簧板
将惯性质量块和压电元件片压紧在基座上。整个组件
就构成了一个惯性传感器(见图1)。为了使加速度
2021/2/21
图2
12
电涡流传感器的工作原理如图2所示。
当通有交变电流i的线圈靠近导体表面时,
由于交变磁场的作用,在导体表面层就感
生电动势,并产生闭合环流ie,称为电涡
流。电涡流传感器中有一线圈,当给传感
器线圈通以高频激励电流i时,其周围就产
生一高频交变磁场。当被测的导体靠近传
感器线圈时,由于受到高频交变磁场的作
3. 记录测试数据时应待仪器显示稳定后再读 数,并能分析并剔除测试结果的异常数据。

加速度传感器振动测量实验总结

加速度传感器振动测量实验总结

加速度传感器振动测量实验总结引言在工程领域中,振动测量是一个重要的应用领域。

通过监测和分析振动信号,可以获取到物体的运动状态、结构的健康状况以及运动中的异常情况。

而加速度传感器是常用的振动测量设备之一,可以用来测量物体在振动过程中的加速度变化。

本次实验旨在探究加速度传感器在振动测量中的应用,以及对其实验结果进行分析和总结。

实验目的本次实验的目的是通过加速度传感器测量不同振动情况下的加速度信号,并对实验结果进行分析,从而探究加速度传感器在振动测量中的应用。

实验步骤实验器材准备1.加速度传感器:保证传感器的正常工作状态,检查传感器的运行指示灯,确认传感器已连接到计算机。

2.计算机:用于接收和分析加速度传感器测得的数据。

实验操作流程1.将加速度传感器固定在待测物体上。

2.设置实验参数,如采样率、采样时间等,并开始数据采集。

3.对待测物体施加不同类型的振动,如单频振动、多频振动等。

4.停止数据采集,保存实验数据。

5.使用数据分析软件导入实验数据,并进行分析。

实验结果与分析单频振动实验1.实验条件:振频为20Hz,持续时间为30s。

2.实验结果:根据实验数据绘制加速度-时间曲线,观察到振动状态随时间呈周期性变化。

3.分析:从曲线中可以得知物体的振幅、频率,进而判断出物体的振动特性。

多频振动实验1.实验条件:振频为10Hz和30Hz,持续时间为30s。

2.实验结果:绘制加速度-时间曲线,观察到振动状态随时间的变化,其中包含两个频率的振动信号。

3.分析:通过分析曲线中不同频率的振动成分,可以判断物体的多频振动特性,并进一步分析结构的稳定性和异常情况。

实验心得优点1.加速度传感器可以实时、准确地测量振动加速度信号,为振动分析提供了有效的数据基础。

2.实验操作简单,操作流程清晰,适合工程实验室内的日常学习和科研活动。

不足之处1.在实验过程中,传感器的位置和固定方式对实验结果可能会产生一定的影响,需要注意传感器的安装调整。

【实验报告】压电式传感器测振动实验报告

【实验报告】压电式传感器测振动实验报告

压电式传感器测振动实验报告篇一:压电式传感器实验报告一、实验目的:了解压电传感器的测量振动的原理和方法。

二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。

(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。

三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板。

双踪示波器。

四、实验步骤:1、压电传感器装在振动台面上。

2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。

3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。

将压电传感器实验模板电路输出端Vo1,接R6。

将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。

3、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。

4、改变低频振荡器的频率,观察输出波形变化。

光纤式传感器测量振动实验一、实训目的:了解光纤传感器动态位移性能。

二、实训仪器:光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。

三、相关原理:利用光纤位移传感器的位移特性和其较高的频率响应,用合适的测量电路即可测量振动。

四、实训内容与操作步骤1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。

2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。

3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi 相接,低通输出Vo接到示波器。

4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。

5、将频率档选在6~10Hz左右,逐步增大输出幅度,注意不能使振动台面碰到传感器。

局部振动实验报告范文(3篇)

局部振动实验报告范文(3篇)

第1篇一、实验目的1. 了解局部振动的概念和产生原因。

2. 掌握局部振动实验的方法和步骤。

3. 分析局部振动的特征,研究振动对结构的影响。

二、实验原理局部振动是指结构或构件在特定位置产生的振动,通常由外部激励或内部缺陷引起。

局部振动实验旨在研究振动对结构的影响,以及振动传递和衰减规律。

三、实验仪器与材料1. 实验台:用于放置实验样品。

2. 激振器:用于产生外部激励。

3. 振动传感器:用于测量振动信号。

4. 数据采集系统:用于实时记录和分析振动数据。

5. 实验样品:如梁、板等结构构件。

四、实验步骤1. 准备实验样品:将实验样品放置在实验台上,确保样品稳固。

2. 连接仪器:将激振器、振动传感器和数据采集系统连接好。

3. 调整激振器:调节激振器的频率和振幅,使其产生所需的外部激励。

4. 测量振动信号:启动数据采集系统,记录实验样品在不同位置的振动信号。

5. 分析振动数据:对振动信号进行时域、频域分析,研究振动特征和传递规律。

6. 实验重复:改变激振器频率和振幅,重复实验步骤,验证实验结果的可靠性。

五、实验结果与分析1. 实验结果(1)时域分析:通过时域分析,可以观察到实验样品在不同位置的振动曲线,分析振动幅值、频率和相位等信息。

(2)频域分析:通过频域分析,可以提取实验样品的固有频率、共振频率和振动能量分布等信息。

2. 分析(1)振动幅值:实验结果表明,实验样品在不同位置的振动幅值存在差异,这与实验样品的结构和激振器的频率有关。

(2)固有频率:实验样品的固有频率与实验样品的结构和质量分布有关,可通过频域分析得到。

(3)共振频率:当激振器的频率接近实验样品的固有频率时,实验样品会产生共振现象,振动幅值显著增大。

(4)振动传递规律:实验结果表明,振动在实验样品中传递时,振幅逐渐减小,这与实验样品的材料和结构有关。

六、结论1. 本实验成功研究了局部振动的特征,验证了振动对结构的影响。

2. 通过实验,掌握了局部振动实验的方法和步骤,为今后类似实验提供了参考。

振动试验中加速度传感器的选择

振动试验中加速度传感器的选择

振动试验中加速度传感器的选择The Choice of Acceleration Sensor in the Vibration Testing环境适应性和可靠性2009.3国家电子计算机质量监督检验中心符瑜慧李雪松杨红左进凯 FU Yu-hui LI Xue-song YANG Hong ZUO Jin-kai摘要:参与振动试验中振动量值的获得,最直接也是主要的单元之一是加速度传感器。

本文将重点对压电式加速度传感器的工作原理及影响其选型的主要因素进行探讨。

关键词:传感器;选择Abstract: Getting the vibration force in the vibration testing, there is a unit-sensor which is directness and importance. This paper will talk about that the voltage acceleration sensor function and the important factor which must think about in choosing the sensor type.Key Words:sensor ; choice.1 引言振动试验中,我们对控制点、监测点等的振动量值都是通过加速度传感器采样得到的,该数值的正确性、可信性,直接影响到对试验的结果的判定。

如果控制点所得到的数值不真实,就会影响到我们对试验样品的振动应力施加,可能是欠应力或过应力,欠应力会导致不能真实反应样品的质量信息,达不到预期考察样品“抗振”的试验目的,过应力可能会使样品损害,或据此以样品进行改进设计,增加企业成本;如果监测点所得到的数值不真实,监测的作用就推动了应有的作用,达不到监测振动台面和样口某薄弱环节的作用,甚至会带来不必要的错误改进。

因此,影响振动试验中振动量值的正确获得,除了与传感器的安装位置、样品的安装等外,还跟传感器的技术指标有关,它是得到振动量值的最直接也是最重要的单元之一。

传感器实验总结报告范文(3篇)

传感器实验总结报告范文(3篇)

第1篇一、实验背景随着科技的飞速发展,传感器技术在各个领域都得到了广泛的应用。

传感器作为一种将非电学量转换为电学量的装置,对于信息采集、处理和控制具有至关重要的作用。

本实验旨在通过一系列传感器实验,加深对传感器基本原理、工作原理和应用领域的理解。

二、实验目的1. 了解传感器的定义、分类和基本原理。

2. 掌握常见传感器的结构、工作原理和特性参数。

3. 熟悉传感器在信息采集、处理和控制中的应用。

4. 培养动手操作能力和分析问题、解决问题的能力。

三、实验内容本次实验共分为以下几个部分:1. 压电式传感器实验- 实验目的:了解压电式传感器的测量振动的原理和方法。

- 实验原理:压电式传感器由惯性质量块和受压的压电片等组成。

工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。

- 实验步骤:1. 将压电传感器装在振动台面上。

2. 将低频振荡器信号接入到台面三源板振动源的激励源插孔。

3. 将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。

将压电传感器实验模板电路输出端Vo1,接R6。

将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。

4. 合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。

5. 改变低频振荡器的频率,观察输出波形变化。

2. 电涡流传感器位移特性实验- 实验目的:了解电涡流传感器测位移的原理和方法。

- 实验原理:电涡流传感器利用电磁感应原理,当传感器靠近被测物体时,在物体表面产生涡流,通过检测涡流的变化来测量物体的位移。

- 实验步骤:1. 将电涡流传感器安装在实验平台上。

2. 调整传感器与被测物体的距离,观察示波器波形变化。

3. 改变被测物体的位移,观察示波器波形变化。

3. 光纤式传感器测量振动实验- 实验目的:了解光纤传感器动态位移性能。

加速度传感器实验报告

加速度传感器实验报告

加速度传感器实验报告
加速度传感器实验是一种研究加速度传感器的实验,它使用加速度传感器来检测物体的位置、加速度、以及其他物理参数。

主要用于测量机械结构、机械装置或控制系统对加速度变化的反应。

二、实验原理
加速度传感器实验主要是通过测量加速度传感器传出的信号来
计算物体的速度和加速度,以此来检测物体的位置,加速度,以及其他物理参数。

主要原理是利用微涨落电位(V/m)来判断加速度变化,并将其转化为加速度的数字信号。

三、实验设备
实验中所使用的设备主要包括加速度传感器、计算机或小型数字电路、激励源、仪器仪表等。

四、实验过程
(1)校准设备:首先,在实验过程中需要进行设备的校准,具体操作是将校准工具将加速度传感器的激励源钳位调整到恰当电位,以达到较高的准确度。

(2)测量加速度:启动加速度传感器,测量物体的加速度。

根据加速度参数,在实验记录表中进行记录。

(3)检查加速度:测量完成后,需要检查加速度是否与预期一致。

五、实验结果
通过实验,记录下的加速度参数如下:
实验编号 X加速度 Y加速度 Z加速度
A1 0.5 m/s2 0.3 m/s2 0.2 m/s2
A2 0.6 m/s2 0.8 m/s2 0.3 m/s2
A3 0.7 m/s2 0.9 m/s2 0.4 m/s2
六、结论
通过本次加速度传感器实验,我们发现物体在不同方向上的加速度值不同。

这些参数可以用来验证机械结构,机械装置,控制系统以及其他机械系统的性能和可靠性。

此外,本实验的结果还可以用于优化机械设计,以提高机械装置的运行效率。

压电式传感器测振动实验

压电式传感器测振动实验

压电式传感器测量振动实验一、实验目的:1、了解压电式传感器结构及其特点;2、了解压电式传感器测量电路的组成方式和测量振动的方法。

二、基本原理:压电式传感器是一和典型的发电型传感器,其传感元件是压电材料,它以压电材料的压电效应为转换机理实现力到电量的转换。

压电式传感器可以对各种动态力、机械冲击和振动进行测量,在声学、医学、力学、导航方面都得到广泛的应用。

1、压电效应:一些离子型晶体的电介质(如石英、酒石酸钾钠、钛酸钡等)不仅在电场力作用下,而且在机械力作用下,都会产生极化现象。

即:在这些电介质的一定方向上施加机械力而产生变形时,就会引起它内部正负电荷中心相对转移而产生电的极化,从而导致其两个相对表面(极化面)上出现符号相反的束缚电荷,且其电位移D(在MKS 单位制中即电荷密度σ)与外应力张量T 成正比。

当外力消失,又恢复不带电原状;当外力变向,电荷极性随之而变。

这种现象称为正压电效应,或简称压电效应。

具有压电效应的材料称为压电材料,常见的压电材料有两类压电单晶体,如石英、酒石酸钾钠等;人工多晶体压电陶瓷,如钛酸钡、锆钛酸铅等。

压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。

其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。

由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。

而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。

磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。

现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。

2、压电式加速度传感器图4-1 是本实验仪上所有的压电式加速度传感器的结构图。

振动噪声测量实验报告

振动噪声测量实验报告

振动噪声测量实验报告实验目的本实验旨在学习振动噪声的测量方法,了解不同类型的振动噪声对人体的危害,并熟悉振动噪声测量仪器的操作。

实验器材和仪器- 振动噪声测量仪器(包括加速度传感器、低噪声测量放大器和频谱分析仪等)- 调频音频信号发生器- 校准质量块实验原理振动噪声是指工作环境中的振动信号或机械设备产生的噪声。

它的主要特征是频率和振幅的随机变化。

振动噪声可以对人体产生不良影响,包括听觉损伤、神经系统紊乱和心理压力等。

因此,对振动噪声进行科学准确的测量是至关重要的。

实验步骤1. 连接振动噪声测量仪器。

将加速度传感器连接到低噪声测量放大器的输入端,然后将放大器的输出端连接到频谱分析仪。

2. 放置加速度传感器。

将加速度传感器粘贴在要测量的物体的表面,并确保其与物体有良好的接触。

3. 调节振动噪声测量仪器。

根据测量要求,将振动噪声测量仪器的工作模式、采样频率和测量范围等参数进行相应的调整。

4. 进行校准。

使用校准质量块对振动噪声测量仪器进行校准,确保其准确度和稳定性。

5. 进行实验测量。

根据实验要求,选择适当的测量时间和测量点,并记录测量数据。

6. 分析测量结果。

使用频谱分析仪分析测量数据,获取振动噪声的频率、振幅等信息,并进行相关统计计算。

实验结果与讨论在实验中,我们对不同类型的机械设备进行了振动噪声测量。

通过观察实验数据和分析结果,我们得出以下结论:1. 不同类型的机械设备会产生不同频率和振幅的振动噪声。

2. 噪声级别(dB)越高,振动噪声越强烈,对人体的危害也越大。

3. 将振动噪声变为频谱图可以更直观地了解噪声的频率分布情况。

4. 经过校准处理后,测量仪器的测量结果更加准确可信。

实验结论通过本次实验,我们了解了振动噪声的测量方法,包括仪器的连接和调节,以及测量数据的分析和处理。

我们还了解到了振动噪声对人体的危害,并意识到科学准确地测量振动噪声的重要性。

通过实验测量和分析,我们获得了不同类型机械设备产生的振动噪声的频率、振幅等信息,为进一步研究和控制振动噪声提供了参考依据。

传感器实验心得体会(通用5篇)

传感器实验心得体会(通用5篇)

传感器实验心得体会(通用5篇)传感器实验心得体会篇1在做测试技术的实验前,我以为不会难做,就像以前做物理实验一样,做完实验,然后两下子就将实验报告做完。

直到做完测试实验时,我才知道其实并不容易做,但学到的知识与难度成正比,使我受益匪浅。

在做实验前,一定要将课本上的知识吃透,因为这是做实验的基础,否则,在老师讲解时就会听不懂,这将使你在做实验时的难度加大,浪费做实验的宝贵时间。

比如做应变片的实验,你要清楚电桥的各种接法,如果你不清楚,在做实验时才去摸索,这将使你极大地浪费时间,使你事倍功半。

做实验时,一定要亲力亲为,务必要将每个步骤,每个细节弄清楚,弄明白,实验后,还要复习,思考,这样,你的印象才深刻,记得才牢固,否则,过后不久你就会忘得一干二净,这还不如不做。

做实验时,老师还会根据自己的亲身体会,将一些课本上没有的知识教给我们,拓宽我们的眼界,使我们认识到这门课程在生活中的应用是那么的广泛。

通过这次测试技术的实验,使我学到了不少实用的知识,更重要的是,做实验的过程,思考问题的方法,这与做其他的实验是通用的,真正使我们受益匪浅。

传感器实验心得体会篇2这个学期我们学习了测试技术这门课程,它是一门综合应用相关课程的知识和内容来解决科研、生产、国防乃至人类生活所面临的测试问题的课程。

测试技术是测量和实验的技术,涉及到测试方法的分类和选择,传感器的选择、标定、安装及信号获取,信号调理、变换、信号分析和特征识别、诊断等,涉及到测试系统静动态性能、测试动力学方面的考虑和自动化程度的提高,涉及到计算机技术基础和基于LabVIEW的虚拟测试技术的运用等。

课程知识的实用性很强,因此实验就显得非常重要,我们做了金属箔式应变片:单臂、半桥、全桥比较,回转机构振动测量及谱分析,悬臂梁一阶固有频率及阻尼系数测试三个实验。

刚开始做实验的时候,由于自己的理论知识基础不好,在实验过程遇到了许多的难题,也使我感到理论知识的重要性。

测量速度与加速度实验报告

测量速度与加速度实验报告

测量速度与加速度实验报告测量速度与加速度实验报告引言:测量速度与加速度是物理实验中最基础的内容之一。

通过实验,我们可以了解物体在运动过程中的速度变化以及加速度的概念。

本实验通过使用简单的装置和测量工具,来探究速度和加速度的测量方法,并通过实验数据分析,得出结论。

实验目的:1. 学习使用测量工具测量物体的速度和加速度;2. 通过实验数据分析,掌握速度和加速度的计算方法;3. 理解速度和加速度对物体运动的影响。

实验器材:1. 直尺2. 秒表3. 直线轨道4. 小车5. 线性位移传感器实验步骤:1. 将直线轨道平放在水平桌面上,并使用直尺测量轨道的长度;2. 将小车放置在轨道上,并用直尺测量小车的起始位置;3. 使用线性位移传感器连接小车,并将传感器的起始位置与小车的起始位置对齐;4. 用秒表计时,记录小车在轨道上运动的时间;5. 重复实验多次,取平均值。

实验结果与分析:通过实验测量得到的数据,我们可以计算出小车在轨道上的平均速度和加速度。

速度的计算方法为:速度=位移/时间。

加速度的计算方法为:加速度=(末速度-初速度)/时间。

根据实验数据和计算结果,我们可以得出以下结论:1. 速度与位移成正比:在实验中,我们可以观察到小车的速度与位移之间存在着一定的正比关系。

当小车的位移增加时,它的速度也会相应增加。

2. 加速度与时间成反比:实验中我们还观察到,小车的加速度与时间之间存在着一定的反比关系。

当时间增加时,小车的加速度会减小。

3. 加速度与速度成正比:实验中我们还可以观察到,小车的加速度与速度之间存在着一定的正比关系。

当小车的速度增加时,它的加速度也会相应增加。

实验结论:通过本次实验,我们了解了测量速度和加速度的方法,并通过实验数据分析得出了速度和加速度之间的关系。

实验结果表明,速度与位移成正比,加速度与时间成反比,加速度与速度成正比。

这些结论对于理解物体运动过程中的速度和加速度变化具有重要意义。

实验改进:为了提高实验的准确性和精度,我们可以采取以下改进措施:1. 使用更精确的测量工具,如数字测量仪器,以减少误差;2. 增加实验重复次数,取平均值,以提高数据的可靠性;3. 考虑其他因素对实验结果的影响,如摩擦力、空气阻力等,并进行相应的修正。

振动测试实验报告(一)

振动测试实验报告(一)

振动测试实验报告(一)振动测试实验报告引言•介绍振动测试实验的背景和目的实验设备•列点介绍用于振动测试的设备和仪器实验过程•描述实验的具体步骤和操作流程•列出实验所使用的参数和测量方法实验结果•展示实验所得的振动数据和曲线图•列出实验的统计数据和分析结果实验讨论与分析•分析实验结果的差异和变化趋势•论述可能的原因和影响因素实验结论•总结实验结果和分析的关键点•概括实验的主要发现和结论实验改进和展望•提出对实验方法和设备的改进意见•展望进一步深入研究的方向和潜在应用领域参考文献•列出引用的相关文献以上是一份基于Markdown格式的振动测试实验报告的标题副标题形式的文章。

注意文章内不应包含HTML字符、网址、图片和电话号码等内容。

实验设备振动测试仪•型号:XYZ-123•产商:ABC公司•主要功能:用于测量和分析物体的振动特性加速度传感器•型号:123-Accel•产商:DEF公司•主要功能:测量物体在振动过程中的加速度变化数据采集系统•型号:DataLogger-456•产商:GHI公司•主要功能:用于实时采集和记录振动测试数据实验过程准备工作1.将振动测试仪和加速度传感器连接至数据采集系统。

2.确保设备之间的连接稳固可靠。

实验步骤1.将待测试物体放置在振动测试台上。

2.设置振动测试仪的参数,包括频率范围和振动幅值。

3.启动数据采集系统,开始记录振动测试数据。

4.逐步增加振动仪的频率,记录相应的加速度值。

5.按照设定的频率范围和步长进行振动测试,直至测试完成。

实验结果振动数据•频率(Hz) 加速度(m/s^2)•10 0.53•20 1.27•30 2.18•40 3.08•50 3.95振动曲线图振动曲线图振动曲线图实验讨论与分析结果分析•实验数据显示,随着振动频率的增加,加速度值也呈逐渐增大的趋势。

•在低频段时,加速度值的增长幅度较小,但在高频段时,加速度值的增长幅度明显加大。

影响因素讨论•物体的质量和刚度对振动特性有影响,可能导致加速度值的变化。

振动系统固有频率的测试实验原理、方法和报告

振动系统固有频率的测试实验原理、方法和报告

振动系统固有频率的测试一、实验目的1、学习振动系统固有频率的测试方法;2、学习共振动法测试振动固有频率的原理与方法二、实验装置简图图2-11、简支梁2、加速度传感器3、接触式激振器三、实验仪器简介请参照实验一《简谐振动幅值测量》内介绍。

四、实验原理1、幅值判别法在激振功率输出不变的情况下,由低到高调节激振器的激振频率,通过示波器可以观察到在某一频率下,任一振动量(位移、速度、加速度)幅值迅速增加,这就是机械振动系统的某阶固有频率。

这种方法简单易行,但在阻尼较大的情况下,不同的测量方法得出的共振频率稍有差别,不同类型的振动量对振幅变化敏感程度不一样,这样对于一种类型的传感器在某阶频率时不够敏感。

2、相位判别法相位判别法时根据共振时特殊的相位值以及共振前后相位变化规律所提出来的一种共振判别法。

在简谐力激振的情况下,用相位法来判定共振是一种较为敏感的方法,而且共振时的频率就是系统的无阻尼固有频率,可以排除阻尼因素的影响。

激振信号为:F=F sinωt位移信号为:x=x0sin(ωt+φ)速度信号为:v=ωx0cos(ωt+φ)加速度信号为:a=-ω2x0sin(ωt+φ)1)位移判别共振将激振信号输入到采集仪的第一通道(即X轴),位移传感器输出信号或通过振教仪积分档输出量为位移的信号输入到第二通道(即Y轴),此时两通道的信号分别为:激振信号为:F=F sinωt位移信号为:x=x0sin(ωt+φ)共振时,ω=ωn,φ=π/2,X轴信号和Y轴信号的相位差为π/2,根据莉萨如图原理可知,屏幕上的图形将是一个正椭圆。

当ω略大于ωn或略小于ωn时,图像都将由正椭圆变为斜椭圆,其变化过程如图2-2所示。

因此图像由斜椭圆变为正椭圆的频率就是振动体的固有频率。

ω<ωnω=ωnω>ωn图2-2用位移判别共振的莉萨如图形2)速度判别共振将激振信号输入到采集仪的第一通道,速度传感器输出信号或通过振教仪积分档输出量为速度的信号输入到第二通道(即Y轴),此时两通道的信号分别为:激振信号为:F=F sinωt速度信号为:v=ωx0cos(ωt+φ)共振时,ω=ωn,φ=π/2,X轴信号和Y轴信号的相位差为π/2,根据莉萨如图原理可知,屏幕上的图形将是一条直线。

振动加速度检测中传感器连接状态的自动识别_王曙

振动加速度检测中传感器连接状态的自动识别_王曙
3 实 验 与 结 果
实验是用一ICP 加速 度 传 感 器 检 测 工 控 机 开 机 时 上表面的振动,采集卡采用的是 NI公司的 4474 卡,见 图1。实验中模 拟 的 加 速 度 传 感 器 的 四 种 连 接 状 态 的
具体形式是: (1)传 感 器 吸 在 常
摘 要:在振动加速度检测中,如果系统不能对传感器连接状态加以自 动 区 分,将 正 常 连 接 状 态 下 的 数 据 和 异 常 连 接 状 态下的数据全部存入数据库,则必然会给数据库增加不必要的负担,造成 数 据 污 染;另 外,为 了 传 感 器 检 修 的 便 利,也 有 必 要 自动识别传感器的连接状态。对振动加速度检测中传感器四种连接状态的 自 动 识 别 方 法 进 行 了 研 究 :定 义 了 表 征 不 同 传 感 器连接状态的加速度信号数字特征,结合基于 LDA 的特征降维和最近邻分类器 来 实 现 自 动 识 别。 实 验 显 示,提 出 的 振 动 加 速度传感器四种连接状态的自动识别方法是有效的。
1 加 速 度 信 号 特 征 参 数 的 定 义
文 献 [7]利 用 小 波 包 分 解 提 取 各 频 段 的 能 量 作 为 特 征。本文通过观察采集的大量振动加速度传感器四种
第 11 期
王 曙 ,等 :振 动 加 速 度 检 测 中 传 感 器 连 接 状 态 的 自 动 识 别
159
∑ Si = (x-mi)(x-mi)T,i=1,2,… x∈Xi Sw = P1S1 +P2S2 + … +PiSi + …
(1) (2)

∑ Sb = Pi(mi -m)(mi -m)T i=1
(3)
式中:Xi 为第i 类的样本子集;mi 为第i 类的样本子集
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

加速度传感器振动测量实验总结
一、实验目的
本实验旨在通过使用加速度传感器来测量不同振动情况下的加速度,
并分析其特性。

二、实验原理
加速度传感器是一种用于测量物体在运动过程中加速度的传感器。


工作原理基于牛顿第二定律,即F=ma,其中F表示物体所受到的力,m表示物体的质量,a表示物体所受到的加速度。

通过测量物体所受
到的力和质量,可以得出物体所受到的加速度。

三、实验步骤
1. 连接电路:将加速度传感器与数据采集卡连接,并将数据采集卡连
接至计算机。

2. 安装软件:安装并打开LabVIEW软件。

3. 编写程序:编写程序以读取和显示传感器输出数据。

4. 进行振动测试:将传感器固定在不同振动源上进行测试,并记录数据。

5. 分析数据:使用LabVIEW软件分析数据并绘制图表。

四、实验结果及分析
通过对不同振动源进行测试,得出了相应的加速度数据。

根据图表可以看出,在不同频率下,振幅对应的加速度值也有所不同。

此外,在相同频率下,不同振幅下的加速度值也有所不同。

这表明振动源的频率和振幅对加速度传感器的输出有着重要影响。

五、实验结论
本实验通过使用加速度传感器来测量不同振动情况下的加速度,并分析其特性。

结果表明,振动源的频率和振幅对加速度传感器的输出有着重要影响。

此外,通过对数据的分析可以得出更深入的结论,从而为工程应用提供参考。

六、实验注意事项
1. 实验时应注意安全,避免发生意外事故。

2. 实验前应检查设备是否正常工作。

3. 实验中应仔细记录数据并进行分析。

4. 实验后应及时清理设备并妥善保存数据。

相关文档
最新文档