天体运动问题的基本模型与方法

合集下载

高中物理复习 双星问题,天体追击

高中物理复习 双星问题,天体追击

一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。

2.模型条件: (1)两颗星彼此相距较近。

(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。

(3)两颗星绕同一圆心做圆周运动。

3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。

(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。

(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。

(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。

②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。

(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。

②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。

二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。

天体运动问题的基本模型和方法

天体运动问题的基本模型和方法

天体运动问题的基本模型和方法天体运动问题的基本模型与方法天体运行问题的分析与求解,是牛顿第二定律与万有引力定律的综合运用,问题的分析与求解的关键是建模能力。

一、基本模型计算天体间的万有引力时,将天体视为质点,天体的全部质量集中于天体的中心,一天体绕另一天体的稳定运行视为匀速圆周运动,研究天体的自转运动时,将天体视为均匀球体。

二、基本规律1,天体在轨道稳定运行时,做匀速圆周运动,具有向心加速度,需要向心力。

所需向心力由中心天体对它的万有引力提供。

设质量为m的天体绕质量为M的天体,在半径为r的轨道上以速度v匀速圆周运动,由牛顿第二定律及万有引力定律有:。

这就是分析与求解天体运行问题的基本关系式,由于有线速度与角速度关系、角速度与周期关系,这一基本关系式还可表示为:或。

2,在天体表面,物体所受万有引力近似等于所受重力。

设天体质量为M,半径为R,其,由这一近似关系有:,即。

这一关系式的表面的重力加速度为g应用,可实现天体表面重力加速度g与的相互替代,因此称为“黄金代换”。

3,天体自转时,表面各物体随天体自转的角速度相同,等于天体自转角速度,由于赤道上物体轨道半径最大,所需向心力最大。

对于赤道上的物体,由万有引力定律及牛顿第二定律有:,式中N为天体表面对物体的支持力。

如果天体自转角速度过大,赤道上的物体将最先被“甩”出,“甩”出的临界条件是:N=0,此时有:,由此式可以计算天体不瓦解所对应的最大自转角速度,如果已知天体自转的角速度,由及可计算出天体不瓦解的最小密度。

三、常见题型题型一:平抛运动与圆周运动相结合,例1,雨伞边缘半径为r,且离地面高为h。

现让雨伞以角速,度绕伞柄匀速旋转,使雨滴从边缘甩出并落在地面上形成一圆圈,试求此圆圈的半径为R。

,解析,所述情景如图所示,设伞柄在地面上的投影为O,雨滴从伞的O R rA s B12边缘甩出后将做平抛运动,其初速度为v=r,落地时间为t,故h,gt。

雨滴在这段,02时间内的水平位移为s= vt。

(精)解决天体运动问题的方法

(精)解决天体运动问题的方法

解决天体运动问题的方法一、基本模型计算天体间的万有引力时,将天体视为质点,天体的全部质量集中于天体的中心;一天体绕另一天体的稳定运行视为匀速圆周运动;研究天体的自转运动时,将天体视为均匀球体。

二、基本规律1.天体在轨道稳定运行时,做匀速圆周运动,具有向心加速度,需要向心力。

所需向心力由中心天体对它的万有引力提供。

设质量为m的天体绕质量为M的天体,在半径为r的轨道上以速度v匀速圆周运动,由牛顿第二定律及万有引力定律有:。

这就是分析与求解天体运行问题的基本关系式,由于有线速度与角速度关系、角速度与周期关系,这一基本关系式还可表示为:或。

2.在天体表面,物体所受万有引力近似等于所受重力。

设天体质量为M,半径为R,其表面的重力加速度为g,由这一近似关系有:,即。

这一关系式的应用,可实现天体表面重力加速度g与的相互替代,因此称为“黄金代换”。

3.天体自转时,表面各物体随天体自转的角速度相同,等于天体自转角速度,由于赤道上物体轨道半径最大,所需向心力最大。

对于赤道上的物体,由万有引力定律及牛顿第二定律有:,式中N为天体表面对物体的支持力。

如果天体自转角速度过大,赤道上的物体将最先被“甩”出,“甩”出的临界条件是:N=0,此时有:,由此式可以计算天体不瓦解所对应的最大自转角速度;如果已知天体自转的角速度,由及可计算出天体不瓦解的最小密度。

三、常见题型1.估算天体质量问题由关系式可以看出,对于一个天体,只要知道了另一天体绕它运行的轨道半径及周期,可估算出被绕天体的质量。

例1.据媒体报道,嫦娥一号卫星环月工作轨道为圆轨道,轨道高200km,运行周期为127分钟。

若还知道引力常量和月球半径,仅利用以上条件不能求出的是A.月球表面的重力加速度B.月球对卫星的吸引力C.卫星绕月运行的速度D.卫星绕月运行的加速度解析:设月球质量为M,半径为R,月面重力加速度为g,卫星高度为h,运行周期为T,线速度为v,加速度为a,月球对卫星的吸引力为F。

2020高考备考物理重难点《天体运动与人造航天器》(附答案解析版)

2020高考备考物理重难点《天体运动与人造航天器》(附答案解析版)

重难点05 天体运动与人造航天器【知识梳理】考点一 天体质量和密度的计算1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即ma r mv r T m r m rMm G ====2222)2(πω(2)在中心天体表面或附近运动时,万有引力近似等于重力,即2R MmG mg =(g 表示天体表面的重力加速度).(2)利用此关系可求行星表面重力加速度、轨道处重力加速度: 在行星表面重力加速度:2R Mm Gmg =,所以2R MG g = 在离地面高为h 的轨道处重力加速度:2)(h R Mm G g m +=',得2)(h R MG g +=' 2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于2R Mm G mg =,故天体质量GgR M 2=天体密度:GRgV M πρ43==(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即r T m rMm G 22)2(π=,得出中心天体质量2324GT r M π=;②若已知天体半径R ,则天体的平均密度3233RGT r V M πρ== ③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度23GTV M πρ==.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度. 【重点归纳】 1.黄金代换公式(1)在研究卫星的问题中,若已知中心天体表面的重力加速度g 时,常运用GM =gR 2作为桥梁,可以把“地上”和“天上”联系起来.由于这种代换的作用很大,此式通常称为黄金代换公式. 2. 估算天体问题应注意三点(1)天体质量估算中常有隐含条件,如地球的自转周期为24 h ,公转周期为365天等. (2)注意黄金代换式GM =gR 2的应用. (3)注意密度公式23GTπρ=的理解和应用. 考点二 卫星运行参量的比较与运算 1.卫星的动力学规律由万有引力提供向心力,ma r mv r T m r m rMm G ====2222)2(πω2.卫星的各物理量随轨道半径变化的规律r GM v =;3r GM =ω;GMr T 32π=;2r GM a = (1)卫星的a 、v 、ω、T 是相互联系的,如果一个量发生变化,其它量也随之发生变化;这些量与卫星的质量无关,它们由轨道半径和中心天体的质量共同决定.(2)卫星的能量与轨道半径的关系:同一颗卫星,轨道半径越大,动能越小,势能越大,机械能越大.3.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s. (3)两种卫星的轨道平面一定通过地球的球心. 【重点归纳】1.利用万有引力定律解决卫星运动的一般思路 (1)一个模型天体(包括卫星)的运动可简化为质点的匀速圆周运动模型. (2)两组公式卫星运动的向心力来源于万有引力:ma r mv r T m r m rMm G ====2222)2(πω在中心天体表面或附近运动时,万有引力近似等于重力,即:2R MmGmg = (g 为星体表面处的重2.卫星的线速度、角速度、周期与轨道半径的关系⎪⎪⎩⎪⎪⎨⎧⇒⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫====减小增大减小减小增大时当半径a T v r r GM a GM r T r GM r GM v ωπω2332 考点三 宇宙速度 卫星变轨问题的分析1.第一宇宙速度v 1=7.9 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.2.第一宇宙速度的两种求法:(1)r mv r Mm G 212=,所以r GMv =1 (2)rmv mg 21=,所以gR v =1.3.第二、第三宇宙速度也都是指发射速度.4.当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行:(1)当卫星的速度突然增加时,r mv rMm G 22<,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由rGMv =可知其运行速度比原轨道时减小.(2)当卫星的速度突然减小时,r mv rMm G 22>,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由rGMv =可知其运行速度比原轨道时增大.卫星的发射和回收就是利用这一原理.1.处理卫星变轨问题的思路和方法(1)要增大卫星的轨道半径,必须加速;(2)当轨道半径增大时,卫星的机械能随之增大.2.卫星变轨问题的判断:(1)卫星的速度变大时,做离心运动,重新稳定时,轨道半径变大.(2)卫星的速度变小时,做近心运动,重新稳定时,轨道半径变小.(3)圆轨道与椭圆轨道相切时,切点处外面的轨道上的速度大,向心加速度相同.3.特别提醒:“三个不同”(1)两种周期——自转周期和公转周期的不同(2)两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度(3)两个半径——天体半径R和卫星轨道半径r的不同【限时检测】(建议用时:30分钟)1.(2019·新课标全国Ⅰ卷)在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示。

(完整版)“双星”问题及天体的追及相遇问题

(完整版)“双星”问题及天体的追及相遇问题
(2)根据两星追上或相距最近时满足两星运行的角度差等于2π的整数倍,相距最远时,两星运行的角度差等于π的奇数倍。
在与地球上物体追及时,要根据地球上物体与同步卫星角速度相同的特点进行判断。
题型一 双星规律的应用
【例题】2017年6月15日,我国在酒泉卫星发射中心用长征四号乙运载火箭成功发射硬X射线调制望远镜卫星“慧眼”。“慧眼”的成功发射将显著提升我国大型科学卫星研制水平,填补我国国X射线探测卫星的空白,实现我国在空间高能天体物理领域由地面观测向天地联合观测的超越。“慧眼”研究的对象主要是黑洞、中子星和射线暴等致密天体和爆发现象。在利用“慧眼”观测美丽的银河系时,若发现某双黑洞间的距离为L,只在彼此之间的万有引力作用下做匀速圆周运动,其运动周期为T,引力常量为G,则双黑洞总质量为()
【例题】太阳系中某行星运行的轨道半径为 ,周期为 .但科学家在长期观测中发现,其实际运行的轨道与圆轨道总存在一些偏离,且周期性地每隔 时间发生一次最大的偏离.天文学家认为形成这种现象的原因可能是该行星外侧还存在着一颗未知行星,则这颗未知行星运动轨道半径为 ( )
A. B.
C. D.
【解析】:由题意可知轨道之所以会偏离那是因为受到某颗星体万有引力的作用相距最近时
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型
(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.
(2)三星模型: ①三颗ቤተ መጻሕፍቲ ባይዱ位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).
【解析】已知地球绕太阳的公转周期为 设火星的公转周期为 根据开普勒第三定律 得 又根据 化简得

(完整版)双星三星四星问题

(完整版)双星三星四星问题

双星模型、三星模型、四星模型一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。

2.模型条件: (1)两颗星彼此相距较近。

(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。

(3)两颗星绕同一圆心做圆周运动。

3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。

(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。

(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。

(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。

②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。

(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。

②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。

二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。

漫谈天体运动问题的十种物理模型

漫谈天体运动问题的十种物理模型

漫谈天体运动问题的十种物理模型闫俊仁(山西省忻州市第一中学 034000)航空航天与宇宙探测是现代科技中的重点内容,也是高考理综物理命题的热点内容,所涉及到的知识内容比较抽象,习题类型较多,不少学生普遍感觉到建模困难,导致解题时找不到切入点.下面就本模块不同类型习题的建模与解题方法做一归类分析。

一、“椭圆轨道”模型指行星(卫星)的运动轨道为椭圆,恒星(或行星)位于该椭圆轨道的一个焦点上. 由于受数学知识的限制,此类模型适宜高中生做的题目不多,所用知识为开普勒第三定律及椭圆轨道的对称性。

例1 天文学家观察到哈雷彗星的周期约是75年,离太阳最近的距离是8.9X1010m ,但它离太阳的最远距离不能测出。

试根据开普勒定律计算这个最远距离,已知太阳系的开普勒常量k =3.354X1018m 3/s 2。

解析 设哈雷彗星离太阳的最近距离为,最远距离为R 2,则椭圆轨道半长 轴为221R R R += 根据开普勒第三定律k TR =23,得 13222R kT R -==m m 103218109.83600243657510354.38⨯-⨯⨯⨯⨯⨯)(=5.224⨯1012m二、“中心天体——圆周轨道”模型指一个天体(中心天体)位于中心位置不动(自转除外),另一个天体(环绕天体)以它为圆心做匀速圆周运动,环绕天体只受中心天体对它的万有引力作用。

解答思路 由万有引力提供环绕天体做圆周运动的向心力,据牛顿第二定律,得r Tm r mw r v m ma r Mm G n 2222)2(π==== 式中M 为中心天体的质量,m 为环绕天体的质量, a n 、v 、w 和T 分别表示环绕天体做圆周运动的向心加速度、线速度、角速度和周期.根据问题的特点条件,灵活选用的相应的公式进行分析求解。

此类模型所能求出的物理量也是最多的。

(1)对中心天体而言,可求量有两个:①质量M=2324GT r π,②密度ρ=3233R GT r π,特殊地,当环绕天体为近地卫星时(r =R),有ρ=23GT π。

浅析天体运动中的四个模型

浅析天体运动中的四个模型

浅析天体运动中的四个模型
天体运动模型是天文学中一个重要的概念,它是天体运动的理论描述。

根据其历史发展,天体运动模型已经形成了四种模式:几何平行模型、日心模型、哥白尼模型和新牛顿模型。

1. 几何平行模型:几何平行模型是天体运动的最初模型,由古希腊哲学家欧几里得提出。

该模型认为地球是宇宙的中心,其他星体都绕着地球移动,而且以相同的速度移动。

2. 日心模型:日心模型是由古希腊学者哥白尼提出的。

该模型认为太阳是宇宙的中心,其他星体都围绕太阳运行,而不是地球。

3. 哥白尼模型:哥白尼模型是古希腊学者哥白尼提出的,它是对日心模型的一种改进。

它认为太阳是宇宙的中心,其他星体都围绕太阳运行,但是运行的轨道是椭圆形的,而不是圆形的,这也就是为什么有时会看到月亮出现“变形”的原因。

4. 新牛顿模型:新牛顿模型是由牛顿提出的一种天体运动模型,又称为引力模型。

该模型认为太阳是宇宙的中心,而其他天体都受到太阳的引力而运动,运行的轨道也是椭圆形的,并且运行轨道随着距离太阳的距离而变化。

高考物理课程复习:天体运动中的四类问题

高考物理课程复习:天体运动中的四类问题

水平面内做匀速圆周运动,各卫星排列位置如图所示,则(
)
A.a的向心加速度等于重力加速度g,c的向心加速度大于d的向心加速度
B.在相同时间内b转过的弧长最长,a、c转过的弧长对应的角度相等
C.c在4
π
h内转过的圆心角是 3 ,a在2
π
h内转过的圆心角是 6
D.b的运动周期一定小于d的运动周期,d的运动周期一定小于24 h
4
3
地=ρ1× πR ,m
3
期 T2 与地球同步卫星的周期
月 2
G
2
4π 2
=m2 2 r,地球质量和
2
4 3
月=ρ2× πr ,ρ1=kρ2,联立可得轨道舱飞行的周
3
2
T1 的比值
1
=

,A
3
项正确。
3.(多选)有a、b、c、d四颗地球卫星,a还未发射,在赤道表面上随地球一起
转动,b是近地轨道卫星,c是地球同步卫星,d是高空探测卫星,它们均在同一
环月轨道。整个奔月过程简化如下:嫦娥四号探测器从
地球表面发射后,进入地月转移轨道,经过M点时变轨进
入圆形轨道Ⅰ,在轨道Ⅰ上经过P点时再次变轨进入椭
圆轨道Ⅱ。下列说法正确的是(
)
A.嫦娥四号沿轨道Ⅱ运行时,在P点的加速度大于在Q点的加速度
B.嫦娥四号沿轨道Ⅱ运行的周期大于沿轨道Ⅰ运行的周期
C.嫦娥四号在轨道Ⅰ上的运行速度小于月球的第一宇宙速度
圆周Ⅰ
不做功



圆周Ⅲ
不做功



A→B

减小
增大
B→A

增大
减小

浅析天体运动中的四个模型

浅析天体运动中的四个模型

浅析天体运动中的四个模型作者:杜志刚高磊来源:《中国校外教育·综合(上旬)》2014年第01期利用万有引力定律分析天体的运动是高中物理的核心内容,也是高考的热点、重点。

纵观各省市历年考题可知,有关天体运动的考查是必有的,考查的角度、形式多种多样。

由此对天体运行的教与学自然成为师生共同关注的焦点。

天体运动核心模型高中物理利用万有引力定律分析天体的运动是高中物理的核心内容,也是高考的热点、重点。

纵观各省市历年考题可知,有关天体运动的考查是必有的,考查的角度、形式多种多样。

由此对天体运行的教与学自然成为师生共同关注的焦点。

本人通过多年的教学实际,通过对大量学生学习实情的调研,总结归纳出了天体问题的四个模型,可以说构建四个模型便可透天体。

第一个模型是环绕模型如图。

把天体的运动看做匀速圆周运动,万有引力提供了向心力。

因此该部分的核心方程为F引=GMm1r2=GMm1(R+h)2=mg′=ma向=mv21r=mω2r=4π2mr1T2;在中心天体表面上,且忽略中心天体的自转时有F引=GMm1R2=mg;对中心天体有M=ρ4πR313。

其中M、R、ρ、g表示中心天体的质量、半径、密度、中心天体表面上的重力加速度,关于中心天体的这些量都可以成为被求的量;其中m、r、v、T、ω、h表示环绕天体的质量、轨道半径、线速度、周期、角速度、环绕天体距中心天体表面的高度,环绕天体的质量m是无法分析,而r、v、T、ω、h都可成为被求量,r是核心的环绕量。

分析该类问题时,画好环绕模型,明确已知的环绕天体量及中心天体量,明确要求的是环绕天体量还是中心天体的量,把环绕模型作为构思的载体,便可快速选取出相应的公式求之。

第二个模型是变轨道模型如图。

1、3轨道为匀速圆周运动的低轨道和较高轨道,2轨道是椭圆轨道,A、B为轨道的相切点。

在1轨道上万有引力恰好全部提供向心力,做匀速圆周运动。

在A点突然加速,机械能突然增大,万有引力小于所需的向心力,便做离心运动由A点运动到B点;由A点到B点的过程中,动能减小,重力势能增大,机械能不变,这便是天体由低轨道向高轨道跃迁的规律;在B点万有引力大于所需的向心力,便做向心运动由B点运动到A点,该过程动能增大,重力势能减小,机械能不变,这便是天体由高轨道向低轨道跃迁的规律;由此环绕天体的轨迹便是一个椭圆轨道如图2。

浅析天体运动中的四个模型

浅析天体运动中的四个模型

浅析天体运动中的四个模型
天文学研究太阳、行星、卫星、星系和宇宙的运动规律,其中有四种运动模型:平动模型、黎曼模型、张力模型和一元牛顿引力模型。

<b>一、平动模型</b>
平动模型是指天体运动的一种均匀运动,它表示天体运动的方向是垂直于初始力,并且永远不会发生变化。

文艺复兴时期,拉斐尔等科学家基于平动模型,提出了两个新的概念:“自转”和“公转”,从而解释了地球的旋转和公转,以及其他行星的公转。

<b>二、黎曼模型</b>
17世纪,黎曼提出他的椭圆运动模型,认为行星的运动轨迹是椭圆,而太阳位于椭圆长短轴的一端。

此外,他还提出了一种支配规律,该规律将行星运动的轨迹绘制为椭圆表面上的曲线,支配着行星在椭圆轨道上运动的规律。

<b>三、张力模型</b>
天体的运动还受到张力的影响,张力是指引力之外的力,它能够改变天体的运动状态。

18世纪,卢瑟福定义了张力模型,张力可以改变天体的轨道,从而使其保持稳定的运动。

<b>四、一元牛顿引力模型</b>
牛顿提出了一元牛顿引力模型,它描述了两个物体之间的引力。

引力是指物体之间互相作用的力,根据牛顿定律,物体之间的引力与它们之间的距离成正比,与它们质量的乘积成反比。

一元牛顿引力模型解释了万有引力和行星运动,有助于解释两个物体之间的引力和其
它物理现象。

总之,上述运动模型都能够解释天体运动的规律。

这些模型的发展推动了天文学的发展,并为科学家提供了一个系统的解释方法,从而帮助他们更好地理解天体运动。

天体运动模型

天体运动模型

m1m2 4π 2 m1m2 4π G 2 = m1 2 r1 ① G 2 = m2 2 r2 ② L T L T ∴ m1r1 = m2 r2 ③ r1 + r2 = L ④ m1 m2 r2 = L⑥ r1 = L ⑤ m1 + m2 m1 + m2
2
1.(2008年宁夏理综卷23)天文学家将相距较近、仅 1.(2008年宁夏理综卷 )天文学家将相距较近、 年宁夏理综卷23 在彼此的引力作用下运行的两颗恒星称为双星。 在彼此的引力作用下运行的两颗恒星称为双星。双星 系统在银河系中很普遍。 系统在银河系中很普遍。利用双星系统中两颗恒星的 运动特征可推算出它们的总质量。 运动特征可推算出它们的总质量。已知某双星系统中 两颗恒星围绕它们连线上的某一固定点分别做匀速圆 周运动,周期均为T 两颗恒星之间的距离为r 周运动,周期均为T,两颗恒星之间的距离为r,试推 算这个双星系统的总质量。(引力常量为G 。(引力常量为 算这个双星系统的总质量。(引力常量为G)
GM Mm v = 7.9km / s G 2 =m ① ∴v = R R R
第一宇宙速度由中心天体决定,任何一个星体都有都有自己的第一宇宙 速度。涉及到星体质量时,通常用方法1求第一宇宙速度。
2
方法2 根据“黄金代换” 方法2:根据“黄金代换” 联立①②两式解出 ∴ v = 联立①②两式解出 ①②
②利用“黄金代换”。物体在天体表面的重力大小 利用“黄金代换” 等于天体对物体的万有引力。 等于天体对物体的万有引力。(不考虑天体自转因 素的影响) 素的影响) Mm
Mm v2 2π 2 2 G 2 = m = mω r = m( ) r = mωv r r T
G
R
2
= mg

高考中天体运动问题模型

高考中天体运动问题模型

高考中的天体运动问题模型运用万有引力定律求解天体运动问题,是高考每年必考的重要内容,天体问题可归纳为以下四种模型。

一、重力与万有引力关系模型1.考虑地球(或某星球)自转影响,地表或地表附近的随地球转的物体所受重力实质是万有引力的一个分力由于地球的自转,因而地球表面的物体随地球自转时需要向心力,向心力必来源于地球对物体的万有引力,重力实际上是万有引力的一个分力,由于纬度的变化,物体作圆周运动的向心力也不断变化,因而地球表面的物体重力将随纬度的变化而变化,即重力加速度的值g随纬度变化而变化;从赤道到两极逐渐增大.在赤道上,在两极处,。

例1如图1所示,P、Q为质量均为m的两个质点,分别置于地球表面不同纬度上,如果把地球看成是一个均匀球体,P、Q两质点随地球自转做匀速圆周运动,则以下说法中正确的是:()A.P、Q做圆周运动的向心力大小相等 B.P、Q受地球重力相等C.P、Q做圆周运动的角速度大小相等 D.P、Q做圆周运动的周期相等例2荡秋千是大家喜爱的一项体育活动.随着科技的迅速发展,将来的某一天,同学们也许会在其它星球上享受荡秋千的乐趣。

假设你当时所在星球的质量是、半径为,可将人视为质点,秋千质量不计、摆长不变、摆角小于90°,万有引力常量为。

那么,(1)该星球表面附近的重力加速度等于多少?(2)若经过最低位置的速度为,则此时摆线的拉力是多少?二、卫星(行星)模型卫星(行星)模型的特征是卫星(行星)绕中心天体做匀速圆周运动,如图2所示。

1.卫星(行星)的动力学特征中心天体对卫星(行星)的万有引力提供卫星(行星)做匀速圆周运动的向心力,即有:。

2.卫星(行星)轨道特征由于卫星(行星)正常运行时只受中心天体的万有引力作用,所以卫星(行星)平面必定经过中心天体中心。

3.卫星(行星)模型题型设计1)讨论卫星(行星)的向心加速度、绕行速度、角速度、周期与半径的关系问题。

由得,故越大,越小。

由得,故越大,越小。

天体运动中的三种模型

天体运动中的三种模型

天体运动中的三种模型
1、“自转”天体模型
天体表面物体做圆周运动所需向心力是由万有引力的一个分力提供的,万有引力的另一个分力即为重力,从赤道向两极因作圆周运动的半径逐渐减小,故所需向心力逐渐减小,重力逐渐增加。

在两极,万有引力等于重力,在赤道,万有引力等于重力加向心力。

2、“公转”天体模型
向心力等于万有引力。

如:人造卫星绕地球运动,地球绕太阳运动
3、双星模型
两颗距离彼此较劲的恒星,在相互之间万有引力作用下,绕两球连线上某点做周期相同的匀速圆周运动。

彼此间的万有引力是双星各自做圆周运动的向心力,又为作用力和反作用力。

双星具有相同的角速度。

双星始终与他们共同的圆心在同一条直线上。

专题3 天体运动的常见模型

专题3 天体运动的常见模型

A.黑洞A的向心力大于B的向心力
B.黑洞A的线速度大于B的线速度 C.黑洞A的质量大于B的质量
D.两黑洞之间的距离越大,A的周期越小
关键能力 · 突破
栏目多的在上面加,做超链接,且各个栏目居中放; 只有“考点”的书,只上”考点一“这种简化标题
审题关键 (1)黑洞A的向心力的来源与黑洞B的向心力来源有什么关系? 提示:是一对相互作用的万有引力 (2)要想保证二者稳定的圆周运动必须有什么确定的关系? 提示:共面、同心圆且角速度必须相等
Gm1m2 L2
=m1
ω12r1,
Gm1m2 L2
=
m2 ω22 r2。
(2)两颗星的周期及角速度都相等,即T1=T2,ω1=ω2。
(3)两颗星的半径与它们之间的距离关系为r1+r2=L。
(4)两颗星到圆心的距离r1、r2与星体质量成反比,即m1 =r2 。
m2 r1
关键能力 · 突破
(5)双星的运动周期T=2π
知m<6.25,m可取7个值,故在b转动一周的过程中,a、b、c共线14次,选项D正
确,C错误。
关键能力 · 突破
栏目多的在上面加,做超链接,且各个栏目居中放; 只有“考点”的书,只上”考点一“这种简化标题
2.[相距最近](2020江西上饶六校联考)当地球位于太阳和木星之间且三者几 乎排成一条直线时,称之为“木星冲日”,2017年4月7日出现了一次“木星冲 日”。已知木星与地球几乎在同一平面内沿同一方向绕太阳近似做匀速圆 周运动,木星到太阳的距离大约是地球到太阳距离的5倍。则下列说法正确 的是( B ) A.下一次的“木星冲日”时间肯定在2019年 B.下一次的“木星冲日”时间肯定在2018年 C.木星运行的加速度比地球的大 D.木星运行的周期比地球的小

高中物理之天体运动知识点

高中物理之天体运动知识点

高中物理之天体运动知识点开普勒的行星运动三定律开普勒第一定律开普勒第一定律即为椭圆轨道定律,其内容为:所有的行星围绕太阳运动的轨道是椭圆,太阳处在所有椭圆的一个焦点上,如图。

此定律说明不同行星的椭圆轨道是不同的。

开普勒第二定律又叫面积定律,其内容为:连接太阳和行星的连线(矢径)在相等的时间内扫过相等的面积,如图。

此定律说明行星离太阳越近,其运行速率越大。

开普勒第三定律开普勒第三定律即为周期定律,其内容为:行星轨道半长轴的三次方与公转周期的二次方的比值是一个常数。

即,其中r代表椭圆轨道的半长轴,T代表行星运动的公转周期,k是一个与行星无关的常量。

对的认识:在图中,半长轴是AB间距的一半,不要认为a 等于太阳到A点的距离;T是公转周期,不要误认为是自转周期,如地球的公转周期是一年,不是一天。

(1)在以后的计算问题中,我们都把行星的轨道近似为圆,把卫星的运行轨道也近似为圆,这样就使问题变得简单,计算结果与实际情况也相差不大。

(2)在上述情况下,的表达式中,a就是圆的半径R,利用的结论解决某些问题很方便。

注意①比例系数k是一个与行星无关的常量,但不是恒量,在不同的星系中,k值不相同。

②在太阳系中,不同行星的半长轴都不相同,故其公转周期也不相等。

③卫星绕地球转动、地球绕太阳转动遵循相同的运动规律。

易错点在认识行星做椭圆运动时的向心力大小及速度大小时易错,行星的运动符合能量守恒定律,它们离太阳近时半径小,速度大,向心力也大;离太阳远时半径大,速度小,向心力也小,另一个易错点是找椭圆的半长轴时易错,许多同学在初学时,往往将2倍的半长轴代入题中进行运算。

忽略点本节中的行星运动的轨道为椭圆,是曲线运动,行星在轨道上任一点的速度方向沿该点的切线方向,速度方向易忽略,如:有部分同学认为行星的速度方向垂直于行星与太阳的连线,这种认识是错误的,是将行星的运动视为圆周运动,而实质上其轨道为椭圆。

卡文迪许扭称实验卡文迪许设计了扭称实验来测量万有引力常量,下图是扭称实验的原理图。

《天体运动模型》课件

《天体运动模型》课件

天体运动模型的发展历程
古代天文学
古代天文学家通过对天体的观察 和记录,初步建立了描述天体运
动的模型。
牛顿经典力学
牛顿提出了万有引力定律,为描述 天体之间的相互作用提供了基础。
相对论
爱因斯坦的相对论对经典力学进行 了修正,提供了更精确的天体运动 模型。
PART 02
天体运动模型的理论基础
REPORTING
模拟结果的分析和解释
数据可视化
将模拟结果进行可视化处理,便于观察和分析。
结果分析
对模拟结果进行分析,探究天体运动的规律和特点。
结果解释
根据模拟结果,解释天体运动的原因和机制。
PART 05
天体运动模型的应用实例
REPORTING
行星探测任务的轨道设计
1 2 3
轨道设计
利用天体运动模型,可以精确计算行星探测器的 轨道,确保探测器能够准确到达目标行星,并节 省能源。
太阳一周所需的时间与它们轨道半径的平方根成正比。
牛顿第二定律
总结词
牛顿第二定律是描述物体加速度与作用力之间关系的定律,它指出物体加速度的大小与作用力成正比 ,与物体质量成反比。
详细描述
牛顿第二定律也被称为动力学定律,它是由英国物理学家牛顿在17世纪提出的。这个定律指出物体加 速度的大小与作用力成正比,与物体的质量成反比。在天体运动模型中,这个定律用于描述天体在万 有引力作用下的运动规律,是天体运动模型的理论基础之一。
数据分析
通过对观测数据进行分析,结合天体运动模型,可以确认新发现 的太阳系外行星的存在和性质。
轨道稳定性
通过天体运动模型,还可以评估新发现的太阳系外行星的轨道稳 定性,为后续研究提供参考。
THANKS
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天体运动问题的基本模型与方法天体运行问题的分析与求解,是牛顿第二定律与万有引力定律的综合运用,问题的分析与求解的关键是建模能力。

一、基本模型计算天体间的万有引力时,将天体视为质点,天体的全部质量集中于天体的中心;一天体绕另一天体的稳定运行视为匀速圆周运动;研究天体的自转运动时,将天体视为均匀球体。

二、基本规律1.天体在轨道稳定运行时,做匀速圆周运动,具有向心加速度,需要向心力。

所需向心力由中心天体对它的万有引力提供。

设质量为m的天体绕质量为M的天体,在半径为r的轨道上以速度v匀速圆周运动,由牛顿第二定律及万有引力定律有:。

这就是分析与求解天体运行问题的基本关系式,由于有线速度与角速度关系、角速度与周期关系,这一基本关系式还可表示为:或.2.在天体表面,物体所受万有引力近似等于所受重力。

设天体质量为M,半径为R,其表面的重力加速度为g,由这一近似关系有:,即。

这一关系式的应用,可实现天体表面重力加速度g与的相互替代,因此称为“黄金代换”。

3.天体自转时,表面各物体随天体自转的角速度相同,等于天体自转角速度,由于赤道上物体轨道半径最大,所需向心力最大.对于赤道上的物体,由万有引力定律及牛顿第二定律有:,式中N为天体表面对物体的支持力。

如果天体自转角速度过大,赤道上的物体将最先被“甩”出,“甩”出的临界条件是:N=0,此时有:,由此式可以计算天体不瓦解所对应的最大自转角速度;如果已知天体自转的角速度,由及可计算出天体不瓦解的最小密度.三、常见题型1.估算天体质量问题由关系式可以看出,对于一个天体,只要知道了另一天体绕它运行的轨道半径及周期,可估算出被绕天体的质量。

例1.据媒体报道,嫦娥一号卫星环月工作轨道为圆轨道,轨道高200km,运行周期为127分钟.若还知道引力常量和月球半径,仅利用以上条件不能求出的是A.月球表面的重力加速度B.月球对卫星的吸引力C.卫星绕月运行的速度D.卫星绕月运行的加速度解析:设月球质量为M,半径为R,月面重力加速度为g,卫星高度为h,运行周期为T,线速度为v,加速度为a,月球对卫星的吸引力为F。

对于卫星的绕月运行,由万有引力定律及牛顿第二定律有:,由此式可求知月球的质量M。

由“黄金代换”有:,由这两式可求知月面重力加速度g。

由线速度的定义式有:,由此式可求知卫星绕月运行的速度。

由万有引力定律及牛顿第二定律有:,由此式可求知绕月运行的加速度。

由万有引力定律有:,由于不知也不可求知卫星质量m,因此,不能求出月球对卫星的吸引力.故,本题选B。

2.估算天体密度问题若已知天体的近“地”卫星(卫星轨道半径等于天体半径)的运行周期,可以估算出天体的密度。

例2.天文学家新发现了太阳系外的一颗行星。

这颗行星的体积是地球的4.7倍,质量是地球的25倍。

已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G=6.67×10-11N·m2/kg2,由此估算该行星的平均密度约为A.1.8×103kg/m3 B.5。

6×103kg/m3 C.1.1×104kg/m3 D.2.9×104kg/m3解析:对于近地卫星饶地球的运动有:,而,代入已知数据解得:ρ=2。

9×104kg/m3。

本题选D3.运行轨道参数问题对于做圆周运动的天体,若已知它的轨道半径,可以计算它的运行线速度、角速度、周期等运行参数,并且可以看出,这些参数取决于轨道半径。

例3.最近,科学家在望远镜中看到太阳系外某一恒星有一行星,并测得它围绕该恒星运动一周所用的时间为1200年,它与该恒星的距离为地球到太阳距离的100陪。

假定该行星绕恒星运行的轨道和地球绕太阳运行的轨道都是圆周,仅利用以上两个数据可以求出的量有A.恒星质量与太阳质量之比 B.恒星密度与太阳密度之比C.行星质量与地球质量之比 D.行星运行速度与地球公转速度之比解析:由万有引力定律和牛顿第二定律有:,解得:,由题意可知,能求出恒星质量与太阳质量之比。

由及题意可知,能求出行星运行速度与地球公转速度之比。

本题选AD。

4.人造地球卫星问题人造卫星运行轨道的中心与地球球心重合.同步通信卫星的轨道与赤道平面重合,运行的角速度(或周期)与地球的自传角速度(或周期)相同,距地面的高度一定。

近地卫星的轨道半径与地球半径相等。

例4.已知地球半径为R,地球表面重力加速度为g,不考虑地球自转的影响(1)推导第一宇宙速度v1的表达式;(2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h,求卫星的运行周期解析:(1)第一宇宙速度等于近地卫星的环绕速度。

设卫星的质量为m,地球的质量为M,在地球表面附近满足,卫星做圆周运动的向心力等于它受到的万有引力,即,解得:;(2)对于卫星绕地球的运动,由万有引力定律及牛顿第二定律有:,而,解得:例5.某颗地球同步卫星正下方的地球表面上有一观察者,他用天文望远镜观察被太阳照射的此卫星。

试问春分那天(太阳光直射赤道)在日落后12小时内有多长时间该观察者看不见此卫星?已知地球半径为R,地球表面处的重力加速度为g,地球自转周期为T,不考虑大气对光的折射。

解析:如图1所示,E为地球赤道,S表示卫星,A表示观察者,O表示地心。

由图知春分那天日落后,当卫星由位置S运动到S/位置过程中,恰好处于地球的阴影区域,卫星无法反射阳光,观察者看不到卫星。

设地球质量、卫星质量分别为M、m,卫星轨道及地球半径分别为r、R,由万有引力定律及牛顿第二定律有:,由几何关系有:,观察不到卫星的时间为:,在地球表面有:。

解得:.5.“相遇”问题若某天体有两颗轨道共面的卫星,从某次它们在天体中心同侧与天体中心共线(两卫星相距最近)到下次出现这一情形的时间与两卫星角速度、间满足关系:,。

例6.如图2所示,A是地球的同步卫星。

另一卫星 B的圆形轨道位于赤道平面内,离地面高度为h。

已知地球半径为R,地球自转角速度为ωo,地球表面的重力加速度为g,O 为地球中心。

(1)求卫星B的运行周期。

(2)如卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,它们再一次相距最近?解析:(1)对卫星B绕地球的运行,由万有引力定律和牛顿第二定律有:,在地面有:,解得:.(2)由题意应有:,而,由于卫星A是同步卫星,故:,解得:6.外星上的物理问题若已知某天体的半径及质量,由黄金代换式可求出天体表面的重力加速度,此后可运用有关物理规律求解在外星表面的进行的与重力加速度有关的物理问题。

这类问题的另一形式是由运动学公式,根据运动量求解出天体表面的重力加速度,然后由黄金代换式及基本关系式求解天体的其它参量。

例7.在“勇气号”火星探测器着陆的最后阶段,着陆器降落到火星表面上,再经过多次弹跳才停下来.假设着陆器第一次落到火星表面弹起后,到达最高点时高度为h,速度方向是水平的,速度大小为v o,求它第二次落到火星表面时速度的大小,计算时不计火星大气阻力。

已知火星的一个卫星的圆轨道的半径为r,周期为T。

火星可视为半径为r o的均匀球体。

解析:以M表示火星的质量,m表示火星表面处某一物体的质量,以g表示火星表面附近的重力加速度,由于在火星表面的重力等于火星对它的万有引力,故有:;以m表示火星的卫星的质量,由万有引力定律和牛顿第二定律有:。

设着陆器第二次落到火星表面时的速度为v,它的竖直分量为v1,则水平分量仍为v o,由于着陆器第一次反弹后在最高点时的竖直分速度为零,故有:,。

解以上各式解得:。

7.变轨问题飞船或卫星从地面发射时,一般先将其发射到距地球较近的轨道上做圆周运动,再在适当位置实施变轨,使其离开原来的圆周轨道,在半长轴较大的椭圆轨道运动,当运行至椭圆轨道的远地点时再次实施变轨,使其在以椭圆半长轴为半径的圆轨道上做圆周运动,这个轨道就是飞船或卫星的稳定运行或工作轨道。

还有一类变轨问题:在某确定轨道(半径一定)上圆周运动的卫星,由于某种原因的影响,若速度发生了变化,由基本关系式可以得出:,由此可以看出,当卫星速度变化时,轨道半径随之变化。

例8.2008年9月25日至28日我国成功实施了“神舟”七号载人航天飞行并实现了航天员首次出舱.如图3所示,飞船先沿椭圆轨道飞行,后在远地点343千米处点火加速,由椭圆轨道变成高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟。

下列判断正确的是:A.飞船在变轨前后的机械能相等B.飞船在圆轨道上时航天员出舱前后都处于失重状态C.飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度D.飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后圆轨道运动的加速度解析:飞船变轨前后,由于推进火箭的做功,飞船的机械能不守恒,A错;飞船在圆轨道上运动时时万有引力来提供向心力,航天员出舱前后都处于失重状态,B对;飞船在此圆轨道上运动的周期90分钟小于同步卫星运动的周期24小时,根据可知,飞船在此圆轨道上运动的角度速度大于同步卫星运动的角速度,C对。

飞船变轨前通过椭圆轨道远地点时只有万有引力来提供加速度,变轨后沿圆轨道运动也是只有万有引力来提供加速度,沿两轨道运动经过该点时,所受万有引力相等,有牛二定律知加速度相等,D错。

本题选BC.8.自转天体不瓦解问题天体自转时,天体表面的各部分随天体做匀速圆周运动,由于赤道部分所需向心力最大,赤道上质量为Δm的一部分将离未离天体的临界条件是:天体对该部分的支持力为零。

此时对Δm这部分运用万有引力和牛顿第二定律有:或,若已知天体的质量和半径或天体的平均密度,可求出天体自转的最大角速度;若已知天体的最大自转角速度或最小周期,可求出天体的最小平均密度.例9.中子星是恒星演化过程的一种可能结果,它的密度很大.现有一中子星,观测到它的自转周期为。

问该中子星的最小密度应是多少才能维持该星体的稳定,不致因自转而瓦解?计算时星体可视为均匀球体。

解析:设中子星的质量为M,赤道半径是R,对于中子星赤道上质量为m的部分物质,有关系式:,而,代入数据解得:9.双星问题天文学上,把两颗相距较近,以共同的角速度或周期绕它们连线上的某一固定点做圆周运动的天体称为双星。

双星运行中,两星体间的万有引力提供每个星体圆周运动的向心力,两天体的周期、角速度相等。

例10.天文学家将相距较近,仅在彼此的引力作用下运行的两颗行星称为双星。

双星系统在银河系中很普遍。

利用双星系统中两颗恒星的运行特征可推算出他们的总质量。

已知某双星系统中两颗恒星围绕他们连线上某一固定点分别作匀速圆周运动,周期为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量。

解析:设两星的质量分别为m1、m2,轨道半径分别为r1、r2,运行周期为T。

对m1的运行有:,对m2的运行有:,依题意有:。

相关文档
最新文档