大学物理电磁学课后作业答案(清华大学出版社)
大学物理电磁学课后作业答案(清华大学出版社)
1
I A
2
O
I2 I C
B1
大小:B1
0 I1
2R
2 2
0 I
2R
2
2 2
方向: ⊙
I2在圆心处产生
B2
大小:B2
0 I2
2R
2
0 I 2 2R 2 2
方向:
B1 B2 0 ∴圆心处的总磁感应强度为0.
8.5解:
d
(1)所求磁感应强度方向:⊙ I1 大小为
l I2
dB dt
L 2
R2 L2 / 4 dB dt
方向:a →b(可由楞次定律判断),b端电势高。
∴整个带电直线在P点的场强大小为
E
dE
L/ 2 L/ 2
dx 4 0 ( r
x
)2
L 4 0 ( r 2
L2
/
4)
方向沿X轴正向。
1.11解(弥补法):
设电荷线密度为,缝隙宽为d. 先补上 d ,构成完整的圆 环,
其在圆心处的场强为 EO1 0.
o
R●
E0 d
再补上 - d ,可视作点电荷,
∴所求磁通量为
21
0 I1l
ln r1 r2 r1
2.2 106Wb
8.28解:
(1)
Id
0 S板
dE dt
0R2
dE dt
8.85 1012 0.052 1.0 1012 7.0 102 A
(2) 以极板边缘线作为安培回路L,则
B dl
0 Id
B
0 Id 2R
B 2 0 I 4.0 105T 2 d / 2
O
x x+dx
大学物理作业(解答)
《大学物理III 》课后作业(解答)第一部分:力学简答题:1. 用文字描述牛顿第一定律。
它的另一个名称是什么?解答:任何物体在不受外力作用时,将保持静止或匀速直线运动状态。
另一个名称是“惯性定律”。
2.用文字描述牛顿第三定律。
作用力和反作用力有什么特点?解答:当物体A 以力1作用在物体B 上时,B 同时也有力2作用在A 上,这两个力大小相等,方向相反,在同一条直线上,即12-=。
作用力和反作用力有如下三个特点:(1)它们成对出现,关系一一对应;(2)它们分别作用在两个不同物体上,因而不是一对平衡力;(3)它们的性质相同,比如同为引力、摩擦力、弹力,等等。
3.假设雨滴从1000米的高空云层中落到地面。
请问可否用自由落体运动描述雨滴的运动?并简述理由。
解答:不能。
如果我们用自由落体运动来描述雨滴运动(即忽略空气阻力),那么雨滴从1000米高空落到地面时,它的速度将达到m/s 1402==gH v !这个速度已经达到普通手枪的子弹出射速度,足以对地面上的人畜造成致命伤害。
而生活经验告诉我们,雨滴落到我们头上并不会造成严重伤害,所以它落到地面的速度远远小于140m/s 。
事实上,因为空气阻力的存在(通常跟雨滴的速度大小成正比),雨滴将有一个收尾速度,它落到地面时做匀速直线运动,速度约为10-20m/s ,不会对地面生物造成致命伤害。
4.用文字描述质点系的动量守恒定律。
解答:当一个质点系所受合外力为零时,系统内各质点间动量可以交换,但系统的总动量保持不变。
5. 如图,一根质量为m 、长l 的刚性杆子竖直悬挂,顶点固定在天花板O 点,杆子可绕O 点自由转动。
一个质量也为m 的物块(质点)以水平速度0v跟杆子的下端碰撞,并粘在一起。
在这个碰撞过程中,物体和杆子组成系统的动量是否守恒?角动量是否守恒?并简述理由。
解答:动量不守恒,因为在碰撞瞬间物体和杆子系统在O 点受到很大外力,其产生的冲量不可忽略;角动量守恒,因为系统所受一切力的对O 点力矩为零,包括上述的巨大外力。
清华大学《大学物理》题库(第二部分:电磁学)【题目】
第四章真空中的静电场4.1库仑定律4.1.1库仑定律1【1440】真空中有两个点电荷M、N,相互间作用力为⃗F,当另一点电荷Q移近这两个点电荷时,M、N两点电荷之间的作用力(A)大小不变,方向改变(B)大小改变,方向不变(C)大小和方向都不变(D)大小和方向都改变4.1.2电场力叠加原理第3题【5093】电荷Q(Q>0)均匀分布在长为L的细棒上,在细棒的延长线上距细棒中心O距离为a的P 点处放一电荷为q(q>0)的点电荷,求带电细棒对该点电荷的静电力。
4.2电场强度4.2.1电场强度的定义第4题【1003】下列几个说法中哪一个是正确的?(A)电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B)在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同电场叠加原理4.2.2点的电场强度。
【1262】用绝缘细线弯成的半圆环,半径为R,其上均匀地带有正电荷Q,试求圆心O第13题【1264】一半径为R的半球面,均匀地带有电荷,电荷面密度为σ,求球心O处的电场强度。
4.3电通量高斯定理电通量4.3.14.3.2高斯定理的理解第16题【1434】关于高斯定理的理解有下面几种说法,其中正确的是(A)如果高斯面上⃗E处处为零,则该面内必无电荷(B)如果高斯面内无电荷,则高斯面上⃗E处处为零(C)如果高斯面上⃗E处处不为零,则高斯面内必有电荷(D)如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零4.3.3利用高斯定理求电通量4.3.4利用高斯定理求电场强度37【1373】一半径为R的带电球体,其电荷体密度分布为:ρ=Ar(r⩽R),ρ=0(r>R),A为一常量。
试求球体内外的场强分布。
4.4电势能电势4.4.1电场力做功4.4.2电势差第47题【1266】在已知静电场分布的条件下,任意两点P1和P2之间的电势差决定于(A)P1和P2两点的位置(B)P1和P2两点处的电场强度的大小和方向(C)试验电荷所带电荷的正负(D)试验电荷的电荷大小4.4.3电势第48题【1016】静电场中某点电势的数值等于(A)试验电荷q0置于该点时具有的电势能(B)单位试验电荷置于该点时具有的电势能(C)单位正电荷置于该点时具有的电势能(D)把单位正电荷从该点移到电势零点外力所作的功第49题【1267】关于静电场中某点电势值的正负,下列说法中正确的是(A)电势值的正负取决于置于该点的试验电荷的正负(B)电势值的正负取决于电场力对试验电荷作功的正负(C)电势值的正负取决于电势零点的选取电势值的正负取决于产生电场的电荷的正负(D)第52题【1316】相距为r1的两个电子,在重力可忽略的情况下由静止开始运动到相距为r2,从相距r1到相距r2期间,两电子系统的下列哪一个量是不变的?(A)动能总和(B)电势能总和(C)动量总和(D)电相互作用力电势叠加原理求电势4.4.54.5静电场中的电偶极子第76题【1439】一电偶极子放在均匀电场中,当电偶极矩的方向与场强方向不一致时,其所受的合力⃗F和合力矩⃗M为(A)⃗F=0,⃗M=0(B)⃗F=0,⃗M=0(C)⃗F=0,⃗M=0(D)⃗F=0,⃗M=第五章静电场中的导体与电介质5.1静电场中的导体5.1.1静电平衡条件78【1480】当一个带电导体达到静电平衡时(A)表面上电荷密度较大处电势较高(B)表面曲率较大处电势较高(C)导体内部的电势比导体表面的电势高(D)导体内任一点与其表面上任一点的电势差等于零5.1.2静电平衡时的电荷分布5.1.3静电平衡时的电场分布5.1.4接地5.2电容器电容5.2.1平行板电容器5.2.2电容器的串并联第98题【1460】如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的金属板,则由于金属板的插入及其相对极板所放位置的不同,对电容器电容的影响为(A)使电容减小,但与金属板相对极板的位置无关(B)使电容减小,且与金属板相对极板的位置有关(C)使电容增大,但与金属板相对极板的位置无关(D)使电容增大,且与金属板相对极板的位置有关5.3静电场中的电介质5.3.1电介质对电场、电容的影响102【1358】设有一个带正电的导体球壳。
大学物理学 上册 (孙厚谦 著) 清华大学出版社 课后答案 第8章
AA AA
dB l l R 2 ( )2 dt 2 2
得
代入
r dB Ei 2 dt dB 2 1 0 T/s dt
得
Eo 0 , EP EQ 2.5 104 V/m,方向与假定方向一致,即 P、Q 两处的感应
电场方向为以 O 为圆心的圆周的顺时针切线方向。
2
/ 2 ,若 t=0 时,ab 边由 x=0 处开始以速率 作平行于 x 轴的匀速滑动,
da
w.
8-2 如图, 在均匀磁场中有一金属架 aoba, ab 边无摩擦地自由滑动, 已知 aob , ab ox, 磁
co
m
习题 8-1 图
查看答案 8-1
查看答案 8-2
后
习题 8-2 图
w. ww
查看答案 8-8 场中。设
课
后
答
dB 为已知,求棒两端的电势差的大小。 dt
案
B p
网
8-9 如图在半径为 R 的圆柱形体积内充满磁感应强度为 B 的均匀磁场,有一长为 l 的金属棒放在磁
Q
co
查看答案 8-9 习题 8-9 图 190
m
动;(2)回路从静止开始,以加速度 a=2m/s 沿 y 轴正方向运动。
答
案
返回 8-7
1=B1l (6 d )l
总电动势
2=B2l (6 d b)l
方向顺时针。
i 1 2 bl 0.2 0.5 2 0.2V
(2)分析同上
其中
2t 。
1=B1l (6 d )l
总电动势
2=B2l (6 d b)l
大物电磁学课后答案3经典.ppt
(1)电流强度在10秒内均匀的有零增加到3安培; (2)电流强度从18安培起,每过0.01秒减少一半,直到零。
解:(1)I 3 t 10
q
I dt
010
t 10
dt
15(库 仑)
(2)q I0k
1 2
I
0k
1 4
I0k
I0k(1 1 / 2 1 / 4 ) 180.011/(11/ 2)0.36(库 仑)
安培起,每过0.01秒减少一半,直到零。求导线产生的热量。
解:
3
2
(1) I 10 t dQ I rdt
| Q
t
(
3
t)2 Rdt
3
Rt3
10
180(焦)
0 10
10 0
2
2
2
(2) Q Q1 Q 2 Q 3 I1 Rt I 2Rt I 3Rt
Rt[I02
(
I0
/
2)2
电势差为4.25伏特,当该电池放电时,通过的电流为4安培两极
间的电势差为3.90伏特,求该电池的电动势和电阻。
解:
I1r 4.25 I 2r 3.90
精品文档
r
0.05(欧 4.10(伏
姆) 特)
6
3-10 设在图中所示的电路中,三个电容开始时均不带电,求将 它们与A、B、C点联结后,各极板上的电量。
7
补 Rr;3(2==充330)..3a06.,欧欧4d一姆姆两电,,点R路4求电=如1:势.(图01差欧),通其;姆(过中4,)每bb1点,=个c6接.电两0地伏阻点,,的电rR1电1势==01流差.04.;(00(5欧欧2))a姆姆每,b,,个,c2R电=,28d=源.各20.的伏点5欧端特电姆电势,压。
《大学物理》磁感应强度习题答案
第七章 静电场和恒定磁场的性质(三)磁感应强度序号 学号 姓名 专业、班级一 选择题[ D ]1.一磁场的磁感应强度为k j i B c b a ++=(T ),则通过一半径为R ,开口向z 正方向的半球壳表面的磁通量的大小是: (A) Wb 2a R π (B) Wb 2b R π (C) Wb 2c R π(D) Wb 2abc R π[ B ]2. 若要使半径为4×103-m 的裸铜线表面的磁感应强度为7.0×105- T ,则铜线中需要通过的电流为(μ0=4π×107-T ·m ·A1-)(A) 0.14A (B) 1.4A(C) 14A (D) 28A[ B ]3. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r),两螺线管单位长度上的匝数相等,两螺线管中的磁感应强度大小R B 和r B 应满足: (A) R B =2r B (B) R B =rB(C) 2R B =r B(D) R B R=4r B[ C ]4.下列哪一幅曲线能确切描述载流圆线圈在其轴线上任意点所产生的B 随x 的变化关系? (x 坐标轴垂直于圆线圈平面,原点在圆线圈中心O )[ D ]5.载流的圆形线圈(半径1a )与正方形线圈(边长2a )通有相同电流I ,若两个线圈的中心O 1,O 2处的磁感应强度大小相同,则半径1a 与边长2a 之比21:a a 为: (A) 1:1 (B) 1:2π (C) 4:2π (D)8:2π[ B ]6.有一无限长通有电流的偏平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘b 处的P 点(如图)的磁感应强度B的大小为:(A))(20b a I+πμ (B) bb a a I +ln 20πμ(C) bb a b I +ln 20πμ(D))21(20b a I+πμ二 填空题1.一无限长载流直导线,通有电流I ,弯成如图形状,设各线段皆在纸面内,则P 点磁感应强度 B 的大小为aIπμ830。
清华大学《大学物理》习题库试题及答案09磁学习题讲解
A I Ia O Bb r (A) O B b r (B) a O B b r (C) a O B b r (D) a 9、磁学一、选择题 1.在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) πr 2B . (B) 2 πr 2B(C) -πr 2B sin α (D) -πr 2B cos α2.边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为(A) l I π420μ (B) l I π220μ (C) l I π02μ (D) 以上均不对 3.如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点。
若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A) 方向垂直环形分路所在平面且指向纸内 (B) 方向垂直环形分路所在平面且指向纸外(C) 方向在环形分路所在平面,且指向b(D) 方向在环形分路所在平面内,且指向a (E) 为零4.通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:(A) B P > B Q > B O (B) B Q > B P > B O (C)B Q > B O > B P (D) B O > B Q > B P 5.电流I 由长直导线1沿垂直bc 边方向经a 点流入由 电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线 2沿cb 延长线方向返回电源(如图)。
若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0 (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0(C) B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0(D) B ≠ 0,因为虽然021≠+B B ,但3B ≠ 0 6.电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图)。
大学物理第八章课后习题答案
大学物理第八章课后习题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第八章电磁感应电磁场8 -1一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则()(A)线圈中无感应电流(B)线圈中感应电流为顺时针方向(C)线圈中感应电流为逆时针方向(D)线圈中感应电流方向无法确定分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B).8 -2将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则()(A)铜环中有感应电流,木环中无感应电流(B)铜环中有感应电流,木环中有感应电流(C)铜环中感应电动势大,木环中感应电动势小(D)铜环中感应电动势小,木环中感应电动势大23分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为(A ).8 -3 有两个线圈,线圈1 对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且ti t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ).(A )2112M M = ,1221εε=(B )2112M M ≠ ,1221εε≠(C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;ti M εd d 21212=.因而正确答案为(D ). 8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).48 -5 下列概念正确的是( )(A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比(D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大 分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而正确答案为(B ).8 -6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为()Wb π100sin 100.85t Φ⨯=,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦN ξd d d d -=-=,其中ΦN ψ=称为磁链. 解 线圈中总的感应电动势()()t tΦNξπ100cos 51.2d d =-= 当s 100.12-⨯=t 时,V 51.2=ξ. 8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以tI d d 的变化率增长.若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势.5分析 本题仍可用法拉第电磁感应定律tΦξd d -=来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SΦS B d 来计算(其中B 为两无限长直电流单独存在时产生的磁感强度B 1 与B 2 之和). 为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即()B B x =,故取一个平行于长直导线的宽为dx 、长为d 的面元dS ,如图中阴影部分所示,则x d S d d =,所以,总磁通量可通过线积分求得(若取面元y x S d d d =,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tl M E M d d -=求解. 解1 穿过面元dS 的磁通量为()x d xI μx d d x I μΦd π2d π2d d d d 0021-+=⋅+⋅=⋅=S B S B S B 因此穿过线圈的磁通量为()43ln π2d π2d π2d 02020Id μx x Id μx d x Id μΦΦd d dd =-+==⎰⎰⎰ 再由法拉第电磁感应定律,有6tI d μt ΦE d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为 43ln π20dI μΦ=线圈与两长直导线间的互感为 43ln π20d μI ΦM == 当电流以tl d d 变化时,线圈中的互感电动势为 tI d μt I M E d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 试想:如线圈又以速率v 沿水平向右运动,如何用法拉第电磁感应定律求图示位置的电动势呢此时线圈中既有动生电动势,又有感生电动势.设时刻t ,线圈左端距右侧直导线的距离为ξ,则穿过回路的磁通量()ξf ΦS,1d =⋅=⎰S B ,它表现为变量I 和ξ的二元函数,将Φ代入t ΦE d d -= 即可求解,求解时应按复合函数求导,注意,其中v =tξd d ,再令ξ=d 即可求得图示位置处回路中的总电动势.最终结果为两项,其中一项为动生电动势,另一项为感生电动势.8 -8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值54.010C q -=⨯.问此均匀磁场的磁感强度B 的值为多少7分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱. 解 在线圈转过90°角时,通过线圈平面磁通量的变化量为NBS NBS ΦΦΦ=-=-=0Δ12 因此,流过导体截面的电量为ii R RNBS R R Φq +=+=Δ 则 ()T 050.0=+=NSR R q B i 8 -9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10 匝的小圆线圈,线圈中的磁场可看作是均匀的.今在1.0 ×10-2 s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0×10-2Ω,求通过线圈横截面的感应电荷.8分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用NBS ψ=来计算线圈在始、末两个位置的磁链.解 (1) 在始、末状态,通过线圈的磁链分别为1011π2r ISμN S NB ψ==,2022π2r IS μN S NB ψ== 则线圈中的平均感应电动势为 V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS μN t ΦE 电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为tΦE d d -= 8 -10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高9分析 本题及后面几题中的电动势均为动生电动势,除仍可由tΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰l E v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向. 解1 如图(b)所示,假想半圆形导线O P 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2R v B .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高. 解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.10 解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0 又因 E =E OP +E PO即 E OP =-E PO =2R v B由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.8 -11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是O A 棒与O B 棒上电动势的代数和,如图(b)所示.而E O A 和E O B 则可以直接利用第8 -2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-r r AB AB 221d d --=-=⋅⨯=⎰⎰-l B v 因此棒两端的电势差为()r L lB ωE U AB AB 221--== 当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则()r L BL ωE E E OB OA AB 221--=-= 8 -12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.分析 如前所述,本题既可以用法拉第电磁感应定律t ΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E v l αB l o d cos 90sin ⎰=v()()l θB θωl o d 90cos sin ⎰-=l()⎰==L θL B ωl l θB ω022sin 21d sin 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E t ΦE ++==-=0d d 显然,E QO =0,所以()221PQ B ωE E E QO PQ OP ==-= 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.后者是垂直切割的情况.8 -13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40A .求杆中的感应电动势,杆的哪一端电势较高分析 本题可用两种方法求解.(1) 用公式()l B d ⋅⨯=⎰lE v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xI μB π20=.(2) 用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的形导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式⎰⋅=SΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势. 解1 根据分析,杆中的感应电动势为()V 1084.311ln 2πd 2πd d 50m 1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰v v v I μx x μxl E AB AB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高. 解2 设顺时针方向为回路AB CD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xI μΦd 2πd d 0=⋅=S B 穿过回路的磁通量为11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===S Iy μx y x I μΦΦ 回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iy μt y x I μt ΦE 由于静止的形导轨上电动势为零,所以 V 1084.35-⨯-==E E AB式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.8 -14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.分析 本题亦可用两种方法求解.其中应注意下列两点:1.当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgef gh ef E E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.2.用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =tξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgef l B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μv v ()1202πl d I I μ+=1vI 由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为()()ξl ξξx Il μdx ξx Il μΦl 120020ln π2π21++=+=⎰ 相应电动势为()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为 ()1120π2l d d l l I μE +=v 由E >0 可知,线框中电动势方向为顺时针方向.*8 -15 有一长为l ,宽为b 的矩形导线框架,其质量为m ,电阻为R .在t =0时,框架从距水平面y =0 的上方h 处由静止自由下落,如图所示.磁场的分布为:在y =0 的水平面上方没有磁场;在y =0 的水平面下方有磁感强度为B 的均匀磁场,B 的方向垂直纸面向里.已知框架在时刻t 1 和t 2 的位置如图中所示.求在下述时间内,框架的速度与时间的关系:(1) t 1 ≥t >0,即框架进入磁场前;(2) t 2 ≥t ≥t 1 ,即框架进入磁场, 但尚未全部进入磁场;(3)t >t 2 ,即框架全部进入磁场后.分析 设线框刚进入磁场(t 1 时刻)和全部进入磁场(t 2 时刻)的瞬间,其速度分别为v 10 和v 20 .在情况(1)和(3)中,线框中无感应电流,线框仅在重力作用下作落体运动,其速度与时间的关系分别为v =gt (t <t 1)和v =v 20 +g (t -t 2 )(t >t 2 ).而在t 1<t <t 2这段时间内,线框运动较为复杂,由于穿过线框回路的磁通量变化,使得回路中有感应电流存在,从而使线框除受重力外,还受到一个向上的安培力F A ,其大小与速度有关,即()A A F F =v .根据牛顿运动定律,此时线框的运动微分方程为()tv v d d m F mg A =-,解此微分方程可得t 1<t <t 2 时间内线框的速度与时间的关系式.解 (1) 根据分析,在1t t ≤时间内,线框为自由落体运动,于是()11t t gt ≤=v 其中1t t =时,gh 2101==v v(2) 线框进入磁场后,受到向上的安培力为v Rl B IlB F A 22== 根据牛顿运动定律,可得线框运动的微分方程tv m v d d 22=-R l B mg 令mRl B K 22=,整理上式并分离变量积分,有 ⎰⎰=-t t t g 110d d vv Kv v 积分后将gh 210=v 代入,可得()()[]1212t t K e gh K g g K----=v (3) 线框全部进入磁场后(t >t 2),作初速为v 20 的落体运动,故有()()()[]()222031221t t g e gh K g g Kt t g t t K -+--=-+=--v v 8 -16 有一磁感强度为B 的均匀磁场,以恒定的变化率t d d B 在变化.把一块质量为m 的铜,拉成截面半径为r 的导线,并用它做成一个半径为R 的圆形回路.圆形回路的平面与磁感强度B 垂直.试证:这回路中的感应电流为td d π4B d ρm I =式中ρ 为铜的电阻率,d 为铜的密度. 解 圆形回路导线长为πR 2,导线截面积为2πr ,其电阻R ′为22rR ρS l ρR ==' 在均匀磁场中,穿过该回路的磁通量为BS Φ=,由法拉第电磁感应定律可得回路中的感应电流为t t t d d 2πd d π1d d 122B ρRr B R R ΦR R E I ='='='= 而2ππ2r R d m =,即dm Rr π2π2=,代入上式可得 td d π4B d ρm I = 8 -17 半径为R =2.0 cm 的无限长直载流密绕螺线管,管内磁场可视为均匀磁场,管外磁场可近似看作零.若通电电流均匀变化,使得磁感强度B 随时间的变化率td d B 为常量,且为正值,试求:(1) 管内外由磁场变化激发的感生电场分布;(2) 如1s T 010.0d d -⋅=tB ,求距螺线管中心轴r =5.0 cm 处感生电场的大小和方向.分析 变化磁场可以在空间激发感生电场,感生电场的空间分布与场源———变化的磁场(包括磁场的空间分布以及磁场的变化率td d B 等)密切相关,即S B l E d d ⋅∂∂-=⎰⎰S S k t .在一般情况下,求解感生电场的分布是困难的.但对于本题这种特殊情况,则可以利用场的对称性进行求解.可以设想,无限长直螺线管内磁场具有柱对称性,其横截面的磁场分布如图所示.由其激发的感生电场也一定有相应的对称性,考虑到感生电场的电场线为闭合曲线,因而本题中感生电场的电场线一定是一系列以螺线管中心轴为圆心的同心圆.同一圆周上各点的电场强度E k 的大小相等,方向沿圆周的切线方向.图中虚线表示r <R 和r >R 两个区域的电场线.电场线绕向取决于磁场的变化情况,由楞次定律可知,当0d d <t B 时,电场线绕向与B 方向满足右螺旋关系;当0d d >t B 时,电场线绕向与前者相反.解 如图所示,分别在r <R 和r >R 的两个区域内任取一电场线为闭合回路l (半径为r 的圆),依照右手定则,不妨设顺时针方向为回路正向.(1) r <R , tB r t r E E k l k d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tB r E k d d 2-= r >R , t B R t r E E k lk d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tB r R E k d d 22-= 由于0d d >tB ,故电场线的绕向为逆时针. (2) 由于r >R ,所求点在螺线管外,因此tB r R E k d d 22-= 将r 、R 、tB d d 的数值代入,可得15m V 100.4--⋅⨯-=k E ,式中负号表示E k 的方向是逆时针的.8 -18 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tB d d 为常量.试证:棒上感应电动势的大小为分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=lk E l E d 计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由法拉第电磁感应定律,有 22Δ22d d d d d d ⎪⎭⎫ ⎝⎛-==-==l R l t B t B S t ΦE E PQ 证2 由题8 -17可知,在r <R 区域,感生电场强度的大小tB r E k d d 2= 设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为()()222202/2d d d 2/d d 2d cos d l R l t B x r l R t B r x θE E l k k PQ -=-==⋅=⎰⎰x E 讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势 该如何求解8 -19 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式IΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式t I E L L d /d =计算L .式中E L 和tI d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μB π20=由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为 12200ln π2d π2d 21R R hI N μx h x NI μN N ψS R R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL = 若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍.8 -20 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S 1 和S 2 ,磁导率分别为μ1 和μ2 ,管长为l ,匝数为N ,求螺线管的自感.(设管的截面很小)分析 本题求解时应注意磁介质的存在对磁场的影响.在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B 0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为μ1 B 0 和μ2 B 0 .通过线圈横截面的总磁通量是截面积分别为S 1 和S 2 的两部分磁通量之和.由自感的定义可解得结果.解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为I L N μnl μB 111==,I LN μnl μB 222== 通过N 匝回路的磁链为221121S NB S NB ΨΨΨ+=+=则自感2211221S μS μlN I ψL L L +==+= 8 -21 有两根半径均为a 的平行长直导线,它们中心距离为d .试求长为l的一对导线的自感(导线内部的磁通量可略去不计).分析 两平行长直导线可以看成无限长但宽为d 的矩形回路的一部分.设在矩形回路中通有逆时针方向电流I ,然后计算图中阴影部分(宽为d 、长为l )的磁通量.该区域内磁场可以看成两无限长直载流导线分别在该区域产生的磁场的叠加.解 在如图所示的坐标中,当两导线中通有图示的电流I 时,两平行导线间的磁感强度为()r d I μr I μB -+=π2π200 穿过图中阴影部分的磁通量为 aa d l μr Bl ΦS a d a -==⋅=⎰⎰-ln πd d 0S B 则长为l 的一对导线的自感为aa d l μI ΦL -==ln π0 如导线内部磁通量不能忽略,则一对导线的自感为212L L L +=.L 1 称为外自感,即本题已求出的L ,L 2 称为一根导线的内自感.长为l 的导线的内自感8π02l μL =,有兴趣的读者可自行求解. 8 -22 如图所示,在一柱形纸筒上绕有两组相同线圈AB 和A ′B ′,每个线圈的自感均为L ,求:(1) A 和A ′相接时,B 和B ′间的自感L 1 ;(2) A ′和B 相接时,A 和B ′间的自感L 2 .分析 无论线圈AB 和A ′B ′作哪种方式连接,均可看成一个大线圈回路的两个部分,故仍可从自感系数的定义出发求解.求解过程中可利用磁通量叠加的方法,如每一组载流线圈单独存在时穿过自身回路的磁通量为Φ,则穿过两线圈回路的磁通量为2Φ;而当两组线圈按(1)或(2)方式连接后,则穿过大线圈回路的总磁通量为2Φ±2Φ,“ ±”取决于电流在两组线圈中的流向是相同或是相反.解 (1) 当A 和A ′连接时,AB 和A ′B ′线圈中电流流向相反,通过回路的磁通量亦相反,故总通量为0221=-=ΦΦΦ,故L 1 =0.(2) 当A ′和B 连接时,AB 和A ′B ′线圈中电流流向相同,通过回路的磁通量亦相同,故总通量为ΦΦΦΦ4222=+=, 故L I ΦI ΦL 4422===. 本题结果在工程实际中有实用意义,如按题(1)方式连接,则可构造出一个无自感的线圈.8 -23 如图所示,一面积为4.0 cm 2 共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A·s-1 时,线圈A 中感应电动势的大小和方向.分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则21212I ΦM M == . 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径.解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度R I μN B B 200=穿过小线圈A 的磁链近似为 A B A A A A S RI μN N S B N ψ200== 则两线圈的互感为H 1028.6260-⨯===RS μN N I ψM A B A A (2)V 1014.3d d 4-⨯=-=tI M E A 互感电动势的方向和线圈B 中的电流方向相同.8 -24 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁感强度近似为()2/322202d R IR μB +=穿过线圈C 的磁通为 ()22/32220π2r d R IR μBS ψC +==则两线圈的互感为 ()2/3222202πdR R r μI ψM +== 若线圈C 的匝数为N 匝,则互感为上述值的N 倍. 8 -25 如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm 2 ,沿环每厘米绕有100 匝线圈,通有电流I 1 =4.0 ×10 -2 A ,在环上再绕一线圈C ,共10 匝,其电阻为0.10 Ω,今将开关S 突然开启,测得线圈C 中的感应电荷为2.0 ×10 -3C .求:当螺绕环中通有电流I 1 时,铁磁质中的B 和铁磁质的相对磁导率μr .分析 本题与题8 -8 相似,均是利用冲击电流计测量电磁感应现象中通过回路的电荷的方法来计算磁场的磁感强度.线圈C 的磁通变化是与环形螺线管中的电流变化相联系的. 解 当螺绕环中通以电流I 1 时,在环内产生的磁感强度110I n μμB r =则通过线圈C 的磁链为S I n μμN BS N ψr c 11022==设断开电源过程中,通过C 的感应电荷为q C ,则有()RS I n μμN ψR ψR qc r c c 110201Δ1=--=-= 由此得 T 10.02110===S N Rqc I n μμB r 相对磁导率1991102==I n μS N Rqc μr8 -26 一个直径为0.01 m ,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 Ω.求:(1) 如把线圈接到电动势E =2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少 磁能密度是多少*(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间分析 单一载流回路所具有的磁能,通常可用两种方法计算:(1) 如回路自感为L (已知或很容易求得),则该回路通有电流I 时所储存的磁能221LI W m =,通常称为自感磁能.(2) 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即V w W V m m d ⎰=,式中m w 为磁场能量密度,积分遍及磁场存在的空间.由于μB w m 22=,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布.上述两种方法还为我们提供了计算自感的另一种途径,即运用V w LI V m d 212⎰=求解L . 解 (1) 密绕长直螺线管在忽略端部效应时,其自感l S N L 2=,电流稳定后,线圈中电流RE I =,则线圈中所储存的磁能为J 1028.3221522202-⨯===lRSE N μLI W m 在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管。
电磁学课后部分习题答案解析
电磁学课后部分习题答案解析1.2.2 两个同号点电荷所带电荷量之和为Q.在两者距离一定的前提下,他们带电荷量各为多少时相互作用力最大?解答:设一个点电荷的电荷量为1q q =,另一个点电荷的电荷量为()2q Q q =-,两者距离为r,则由库仑定律求得两个电电荷之间的作用力为()204q Q q F rπε-=令力F 对电荷量q 的一阶导数为零,即()2004Q q qdF dq r πε--== 得122Qq q == 即取 122Qq q ==时力F 为极值,而222202204Q q d Fdq rπε==-<故当 122Qq q ==时,F 取最大值 1.2.6 两个电荷量相等的同性点电荷相距为2a ,在两者连线的中垂面上置一试探点电荷0q , 求0q 受力最大的点的轨迹.解答:如图(a)所示,设有两个电荷量为q 的点电荷 ,坐标分别为(-a ,0,0)和(a ,0,0),试探点电荷0q 置于二者连线的中垂面Oyz 上坐标为(0,y,z).r y j zk =+ 为原点O 至试探点电荷0q 的失径,距离为r = ,如图(b)所示.根据对称性, 所受合力的方向与失径r 平行或反平行.其大小为()003222222sin 2q q q qrF k k r a r a α==++ 求上式的级值,去F 对r 的一阶导数并令其为零,的方程 ()22230r r a -++=求得22ar =求二阶导数并带入22ar =,得()272222022120a r d Fa kqq r a rdr -==-+<说明此时F 取极大值因此,0q 受力最大的点的轨迹是在中垂面上的圆心坐标为(0,0,0)半径为2a的圆. 1.3.6 附图中均匀带电圆环的半径为R,总电荷量为q (1)求数轴线上离环心O 为x 处的场强E (2) 轴线上何处场强最大?其值是多少? (3)大致画出E-x 曲线.解答:设圆环的带电线密度为 2q Rηπ=如图(a)所示,圆环一小段dl 到轴上一点P 的距离为r ,即有dq dl η=,cos xrα=,该小段对P 点产生的场强大小为 22dqdl dE kk r r η== 根据对称性,P 点场强仅有x 分量, d E 在x 轴的分量大小为()3222cos x xdldE dE kRxηα==+()()()33322222222200224x xRxqx E dE kR RxR xR xηηπεπε====+++⎰P 点场强为()322204qx E iR xπε=+(2)应求dE dx并令其值为0,求得当22R x =,E 取极值,而2220R x d E dx =<,根据对称性,位于轴上22R x =±点的场强取最大值,其值为 2063E i Rπε=±(3)如图(b )所示。
清华大学《大学物理》习题库试题及答案 电学习题答案
一、选择题1.1003:下列几个说法中哪一个是正确的?(A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向 (B) 在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同(C) 场强可由定出,其中q 为试验电荷,q 可正、可负,为试验电荷所受的电场力(D) 以上说法都不正确2.1405:设有一“无限大”均匀带正电荷的平面。
取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度随距离平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):3.1551:关于电场强度定义式,下列说法中哪个是正确的?(A) 场强的大小与试探电荷q 0的大小成反比(B) 对场中某点,试探电荷受力与q 0的比值不因q 0而变(C) 试探电荷受力的方向就是场强的方向(D) 若场中某点不放试探电荷q 0,则=0,从而=04.1558:下面列出的真空中静电场的场强公式,其中哪个是正确的? (A)点电荷q 的电场:(r 为点电荷到场点的距离)(B)“无限长”均匀带电直线(电荷线密度)的电场:(为带电直线到场点的垂直于直线的矢量)(C)“无限大”均匀带电平面(电荷面密度)的电场:(D) 半径为R 的均匀带电球面(电荷面密度)外的电场:(为球心到场点的矢量)5.1035:有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A)(B)(C)(D)q F E / =F EEFFE F E204r q E επ=λr r E302ελπ=r σ02εσ=E σr r R E 302εσ=r 03εq 04επq 03επq 06εq( x q1035图6.1056:点电荷Q 被曲面S 所包围,从无穷远处引入另一点电荷q 至曲面外一点,如图所示,则引入前后: (A) 曲面S 的电场强度通量不变,曲面上各点场强不变 (B) 曲面S 的电场强度通量变化,曲面上各点场强不变 (C) 曲面S 的电场强度通量变化,曲面上各点场强变化 (D) 曲面S 的电场强度通量不变,曲面上各点场强变化7.1255:图示为一具有球对称性分布的静电场的E ~r 关系曲线。
大物电磁学课后答案
6-5 如图一长为l的直导线弯折成夹角为120o相等
长度的两部分,放在垂直于均匀磁场B的平面 上,并绕其一端以角速度在此平面内旋转, 求导线中感应电动势,并指出哪些电势高。
B
l
120o
2
l
解:两部分获感应电动势相当于直线段OA感
应电动势: OA 2 l cos300 3 l
9
6-10在圆柱形空间中存在着均匀磁场,B的方向与柱的轴线平行 ,若B的变化率为dB/dt=0.1特/秒,R=10厘米,问自r=5厘米、15 厘米处的感应电场的电场强度为多大?若将一个电子放在r=5厘 米处,求开始时电子的加速度a。
解:由于B的对称性
r=5厘米时
l
E
dl
E1
指向圆心的内压力。
补充6.1 一块金属板在均匀磁场中平移会不会产生感应电动势? 会不会产生涡电流?若金属板在均匀磁场中旋转,情况怎样?
解:当平板运动方向与磁力线平行时,不产生感应电动势;若
不平行,则有感应电动势,但无涡流产生;若是旋转,则平板
上各点速度所在平面与磁力线平行,无感应电动势,不平行则
有电动势。
1
补充6.2有一个铜环和一个木环,两环尺寸完全相同,放在同一 变化磁场里,问在两环中的感应电动势和感生电场相同吗? 解:产生的感应电场相同,电动势不同,铜环内有自由电子可 形成感应电流,而木环在感应电场作用下受极化。
6-2将一个超导材料作成的小薄片,放在永久磁铁的上方,它会 悬浮起来。你能解释这种现象吗? 解:处于超导态的材料电阻为零,电流分布在外表面上,内部 磁场为零。实际超导电流产生磁场抵抗外磁场的侵入,因而超 导材料受到一个排斥力,它与重力平衡而悬浮在磁场的上方。
大学物理习题电磁学习题解答(很全)
1.6 1019 (0.529 1010)2
5.141011伏 / 米或牛顿/ 库仑
5. 两个点电荷,q1 =+8.0微库仑,q2= - 16.0微库仑(1微 库仑=10-6库仑),相距20厘米。求离它们都是20厘米处的 电场强度E。
解:依题意,作如图所示:
E1
q1
4 0r12
1.6301019 (库仑)
4. 根据经典理论,在正常状态下,氢原子绕核作圆周运动, 其轨道半径为5.29 10-11米。已知质子电荷为e=1.60 10-19库, 求电子所在处原子核(即质子)的电场强度。
解:电子所在处的原子核(即质子)的电场由:
E
q
4 0r 2
9.0 109
1.17 10 29 (m / s2 )
6. 铁原子核里两质子间相距4.0 10-15米,每个质子带电 e=1.60 10-19库,(1)求它们之间的库仑力;(2)比较 这力与每个质子所受重力的大小。
解:(1)它们之间的库仑力大小为:
F
e2
4 0r2
9.0
109
(1.61019 )2 (4.091015 )2
解:(1) 从上题中得知: α粒子受的万有引力可以忽略, 它受的库仑力为:
F
(42q)1q02rα2粒 子9.0的1加09速度(7为9 :1.6
1019 ) (2 1.6 (6.9 1015 )2
1019
)
2
7.84 102 ( N )
a
F m
7.84 10 2 6.68 10 27
解:设油滴带电量为q,有电场力格重力平衡条件:qE=mg
得:
大物电磁学课后答案4
a
|2
a
2
0I arctg a a 2x
y
a/2
dB x
Bx 0
B
B
2 x
B
2 y
By
0I arctg a
a
2x
当a 时, B 0I arctg 0I 0 j .
a
a 2 2
补充4.4 边长为a的正方形载流回路,电流为I, (1)求这回路轴
2
2
0I 2 2 R
d
0I 2R
dI
x
dB
柱面横截面图
(沿x正向)
4-15 载流长直导线弯成图中三种形状,求O点的磁感应强度B。
解:(a)分成4段
B1 B3 0
B2
0Idl 4R12
0
0I 4R12
R1d
0I 4R1
同理
B4
0I 4R 2
解: (1) eE evB v E/B 3.75103 (米/秒)
(2)E,V,B 两两垂直
4-10 已知一电量为q的粒子垂直入射到磁感应强度为B的均匀磁
场以前,经过电压为V的电场加速,粒子的初速度可以忽略不计
,进入磁场后经过半圆到达照像底片上的P点,已知粒子入口至
P点的距离为x,求该粒子质量。
解:由于BC和AD中I2方向相反,在I1的磁场中受
力,大小相等方向相反,合力为零。
I1
AB受力为
FAB
I 2lB1
I
2l
0I1 2a
(方向如图)
ab
B
C
I2 l
大学物理习题答案解析第五章
第二篇 电磁学求解电磁学问题的基本思路和方法本书电磁学部分涉及真空中和介质中的静电场和恒定磁场、电磁感应和麦克斯韦电磁场的基本概念等内容,涵盖了大学物理课程电磁学的核心内容.通过求解电磁学方面的习题,不仅可以使我们增强对有关电磁学基本概念的理解,还可在处理电磁学问题的方法上得到训练,从而感悟到麦克斯韦电磁场理论所体现出来的和谐与美.求解电磁学习题既包括求解一般物理习题的常用方法,也包含一些求解电磁学习题的特殊方法.下面就求解电磁学方面的方法择要介绍如下.1.微元法在求解电场强度、电势、磁感强度等物理量时,微元法是常用的方法之一.使用微元法的基础是电场和磁场的叠加原理.依照叠加原理,任意带电体激发的电场可以视作电荷元d q 单独存在时激发电场的叠加,根据电荷的不同分布方式,电荷元可分别为体电荷元ρd V 、面电荷元σd S 和线电荷元λd l .同理电流激发的磁场可以视作为线电流元激发磁场的叠加.例如求均匀带电直线中垂线上的电场强度分布.我们可取带电线元λd l 为电荷元,每个电荷元可视作为点电荷,建立坐标,利用点电荷电场强度公式将电荷元激发的电场强度矢量沿坐标轴分解后叠加统一积分变量后积分,就可以求得空间的电场分布.类似的方法同样可用于求电势、磁感应强度的分布. 此外值得注意的是物理中的微元并非为数学意义上真正的无穷小,而是测量意义上的高阶小量.从形式上微元也不仅仅局限于体元、面元、线元,在物理问题中常常根据对称性适当地选取微元.例如,求一个均匀带电圆盘轴线上的电场强度分布,我们可以取宽度为d r 的同心带电圆环为电荷元,再利用带电圆环轴线上的电场强度分布公式,用叠加的方法求得均匀带电圆盘轴线上的电场强度分布.2.对称性分析对称性分析在求解电磁场问题时是十分重要的.通过分析场的对称性,可以帮助我们了解电磁场的分布,从而对求解电磁学问题带来极大方便.而电磁场的对称性有轴对称、面对称、球对称等.下面举两个例子.在利用高斯定律求电场强度的分布时,需要根据电荷分布的对称性选择适当的高斯面,使得电场强度在高斯面上为常量或者电场强度通量为零,就能够借助高斯定律求得电场强度的分布.相类似在利用安培环路定律求磁感强度的分布时,依照电流分布的对称性,选择适当的环路使得磁感强度在环路上为常量或者磁场环流为零,借助安培环路定律就可以求出磁感强度的分布.3.补偿法补偿法是利用等量异号的电荷激发的电场强度,具有大小相等方向相反的特性;或强度相同方向相反的电流元激发的磁感强度,具有大小相等方向相反这一特性,将原来对称程度较低的场源分解为若干个对称程度较高的场源,再利用场的叠加求得电场、磁场的分布.例如在一个均匀带电球体内部挖去一个球形空腔,显然它的电场分布不再呈现球对称.为了求这一均匀带电体的电场分布,我们可将空腔带电体激发的电场视为一个外半径相同的球形带电体与一个电荷密度相同且异号、半径等于空腔半径的小球体所激发电场的矢量和.利用均匀带电球体内外的电场分布,即可求出电场分布.4.类比法 在电磁学中,许多物理量遵循着相类似的规律,例如电场强度与磁场强度、电位移矢量与磁感强度矢量、电偶αr l λεE l l cos d π4122/2/0⎰-=极子与磁偶极子、电场能量密度与磁场能量密度等等.他们尽管物理实质不同,但是所遵循的规律形式相类似.在分析这类物理问题时借助类比的方法,我们可以通过一个已知物理量的规律去推测对应的另外一个物理量的规律.例如我们在研究L C 振荡电路时,我们得到回路电流满足的方程显然这个方程是典型的简谐振动的动力学方程,只不过它所表述的是含有电容和自感的电路中,电流以简谐振动的方式变化罢了.5.物理近似与物理模型几乎所有的物理模型都是理想化模型,这就意味着可以忽略影响研究对象运动的次要因素,抓住影响研究对象运动的主要因素,将其抽象成理想化的数学模型.既然如此,我们在应用这些物理模型时不能脱离建立理想化模型的条件与背景.例如当带电体的线度远小于距所考察电场这一点的距离时,一个带电体的大小形状可以忽略,带电体就可以抽象为点电荷.但是一旦去研究带电体临近周围的电场分布时,将带电体当作点电荷的模型就失效了.在讨论物理问题时一定要注意物理模型的适用条件.同时在适用近似条件的情况下,灵活应用理想化模型可大大简化求解问题的难度.电磁学的解题方法还有很多,我们希望同学们通过练习自己去分析、归纳、创新和总结.我们反对在学习过程中不深入理解题意、不分析物理过程、简单教条地将物理问题分类而“套”公式的解题方法.我们企盼同学们把灵活运用物理基本理论求解物理问题当成是一项研究课题,通过求解问题在学习过程中自己去领悟、体会,通过解题来感悟到用所学的物理知识解决问题后的愉悦和快乐,进一步加深理解物理学基本定律,增强学习新知识和新方法的积极性.01d d 22=+i LCt i第五章 静 电 场5 -1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )分析与解 “无限大”均匀带电平板激发的电场强度为,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ).5 -2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ).5 -3 下列说法正确的是( )(A ) 电场强度为零的点,电势也一定为零(B ) 电场强度不为零的点,电势也一定不为零(C ) 电势为零的点,电场强度也一定为零(D ) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D ).*5 -4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A ) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止(B ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D ) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动2εσ分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B ).5 -5 精密实验表明,电子与质子电量差值的最大范围不会超过±10-21 e ,而中子电量与零差值的最大范围也不会超过±10-21e ,由最极端的情况考虑,一个有8 个电子,8 个质子和8 个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10-21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8 个电子、8 个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为二个氧原子间的库仑力与万有引力之比为显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 5 -6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带 的上夸克和两个带的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律F 与径向单位矢量e r 方向相同表明它们之间为斥力.5 -7 质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k .证明电子的旋转频率满足其中ε0 是真空电容率,电子的运动可视为遵守经典力学规律.分析 根据题意将电子作为经典粒子处理.电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷.点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有由此出发命题可证.()e q 21max 10821-⨯⨯+=1108.2π46202max <<⨯==-Gmεq F F g e e 32e 31-()r r r r e εr q q εe e e F N 78.3π41π412202210===4320232me E εk =v 2202π41r e εr m =v证 由上述分析可得电子的动能为电子旋转角速度为由上述两式消去r ,得5 -8 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构.(1) 求氯离子所受的库仑力;(2) 假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力.分析 铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加.为方便计算可以利用晶格的对称性求氯离子所受的合力.解 (1) 由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故F 1 =0.(2) 除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力F 2 的值为F 2 方向如图所示.5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为(2) 在棒的垂直平分线上,离棒为r 处的电场强度为 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.re εm E K 202π8121==v 3022π4mr εe ω=432022232π4me E εωK ==v N 1092.1π3π4920220212⨯===aεe r εq q F 2204π1Lr Q εE -=2204π21L r r Q εE +=分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为整个带电体在点P 的电场强度接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,(2) 若点P 在棒的垂直平分线上,如图(A )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是证 (1) 延长线上一点P 的电场强度,利用几何关系 r ′=r -x 统一积分变量,则电场强度的方向沿x 轴. (2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为利用几何关系 sin α=r /r ′, 统一积分变量,则当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度r r q εe E 20d π41d '=⎰=E E d ⎰=LE i E d ⎰⎰==Ly E αE j j E d sin d ⎰'=L r πεq E 202d ()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰E r εq αE L d π4d sin 2⎰'=22x r r +='()2203/22222041π2d π41L r r εQ r x L xrQ εE L/-L/+=+=⎰此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线. 5 -10 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第5 -3 节的例1 可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元,在点O 激发的电场强度为由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系,统一积分变量,有积分得 5 -11 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.rελL r L Q r εE l 0220π2 /41/π21lim =+=∞→θθR δS δq d sin π2d d 2⋅==()i E 3/2220d π41d r x qx ε+=θR x cos =θR r sin =()θθθεδθθR πδR θR πεr x q x πεE d cos sin 2 d sin 2cos 41d 41d 02303/2220=⋅=+=02/004d cos sin 2εδθθθεδE π⎰==分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为,而夹角为2θ.叠加后水分子的电偶极矩大小为,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布.解1 水分子的电偶极矩在电偶极矩延长线上解2 在对称轴线上任取一点A ,则该点的电场强度由于 代入得 测量分子的电场时, 总有x >>r 0 , 因此, 式中,将上式化简并略去微小量后,得 5 -12 两条无限长平行直导线相距为r 0 ,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.00er P =θer P cos 20=302π41x p εE =θer θP P cos 2cos 200==30030030cos π1cos 4π412π41x θer εx θer εx p εE ===+-+=E E E 2020π42π4cos 2cos 2x εe r εθer E βE E -=-=+θxr r x r cos 202022-+=rθr x βcos cos 0-=()⎥⎥⎦⎤⎢⎢⎣⎡--+-=23/20202001cos 2cos π42x θxr r x θr x εe E ()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x θr x x θr x θxr r x cos 2231cos 21cos 2033/2033/20202300cos π1x θe r εE =分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力. 解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有(2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.5 -13 如图为电四极子,电四极子是由两个大小相等、方向相反的电偶极子组成.试求在两个电偶极子延长线上距中心为z 的一点P 的电场强度(假设z >>d ).分析 根据点电荷电场的叠加求P 点的电场强度.解 由点电荷电场公式,得()i i E E E x r x r ελx r x ελ-=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2i E F 00π2r ελλ==-+i E F 002π2r ελλ-=-=+-考虑到z >>d ,简化上式得 通常将Q =2qd 2 称作电四极矩,代入得P 点的电场强度5 -14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析 方法1:由电场强度通量的定义,对半球面S 求积分,即 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而解1 由于闭合曲面内无电荷分布,根据高斯定理,有依照约定取闭合曲面的外法线方向为面元d S 的方向,解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为① ()()k k k E 202020π41π412π41d z q εd z q εz q ε++-+=()()k k k E 42022220222206π4...321...32112π4/11/1112π4z qd εq z d z d z d z d z z εq z d z d z z εq =⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++-+++++-=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+-=k E 403π41zQ ε=⎰⋅=S S d s E Φ∑⎰==⋅01d 0q εS S E ⎰⎰'⋅-=⋅=S S S E S E Φd d ⎰⎰'⋅-=⋅=S S S E S E Φd d E R πR E 22πcos π=⋅⋅-=Φ()r θθθE e e e E sin sin cos sin cos ++=5 -15 边长为a 的立方体如图所示,其表面分别平行于Oxy 、Oyz 和Ozx 平面,立方体的一个顶点为坐标原点.现将立方体置于电场强度 (k ,E 1 ,E 2 为常数)的非均匀电场中,求电场对立方体各表面及整个立方体表面的电场强度通量.解 如图所示,由题意E 与Oxy 面平行,所以任何相对Oxy 面平行的立方体表面,电场强度的通量为零,即.而考虑到面CDEO 与面ABGF 的外法线方向相反,且该两面的电场分布相同,故有同理因此,整个立方体表面的电场强度通量5 -16 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径(为地球平均半径).由高斯定理r θθR e S d d sin d 2=ER θθER θθER SS2π0π2222πdsin d sin dd sin sin d ===⋅=⎰⎰⎰⎰S E Φ()12E kx E +E =i +j 0==DEFG OABC ΦΦ()[]()2221ABGF d a E dS E kx E =⋅++=⋅=⎰⎰j j i S E Φ22a E ABGF CDEO -=-=ΦΦ()[]()2121AOEF d a E dS E E -=-⋅+=⋅=⎰⎰i j i S E Φ()[]()()2121BCDG d a ka E dS E ka E Φ+=⋅++=⋅=⎰⎰i j i S E 3ka ==∑ΦΦ1m V 120-⋅E R R ≈E R ∑⎰=-=⋅q εR E E 021π4d S E地球表面电荷面密度单位面积额外电子数5 -17 设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析 通常有两种处理方法:(1) 利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有根据高斯定理,可解得电场强度的分布. (2) 利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为,每个带电球壳在壳内激发的电场,而在球壳外激发的电场由电场叠加可解得带电球体内外的电场分布解1 因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理得球体内(0≤r ≤R )∑--⨯-=-≈=2902cm 1006.1π4/E εR q σE 25cm 1063.6/-⨯=-=e σn ()()R r ρkr ρ>=≤≤= 0R r 02Sπ4d r E ⋅=⋅⎰S E ⎰⎰=⋅V ρεd 1d 0S E r r ρq ''⋅=d π4d 20d =E rrεqe E 20π4d d =()()()()R r r r Rr>=≤≤=⎰⎰d R r 0d 0E E E E ⎰⎰=⋅V ρεd 1d 0S E ()4202πd π41π4r εk r r kr εr r E r==⎰球体外(r >R )解2 将带电球分割成球壳,球壳带电由上述分析,球体内(0≤r ≤R )球体外(r >R )5 -18 一无限大均匀带电薄平板,电荷面密度为σ,在平板中部有一半径为r 的小圆孔.求圆孔中心轴线上与平板相距为x 的一点P 的电场强度.分析 用补偿法求解利用高斯定理求解电场强度只适用于几种非常特殊的对称性电场.本题的电场分布虽然不具有这样的对称性,但可以利用具有对称性的无限大带电平面和带电圆盘的电场叠加,求出电场的分布.若把小圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平板等效于一个完整的带电平板和一个带相反电荷(电荷面密度σ′=-σ)的小圆盘.这样中心轴线上的电场强度等效于平板和小圆盘各自独立在该处激发电场的矢量和. 解 由教材中第5 -4 节例4 可知,在无限大带电平面附近为沿平面外法线的单位矢量;圆盘激发的电场它们的合电场强度为()r εkr r e E 024=()4202πd π41π4r εk r r kr εr r E R==⎰()r εkR r e E 024=r r r k V ρq '''==d π4d d 2()r r rεkr r r r r k εr e e E 0222004d π4π41=''⋅'=⎰()r r Rr εkR r r r πr k πεr e e E 20222004d 441=''⋅'=⎰n εσe E 012=n e n r x x εσe E ⎪⎪⎭⎫⎝⎛+--=220212在圆孔中心处x =0,则E =0在距离圆孔较远时x >>r ,则上述结果表明,在x >>r 时,带电平板上小圆孔对电场分布的影响可以忽略不计.5 -19 在电荷体密度为ρ 的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O ′的矢量用a 表示(如图所示).试证明球形空腔中任一点的电场强度为分析 本题带电体的电荷分布不满足球对称,其电场分布也不是球对称分布,因此无法直接利用高斯定理求电场的分布,但可用补偿法求解.挖去球形空腔的带电球体在电学上等效于一个完整的、电荷体密度为ρ 的均匀带电球和一个电荷体密度为-ρ、球心在O ′的带电小球体(半径等于空腔球体的半径).大小球体在空腔内P 点产生的电场强度分别为E 1 、E 2 ,则P 点的电场强度 E =E 1 +E 2 . 证 带电球体内部一点的电场强度为所以 , 根据几何关系,上式可改写为n rx x εσe E E E 22212+=+=n nεσx r εσe e E 02202/112≈+=a E 03ερ=r E 03ερ=r E 013ερ=2023r E ερ-=()210213r r E E E -=+=ερa r r =-21a E 03ερ=5 -20 一个内外半径分别为R 1 和R 2 的均匀带电球壳,总电荷为Q 1 ,球壳外同心罩一个半径为R 3 的均匀带电球面,球面带电荷为Q 2 .求电场分布.电场强度是否为离球心距离r 的连续函数? 试分析.分析 以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而 .在确定高斯面内的电荷后,利用高斯定理即可求出电场强度的分布.解 取半径为r 的同心球面为高斯面,由上述分析r <R 1 ,该高斯面内无电荷,,故 R 1 <r <R 2 ,高斯面内电荷 故 R 2 <r <R 3 ,高斯面内电荷为Q 1 ,故r >R 3 ,高斯面内电荷为Q 1 +Q 2 ,故电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B )所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3 的带电球面两侧,电场强度的跃变量这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .24d r πE ⋅=⎰S E ∑q ∑⎰=/d εq S E ∑=⋅02/π4εq r E 0=∑q 01=E ()31323131R R R r Q q --=∑()()23132031312π4r R R εR r Q E --=2013π4r εQ E =20214π4r εQ Q E +=230234π4ΔεσR εQ E E E ==-=分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且,求出不同半径高斯面内的电荷.即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理r <R 1 ,在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1 <r <R 2 ,r >R 2,在带电面附近,电场强度大小不连续,电场强度有一跃变这与5 -20 题分析讨论的结果一致.5 -22 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.⎰⋅=rL E d π2S E ∑q ∑=⋅0/π2εq rL E 0=∑q 01=E L λq =∑rελE 02π2=0=∑q 03=E 000π2π2ΔεσrL εL λr ελE ===分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为其中E 是点电荷Q 1 、Q 3 产生的合电场强度. (2) 根据电场力作功与电势能差的关系,有其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势). 解1 由题意Q 1 所受的合力为零解得由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为解2 与解1相同,在任一点电荷所受合力均为零时,并由电势 的叠加得Q 1 、Q 3 在点O 的电势将Q 2 从点O 推到无穷远处的过程中,外力作功比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.5 -23 已知均匀带电长直线附近的电场强度近似为l E d 02⎰∞=Q W ()0202V Q V V Q W =-=∞()02π4π420312021=+d εQ Q d εQ Q Q Q Q 414132-=-=()2/322031π2yd εQ E E E yy y +=+=()dεQ y y d εQ Q Q W y 022/322002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E Q Q 412-=dεQd εQ d εQ V 003010π2π4π4=+=dεQ V Q W 0202π8=-='。
大学物理——电磁学习题答案
静电场1直角三角形ABC 的A 点上,有电荷C 108.191-⨯=q ,B 点上有电荷C 108.492-⨯-=q ,试求C 点的电场强度(设m 03.0m,04.0==AC BC ). 解:1q 在C 点产生的场强 20114AC q E πε= 2q 在C 点产生的场强 22204q E BC πε=C 点的合场强43.2410V E m ==⨯ 方向如图2. 带电细线弯成半径为R 的半圆形,电荷线密度为φλλsin 0=,式中0λ为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度. 解:R d R dl dE 00204sin 4πεϕϕλπελ==ϕcos dE dE x = 考虑到对称性 0=x E ϕsin dE dE y =RR d dE E y 0000284sin sin λϕϕλϕπ===⎰⎰ 方向沿y 轴负向3.一半径为R 的半球面,均匀地带有电荷,电荷面密度为σ,求球心O 处的电场强度. 解:把球面分割成许多球带,球带所带电荷 dl r dq σπ2=2322023220)(42)(4r x dlrx r x xdqdE +=+=πεσππεθcos R x = θs i n R r = θRd dl =20001sin2224E d i πσσθθεε==⎰ 4如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L xq -+π=ε 2分L Pd EO总场强为 ⎰+π=L x d L x L q E 020)(d 4-ε()d L d q+π=043分 方向沿x 轴,即杆的延长线方向.5一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在θ处取微小电荷d q = λd l = 2Q d θ / π它在O 处产生场强 θεεd 24d d 20220R QR q E π=π= 按θ角变化,将d E 分解成二个分量:θθεθd sin 2sin d d 202RQ E E x π==,θθεθd cos 2cos d d 202R Q E E y π-=-=对各分量分别积分,积分时考虑到一半是负电荷⎥⎦⎤⎢⎣⎡-π=⎰⎰πππθθθθε2/2/0202d sin d sin 2R QE x =0, 2022/2/0202d cos d cos 2R QR Q E y εθθθθεππππ-=⎥⎦⎤⎢⎣⎡-π-=⎰⎰ 所以j RQ j E i E E y x202επ-=+=6边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.解:由题意知E x =200 N/C , E y =300 N/C ,E z =0平行于xOy 平面的两个面的电场强度通量 01=±==⋅S E S E z eΦ 平行于yOz 平面的两个面的电场强度通量2002±=±==⋅S E S E x eΦ b 2N ·m 2/C“+”,“-”分别对应于右侧和左侧平面的电场强度通量平行于xOz 平面的两个面的电场强度通量 3003±=±==⋅S E S E y eΦ b 2 N ·m 2/C“+”,“-”分别对应于上和下平面的电场强度通量.xz7图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )解:两带电平面各自产生的场强分别为:()02/εσA A E = 方向如图示()02/εσB B E = 方向如图示由叠加原理两面间电场强度为()()02/εσσB A B A E E E +=+= =3×104 N/C 方向沿x 轴负方向两面外左侧()()02/εσσA B A B E E E -=-=' =1×104 N/C 方向沿x 轴负方向两面外右侧 E ''= 1×104 N/C 方向沿x 轴正方向8 一球体内均匀分布着电荷体密度为ρ的正电荷,若保持电荷分布不变,在该球体中挖去半径为r 的一个小球体,球心为O ',两球心间距离d O O =',如图所示. 求:(1) 在球形空腔内,球心O '处的电场强度0E .(2) 在球体内P 点处的电场强度E .设O '、O 、P 三点在同一直径上,且d OP =.解:(1)利用补偿法,以O 为圆心,过O '点作一个半径为d 的高斯面。
大学物理课后习题答案 电磁感应 电磁场
第十三章 电磁感应 电磁场 1、[D]分析:应用楞次定律为分析的根据,若要产生乙线圈中的,则乙线圈中电流产生的电感应强度是由右向左,说明甲线圈中电流产生的由右向左的电感应强度在减小,即产生该磁场的电流在减小,由此可见,将抽出甲中铁心,nI B r 0μμ=,在I 不变时,B 减小。
2、[D]依据法拉第电磁感应规律,td d φε-=在上述条件下,ε应相同。
依据欧姆定律,RI ε=因为是不同的导体电阻率不同,所以R 不同,I 也不同。
3、[B]应用楞次定律分析,在I 增长时,垂直通过线圈平面内向外的磁通量是增大,因此感应电流产生的磁感强度垂直平面向里,为顺时针方向。
4、[C]分析:当a >>r 时,有以r 为半径的圆周内各点的B可视为常矢量。
断电前通过导体环的磁通量:2012r aIBS S B ππμφ==⋅=。
断电后通过导体环的磁通量:02=φ。
对纯电阻电路有:aRIr RRq 2)(120112μφφφ==--=5、[D]θαεcos d sin d )(d l vB l B v =⋅⨯=)(B v ⨯和l d 之间夹角2πθ=,∴0d =ε 0d ==⎰εε6、[D]在t ωθθ+=,θαεcos d sin d l vB =其中θ是)(B v⨯和l d 之间夹角r r l vB d cos d sin d ωθαε-== 2OP 21d BL r r B ωωε-=-=⎰O 处为高电势 221BL ωε=7、[D]两自感线圈顺接和反接的自感系数:M L L L 221++=顺21L L KM =10≤≤KM L L L 221-+=反图(1)为反接:1111ab 2L L K L L L -+=,由于1<K ,∴0ab >L 图(2)为反接:1111ab 2L L KL L L -+=,由于1=K ,∴0ab =L8、[C]V 0.8161225.0d d 11=-⨯-=∆∆-=-=tI LtI Lε9、[C]a Ia IaIB πμπμπμ000P 22=+=10、tS B td d d d )( ⋅-=-=φεt mIa nI a nI BS BS S B mωπμπμθcos cos 2020====⋅t mIa nI mωωπμεcos 20-=11、解:Wb 1057.1)1.0(1416.310562521--⨯=⨯⨯⨯===⋅=rB BS S B πφWb 1057.1612-⨯-=-=φφC 1014.3)(1612-⨯=--=φφRq12、(1)向右移动时,垂直纸面向内的φ减小。
大学物理课后习题答案14电磁场习题_图文_图文
习题总目录
结束 目录
)EyBy
+
(1
v2 c2
)EzBz
=ExBx+EyBy+EzBz = E .B
结束 目录
(2) E´2 c2B´2=
= E´x 2+E´y2+E´z 2 c2B´x2 c2B´y2 c2B´z2
= Ex2 c Bx2
+ g 2 Ey2+v2Bz2 2EyBz + Ez2+v2By2+2EzBy
c2( cv42Ey2 + Bz2
cosω
t
结束 目录
14-8 已知无限长载流导线在空间任一点 的磁感应强度为:m0I/2pr 。试证明满足方 程式
.B
=
Bx x
+
By y
+
Bz z
=0
结束 目录
证明: Bx = =
.B
=
Bx x
+
By y
+
Bz z
=0
m0I
2pr
sinq
m0Iy
2pr2
=
m0Iy
2p(x2+y2)
g
2pf
=
5.7×107
8.85×10-12×2p×3×1011
= 2.0×1016
结束 目录
14-5 有一平板电容器,极板是半径为R 的圆形板,现将两极板由中心处用长直引线 连接到一远处的交变电源上,使两极板上的 电荷量按规律q=q0sinω t变化。略去极板边 缘效应,试求两极板间任一点的磁场强度。
By
=
m0Ix
2p(x2+y2)
Bz =0
《电磁学》第二版_课后题的答案
(参考点选在无远。)
答案:U1
=
q1 4πε 0 R1
+
q2 4πε0 2R1
∫ ∫ ∫ ∫ 〈或者:U1 =
R2 R1
E1dr
+
∞
R2
E2dr
=
2R1 q1 dr + R1 4πε 0r 2
∞ q1 + q2 dr 〉 2R1 4πε 0r 2
第一章
静电场的基本规律
1.1 判断下列说法是否正确, 说明理由。 (1)一点的场强方向就是该点的试探点电荷所受电场力的方向。 (2)场强的方向可由 E=F/q 确定,其中 q 可正可负。 (3)在以点电荷为心的球面上,由该点电荷产生的场强处处相等。
答案:(1) ×,正的试探电荷; (2) √ ;(3)× 在无外场是,球面上 E 大小相等。
力为零?
解:设 q′ 距 q 为 r,则 q′ 距 2q 为 (L − r) ,放在相距 r 处,受合力为 0,则有受力平衡条件:
k
qq′ r2
=
k
2qq′ (L − r)2
得到: r = ( 2 −1)L
1.2.4 在直角坐标系的(0m,0.1m)和(0m,-0.1m)的;两个位置上分别放有电荷 q=10-10C 的点 带电体,在(0.2m,0m )的位置上放一电荷为 Q=10-8C 的点带电体,求 Q 所受力的大小和方向。
1.2.1 真空中有两个点电荷,其中一个的量值是另一个的 4 倍。她们相距 5.0×10-2 m 时相互排斥力
为 1.6N。问: (1)她们的电荷各为多少? (2)她们相距 0.1m 时排斥力的多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= 2 . 5 × 10 3 V
方法2: 方法 : O l
x x+dx
P a
Q X
r 选坐标轴OX,取微元x-x+dx,如图所示。 选坐标轴 ,取微元 ,如图所示。 轴上任选一点Q,其与杆右端距离为r,则 在X轴上任选一点 ,其与杆右端距离为 则 轴上任选一点 Q点场强方向向右,大小为 点场强方向向右, 点场强方向向右
Ⅰ
Ⅱ
Ⅲ
方向向右。 方向向右。
如图, 如图,有 ϕ AB = ϕ AC + ϕCB = −E1 ⋅ AC + E2 ⋅ CB
= 16.95×105 × 7 ×10−2 − 5.65×105 × 5×10−2
= 9 . 0 × 10 4 V
(2) 电场力作功为 A = q0ϕ AB
= 9 × 10 × ( − 1 .0 × 10
8.4解: 解 两根直电流在圆心处 的磁感应强度均为0. 的磁感应强度均为 I1在圆心处产生
1 I1 O
I A
α
2 I2 I C
大小: 1 = µ 0 I 1 ⋅ 2π − α = µ 0 ⋅ I ⋅ α ⋅ 2π − α 大小: B B1 2R 2π 2R 2π 2π 方向: 方向: ⊙ I2在圆心处产生 大小:B2 = µ 0 I 2 ⋅ α = µ 0 ⋅ I ⋅ 2π − α ⋅ α 大小:
µ0Id 2 R π
4 ×10−7 ×7 0×10−2 . π . = = 2 8×10−7 T 2 ×0 05 π .
10.1 解: I 选坐标系,取微元, 选坐标系,取微元, a O 如图所示, 如图所示, d 其产生的动生电动势为
v
x x+dx
bX
l
dε = ( v × B )⋅ dx = −vBdx
方向:向上(逆时针) 方向:向上(逆时针) 整个线圈的动生电动势为
µ0 I 1 1 ε = ε 1 − ε 2 = N ( B1 − B2 )Lv = NLv ( − ) 2π d d + a
= 2 × 10 −3 V 方向:顺时针 方向:
10.4 解: 选择坐标系OX, 选择坐标系 ,取微元 x-x+dx,如图所示。 如图所示。 如图所示 通过线圈的磁链为
ε ∴ oa =εbo = 0
上各点感应电场⊥ ∵半径oa 、 bo上各点感应电场⊥导线, 半径 上各点感应电场 导线,
L
1 dB L 2 dB 2 ε R −L / 4 ⋅ ∴ ab = ε∆oab = ab⋅ h⋅ = 2 dt 2 dt
方向: b端电势高 方向:a →b(可由楞次定律判断), 端电势高。 (可由楞次定律判断), 端电势高。
1.9 解: 题目应加一个条件:λ>0. 题目应加一个条件: 如图所示,电荷元 如图所示,电荷元dq=λdx在P点的场强大小为 在 点的场强大小为 L o x x+dx d E r 所有电荷元在P点的场强方向相同 点的场强方向相同, 所有电荷元在 点的场强方向相同,
L/2
PX
dE =
λ dx
4πε 0 ( r − x ) 2
0 1 0 2
外球面电势: 外球面电势:ϕ 2 = 4 πε R + 4 πε R 0 2 0 2 两球面的电势差: 两球面的电势差:ϕ 12 = ϕ 1 − ϕ 2 =
( 1 − 1 ) 4πε 0 R1 R2 q1
q1
q2
,总有内球电势高于外球电势。 当q1>0时, ϕ12>0,总有内球电势高于外球电势。 时 当q1<0时, ϕ12<0,总有内球电势低于外球电势。 时 ,总有内球电势低于外球电势。 这是因为: 这是因为:两球面的电势差由两球面间的 电场分布决定,而这电场又只与q 有关。 电场分布决定,而这电场又只与 1有关。
∴整个带电直线在P点的场强大小为 整个带电直线在 点的场强大小为
E =
∫ dE
=
−L / 2
∫
λ dx
4πε 0 ( r − x )
2
=
λL
4πε 0 ( r 2 − L2 / 4 )
方向沿X轴正向。 方向沿 轴正向。 轴正向
1.11解(弥补法): 解 弥补法) 缝隙宽为d. 设电荷线密度为λ,缝隙宽为 构成完整的圆环, 先补上 λ d ,构成完整的圆环, E O = 0. 其在圆心处的场强为
I2
X
r1 r2 r3 (2)选坐标系 和微元 选坐标系OX和微元 选坐标系 和微元x-x+dx,选⊙为正法线方向 , 则电流I 则电流 1的磁场通过图中面积的磁通量为
Φ 1 = dΦ 1 = B ⋅ dS = BdS =
O
∫
∫
∫
∫
r1 + r2
µ 0 I 1 l r1 + r2 ln = 2π r1 µ0 I1l r1 + r2 Φ = 2Φ1 = ln = 2.2 × 10−6 Wb ∴所求磁通量为 π r1
3.21解:(1) 解 平面I和 之间的场强大小为 平面 和II之间的场强大小为
1 ( σ + σ −σ ) = 5.65×105V / m E1 = 2 3 1 2ε0
σ1
E 1
●
σ2
E2
●
σ3
A C B
方向向左。 方向向左。 平面II和 之间的场强大小为 平面 和III之间的场强大小为
E2 = 1 ( σ 1 + σ 2 − σ 3 ) = 16.95×105V / m 2ε0
E =
∫ dE = ∫
l
0
λ 1 1 λ dx ( − ) = 2 4 πε 0 ( r + l − x ) 4 πε 0 r r + l
设 ϕ∞ = 0 ,则P点的电势为 则 点的电势为
φ =
∫
∞ a
Edr =
∫
∞ a
=
λ ln a + l = 2 . 5 × 10 3 V 4 πε 0 a
λ 1 1 ( − ) dr 4 πε 0 r r+ l
1.18解(典型场的叠加): 解 典型场的叠加) 定理, 由Gauss定理,易知 定理 小柱面产生的场强为
λ ˆ r ( r > R1 ) E1 = 2πε 0 r
0 ( r < R1 )
R2
R1
-λ
+λ
大柱面产生的场强为
−λ ˆ r ( r > R2 ) E 2 = 2πε 0 r
0 ( r < R2 )
10.5 解:连oa、ob形成△oab回路。 形成△ 回路 回路。 、 形成 × B× 先只考虑电动势大小, 先只考虑电动势大小, R × o× × 由法拉第电磁感应定律, 由法拉第电磁感应定律,有 • dΦ∆oab dB × × × h ε∆oab = = S∆oab ⋅ dt dt a × × b =εoa +εab +εbo
B2
方向: 方向: ⊗
2R
2π
2R
2π
2π
B1 + B 2 = 0
∴圆心处的总磁感应强度为0. 圆心处的总磁感应强度为
8.5解: 解 (1)所求磁感应强度方向:⊙ I1 所求磁感应强度方向: 所求磁感应强度方向 大小为
µ0 I B=2 = 4.0 × 10 − 5 T 2π ⋅ d / 2
d l
x x+dx
i L
O x dx X
Ψ = N = N∫SB Φ dS
µ0i N 0iL d +a µ dx =N ⋅L = ln d 2x π 2 π d 所求感生电动势为 dΨ N 0L d +a di µ ε =− (ln ) =− dt 2 d dt π
d
a
∫
d+a
π = −4.4×10−2 cos100 t (V )
整个导线产生的动生电动势为 b d +l µ0 I µ 0 Iv d + l dx = − ln ε = dε = −v a d 2πx 2π d −5 = −1.1 × 10 V
∫
∫
方向: 方向: b → a.
a点电势高。 点电势高。 点电势高
v
I 10.3 解: 上、下两边不产生动生电动势。 下两边不产生动生电动势。 左边产生: 左边产生: ε 1 = NB1 Lv 右边产生: 右边产生:ε 2 = NB2 Lv a d 方向:向上(顺时针) 方向:向上(顺时针) L
4 −8
) = − 9 × 10 J
−4
∴外力克服电场力作功为 A′ = − A = 9 × 10 J
−4
7.16解: 解 (1)以M ′和M分别表示挂线 以 和 分别表示挂线 圈的臂和另一臂在第一次 平衡时的质量, 平衡时的质量,则
M = M′g−n g IlB
M
M′
电流反向时应有
( M+m)g = M′g+n IlB
r1
µ0 I1 ⋅ ldx 2πx
8.28解: 解 dE 2 dE R = ε0π (1) Id = ε0S板
dt dt
= 8.85×10−12 ⋅π ×0.052 ×1.0×1012 =7.0×10−2 A
(2) 以极板边缘线作为安培回路L,则 以极板边缘线作为安培回路L,则
∫
L
B⋅ d = µ0Id ⇒B = l
3.6(1) ( ) 解:
x+dx x
X
P O a
l
选坐标轴OX,取微元 选坐标轴 ,取微元x-x+dx,如图所示。 ,如图所示。 则此微元在P点的电势为 设 ϕ∞ = 0 ,则此微元在 点的电势为 则此微元在
λ dx dϕ = 4 πε 0 x
∴P点的总电势为 点的总电势为