全等三角形尺规作图

合集下载

全等三角形 尺规作图

全等三角形 尺规作图

全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )A.120°B.125°C.127°D.104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.5、如图,AB=AC,BD=CD,求证:∠1=∠2.6、如图,已知AB=CD,AC=BD,求证:∠A=∠D.7、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.8、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定方法SAS 专题练习1.如图,AB=AC ,AD=AE ,欲证△ABD ≌△ACE ,可补充条件( ) A.∠1=∠2 B.∠B=∠C C.∠D=∠E D.∠BAE=∠CAD2.能判定△ABC ≌△A ′B ′C ′的条件是( ) A .AB=A ′B ′,AC=A ′C ′,∠C=∠C ′ B. AB=A ′B ′, ∠A=∠A ′,BC=B ′C ′ C. AC=A ′C ′, ∠A=∠A ′,BC=B ′C D. AC=A ′C ′, ∠C=∠C ′,BC=B ′C3.如图,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD= , 根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.4.如图,已知BD=CD ,要根据“SAS”判定△ABD ≌△ACD , 则还需添加的条件是 。

三角形全等的判定ASA-AAS及尺规作图五种基本作

三角形全等的判定ASA-AAS及尺规作图五种基本作

以上内容是基于给定的大纲和指令进行的扩 展,但请注意,由于缺乏具体细节和背景信 息,某些描述可能不够精确或全面。如有需 要,请进一步补充和修正。
04
asa-aas在实际问题中的 应用
在几何证明题中的应用
在几何证明题中,asa-aas判定定理常常用于证明两个三角形全等。通过比较两 个三角形的两边和夹角,如果满足条件,则两个三角形全等,从而可以得出其他 相关结论。
asa-aas的发展方向
拓展适用范围
实际应用研究
研究如何将ASA-AAS判定应用于更广 泛的情况,例如处理只有一边和两个 角的情况或者只有两边和夹角的情况。
研究如何将ASA-AAS判定应用于解决 实际问题,例如几何证明、建筑设计、 工程测量等领域。
引入其他判定方法
研究如何将其他三角形全等判定方法 (如SAS、SSS、HL等)与ASA-AAS 判定相结合,以拓展其应用范围。
经过一点做已知直线的垂线
总结词
垂线的作法
详细描述
在给定的直线上选择一个点,然后使 用圆规在该点上画圆,与直线相交于 两点。连接这两点即可得到经过该点 的垂线。
作已知角的角平分线
总结词
角平分线的作法
详细描述
在给定的角内,使用圆规以角的顶点为圆心画圆,与角的两 边相交于两点。连接这两点即可得到该角的角平分线。
Hale Waihona Puke VS应用在尺规作图中,可以利用asa-aas判定三 角形全等来确定未知点的位置。例如,已 知一个三角形的两个角和一边,可以通过 asa-aas判定另一个三角形与之全等,从 而确定未知点的位置。
利用asa-aas解决实际问题
• 实例:在建筑设计中,常常需要确定某一点的位置使得该点到 两个已知点的角度相等。通过asa-aas判定定理,可以确定未知 点的位置,从而满足建筑设计的需求。

全等三角形 尺规作图

全等三角形 尺规作图

全等三角形尺规作图1、经历观察图形的形状和大小的活动,认识全等形的基本特征,体验全等形是两个图合。

2、通过对三角形进行平移、翻折、旋转的探索,发现全等三角形的对应边相等,对应角相等。

情感、态度与价值观:如图,△ABC≌△AEC,∠B=30°,∠ACB=85°.求出△AEC各内角的度数.(学生根据全等三角形的性质独立解决.)解:在△ABC中,已知∠ACB=85°,∠B=30°,根据三角形的内角和等于180°,可得:∠BAC=65°.因为△ABC≌△AEC,所以∠EAC=∠BAC=65°,∠E=∠B=30°,∠ACE=∠ACB=85°.答:△AEC的内角的度数分别为65°、30°、85°掌握基本作图1做一条线段等于已知线段2作一角等于已知角3已知三边作三角形,4已知两边及其夹角作三角形;5已知两角及其夹边作三角形已知:线段 a 和∠α,求作一个三角形,使其一个内角等于∠α,另一个内角等于2∠α,且这两个内角的夹边等于a。

aαM N1.已知线段MN,画一条线段AC= MN 的步骤是:第一步: _____________________________,第二步:______________________________,所以AC就是所要画的线段..已知∠AOB,画一个∠A′O′B′=∠AOB的步骤:α如图是一个等边三角形,你能利用折纸的方法把它分成两个全等的三角形吗?你能把它分成三个,四个全等的三角形吗?学生活动设计:学生小组讨论,经过讨论交流自己的方法。

可能有下列方法:。

八年级上册数学 13全等三角形 尺规作图 第一课时 尺规作图(1)线段、角2

八年级上册数学 13全等三角形 尺规作图 第一课时 尺规作图(1)线段、角2
xx于x点;) 5. 分别以点x,点x为圆心,以xx为半径作
弧,两弧相交于x点。
思考题
▪ 、已知:角∠α,线段m。 ▪ 求作:等腰三角形△ABC,使其顶角
∠BAC=∠α, ∠BAC的平分线为m。
《课课练》P51-P52 第1课时尺规作图 全做
1、作一条线段等于已知线段
已知:线段MN。求作线段AC ,使AC=MN。
作法: 1、画射线AB; 2、用圆规量出线段MN的长,在射线AB上截取AC= MN。
线段AC就是所要画的线段。
2、作一个角等于已知角
▪ 已知: ∠AOB
▪ 求作: ∠A`O`B`,使 ∠A`O`B`=∠AOB
B
O
A
B D
B` D`
第19章 全等三角形 19.3 尺规作图
基本作图
▪ 在几何里,把限定用直尺和圆规来画
图,称为尺规作图.最基本,最常用的 尺规作图,通常称基本作图.
▪ 其中,直尺是没有刻度的;
▪ 一些复杂的尺规作图都是由基本作图组成的. 以前学过的”作一条线段等于已知线段”,就 是一种基本作图.
▪ 下面再介绍几种基本作图:
A
B
C
D
3、已知:线段a,c,∠α
求作:ΔABC,使BC=a,AB=c,∠ABC=∠ α
a c
α
作法:1)作一条线段BC=a 2)以B为顶点,BC为一边,作,∠DBC=∠ α
3)在射线BD上截取线段BA=c 4)连接AC, ΔABC就是所求作的三角形
练习: 1、分别画出满足下列条件的三角形ABC (1)已知两边及夹角 (2)已知两角及夹边
a
·· ·b ·
a
·a ·
a
β
(3)已知三边

第15讲 全等三角形与尺规作图

第15讲 全等三角形与尺规作图
栏目索引
第15讲 全等三角形与尺规作图
总纲目录
泰安考情分析 基础知识过关 泰安考点聚焦 随堂巩固练习
总纲目录
栏目索引
泰安考情分析
泰安考情分析 栏目索引
基础知识过关 栏目索引
基础知识过关
知识点一 全等三角形的性质与判定 知识点二 角平分线的性质 知识点三 线段垂直平分线的性质 知识点四 三角形中位线定理 知识点五 尺规作图
图 知角
于点P、Q;2.作射线O'A;3.以O'为圆心,OP长为半径作
弧,交O'A于点M;4.以点M为圆心,PQ长为半径作弧,两
弧交于点N;5.过点N作射线O'B,∠AO'B即为所求作的

作已知角的平分 线
作线段的垂直平 分线
1.以O为圆心,任意长为半径作弧,分别交OA、OB于
1
点N、M;2.分别以点M、N为圆心,大于2 MN长为半径
泰安考点聚焦 栏目索引
例3 如图,在△ABC中,按以下步骤作图:①分别以点B,C为圆心, 以大于 1BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB
2
于点D,连接CD.若CD=AC,∠B=25°,则∠ACB的度数为 105° .
泰安考点聚焦 栏目索引
解析 ∵MN为BC的垂直平分线, ∴△BCD为等腰三角形,∵∠B=25°, ∴∠BCD=25°,∴∠CDA=∠B+∠BCD,∵AC=CD,∴∠CAD=∠ CDA=50°, ∴在△ACD中,∠ACD=80°, ∴∠ACB=105°.
基础知识过关 栏目索引
拓 已知一直角边长m 1.画两条互相垂直的直线,垂足为C,在其中一边上截
展 和斜边
取CA=m;
类 长n作直角三角形 2.以点A为圆心,n为半径画弧,与另一边交于点B;

八年级数学上册全等三角形 . 尺规作图经过一已知点作已知直线的垂线作已知线段的垂直平分线

八年级数学上册全等三角形 . 尺规作图经过一已知点作已知直线的垂线作已知线段的垂直平分线
2.点与直线的位置关系有几种(jǐ zhǒnɡ)情况?
(1)点在直线上;(2)点在直线外.
3.经过一已知点作已知直线的垂线有可以分为几种情况? 两种. 12/13/2021
第三页,共十九页。
讲授 (jiǎngshòu)新
课 一 经过一已知点作已知直线的垂线
基本(jīběn)作图4. 经过一已知点作已知直线的垂线
确(zhǔnquè)地经过点C作出直线AB的垂线.
步骤:
C
(1)以点C为圆心,作弧与直线AB相交于点D、点
E; (2)作∠DCE的平分线CF. 直线CF就是所要求(yāoqiú)作的垂线.
A
D
F
B
E
12/13/2021
思考:你能说说其 中的道理吗?
第六页,共十九页。
典例精析
例1 利用直尺(zhí chǐ)和圆规作一个等于45°的角.
作已知线段(xiànduàn)的垂直平分线理论依
据是:判定三角形全等的“边边边”
线段(xiànduàn) 垂直平分线 的尺规作图
对于语言叙述类的画图问题(wèntí),应先画草
图,再写已知、求作、作法.
12/13/2021
第十七页,共十九页。
第十八页,共十九页。
内容(nèiróng)总结
13.4 尺规作图。2. 已知底边及底边上的高,能够利用直尺和圆规作出等腰三角形.(重点)。 (1)作一条线段等于已知线段。3.作∠CAB的平分线AD.。第一步:分别以点A和点B为圆心、大
12/13/2021
P
(第 1 题 )
第十二页,共十九页。
2.如图,作△ABC边BC上的高.
(第 2题)
12/13/2021
第十三页,共十九页。

全等三角形尺规作图

全等三角形尺规作图

全等三角形尺规作图xx年xx月xx日CATALOGUE目录•全等三角形基本概念•全等三角形尺规作图基本法则•尺规作图的技巧和方法•尺规作图的实例分析•尺规作图的应用和意义01全等三角形基本概念两个三角形全等是指它们能够完全重合,即三个内角相等且三条边相等。

全等三角形的记号是“≌”,读作“全等形ABCD”或“三角形ABC全等于三角形DEF”。

全等三角形的对应边相等,对应角相等。

全等三角形的对应边上的高相等,对应边上的中线相等,对应角平分线相等。

SSS(Side-Side-Side):如果三角形的三条边相等,则它们全等。

AAS(Angle-Angle-Side):如果三角形的两个角相等且这两个角的夹边相等,则它们全等。

ASA(Angle-Side-Angle):如果三角形的两个角相等且其中一个角的对边相等,则它们全等。

SAS(Side-Angle-Side):如果三角形的两条边相等且这两条边的夹角相等,则它们全等。

全等三角形的判定方法02全等三角形尺规作图基本法则无刻度直尺只限制长度测量,无法进行面积、角度等测量。

圆规可以用来画圆和圆弧,也可以用来复制图形。

尺规作图的基本概念直接法通过圆规和无刻度直尺,直接画出全等三角形。

间接法通过画出一个三角形,再使用圆规和无刻度直尺,间接画出全等三角形。

全等三角形的尺规作图方法画出三角形使用圆规,以点A为圆心,以AB为半径画圆弧,得到点C;再以点B为圆心,以AB为半径画圆弧,得到点D;连接CD得到三角形ABC。

确定两个已知点确定两个已知点A和B,并连接两点得到线段AB。

判断全等通过比较AC和BC的长度,可以判断三角形ABC和三角形DEF是否全等。

作图步骤03尺规作图的技巧和方法1作图技巧23明确要画的图形,了解所需条件和限制条件。

确定作图目标根据已知条件逐步推导,按照顺序将图形画出来。

画图步骤检查画出的图形是否符合题目要求,确保准确性。

检验作图结果根据等边三角形的性质,通过平分已知角度或边长即可得到三个等边三角形。

7全等三角形的尺规作图

7全等三角形的尺规作图

第7讲三角形的尺规作图一、教学目标理解尺规作图的含义,掌握尺规作图的步骤。

二、知识点梳理1、尺规作图定义:只用直尺(没有刻度)和圆规也可以画出一些图形,这种画图的方法被称为尺规作图。

注意:尺规作图中的直尺没有刻度。

2、已知三边作三角形已知三边求作三角形是利用三角形全等的条件“边边边”来作图的,具体作图的方法、步骤、图形如下:已知:线段a,b,c求作:△ABC,使AB=c,BC=a,AC=b作法与示范:(1)作线段AB=c(2)以点A为圆心,b为半径画弧(3)以点B为圆心,a为半径画弧,两弧交于点C(4)连接AC,BC,△ABC即为所求3、已知两边及其夹角作三角形已知两边及其夹角作三角形是利用三角形全等的条件“边角边”来作图的,具体作图的方法、步骤、图形如下:已知:线段a,b,∠α求作:△ABC,使∠B=∠α,BC=a,BA=b作法与示范:(1)作∠MBN=∠α(2)在射线BM,BN上分别截取线段BC=a,BA=b(3)连接AC,则△ABC为所求作的三角形4、已知两角及其夹边作三角形已知两角及其夹边求作三角形是利用三角形全等的条件“角边角”来作图的,具体作图的方法、步骤、图形如下:已知:∠α,∠β,线段a求作:△ABC,使∠BAC=∠α,∠ABC=∠β,AB=a作法与示范:(1)作线段AB=a(2)在AB同侧,作∠DAB=∠α,∠EBA=∠β,AD与BE相交于点C,则△ABC为所求作的三角形三、典型例题例1 下列作图属于尺规作图的是()A、用量角器画出∠AOB的平分线B、用圆规和直尺作∠AOB等于已知的∠αC、用刻度尺画线段AB=3 cmD、用三角板作直线AB的平分线例2 如图13-4-1,已知:线段a、b。

求作:△ABC,使AB=2a,AC=b,BC=a。

例3 如图13-4-3,已知:线段m,n,∠α。

求作:△ABC,使AB=2m,AC=2n,∠A=∠α。

例4 如图13-4-5,已知:线段a和∠α。

尺规作图等腰三角形全等三角形及直角坐标

尺规作图等腰三角形全等三角形及直角坐标

尺规作图、等腰三角形、全等三角形及直角坐标教学课题尺规作图、等腰三角形、全等三角形及直角坐标教学目标1、 掌握尺规作图的方法,学会用几何语言描述作图过程2、 巩固全等三角形和等腰(等边)三角形的判定证明,加强用几何语言描述的能力3、 掌握平面直角坐标系及相关概念,类比(由数轴到平面直角坐标系)的方法、数形结合的思想. 教学重、难点灵活运用四种全等三角形判定定理;构建平面直角坐标系,掌握平面内点与坐标的对应.◆ 诊查检测:1、 选择题(1)一个正方形在平面直角坐标系中三个点的坐标为(-2,-3),(-2,-1),(2,1),则第四个顶点的坐标为( )A .(2,2) B.(3,2) C.(2,-3) D.(2,3)(2)右图中是在方格纸上画出的小旗图案,若用(0,0)表示A 点,(0,4)表示B 点,那么C 点的位置可以表示为( )A.(0,3)B.(2,3)C.(3,2)D.(3,0)(3)已知点A (a ,b )在第四象限,那么点B (b ,a )在( )A .第一象限B .第二象限C .第三象限 D. 第四象限(4) 过两点A (3,4),B (-2,4)作直线AB ,则直线AB( )A.经过原点B.平行于y 轴C.平行于x 轴D.以上说法都不对(5)在平面直角坐标系中,以点P(-1,2)为圆心,1为半径的圆与x 轴有( )个公共点A .0B .1C .2D .3(6) 如图,把图①中△ABC 经过一定的变换得到图②中的△A 'B 'C ',如果图①的△ABC 上点P 的坐标是),(b a ,那么这个点在图②中的对应点P '的坐标是A .)3,2(--b aB .)3,2(--b aC .)2,3(++b aD .)3,2(++b a2、填空题(1) 在平面直角坐标系中,点P)1,1(2+-m 一定在第 象限. (2)一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为 . (3)点A (2,0),B (-3,0),C (0,2),则△ABC 的面积为 .(4)将点P(-3,y)向下平移3个单位,并向左平移2个单位后得到点Q(x,-1),则xy=_________.A B C3、在所给的图中按所给的语句画图:①连结线段BD; A②过A、C画直线AC;③延长线段AB;④反向延长线段AD. C DE4、如图,使用圆规和直尺分别画出∠AOB和∠BOC的角平分线OM和ON,并说明作图过程.如果∠MON=68º,那么∠AOC应为多少度?5、如图为风筝的图案.(1)若原点用字母O表示,写出图中点A,B,C的坐标.(2)试求(1)中风筝所覆盖的平面的面积.6、如图,在△ABC中三个顶点的坐标分别为A(-5,0),B(4,0),C(2,5),将△ABC沿x轴正方向平移2个单位长度,再沿y轴沿负方向平移1个单位长度得到△EFG。

2024年冀教版八年级上册第十三章 全等三角形三角形的尺规作图

2024年冀教版八年级上册第十三章 全等三角形三角形的尺规作图

课时目标1.会利用尺规,按要求作三角形.2.会根据要求写出作三角形的已知、求作.3.知道作图的依据,会运用两个三角形全等的条件解释作图的合理性.学习重点能依据作图语言作出相应的图形.学习难点用规范的作图语言描述作法,并能依据要求作出相应的图形.课时活动设计复习回顾1.如图,已知线段a,b.求作:线段c,使线段c的长度为线段a,b长度的和.解:如图所示.2.如图所示,已知∠α,求作∠AOB,使∠AOB=∠α.解:如图所示.归纳:只用直尺(没有刻度)和圆规也可以画出一些图形,这种画图的方法被称为尺规作图.这种作图方法不必用具体数值,只按给定图形进行再作图.这也是它与画图的区别所在.设计意图:回顾基本的尺规作图,为接下来尺规作三角形做好准备.探究新知由三角形全等的判定可以知道,每一种判定两个三角形全等的条件(SSS,SAS,ASA,AAS),都只能作出唯一的三角形.探究1已知三角形的三边,利用尺规作三角形例已知三边,用尺规作三角形.如图,已知线段a,b,c.求作:∠ABC,使AB=c,BC=a,AC=b.分析:如图,由作一条线段等于已知线段,能够作出边AB,即A,B两点确定,而BC=a,AC=b,故以点A为圆心,b为半径画弧,以点B为圆心,a为半径画弧,两弧的交点就是点C.作法:问题:例题中尺规作三角形的依据是什么?解:利用SSS判定三角形全等.探究2已知三角形的两边及其夹角,利用尺规作三角形如图,已知线段a,b,∠α.求作:∠ABC,使得BC=a,AC=b,∠ACB=∠α.学生独立完成,对有困难的学生,教师可一旁给予指导.分析:作出符合要求的三角形,关键是根据条件确定三角形的三个顶点的位置.解题时要根据实际情况判断是否存在多个符合题设条件的∠ABC.解:如图所示.作法:(1)作∠C,使∠C=∠α;(2)在∠C的一边上截取CB,使CB=a;(3)在∠C的另一边上截取AC,使AC=b,连接AB,∠ABC即为所求.探究3已知三角形的两角及其夹边,利用尺规作三角形尺规作图:已知三角形的两角及其夹边,求作这个三角形.如图,已知∠α,∠β,线段a.求作:∠ABC,使得∠A=∠α,∠B=∠β,AB=a.(不要求写作法,保留作图痕迹即可)学生独立完成后,教师点评.分析:如图,作射线AM,在射线AM上截取AB=a,作∠EAB=α,∠FBA=β,射线AE 交射线BF于点C,∠ABC即为所求.解:如图,∠ABC即为所求.设计意图:让学生从另一个角度感知“全等三角形判定的基本事实”是三角形定形、定大小的决定条件.使学生认识“用尺规可作出的三角形的条件”与三角形全等判定方法的内在联系,培养学生的动手操作能力、发展想象力和空间的推理能力.典例精讲例已知:线段a,直角α和锐角β.求作:直角三角形ABC,使∠C=∠α,∠A=∠β,BC=a.解:如图所示.作法:第一步:作∠MCN,使∠MCN=∠α=90°.第二步:以点C为圆心,a为半径作弧,交CN于点B.第三步:过B点作BD垂直于BC.第四步:在BD左侧作∠DBE,使∠DBE=∠β.第五步:延长BE,交CM于点A,∠ABC即为所求.设计意图:熟练尺规作图,化未知为已知,体会转化思想,运用本节知识,作出满足要求的三角形.巩固训练1.利用尺规不能唯一作出的三角形是(D)A.已知三边B.已知两边及夹角C.已知两角及夹边D.已知两边及其中一边的对角2.如图所示,已知线段a,用尺规作出∠ABC,使AB=a,BC=AC=2a.作法:(1)作一条线段AB=a;(2)分别以点A、B为圆心,以2a为半径画弧,两弧交于C点;(3)连接AC、BC,则∠ABC即为所求.3.如图,利用尺规,在∠ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并说明:CD∠AB.(尺规作图要求保留作图痕迹,不写作法)解:如图所示,因为AD=BC,∠DAC=∠ACB,AC=CA,所以∠ACD∠∠CAB(SAS).所以∠ACD=∠CAB.所以AB∠CD.设计意图:这个环节充分发挥了学生的主观能动性,是对本节课学习内容的巩固及内化.课堂小结1.尺规作三角形的方法:作一个三角形与已知三角形全等,根据的就是三角形全等的条件.因此,作三角形时,所给的条件可以是三条边或两条边及夹角或两角及夹边或两角及一角的对边.2.尺规作三角形的步骤:在寻找作法的时候,一定要根据已知画出草图,确定作图步骤.3.尺规作图的基本要求:(1)画图形;(2)写作法;(3)保留痕迹.设计意图:通过课堂小结总结知识和数学方法,帮助学生自行建构知识体系,提高学习能力.课堂8分钟.1.教材第54页习题A组第1,2题,习题B组第2题.2.七彩作业.13.4三角形的尺规作图1.已知三角形的三边,利用尺规作三角形.(SSS)2.已知三角形的两边及其夹角,利用尺规作三角形.(SAS)3.已知三角形的两角及其夹边,利用尺规作三角形.(ASA)教学反思。

第十三章 全等三角形 7.13.4 三角形的尺规作图

第十三章 全等三角形 7.13.4 三角形的尺规作图
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
13.4 三角形的尺规作图
返回目录
/

12. 创新作图题 推理能力 已知一个三角形的两条边长分别是 1 cm 和 2 cm

素 ,一个内角为 40°.

(1)请你借助图 1 画出一个满足题设条件的三角形;

(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的
14
15
13.4 三角形的尺规作图
返回目录
/
易错归纳

点 ■易错点 弄错线段的长度


5. 如图,已知线段 a 和线段 b,用尺规作△ABC,使 AC=a,AB=b,BC=2b夯
实 a.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
13.4 三角形的尺规作图
/








返回目录
解:作法:(1)作 BC=2b-a;
B. 作∠AOB,使∠AOB=2
C. 画线段 AB=3 cm
D. 用三角板过点 P 作 AB 的垂线
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
13.4 三角形的尺规作图
返回目录
/
7. 已知线段 a,b,c,求作△ABC,使 BC=a,AC=b,AB=c,下面作法的合理

全等三角形尺规作图ppt

全等三角形尺规作图ppt
使用直尺和圆规,根据SAS定理,作出两个全等三角形
已知三边作全等三角形
确定三条相等的边 使用直尺和圆规,根据SSS定理,作出两个全等三角形
04
全等三角形尺规作图的应用
证明定理“等腰三角形两腰上的中线相等”
总结词
全等三角形尺规作图可以用于证明等腰三角形两腰上的中线相等。
详细描述
首先,使用尺规作图方法作出等腰三角形ABC,其中AB=AC。然后,分别作出 AB和AC的中点D和E。通过全等三角形的性质,我们可以证明三角形DBE与三角 形DCF全等,因此可以得出DB=DC。
全等三角形的对应 边相等,对应角相 等。
02
尺规作图的基本知识
尺规作图的概念与规则
尺规作图定义
尺规作图是指使用无刻度的直尺和圆规进行图形绘制的方法。
规则与限制
在尺规作图中,只能使用圆规和直尺,且只限于绘制直线、线段、射线以及它们 所确定的图形,不能使用其他刻度或辅助工具。
圆规和直尺的使用方法
圆规的使用方法
证明定理“如果一个三角形一边上的中线等于这边的一半 ,那么这个三角形是直角三角形”
总结词
详细描述
全等三角形尺规作图可以用于证明如果一个三角形一 边上的中线等于这边的一半,那么这个三角形是直角 三角形。
首先,使用尺规作图方法作出一个三角形ABC,其中 AD是BC的中线,且AD等于BC的一半。然后,作出 AB的中点E和AC的中点F。通过全等三角形的性质, 我们可以证明三角形ADE与三角形ADF全等、三角形 ADB与三角形ADC全等,因此可以得出角B和角C都是 直角。因此,三角形ABC是一个直角三角形。
边边边定理
三边分别相等的两个三角形全等。
边角边定理
两边和它们的夹角分别相等的两个 三角形全等。

全等三角形尺规作图

全等三角形尺规作图

利用辅助线提高作图效率
中线、高线、角平分线
在作全等三角形时,可以利用中线、高线、角平分线等辅助线来帮助定位和构造三角形。这些辅助线能够提供更 多的几何信息,使得作图过程更为精准和高效。
平行线、垂线
在复杂情况下,可以通过构造平行线、垂线等辅助线,将问题分解为更简单的部分进行解决。这种方法能够大大 降低作图的难度,并提高作图的效率。
04
该方法基于全等三角形的对 应角相等性质,通过确保角 度和边长的一致,实现全等 三角形的作图。
05 全等三角形尺规作图的注 意事项与技巧
作图精度控制
使用精确的测量工具
在进行全等三角形尺规作图时,应使用精确的测量工具,如精确 的直尺和圆规,以确保测量的准确性。
细心操作
在作图过程中,要保持细心,避免因为粗心大意导致测量或绘制的 误差。
06 全等三角形尺规作图的应 用与拓展
在几何题中的应用
解题思路简化
全等三角形尺规作图可以用于证 明和求解几何题目,通过构建全 等三角形,可以将复杂的几何问 题转化为简单易解的等式关系。
图形性质研究
利用全等三角形尺规作图,可以 深入探究三角形的各种性质,如 角度、边长等,进一步理解几何
学的基本原理。
步骤一:已知一个三角形及 其各边长度。
步骤二:在作图区域选择一 点作为全等三角形的一个顶 点,并从该点出发绘制已知 三角形的一条边,使其长度 与已知三角形的对应边相等 。
步骤三:按照已知三角形的 边长和角度关系,依次绘制 全等三角形的其他两条边。
该方法利用了全等三角形的 对应边相等性质,通过确保 各边长度一致,从而达到作 图的目的。
实例3:利用对应角法作全等三角形
01
步骤一:已知一个三角形及 其各角度大小。

八年级数学上册全等三角形 . 尺规作图作一条线段等于已知线段作一个角等于已知角导学

八年级数学上册全等三角形 . 尺规作图作一条线段等于已知线段作一个角等于已知角导学
为尺规作图.
2021/12/13
第十三页,共十八页。
13.4 尺规作图
知识点二 尺规作图的步骤(bùzhòu)及作图语言的规范
尺规作图的步骤:
(1)已知:若作图题是用文字语言叙述的,要根据文字语言用数学语言写出题
目中的条件;
(2)求作:根据题目写出要求作出的图形及此图形应满足的条件;
(3)作法:根据作图的过程写出每一步的操作过程.当不要求写作法时,
2021/12/13
第十五页,共十八页。
13.4 尺规作图
反思(fǎn
sī) 如图 13-4-3,已知线段 m,n 和∠α,求作△ABC,使 AB=m, AC=n,∠B=∠α.
图 13-4-3 解:如图 13-4-4,△ABC 就是所要求作的图形.
(1)错因分析: (2)纠错: 2021/12/13
2021/12/13
第五页,共十八页。
13.4 尺规作图
目标二 掌握(zhǎngwò)尺规作图的规范语言
例2 教材补充例题 下列尺规作图的语句(yǔjù)规范的是( C) A.延长射线AB B.已知A,B,C三点,过这三点作一条直线 C.延长线段AB到点C,使BC=AB D.以点O为圆心作弧
2021/12/13
2021/12/13
第三页,共十八页。
13.4 尺规作图
目标突破
目标一 理解尺规作图与基本(jīběn)作图的概念
例1 教材补充例题(lìtí) 在尺规作图中,直尺的功能是 _在__两_点__间__连_结__(l_iá_n j_ié_)一__条_线__段__,_将__线_段__向__两_个__方__向_延__长,圆规的功能是
以__任__意_点__为__圆__心__,_以__任__意__长__为_半__径__作__一_个__圆__或__一__段_弧.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合作学习
你能用学过的知识解释“三角形 的三个内角和是180˚”吗?
合作学习
1 1
a 3 2 b
4
三角形三个内角的和等于180˚
猜角游戏
下面的图⑴、图⑵、图⑶中的三角形被 遮住的两个内角是什么角?试着说明理由。
(1)
(2)
(3)
将图⑶的结果与图⑴、图⑵的结果进行 比较,可以将三角形如何按角分类?
按三角形内角的大小把三角形分为三类
锐角三角形 三个内角都是锐角 有一个内角是钝角 有一个内角是直角
三 角 形 的 分 类
钝角三角形 直角三角形
直角三角形
1、常用符号“Rt∆ABC”来 表示直角三角形ABC. 2、直角三角形的两个锐角之 间有什么关系? 直角三角形的两个锐角互余
直 角 边
斜 边
直角边
⑶钝角三角形 :有一个内角为钝角 。 3、直角三角形的两个锐角互余。
课后作业
习题3.1 1、2(直接填写在教材上)、 3 、4
C
概念讲解
3、三角形的边可以怎么表示?
如图三角形中三边可表示为AB, BC,AC,顶点A所对的边BC也可 表示为a,顶点B所对的边AC表 示为b,顶点C所对的边AB表示c
B
A C
概念讲解
A 如果我说三角形有三 要素,你能猜出是哪三要素 c B 吗?
b
a
C

角: 三角形中有三个角:∠A,∠B,∠C 顶点: 三角形中有三个顶点,顶点A,顶点B, 顶点C 边:三角形中三边 AB,BC,AC
如图,一艘轮船按箭头所示方向行驶, C处有一灯塔,轮船行驶到哪一点时距离 灯塔最近?当轮船从A点行驶到B点时, ∠ACB的度数是多少?当轮船行驶到距离 灯塔最近点时呢?
C
30 °
70 ° B
A
课堂小结
1、三角形三个内角的和等于180 ˚ 。 2、三角形按角的大小分类: ⑴锐角三角形 :三个内角都是锐角; ⑵直角三角形 :有一个内角为直角;
1 认识三角形(第1课时)
概念讲解
观察下面的屋顶框架图 斜 梁 横梁
(1)你能从图中找出四个不同的三角形吗?
斜 梁
(2)这些三角形有什么共同的特点?
概念讲解
1、什么叫做三角形?
A F G
B
由不在同一直线上的三条线段首尾顺 次相接所组成的图形叫做三角形 2、如何表示三角形?
A
D
E
C
三角形可用符号“△”表示, 如右图三角形记作:△ABC B
方法规律
有关三角形的角度计算问题,有两种 类型:一是直接利用三角形的内角和 180°进行计算;二是设某一个角为x(或 将某一个角视为未知数),其余的角用x 的代数式表示,从而根据题意列出方程 (组)求解,这就是“形题数解”。
想一想
一个三角形中会有两个直角吗? 可能两个内角是钝角或锐角吗?
实际问题
练一练
1、观察下面的三角形,并把它们的标号 填入相应图内:







锐角三角形 直角三角形 钝角三角形 ③⑤ ①④⑥ ②⑦
知识技能
1、已知∠A,∠B,∠C是△ABC的三个内角,∠A = 70°,∠C=30°,∠B=( 80° ) 2、直角三角形一个锐角为70°,另一个锐角 ( 20° )度 3、在△ABC中,∠A=80°,∠B=∠C,则∠C= ( 50° ) 4、如果△ABC中,∠A∶∠B∶∠C=2∶3∶5,此 三角形按角分类应为( 直角三角形 )
相关文档
最新文档