实验3 小型图像处理系统

合集下载

图像处理实验报告

图像处理实验报告

图像处理实验报告图像处理实验报告一、引言图像处理是计算机科学与工程领域的一个重要研究方向,它涉及到对数字图像进行获取、处理、分析和显示等一系列操作。

本实验旨在通过使用图像处理技术,对一幅给定的数字图像进行处理和分析,以探索图像处理的原理和应用。

二、实验目的本实验有以下几个目的:1. 理解图像处理的基本概念和原理;2. 掌握图像处理的常用技术和方法;3. 熟悉图像处理软件的使用。

三、实验步骤1. 图像获取在本实验中,我们选择了一张风景图作为实验对象。

该图像是通过数码相机拍摄得到的,保存在计算机中的文件格式为JPEG。

我们使用图像处理软件将该图像导入到程序中,以便进行后续的处理和分析。

2. 图像预处理在进行图像处理之前,我们需要对图像进行预处理。

预处理的目的是去除图像中的噪声、平滑图像的边缘等。

我们使用了均值滤波和中值滤波两种常用的图像平滑方法。

通过对比两种方法的效果,我们可以选择合适的方法来进行图像预处理。

3. 图像增强图像增强是指通过一系列的操作,使得图像在视觉上更加鲜明、清晰、易于观察。

在本实验中,我们使用了直方图均衡化和灰度拉伸两种图像增强方法。

直方图均衡化通过对图像的像素值进行变换,使得图像的直方图更加均匀,从而增强图像的对比度。

灰度拉伸则是通过对图像的像素值进行线性变换,将图像的灰度范围拉伸到更广的范围内,从而增强图像的细节。

4. 图像分割图像分割是将图像分成若干个互不重叠的区域,每个区域具有一定的意义和特征。

在本实验中,我们使用了阈值分割和边缘检测两种图像分割方法。

阈值分割是指通过设置一个合适的阈值,将图像中的像素分为两个类别。

边缘检测则是通过检测图像中的边缘信息,将图像分割为不同的区域。

5. 图像特征提取图像特征提取是指从图像中提取出具有一定意义和特征的信息。

在本实验中,我们选择了纹理特征和颜色特征两种常用的图像特征提取方法。

纹理特征提取通过对图像的纹理进行分析,提取出图像的纹理特征。

图像处理美工实验报告

图像处理美工实验报告

图像处理美工实验报告1. 实验目的本次实验旨在通过图像处理技术,提升图片的美观度。

通过对图像进行调整、修复、美化等处理,使得图片在色彩、对比度、清晰度等方面表现出更好的效果。

2. 实验环境- 操作系统:Windows 10- 编程语言:Python- 开发环境:Anaconda Navigator- 相关软件:Adobe Photoshop3. 实验过程3.1 图片调整首先,我们使用Adobe Photoshop对原始图片进行调整。

通过调整图片的亮度、对比度、色调等参数,使得图片的整体效果更加明亮、鲜艳。

3.2 图像修复接着,我们使用图像处理库中的算法对图片进行修复。

通过去除噪点、消除瑕疵、修复缺失等操作,使得图片中的细节更加清晰、完整。

3.3 图像滤镜在调整和修复完成后,我们尝试使用不同的滤镜效果来美化图片。

通过施加不同的滤镜效果,例如模糊、锐化、马赛克等,我们可以给图片加入一些艺术效果,使得图片更加具有视觉冲击力。

3.4 图像细节增强为了使得图片更加饱满、立体,我们可以对图片中的细节部分进行增强处理。

通过增强细节的锐度、增加线条的清晰程度,我们可以使得图片中的物体更加鲜活、立体。

3.5 色彩调整最后,我们对图片的色彩进行调整。

通过调整图片的色相、饱和度、明度等参数,我们可以让图片的色彩更加丰富、鲜艳。

同时,我们可以对不同色彩通道进行调整,使得图片的整体色调更加协调、统一。

4. 实验结果经过一系列的图像处理操作,我们成功提升了图片的美观度。

原始图片与经过处理后的图片相比,色彩更加明亮饱满,细节更加清晰,整体效果更加出色。

同时,通过施加不同的滤镜效果和调整色彩,我们还加入了一些艺术效果,提升了图片的视觉冲击力。

5. 总结通过本次实验,我们了解了图像处理技术在美工方面的应用。

图像处理可以对图片进行调整、修复、美化等操作,提升其美观度和质量。

合理使用图像处理技术,可以使得图片更加生动、吸引人,为设计和美工工作提供了有力的支持。

图像处理3个实验内容

图像处理3个实验内容

图像处理实验报告格式一、封皮的填写:(1)实验课程名称:图像处理(2)实验名称:按顺序填写图像的二维离散傅立叶变换、图象的增强、图像二值化(3)年月:二、纸张要求:统一采用A4大小纸张,左侧装订,装订顺序与实验顺序一致。

三、书写要求:(1)报告除实验图像可以打印外,其余均须手写。

(2)实验图像及结果图像可以打印,图像均位于实验结果与分析部分,图像打印于纸张上部,下部空白处手写实验分析。

(3)报告中图要有图序及名称,表要有表序及名称,每个实验的图序和表序单独标号,具体格式参照毕业设计手册。

不合格者扣除相应分数。

(4)每个实验均需另起一页书写。

四、关于雷同报告:报告上交后,如有雷同,则课程考核以不及格处理。

五、报告撰写格式及实验内容如下:实验一图像的二维离散傅立叶变换一、实验目的掌握图像的二维离散傅立叶变换以及性质二、实验要求1)建立输入图像,在64⨯64的黑色图像矩阵的中心建立16⨯16的白色矩形图像点阵,形成图像文件。

对输入图像进行二维傅立叶变换,将原始图像及变换图像(三维、中心化)都显示于屏幕上。

2)调整输入图像中白色矩形的位置,再进行变换,将原始图像及变换图像(三维、中心化)都显示于屏幕上,比较变换结果。

3)调整输入图像中白色矩形的尺寸(40⨯40,4⨯4),再进行变换,将原始图像及变换图像(三维、中心化)都显示于屏幕上,比较变换结果。

三、实验仪器设备及软件HP D538、MATLAB四、实验原理以自己的语言结合课堂笔记进行总结,要求过程推导清晰明了。

五、实验步骤及程序实验步骤、程序流程、实验源程序齐全(全部手写)六、实验结果与分析实验二图像的增强一、实验目的1)掌握在计算机上进行直方图统计,以及直方图均衡化、线性变换的图像增强的方法2)掌握在计算机上进行图象平滑、图象锐化特别是中值滤波平滑及拉普拉斯算子锐化的方法二、实验要求1)显示图像(cameraman.tif)及灰度直方图。

2)对指定图像(cameraman.tif)进行直方图均衡化和线性变换,将原始图像及增强后的图像都显示于屏幕上,比较增强的效果。

《图像处理》实验指导书

《图像处理》实验指导书
六、实验考核
现场考核(60%)+实验报告(40%)
七、实验报告
实验结束后,撰写实验报告,实验报告主题部分应包括:算法原理、程序流程、算法各部分主 要函数代码以及功能注释、运行结果四部分,每部分占实验报告的 10%,按照撰写情况打分。
《图像处理》实验二 图像增强பைடு நூலகம்
一、实验意义及目的
(1)进一步掌握图像处理工具 Matlab,熟悉基于 Matlab 的图像处理函数。 (2)掌握各种图像增强方法。
功能:实现两幅图像相除。
调用格式:
C=imdivide(A,B)。
四、参考代码
参考代码中实现了彩色图像的灰度化、旋转、缩放两种几何变换以及镜像及拼接。
Image1=imread('peppers.jpg'); %红绿通道互换 Image2=Image1; Image2(:,:,1)=Image1(:,:,2); Image2(:,:,2)=Image1(:,:,1); imshow(Image2); imwrite(Image2,'changecolor.jpg');
《图像处理》实验指导书
蔡利梅 编
信息与电气工程学院
学生实验守则
一、学生进入实验室必须遵守实验室的规章制度,遵守课堂纪律,保持实验室的安静和整洁,爱护 实验室的一切设施。 二、实验课前要认真预习实验指导书,写出实验预习报告,并经教师批阅后方可进行实验。 三、实验课中要遵守操作规程,不要带电连接、更改或拆除线路。线路接好后,经指导老师检查后, 方可接通电源进行实验。对于软件上机实验,不得随意删改计算机中原有的文件。 四、学生实验前对实验所用仪器设备要了解其操作规程和使用方法,凡因不预习或不按使用方法进 行操作而造成仪器设备损坏者,除书面检查外,按学校规定进行赔偿。 五、实验中主意安全,遇到事故应立即关断电源并报告教师检查处理。 六、实验完毕后要做好整理工作,实验数据必须经指导教师签阅后,才能拆除线路,并将仪器、设 备、凳子等按规定放好,经同意后方可离开实验室。 七、因故缺课的学生可向实验室申请一次补做机会。无故缺课或无故迟到(15 分钟以上)的不予补 做,该次实验无成绩;累计三次者,该实验课以不及格论,并不得参加该门理论课程的考试。 八、实验室仪器设备不能擅自搬动调换,更不能擅自带出实验室。

(2013新版)图像处理实验三

(2013新版)图像处理实验三

实验三、图像压缩编码技术一、实验目的1、理解有损压缩和无损压缩的概念;2、理解图像压缩的主要原则和目的;3、了解几种常用的图像压缩编码方式;4、利用MATLAB程序进行图像压缩编码。

二、实验原理1、图像压缩原理图像压缩主要目的是为了节省存储空间,增加传输速度。

图像压缩的理想标准是信息丢失最少,压缩比例最大。

不损失图像质量的压缩称为无损压缩,无损压缩不可能达到很高的压缩比;损失图像质量的压缩称为有损压缩,高的压缩比是以牺牲图像质量为代价的。

压缩的实现方法是对图像重新进行编码,希望用更少的数据表示图像。

信息的冗余量有许多种,如空间冗余,时间冗余,结构冗余,知识冗余,视觉冗余等,数据压缩实质上是减少这些冗余量。

高效编码的主要方法是尽可能去除图像中的冗余成分,从而以最小的码元包含最大的图像信息。

编码压缩方法有许多种,从不同的角度出发有不同的分类方法,从信息论角度出发可分为两大类。

(1)冗余度压缩方法,也称无损压缩、信息保持编码或熵编码。

具体说就是解码图像和压缩编码前的图像严格相同,没有失真,从数学上讲是一种可逆运算。

(2)信息量压缩方法,也称有损压缩、失真度编码或烟压缩编码。

也就是说解码图像和原始图像是有差别的,允许有一定的失真。

应用在多媒体中的图像压缩编码方法,从压缩编码算法原理上可以分为以下3类:(1)无损压缩编码种类哈夫曼(Huffman)编码,算术编码,行程(RLE)编码,Lempel zev编码。

(2)有损压缩编码种类预测编码,DPCM,运动补偿;频率域方法:正交变换编码(如DCT),子带编码;空间域方法:统计分块编码;模型方法:分形编码,模型基编码;基于重要性:滤波,子采样,比特分配,向量量化;(3)混合编码。

有JBIG,H.261,JPEG,MPEG等技术标准。

本实验主要利用MATLAB程序进行赫夫曼(Huffman)编码和行程编码(Run Length Encoding,RLE)。

三、实验内容1、实现基本JPEG的压缩和编码分三个步骤:(1)首先通过DCT变换去除数据冗余;(2)使用量化表对DCT系数进行量化;(3)对量化后的系数进行Huffman编码。

图像处理实验(研究生)

图像处理实验(研究生)

实验一:图像文件类型转换实验目的:理解数字图像文件的几种根本类型掌握在MATLAB中进行图象文件类型转换的方法观察图象转换前后的效果加深对图象文件类型的理解熟悉图象格式、颜色系统间的转换实验内容:1〕灰度图像与索引图像的相互转换2〕RGB图像与索引图像的相互转换3〕将图像转换为二值化图像实验方法:利用MATLAB工具进行实验实验前预习要求:1〕理解灰度图像、索引图像、RGB图像、二值图像的概念2〕明确区分以上四种图像的存储方式及其各自特点3) 掌握imread、imshow、imwrite、colorbar等根本语句的应用4〕预习gray2ind、ind2gray、rgb2ind、ind2rgb、im2bw等语句的使用方法一、灰度图像到索引图像的转换启动MATLAB,新建一个自己的工作文件夹〔如下列图中的“MYFIG〞〕。

并把它设置在当前的工作路径〔Current Directory〕下。

1)在该文件夹中拷入个灰度图片,比方“2.jpg〞文件。

2)在MATLAB命令输入窗中,调用函数info=imfinfo('2.jpg')观查2.jpg是否为灰度图像在ColorType: 'grayscale' 属性行如此显示,那么说明以2.jpg命名的文件为灰度图像。

3)输入如下命令完成转换RGB=imread('2.jpg'); % 将图像“2.jpg〞的数据赋给变量RGBfigure(3); % 设定显示窗口3imshow(RGB); % 显示原“2.jpg〞文件figure(1); % 设定显示窗口1[RGB1,map1]=gray2ind(RGB,128); % 指定灰度级128,进行灰度图像到索引图像转换imshow(RGB1,map1) ; % 显示索引图像1figure(2); % 设定显示窗口2[RGB2,map2]=gray2ind(RGB,16); % 指定灰度级16,进行灰度图像到索引图像转换imshow(RGB2,map2) ; % 显示索引图像2imwrite(RGB1,map1,'3.bmp'); % 将索引图像1保存为名为“3.bmp〞的文件imwrite(RGB2,map2,'4.bmp'); % 将索引图像2 保存为名为“4.bmp〞的文件运行并观察结果和现象,将结果图打印出来,分析说明不同的灰度值对图片的影响并加以理论说明。

图像处理实验报告

图像处理实验报告

图像处理实验报告实验一:图像文件读取和格式转换(BMP、JPG),FMRI_MRI 并利用Matlab编程,实现多种格式图像的读取,显示和格式转换一、实验目的学习并掌握MATLAB中有关图像读取、显示、格式转换等基本内容。

二、实验内容选取目标图片,利用MATLAB对其进行读取、显示、格式转换。

三、实验步骤及各自结果1图像的读取和显示图像来自于E:\实验,图像名称为“mri.bmp”,为bmp格式。

(1)创建脚本文件,并命名为“tx1”。

(2)图像的读取和显示用imread函数实现图像的读取,imshow函数实现图像的显示。

所读取得灰度图像如下:(3)格式转换将灰色图像转换成索引图像索引图像如下:灰度图像转二值图像二值图像如下实验二:图像的直方图调整和灰度变换一、实验目的了解并掌握MATLAB中图像直方图调整和灰度变换。

二、实验内容选取目标图片,利用MATLAB对其进行直方图调整和灰度变换。

三、实验步骤及其各自的结果1创建脚本文件并命名为“tx2”。

2图像灰度调整利用imadjust函数直接调整灰度的范围而调整灰度,本例中直接利用MATLAB R2012a工具箱中自带的图片‘pout.tif’,‘cameraman.tif’和课堂提供的图片‘fmri.bmp’。

(1)下面命令通过灰度范围调整实现了灰度调整实验结果如下图所示其中左上图为原始图像,左下图为相应的灰度数据柱状统计图,右上图为调整后的图像,右下图为相应的灰度数据统计图。

从图中可以看到,调整之后,图像的灰度得到了极大的改善。

如下图(3)可以通过调整灰度范围内的灰度子范围数据,来实现增强或减少图像对比度的效果。

此例中将灰度范围为[0,51]的值,调整到灰度范围为[128,255]的值,并将灰度范围为[128,255]的值映射为255;相应的命令如下所示如下图所示(4)图像反转反转后结果2使用直方图调整灰度读取一幅灰度图像,用histeq函数将原始图像的灰度直方图均衡化,同时观察均衡化后的图像与前面图像的差别,均衡化后的灰度直方图与前面的灰度直方图的区别。

数字图像处理实验报告(五个实验全)

数字图像处理实验报告(五个实验全)

数字图像处理实验报告(五个实验全)实验⼀ Matlab图像⼯具的使⽤1、读图I=imread('lena.jpg');imshow(I);2、读⼊⼀幅RGB图像,变换为灰度图像和⼆值图像,并在同⼀个窗⼝内分成三个⼦窗⼝来分别显⽰RGB图像和灰度图像。

a=imread('lena.jpg')i = rgb2gray(a)I = im2bw(a,0.5)subplot(3,1,1);imshow(a);subplot(3,1,2);imshow(i);subplot(3,1,3);imshow(I);原图像灰度图像⼆值图像实验⼆图像变换1、对⼀幅图像进⾏平移,显⽰原始图像与处理后图像,分别对其进⾏傅⾥叶变换,显⽰变换后结果,分析原图的傅⾥叶谱与平移后傅⾥叶频谱的对应关系。

s=imread('beauty.jpg');i=rgb2gray(s)i=double(i)j=fft2(i);k=fftshift(j); 原图像原图的傅⾥叶频谱l=log(abs(k));m=fftshift(j);RR=real(m);II=imag(m);A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A)))*255;b=circshift(s,[800 450]);b=rgb2gray(b)b=double(b) 平移后的图像平移后的傅⾥叶频谱c=fft2(b);e=fftshift(c);l=log(abs(e));f=fftshift(c);WW=real(f);ZZ=imag(f);B=sqrt(WW.^2+ZZ.^2);B=(B-min(min(B)))/(max(max(B)))*255;subplot(2,2,1);imshow(s);subplot(2,2,2);imshow(uint8(b));subplot(2,2,3);imshow(A);subplot(2,2,4);imshow(B);2、对⼀幅图像进⾏旋转,显⽰原始图像与处理后图像,分别对其进⾏傅⾥叶变换,显⽰变换后结果,分析原图的傅⾥叶谱与旋转后傅⾥叶频谱的对应关系。

小型图像处理系统的设计与实现

小型图像处理系统的设计与实现
变换。
关键 词 : 移 ;旋 转 ; 放 ; 像 ; 度 变换 平 缩 镜 灰
中 图 分 类 号 :i 1 Tt 9 3
文献 标 识 码 : A
De i n a d I plm e a i n o m a lI a e Pr c s i y t m sg n m e nt to fS l m g o e sng S se
小 型 图像处 理 系统 的设 计 与实 现
吴 柯
( 湖南理 工学院计算机 系, 湖南 岳 阳 44 0 ) 10 0
摘 要 : 计 了一 个基 于 Vsa C+ 设 i l +的 图像 变换 处 理 系统 , 系统 实现 了对 图像 的 平移 、 放 和 旋 转 变 换 , u 该 缩 以及 镜 像 和 灰 度
图像处 理 是从 2 0世 纪 6 0年代 以来 随 着 计算 机 技术 的发展 而 产生 、 发展 和不 断成熟 起来 的一个 新 兴 技术领域 , 尤其是 9 年代因特网技术 的广泛传播 , 0 更 加促进了图像处理 的研究 和应用迈向了一个新的发 展 台阶 。很多 开发 成 果 在 实 践应 用 中都获 得 了巨 大 的成 功 , : 算机 游戏 、 如 计 科学 可视化 、 医学 图像 分析 、 仿 真 和虚 拟世 界等领 域 都大 量运用 了图像 处理 , 别 特 是在 虚拟 世界 方面 , 利用 这些 技术 向人们 提供 了另 外 个 生 活 空 间 , 个 展 示 个 人 性 格 魅 力 的 公 共 平 一 台 … 。本 文设 计 一 个 小 型 图像 处 理 系统 , 成对 图 完 像 的平移 、 缩放 和 旋转变 换 , 以及镜 像 和灰度 变换 。
如果参考点不是 ( , ) 而是任意一点 (ry) 00 , x,r , 那么 , (r r点的旋转 由三个步骤完成 : 绕 x, ) y () 1 将对 象平移 T x=一x,y 一 r rT = y ; () 2 按式 ( ) 旋转变 换 ; 1作 () 移 T 3平 x=x,y=y。组 合 这 三个 步 骤 的计 rT r 算公 式为 :

图像处理实验3-4

图像处理实验3-4

数字图像处理实验1. 直方图修正灰度变换是图像增强的一种重要手段,使图像对比度扩展,图像更加清晰,特征更加明显。

灰度级的直方图给出了一幅图像概貌的描述,通过修改灰度直方图来得到图像增强。

(1)计算出一幅灰度图像的直方图clearclose allI=imread(' rice.png');imhist(I)title('实验一(1)直方图');(2)对灰度图像进行简单的灰度线形变换,figuresubplot(2,2,1)imshow(I);title('试验2-灰度线性变换');subplot(2,2,2)histeq(I);(3)看其直方图的对应变化和图像对比度的变化原图像f(m,n) 的灰度范围[a,b] 线形变换为图像g(m,n),灰度范围[a’,b’] 公式:g(m,n)=a’+(b’-a’)* f(m,n) /(b-a)figuresubplot(2,2,1)imshow(I)J=imadjust(I,[0.3,0.7],[0,1],1);title(' 实验一(3)用g(m,n)=a’+(b’-a’)* f(m,n)/(b-a)进行变换');subplot(2,2,2)imshow(J)subplot(2,2,3)imshow(I)J=imadjust(I,[0.5 0.8],[0,1],1);subplot(2,2,4)imshow(J)(4) 图像二值化(选取一个域值,将图像变为黑白图像)figuresubplot(2,2,1)imshow(I)J=find(I<150);I(J)=0;J=find(I>=150);I(J)=255;title(' 实验一(4)图像二值化( 域值为150 )');subplot(2,2,2)imshow(I)clc;I=imread(‘rice.png');bw=im2bw(I,0.5);%选取阈值为0.5figure;imshow(bw) %显示二值图像2. 图像处理变换1.傅立叶变换熟悉其概念和原理,实现对一幅灰度图像的快速傅立叶变换,并求其变换后的系数分布. 2.离散余弦变换熟悉其概念和原理,实现对一幅灰度和彩色图像作的离散余弦变换,选择适当的DCT系数阈值对其进行DCT反变换.% 图像的FFT变换clc;I=imread('rice.png');subplot(1,2,1)imshow(I);title('原图');subplot(1,2,2)imhist(I);title('直方图');colorbar;J=fft2(I);figure;subplot(1,2,1)imshow(J);title('FFT变换结果');subplot(1,2,2)K=fftshift(J);imshow(K);title('零点平移');figure;imshow(log(abs(K)),[]),colormap(jet(64)),colorbar;title('系数分布图');% 图像的DCT变换RGB=imread('onion.png');figure;subplot(1,2,1)imshow(RGB);title('彩色原图');a=rgb2gray(RGB);subplot(1,2,2)imshow(a);title('灰度图');figure;b=dct2(a);imshow(log(abs(b)),[]),colormap(jet(64)),colorbar; title('DCT变换结果');figure;b(abs(b)<10)=0;% idctc=idct2(b)/255;imshow(c);title('IDCT变换结果');3. 小波变换实验内容:熟悉小波变换的概念和原理,熟悉matlab小波工具箱主要函数的使用.利用二维小波分析对一幅图像作2层小波分解,并在此基础上提取各层的低频信息实现图像的压缩.程序如下:clcclose allcleara=imread('deblur1.png ');subplot(1,2,1);imshow(a);title('原始图像');I=rgb2gray(a);subplot(1,2,2);imshow(I);title('原始图像的灰度图');% 进行二维小波变换[a,b] = wavedec2(I, 2, 'bior3.7');% 提取各层低频信息figure;c = appcoef2( a, b, 'bior3.7', 1 );subplot(1,2,1);imshow(c, []);title('一层小波变换结果');d = appcoef2( a, b, 'bior3.7', 2 );subplot(1,2,2);imshow(d, []);title('二层小波变换结果');4. 模板运算一、实验内容:(1)平滑:平滑的目的是模糊和消除噪声。

图像处理 实验报告

图像处理 实验报告

图像处理实验报告图像处理实验报告一、引言图像处理是计算机科学与工程领域的重要研究方向之一,它涉及到对图像进行获取、处理、分析和识别等一系列操作。

本实验旨在通过对图像处理算法的实现和应用,探索图像处理的基本原理和方法。

二、实验目的1. 学习图像处理的基本概念和算法;2. 掌握常用的图像处理工具和软件;3. 实现并应用图像处理算法,提高图像质量和识别效果。

三、实验方法1. 实验环境:使用Python编程语言和OpenCV图像处理库;2. 实验工具:Jupyter Notebook;3. 实验步骤:a) 图像读取:使用OpenCV读取图像文件,并将其转换为灰度图像;b) 图像增强:对灰度图像进行直方图均衡化,增强图像的对比度;c) 图像滤波:使用高斯滤波器对图像进行平滑处理,去除噪声;d) 边缘检测:应用Canny算法进行边缘检测,并提取图像中的边缘信息;e) 图像分割:使用基于阈值的方法对图像进行分割,得到目标区域;f) 特征提取:计算图像中目标区域的形状、纹理等特征;g) 图像识别:使用机器学习算法对提取的特征进行分类和识别。

四、实验结果与分析1. 图像增强:经过直方图均衡化处理后,图像的对比度得到了明显的提升,细节更加清晰;2. 图像滤波:高斯滤波器的应用能够有效平滑图像,去除噪声,使图像更加平滑自然;3. 边缘检测:Canny算法能够准确地检测出图像中的边缘,提取出目标物体的轮廓;4. 图像分割:基于阈值的分割方法能够将图像中的目标区域与背景区域分离开来,方便后续的特征提取和识别;5. 特征提取:通过计算目标区域的形状、纹理等特征,可以对图像进行更加细致的描述和识别;6. 图像识别:应用机器学习算法对提取的特征进行分类和识别,可以实现对图像中目标物体的自动识别和分类。

五、实验总结通过本次实验,我们深入学习了图像处理的基本原理和方法,并通过实际操作实现了图像的增强、滤波、边缘检测、分割、特征提取和识别等一系列操作。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告引言数字图像处理是一门研究如何对图像进行数字化处理的学科,它的应用广泛,涵盖了图像的获取、增强、压缩、分割等多个方面。

本次实验旨在探索数字图像处理的基本原理和常用技术,并通过实践操作加深对数字图像处理的理解。

实验目的1.学习掌握数字图像处理的基本原理;2.熟悉常用的数字图像处理工具和方法;3.实践应用数字图像处理技术解决实际问题。

实验环境在本次实验中,我们使用了以下环境和工具:- 操作系统:Windows 10 - 编程语言:Python - 图像处理库:OpenCV实验步骤步骤一:图像获取与显示首先,我们需要获取一张待处理的图像,并对其进行显示。

在Python中,我们可以使用OpenCV库来实现图像的读取和显示。

以下是示例代码:import cv2# 读取图像image = cv2.imread('image.jpg')# 显示图像cv2.imshow('Image', image)cv2.waitKey(0)cv2.destroyAllWindows()步骤二:图像增强图像增强是数字图像处理中常用的技术之一,旨在改善图像的质量和可视化效果。

常见的图像增强技术包括灰度转换、直方图均衡化、滤波器等。

以下是示例代码:import cv2# 读取图像image = cv2.imread('image.jpg')# 灰度转换gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GR AY)# 直方图均衡化equalized_image = cv2.equalizeHist(gray_image)# 高斯滤波器blurred_image = cv2.GaussianBlur(equalized_image, (5, 5), 0)# 边缘增强enhanced_image = cv2.Canny(blurred_image, 100, 20 0)# 显示图像cv2.imshow('Enhanced Image', enhanced_image)cv2.waitKey(0)cv2.destroyAllWindows()步骤三:图像压缩图像压缩是数字图像处理中的重要话题,旨在减少图像的存储空间和传输带宽。

数字图像处理 实验报告(完整版)

数字图像处理 实验报告(完整版)

数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。

6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。

7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。

其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。

数字图像处理实验

数字图像处理实验

图像处理实验指导书图像是一种重要的信息源,图像处理的最终目的就是要帮助人类理解信息的内涵。

数字图像处理技术的研究内容涉及光学系统、微电子技术、计算机科学、数学分析等领域,是一门综合性很强的边缘学科。

随着计算机的迅猛发展,图像处理技术已经广泛应用于各个领域。

“数字图像处理”课程内容主要包括利用计算机对图像信息进行图像采集、图像变换、图像增强与恢复、图像分割、图像分析与理解、图像压缩、图像传输等各种处理的基本理论、典型方法和实用技术。

通过本课程的学习,可使学生掌握有关图像处理与图像分析的基本概念、基础理论、实用技术和典型方法。

通过该系列实验教案与实践,了解图像增强、图像分割、图像理解和分析算法的物理意义;应用于图像处理的计算机软件技术平台很多,如VC++、MATLAB等。

本实验指导书选用MATLAB做实验平台,MATLAB是一种基于向量<数组)而不是标量的高级程序语言,而数字图像实际上就是一组有序的离散数据,从而MATLAB从本质上就可以提供对图像处理的技术支持。

实验1:图像预处理实验一、实验目的与要求:目的:通过本次实验,学生可以掌握图像读取、显示和保存的方法,要求:上机运行,调试通过。

二、实验方案:1)对附录中的练习1~3、进行上机运行和调试。

2)对上述练习,改变一些函数的参数,观察运行结果的变化。

三、实验结果与数据处理对每个练习,要求学生获得相应的实验结果。

四、结论可以是对某些MATLAB函数如何使用的认识,也可以是学生的实验后的心得体会。

五、问题与讨论1)对实验中遇到的问题,进行讨论。

实验2、图像增强一、实验目的1掌握灰度直方图的概念及其计算方法;2熟练掌握直方图均衡化过程;二、实验原理图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。

其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。

图像增强技术主要有直方图修改处理、图像平滑化处理、图像尖锐化处理和彩色处理技术等。

数字图像处理实验(1)

数字图像处理实验(1)

3)存储该图像(文件名用同学们的本名); 4)、制作标准像的硬拷贝;打印两张,一张
上交(附在实验报告中),一张自己保留;
五、撰写实验报告 1)、实验目的叙述; 2)、实验环境描述; 3)、实验项目及内容; 4)、操作步骤详细描述;包括:系统的激 活方法,菜单的运用等;
5)、记录实验结果。 6)、基本原理介绍; 7)、实验现象描述; 8)、实验结果分析;
谢谢
软件: 操作系统:WINDOWS XP 应用软件: 数字图像处理演示软件。
三、实验内容:
1)、图像信息获取; 2)、图像存储; 3)、观察直方图均衡化处理的效果; 4)、观察图像边缘增强处理效果; 5)、拍摄自己的标准像。
四、实验步骤: 1、图像信息的获取: 1)、激活软件; 2)、调整摄像机的光圈和聚焦,
数字图像处理实验
(一)
一、实验目的
1)、了解“数字图像处理系统”的基本组 成结构;
2)、掌握微型数字图像处理系统的基本 操作方法;
3)、体验主要数字图像处理内容的效果。
二、实验的软、硬件平台:
硬件: 微型图像处理系统, 包括:主机, PC机; 摄像机:Logitech 130万像素, 分辨率:640×480 最高分辨率:1280×960 手动聚焦调整.
摄取一张明暗合适的图像;
ห้องสมุดไป่ตู้
3)、存储图像;
4)、调出该图像,验证是否成功存储了该 图像。
2、观察图像均衡化处理效果 1)、激活图像处理软件; 2)、调整摄像机光圈,摄取一张偏暗的图像 并存储该图像;
3)、调用演示程序中的直方图统计功 能,观察直方图形状;
4)、调用直方图均衡化处理功能,观察 处理结果,同时调用直方图统计功 能,观察直方图形状;

图像处理综合实验报告

图像处理综合实验报告

图像处理综合实验报告一、引言图像处理是计算机科学中的重要研究领域,其应用范围广泛,涵盖了图像增强、图像分割、图像识别等多个方面。

本实验旨在通过综合实验的方式,探索图像处理的基本方法和技术,并对实验结果进行分析和总结。

二、实验目的1. 了解图像处理的基本概念和原理;2. 熟悉常用的图像处理工具和算法;3. 掌握图像处理中常见的操作和技术;4. 分析实验结果并提出改进意见。

三、实验步骤1. 实验准备在实验开始之前,我们需要准备一台计算机和图像处理软件,例如MATLAB、Python等。

同时,需要收集一些图像数据作为实验样本。

2. 图像增强图像增强是图像处理中常用的操作,旨在改善图像的质量和视觉效果。

我们可以通过调整图像的亮度、对比度、色彩等参数来实现图像增强。

在实验中,我们可以选择一些常见的图像增强算法,如直方图均衡化、灰度拉伸等。

3. 图像滤波图像滤波是图像处理中常用的技术,用于去除图像中的噪声和平滑图像。

常见的图像滤波算法包括均值滤波、中值滤波、高斯滤波等。

在实验中,我们可以选择适合实验样本的滤波算法,并对比不同滤波算法的效果。

4. 图像分割图像分割是将图像划分为不同的区域或对象的过程。

常见的图像分割算法包括阈值分割、边缘检测、区域生长等。

在实验中,我们可以选择一种或多种图像分割算法,并对比它们的分割效果和计算复杂度。

5. 图像识别图像识别是图像处理的重要应用之一,它可以用于识别和分类图像中的对象或特征。

在实验中,我们可以选择一些常用的图像识别算法,如模板匹配、神经网络等,并通过实验样本进行图像识别的实验。

四、实验结果与分析1. 图像增强实验结果我们选取了一张低对比度的图像作为实验样本,经过直方图均衡化和灰度拉伸处理后,图像的对比度得到了明显的改善,细节部分更加清晰。

2. 图像滤波实验结果我们选取了一张带有高斯噪声的图像作为实验样本,经过均值滤波、中值滤波和高斯滤波处理后,图像的噪声得到了有效的去除,图像更加平滑。

图像处理_实验指导书(2010版)

图像处理_实验指导书(2010版)

数字图像处理实验指导书2010年4月前言本实验主要目的是使实验者了解一般科学研究和工程实践中从图像采集到处理整个过程中所涉及的图像采集、存储、处理和显示方法,了解一般图像处理系统的构成及图像处理软件的设计方法。

1 数字图像处理系统的一般组成实验中使用的图像处理系统结构框图如图1所示。

图1 数字图像处理系统的一般构成实验中使用深圳健球实业生产的彩色一体变焦摄像头和微视公司生产的V110视频采集卡。

该采集卡支持两路复合视频信号输入和一路S-Video信号输入,视频信号制式可以是PAL、NTSC或SECAM,采集卡的最高分辨率为768 x 576,采集的数据精度可为8bit、16bit、24bit和32bit,采集卡的外观如图2所示。

图2 微视V110视频采集卡外观实验主机采用Pentium(R)4 2.93GHz CPU,1G+256M内存物理地址扩展;方正17’’FC777K彩色显示器。

2 视频采集卡参数设置图像采集卡参数可以通过调用采集卡接口函数MV_GetDeviceParameter()和MV_SetDeviceParameter()来获取和设置,所设置参数的具体含义见《MICROVIEW VER.5.0 程序员开发手册》。

3 图像处理程序设计通过视频采集卡获得数字图像后,可以通过软件或硬件的处理手段完成对图像的增强、恢复以及压缩或编码等处理工作。

本课程实验由实验者学习使用图像采集卡采集图像,实验中提供使用VC++编写的应用程序框架,由实验者编写的核心处理函数,观察实验结果。

实验共分三个部分:●实验一学习BMP图像文件格式,统计图像直方图。

使用C语言编程实现RAW到BMP文件格式的转换,并统计该图像直方图;●实验二学习使用视频采集卡采集和显示图像,重点了解视频采集卡的工作原理,图像采集程序设计,图像的存储格式以及图像的读取和显示方法;●实验三设计中值滤波函数,完成对图像的中值滤波处理,观察和分析中值滤波结果。

图像处理实验3

图像处理实验3

昆明理工大学信息工程与自动化学院学生实验报告( 2016—2017学年 第 一 学期 )课程名称:数字图像基础 开课实验室: 2016年 月 日一、实验目的及内容目的:掌握和熟悉Matlab 编程环境及语言;掌握直方图统计的算法和用途。

内容:1. 调试教材P25页例2.1输出类似教材图2.3的结果。

2. 调试教材P33页例2.4,编写一个程序,分别使用imhist 、bar 、stem 、plot 四种方式显示一幅灰度图像的直方图 3. 调试教材P37页例2.5。

4. 直方图均衡化的公式如下所示:11()()kkjk k r j j j n s T r p r n =====∑∑根据上式及课堂所讲直方图均衡化原理及方法,自己写一个Matlab 函数实现对灰度图像的直方图均衡化功能(类似于Matlab 提供的hist eq 函数)。

(提示:实现中使用Matlab 函数cumsum (P38)可能会使程序简单些)。

二、要求1. 描述直方图的概念并解释直方图均衡化原理。

2.程序结构清晰,运行结果正确。

3.对于第1、2、3小题在实验报告中给出所调试的程序,及其运行结果,对第4小题描述程序的设计、实现和结果,并对结果进行分析。

一、描述直方图的概念并解释直方图均衡化原理。

直方图的概念:直方图是用来量化曝光量,能够使我们真实、直观地看出照片曝光情况的一张二维坐标系,其横轴代表的是图像中的亮度,从左向右,从全黑逐渐过渡到全白;纵轴代表的则是图像中处于这个亮度范围的像素的相对数量。

当直方图中的黑色色块偏向于左边时,说明这张照片的整体色调偏暗,也可以理解为照片欠曝。

而当直方图中的黑色色块集中在右边时,,说明这张照片整体色调偏亮,除非特殊构图需要,,否则我们可以理解为照片过曝。

直方图均衡化原理:直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。

这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三、小型图像处理系统
一、实验目的
1、使学生加深对数字图像处理主要功能的理解;
2、要求学生使用MatLab 软件完成具有一些简单功能的小型图像处理系统。

二、实验原理
(1)基本原理
数字图像处理是研究图像的获取、传输、存储,变换、显示、理解与综合应用的一门崭新学科。

数字图像处理的主要任务包括:图像的数字化、图像变换、图像增强、图像的恢复、图像的压缩和编码、图像分割等。

其中图像变换的目的在于:使图像处理问题简化;有利于图像特征提取。

常用的图像变换工具有DFT、 DCT和小波变换等。

图像增强目的是获得更“好”、更“有用”的图像。

根据所处理的空间不同, 图像增强的方法分为: 基于图像域的方法,即直接在图像所在的空间进行处理;基于变换域的方法,即在图像变换域间接进行,有时也叫频域处理。

灰度直方图描述了图像的概貌。

直方图变换后可使图像的灰度间距拉开或使灰度分布均匀,从而增大对比度,使图像细节清晰,达到增强目的。

直方图均衡化是一种常用的直方图变换方法,它把原始图的直方图变换为均匀分布的形式,增加像素灰度值的动态范围,提高图像对比度。

大部分的噪声都可以看作是随机信号,对图像的影响可以看作是孤立的。

某一像素,如果它与周围像素点相比,有明显的不同,则该点被噪声感染了。

去除噪声的方法较多,如邻域平均法、中值滤波、边界保持类滤波、多幅图像平均、低通滤波处理等。

图像分割是数字图像处理中一个具有挑战性的研究内容,可以将图像分割理解为:把图像分成互不重叠的区域,并提取感兴趣的目标。

图像分割的基本思路是:从简到难,逐级分割;控制背景环境,降低分割难度;把焦点放在增强感兴趣对象,缩小不相干图像成分的干扰上。

基于灰度值的基本特性不连续性和相似性,图像分割的基本策略:策略1:检测图像像素灰度级的不连续性,找到点、线(宽度为1)、边(不定宽度),先找边,后确定区域;策略2:检测图像像素的灰度值的相似性,通过选择阈值,找到灰度值相似的区域,区域的外轮廓就是对象的边。

在图像分割的众多算法中,图像的阈值分割技术是实现相对简单的一种方法。

(2)参考程序
clear;
clc;
close all;
chos=0;
possibility=11;
while chos~=possibility,
chos=menu('图像处理系统','输入图像','灰度化','直方图均衡','镜像翻转','添加噪声','去除噪声','伪彩色增强', ,' 阈值分割', ,' 边缘检测','退出');
if chos==1, %输入图像
clc;
[namefile,pathname]=uigetfile('*.*','Select image');
if namefile~=0
I=imread(strcat(pathname,namefile));
imshow(I);
title('输入图像');
end
end
%灰度化
%对彩色图像进行灰度转换,并输出灰度图像
if chos==2,
%……
end
if chos==3,
%……
end
……
3、实验用图
horse.jpg
三、实验步骤
1、打开计算机,启动MATLAB程序;
2、调入数字图像,并进行相应的图像处理;
3、记录和整理实验报告。

四、实验仪器
1、计算机;
2、MATLAB等程序;
五、实验报告内容
1、叙述实验过程;
2、提交实验的原始图像和结果图像。

六、思考题
为了实现基本的图像处理任务,你设计的小型图像处理系统还有哪些功能可以扩展?。

相关文档
最新文档