七年级上册数学整式的加减整式加减-知识点整理

合集下载

七年级数学整式的加减-知识点总结

七年级数学整式的加减-知识点总结

整式的加减---知识总结4.1整式 单项式定义:表示数或字母的积的代数式(单独的一个数或一个字母也是单项式) 系数:单项式中的数字因数(包括它前面的符号;单项式的系数是1或-1时,1通常不写;当单项式的系数是带分数时,通常写成假分数)次数:一个单项式中,所有字母的指数的和(单项式的系数只与字母有关,且是所有字母的指数之和,与系数无关)注意:(1)单项式中不含加减运算,只含字母与字母或数与字母的乘法(包括乘方)运算(2)分母中含有字母的式子不是单项式(3)n 是常数,在单项式中相当于数字因数(4)定义中的“数”可以是小数,也可以是分数或整数(5)常数没有系数,圆周率x 是常数,单项式中出现x 时,要将其看成系数(6)单独一个字母的次数是1,而不是0.如单项式b 的次数是1,而不是0判断一个式子是不是单项式,关键看两点:一是式子中是否只有乘法运算(包括乘方运算);二是式子的分母中是否只有数字.二者有一项不符合,则不为单项式.多项式定义:几个单项式的和项:多项式中的每个单项式常数项:多项式不含字母的项次数:多项式中次数最高的次数注意:1.一个式子是多项式需具备两个条件:(1)式子中含有运算符号“+”或“-”(2)分母中不含有字母2.识别多项式的各项时,应连同它们前面的符号一起进行识别,特别注意当项的符号为负号时,一定不要将其漏掉.3.多项式的次数不能看成是多项式中各项的次数的和4.一个多项式最高次项的次数是几次、含有几项就叫几次几项式.整式整式:单项式和多项式统称为整式注意:1.判断一个式子是否为整式,就是判断一个式子是否为单项式或多项式;2.单项式、多项式都是整式,所以整式可能是单项式,也可是多项式知识点1 知识点2 知识点34.2整式的加法与减法 同类项定义:所含字母相同,并且相同字母的指数也相同(几个常数项也是同类型)1.判断同类项时的“两相同,两无关”:(1)两相同:①所含字母相同;②相同字母的指数相同.(2)两无关:①与系数无关;②与字母的排列顺序无关.2.同类项不一定是两项,也可以是三项、四项等,但至少为两项合并同类项定义:把多项式中的同类项合并成一项.合并同类项后,所得项的系数是合并前各同类项的合并同类项的方法系数的和,字母连同它的指数不变.“一相加,两不变”,就是把同类项的系数相加,字母不变,字母的指数不变。

七年级上册整式加减

七年级上册整式加减

七年级上册整式加减知识点总结一、整式的概念与性质整式是由常数、变量、加、减、乘运算符号以及括号组成的代数式。

其中,变量与常数的乘积称为单项式,而由有限个单项式通过加、减运算组成的代数式称为多项式。

二、整式的加减法则整式的加减运算主要基于合并同类项和去括号等法则进行。

合并同类项:同类项是指次数相同、字母部分也相同的单项式。

合并同类项时,只需将其系数相加或相减,字母部分保持不变。

例如:3x + 2x = (3+2)x = 5x-2y² - 3y² = (-2-3)y² = -5y²去括号:去括号时,如果括号前是加号,则括号内的各项符号保持不变;如果括号前是减号,则括号内的各项符号都要改变。

例如:a + (b - c) = a + b - ca - (b + c) = a - b - c三、整式加减的运算步骤去括号:首先去掉整式中的括号,根据括号前的符号调整括号内各项的符号。

合并同类项:将整式中的同类项合并,使整式简化。

四、方法技巧注意符号:在进行整式加减运算时,要特别注意符号的变化,特别是在去括号和合并同类项时。

有序进行:先进行去括号的运算,再进行合并同类项的运算,以保证运算的正确性。

利用分配律:在整式加减中,可以利用分配律来简化运算。

例如,当遇到形如a(b+c)的式子时,可以将其展开为ab+ac。

五、举例题例1:化简整式3x²- 2x + 5 - (2x²- 4x + 1)。

解析:首先去括号,得到3x²- 2x + 5 - 2x²+ 4x - 1。

然后合并同类项,得到x²+ 2x + 4。

答案:x²+ 2x + 4例2:已知整式 A = 2x²- 3xy + y²,B = -x²+ xy - 2y²,求 A + B。

解析:首先代入整式A和B的表达式,得到 A + B = (2x ²- 3xy + y²) + (-x²+ xy - 2y²)。

初中数学知识点七年级上册 整式的加减

初中数学知识点七年级上册 整式的加减

初中数学知识点七年级上册整式的加减1、单项式:数字与字母的积或者字母与宇母的积。

一个单独的数字或者具体的数字也是单项式。

注意:数宇与字母或者字母与字母相乘时乘号省略不写,且把数字写在字母的前面。

2、单项式的系数:单项式中的数字蛋数。

如果在一个单项式中没有出现具体的数字,则它的系数是1例如:xy 它的系数是1,-n它的系数是-1•常数项(具体的数宇)的系数就是它本身,例如:3的系数就是了,π的系数就是π。

π是一个常数(具体的数字),不是字母。

3、单项式的次数:单项式中所以字母指数的和。

例如:6xy 的次数是2次,3m2n3的次数是5 次,33X2Y的次数是3次。

常数(具体的数宇)的次数是0次,例如:3的次数就是0,π的次数是0。

4、多项式:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,不含字母的项叫常数项。

例如:多项式2XY2- 2M + 3Y一4是由单项式2xy2、— 2M、3Y、一7相加组成,所以2XY2、一2m、3y、一7就是多项式2XY2—2M+3Y—4的项,一7就是常数项。

5、多项式的次数:多项式中次数最高项的次数。

要求一个多项式的次数,应该先求出它的每一个项的次数,然后再看哪个项的次数最高,那么次数最高项的次数就是这个多项式的次数。

其中次数最高的项叫最高次项,例如:多项式2XY2—2M+3Y—4,2XY2的次数是3次,—2M的次数是1次,3Y的次数是1次,—7的次数是0次,所以2xy2的次数最高,那么2xy2就是最高次项,则这个多项式的次数就是3次。

6、整式:多项式和单项式统称为整式。

如果一个式子的分母中出现了字母(π除外),那么它就不是整式(即它不是单项式,也不是多项式)。

7、同类项:含有相同的字母且相同字母的指数也相同的项叫做同类项,例如—3M3N2和5N2M3是同类项,因为这两个项中都含有字母M、N,并且字母M的指数都是3,字母N的指数都是2,所以他们是同类项。

同类项与系数和字母的顺序无关,只与字母和字母的指数有关。

七年级上册的数学第二章“整式的加减”主要知识点

七年级上册的数学第二章“整式的加减”主要知识点

七年级上册的数学第二章“整式的加减”主要知识点1. 整式的概念-单项式:由数与字母的积组成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

-系数:单项式中的数字因数叫做单项式的系数。

-次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

-多项式:几个单项式的和叫做多项式。

其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

多项式里次数最高项的次数,叫做这个多项式的次数。

2. 整式的加减法则-同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

-合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项时,把同类项的系数相加,字母和字母的指数不变。

3. 去括号与添括号-去括号法则:如果括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;如果括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。

-添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都要变号。

4. 整式的加减运算步骤1. 去括号:根据去括号法则去掉括号。

2. 识别同类项:找出所有同类项。

3. 合并同类项:利用合并同类项法则进行合并。

4. 整理结果:按照一定顺序(如降幂或升幂)写出最终的整式。

5. 应用题-整式的加减运算还经常出现在应用题中,如求解面积、体积、距离等问题,需要学生将实际问题抽象为整式的加减运算。

6. 注意事项-在进行整式加减时,要仔细识别同类项,避免漏项或重复计算。

-注意系数的符号,特别是负号的作用。

-运算后要进行必要的化简,使结果更加简洁明了。

人教版七年级数学上第2章 整式的加减知识点总结及题型汇总

人教版七年级数学上第2章 整式的加减知识点总结及题型汇总

整式的加减知识点总结及题型汇总整式知识点1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a 、b 、c 、p 、q 是常数)ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:⎩⎨⎧多项式单项式整式 .6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.11. 列代数式列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了.12.代数式的值根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数式的值.13. 列代数式要注意①数字与字母、字母与字母相乘,要把乘号省略;②数字与字母、字母与字母相除,要把它写成分数的形式;③如果字母前面的数字是带分数,要把它写成假分数。

人教版七年级数学第二章整式的加减知识点归纳

人教版七年级数学第二章整式的加减知识点归纳

第二章整式的加减知识点1.单项式:数字与字母的积或者字母与字母的积。

一个单独的数字或者具体的数字也是单项式。

注意:数字与字母或者字母与字母相乘时乘号省略不写,且把数字写在字母的前面。

2.单项式的系数:单项式中的数字因数。

如果在一个单项式中没有出现具体的数字,则它的系数是1.例如:xy 它的系数是1,-n 它的系数是-1.常数项(具体的数字)的系数就是它本身,例如:3的系数就是3,π的系数就是π。

π是一个常数(具体的数字),不是字母。

3.单项式的次数:单项式中所以字母指数的和。

例如:xy 6的次数是2次,323n m 的次数是5次,y x 233的次数是3次。

常数(具体的数字)的次数是0次,例如:3的次数就是0,π的次数是0。

4.多项式:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,不含字母的项叫常数项。

例如:多项式4y 32xy 22-+-m 是由单项式22xy 、m 2-、y 3、7-相加组成,所以22xy 、m 2-、y 3、7-就是多项式4y 32xy 22-+-m 的项,7-就是常数项。

5.多项式的次数:多项式中次数最高项的次数。

要求一个多项式的次数,应该先求出它的每一个项的次数,然后再看哪个项的次数最高,那么次数最高项的次数就是这个多项式的次数。

其中次数最高的项叫最高次项,例如:多项式4y 32xy 22-+-m ,22xy 的次数是3次,m 2-的次数是1次,y 3的次数是1次,7-的次数是0次,所以22xy 的次数最高,那么22xy 就是最高次项,则这个多项式的次数就是3次。

6.整式:多项式和单项式统称为整式。

如果一个式子的分母中出现了字母(π除外),那么它就不是整式(即它不是单项式,也不是多项式)。

7.同类项:含有相同的字母且相同字母的指数也相同的项叫做同类项,例如233-n m 与325m n 是同类项,因为这两个项中都含有字母m 、n ,并且字母m 的指数都是3,字母n 的指数都是2,所以他们是同类项。

人教版七年级上数学《整式的加减》课堂笔记

人教版七年级上数学《整式的加减》课堂笔记

《整式的加减》课堂笔记
以下是《整式的加减》的课堂笔记,供您参考:
一、整式的概念
整式:单项式和多项式的统称。

单项式:表示数与字母乘积的代数式叫做单项式。

多项式:几个单项式的和叫做多项式。

每个单项式叫做多项式的项。

不含字母的项叫做常数项。

二、整式的加减运算
1.整式的加减实际上就是去括号、合并同类项。

2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二
是当括号外是“-”时,去括号后括号内的各项都要改变符号。

3.合并同类项时,把同类项的系数相加,字母和字母的指数不变。

三、整式的加减运算举例
例1:计算下列整式的和与差:
(1)3x+2y;(2)4a-3b;(3)5(x-3)-2(y+1)。

解:(1)3x+2y=3x+2y (2)4a-3b=4a-3b (3)5(x-3)-2(y+1)=5x-15-2y-2=5x-2y-17。

四、注意事项
1.在进行整式的加减运算时,要先把单项式和多项式中的同类项进行合并,然后
再进行运算。

2.在进行去括号运算时,要注意括号外的数字因数要乘括号内的每一项,同时当
括号外是“-”时,去括号后括号内的各项都要改变符号。

3.在进行整式的加减运算时,要注意运算顺序,先进行乘方运算,再进行乘除运
算,最后进行加减运算。

同时要注意括号内的运算顺序,先进行乘除运算,再进行加减运算。

七年级数学上册第二章整式的加减高频考点知识梳理

七年级数学上册第二章整式的加减高频考点知识梳理

(名师选题)七年级数学上册第二章整式的加减高频考点知识梳理单选题1、如果代数式2x−3y+2的值为5,那么代数式5+6y−4x的值为()A.−1B.11C.7D.−3答案:A分析:先根据题意得到2x−3y=3,然后整体代入到5+6y−4x=5−2(2x−3y)中进行求解即可.解:∵代数式2x−3y+2的值为5,∴2x−3y+2=5,∴2x−3y=3,∴5+6y−4x=5−2(2x−3y)=5−2×3=−1,故选A.小提示:本题主要考查了代数式求值,正确得到2x−3y=3是解题的关键.2、单项式−3xy34的系数是()A.3B.4C.−3D.−34答案:D分析:根据单项式的系数的概念解答即可.解:单项式-3xy 34的系数是-34.故选:D.小提示:本题考查的是单项式的系数的概念,单项式中的数字因数叫做单项式的系数,理解单项式的系数的概念是解答关键.3、如果单项式−12x m+3y与2x4y n+3的差是单项式,那么(m+n)2021的值为()A.-1B.0C.1D.2021答案:A分析:单项式−12x m+3y与2x4y n+3的差是单项式,得到单项式−12x m+3y与2x4y n+3是同类项,得到m+3=4,n+3=1,从而得到m+n=-1,从而到(m+n)2021= -1,判断即可.∵单项式−12x m+3y与2x4y n+3的差是单项式,∴单项式−12x m+3y与2x4y n+3是同类项,∴m+3=4,n+3=1,∴m+n=-1,∴(m+n)2021= -1,故选A.小提示:本题考查了同类项的定义即含有的字母相同且相同字母的指数相同,熟练掌握定义是解题的关键.4、等号左右两边一定相等的一组是()A.−(a+b)=−a+b B.a3=a+a+a C.−2(a+b)=−2a−2b D.−(a−b)=−a−b答案:C分析:利用去括号法则与正整数幂的概念判断即可.解:对于A,−(a+b)=−a−b,A错误,不符合题意;对于B,a3=a⋅a⋅a,B错误,不符合题意;对于C,−2(a+b)=−2a−2b,C正确,符合题意;对于D,−(a−b)=−a+b,D错误,不符合题意.故选:C.小提示:本题考查了去括号法则,以及正整数幂的概念,熟练掌握相关定义与运算法则是解题的关键.5、下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面:(−x2+3xy−12y2)−2(−52x2+4xy−32y2)=−5xy+52y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是()A.4x2−5y B.2y−x C.5x D.4x2答案:D分析:根据题意易得(−x2+3xy−12y2)−2(−52x2+4xy−32y2)+5xy−52y2,然后进行求解即可.解:由题意得:(−x2+3xy−12y2)−2(−52x2+4xy−32y2)+5xy−52y2=−x2+3xy−12y2+5x2−8xy+3y2+5xy−52y2 =4x2故选:D.小提示:本题主要考查整式的加减,熟练掌握整式的加减运算是解题的关键.6、下列各正方形中的四个数之间都有相同的规律,根据此规律,x的值为()A.135B.153C.170D.189答案:C分析:由观察发现每个正方形内有:2×2=4,2×3=6,2×4=8,可求解b,从而得到a,再利用a,b,x之间的关系求解x即可.解:由观察分析:每个正方形内有:2×2=4,2×3=6,2×4=8,∴2b=18,∴b=9,由观察发现:a=8,又每个正方形内有:2×4+1=9,3×6+2=20,4×8+3=35,∴18b+a=x,∴x=18×9+8=170.故选C.小提示:本题考查的是数字类的规律题,掌握由观察,发现,总结,再利用规律是解题的关键.7、一台饮水机成本价为a元,销售价比成本价高22%,因库存积压需降价促销,按销售价的80%出售,则每台实际售价为( )A.(1+22%)(1+80%)a元B.(1+22%)a·80%元C.(1+22%)(1-80%)a元D.(1+22%+80%)a元答案:B分析:先表示出销售价为(1+22%)a,再根据按销售价的80%出售可得实际售价.解:由题意得,实际售价为:(1+22%)a·80%元.故选:B.小提示:本题考查了列代数式,解题的关键是读懂题意,找到关键描述语列出代数式.8、古希腊著名的毕达哥拉斯学派把1、3、6、10…,这样的数称为“三角形数”,而把1、4、9、16…,这样的数称为“正方形数”.则第5个“三角形数”与第5个“正方形数”的和是()A.35B.40C.45D.50答案:B分析:分别探究“三角形数”与“正方形数”的存在规律,求出第5个“三角形数”与第5个“正方形数”,再求第5个“三角形数”与第5个“正方形数”的和.第1个“三角形数”:1,第2个“三角形数”:1+2=3,第3个“三角形数”:1+2+3=6,第4个“三角形数”:1+2+3+3=10,第5个“三角形数”:1+2+3+4+5=15,第1个“正方形数”:1,第2个“正方形数”:22=4,第3个“正方形数”:32=9,第4个“正方形数”:42=16,第5个“正方形数”:52=25,∴15+25=40.故选:B.小提示:本题主要考查了“三角形数”与“正方形数”,解决问题的关键是探究“三角形数”与“正方形数”的规律,运用规律求数.9、如图所示的图案是用长度相同的木条按一定规律摆成的.摆第1个图案需8根木条,摆第2个图案需15根木条,摆第3个图案需22根木条,…,按此规律摆第n个图案需要木条( )A.(6n+2)根B.(7n+1)根C.(7n−1)根D.8n根答案:B分析:根据图形可以写出前几个图案需要的小木棒的数量,即可发现小木棒数量的变化规律,从而可以解答本题.解:由图可得,图案①有:1+7=8根小木棒,图案②有:1+7×2=15根小木棒,图案③有:1+7×3=22根小木棒,…则第n个图案有:(7n+1)根小木棒,故选:B.小提示:本题考查图形的变化类、列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.10、将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12答案:B分析:列举每个图形中H的个数,找到规律即可得出答案.解:第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+2×2,第4个图中H的个数为4+2×3=10,故选:B.小提示:本题考查了规律型:图形的变化类,通过列举每个图形中H的个数,找到规律:每个图形比上一个图形多2个H是解题的关键.填空题11、已知a+b=2,则2a+2b−5=______.答案:−1分析:先添括号把2a+2b−5化为2(a+b)−5,然后将a+b=2整体代入即可求解.解:∵a+b=2,∴2a+2b−5=2(a+b)−5=2×2−5=−1,所以答案是:−1.小提示:本题考查了代数式求值,熟练掌握添括号法则和整体代入思想是解题关键.12、已知|x|=8,|y|=5,且xy<0,则x+y的值等于 _____.答案:±3分析:根据绝对值的意义,求得x,y的值,进而根据xy<0,确定x,y的值,进而求得代数式的值.解:∵|x|=8,|y|=5,∴x=±8,y=±5,又∵xy<0,∴x=8,y=﹣5或x=﹣8,y=5,当x=8,y=﹣5时,原式=8+(﹣5)=3,当x=﹣8,y=5时,原式=﹣8+5=﹣3,综上,x+y的值为±3,所以答案是:±3.小提示:本题考查了绝对值的意义,代数式求值,注意分类讨论是解题的关键.13、若a、b互为相反数,c、d互为倒数,m是(−3)的相反数,则m+a+b9+cd的值是_________.答案:4分析:利用相反数、倒数的定义,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.解:根据题意得:a+b=0,cd=1,m=3,原式=3+0+1=4.所以答案是:4.小提示:本题主要考查了有理数的混合运算,相反数、倒数的定义,根据题意得出a+b=0,cd=1,m=3,是解本题的关键.14、将下列各式按照列代数式的规范要求重新书写:(1)a×5,应写成_______ ;(2)S÷t应写成_________;(3)a×a×2−b×13,应写成______;(4)143x, 应写成______.答案: 5a st 2a2−b37x3分析:(1)根据代数式书写规范将数字因数写在代数式前省略乘号即可得到结果.(2)根据代数式书写规范将除法算式写成分数形式即可得到结果.(3)根据代数式书写规范将数字因数写在代数式前省略乘号,同时将相同字母的乘积写成乘方形式即可得到结果.(4)根据代数式书写规范将数字因数的带分数化为假分数即可得到结果.解:(1)a×5=5a,故答案为∶5a;(2)S÷t=st,故答案为∶st;(3)a×a×2−b×13=2a2−b3,故答案为∶2a2−b3;(4)143x=73x故答案为∶7x3.小提示:本题考查代数式书写规范,熟知代数式的书写规范要求是解题关键.15、若一个多项式加上3xy+2y2−8,结果得2xy+3y2−5,则这个多项式为___________.答案:y2−xy+3分析:设这个多项式为A,由题意得:A+(3xy+2y2−8)=2xy+3y2−5,求解即可.设这个多项式为A,由题意得:A+(3xy+2y2−8)=2xy+3y2−5,∴A=(2xy+3y2−5)−(3xy+2y2−8)=2xy+3y2−5−3xy−2y2+8=y2−xy+3,所以答案是:y2−xy+3.小提示:本题考查了整式的加减,准确理解题意,列出方程是解题的关键.解答题16、老师在黑板上写了一个正确的演算过程,随后用手掌捂住了多项式形式如下:+2(a2−4ab+4b2)=3a2+2b2(1)求所捂的多项式;(2)若a,b满足:(a+1)2+|b−12|=0,请求出所捂的多项式的值.答案:(1)a2+8ab−6b2(2)−92分析:(1)根据题意可得捂住部分为:(3a2+2b2)﹣2(a2﹣4ab+4b2),利用整式的加减的法则进行求解即可;(2)由非负数的性质可求得a,b的值,再代入运算即可.(1)解:根据题意得:(3a2+2b2)−2(a2−4ab+4b2)=3a2+2b2−2(a2−4ab+4b2)=3a2+2b2−2a2+8ab−8b2=a2+8ab−6b2;(2)解:∵(a+1)2+|b−12|=0∴a=−1.b=12代入a2+8ab−6b2=1−4−32=−92.小提示:本题主要考查整式的加减,非负数的性质,解答的关键是对相应的运算法则的掌握.17、图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.(1)你认为图b中的阴影部分的正方形的边长等于______.(2)请用两种不同的方法求图b中阴影部分的面积.(3)观察图b,你能写出以下三个代数式之间的等量关系吗?代数式:(m+n)2,(m−n)2,mn.(4)若x,y都是有理数,x−y=4,xy=5,求x+y的值.答案:(1)m−n;(2)S阴=(m−n)2,S阴=(m+n)−4mn;(3)能,(m−n)2=(m+n)2−4mn;(4)x+y=±6分析:(1)观察得到长为m,宽为n的长方形的长宽之差即为阴影部分的正方形的边长;(2)可以用大正方形的面积减去4个长方形的面积得到图2中的阴影部分的正方形面积;也可以直接利用正方形的面积公式得到;(3)利用(2)中图2中的阴影部分的正方形面积得到(m+n)2-4mn=(m-n)2;(4)根据(3)的结论得到(x-y)2=(x+y)2-4xy,然后把x-y=4,xy=5代入计算.解:(1)由题意得:图b中的阴影部分的正方形的边长等于m−n.所以答案是:m−n;(2)由题意得:S阴=(m−n)2,S阴=(m+n)2−4mn;(3)观察图b,可得三个代数式之间的等量关系为:(m−n)2=(m+n)2−4mn.(4)∵x−y=4,xy=5,∴(x+y)2=(x−y)2+4xy=42+4×5=36,∴x+y=±6.小提示:本题主要考查了完全平方公式在几何图形中的应用,解题的关键在于能够熟练掌握完全平方公式.18、化简:(1)4xy-(3x2-3xy)-2y+2x2(2)(a+b)-2(2a-3b)+3(a-2b)答案:(1)-x2+7xy-2y;(2)b-3a.分析:(1)去括号,根据合并同类项法则计算;(2)去括号,根据整式的加减混合运算法则计算.(1)解:4xy-(3x2-3xy)-2y+2x2=4xy-3x2+3xy-2y+2x2=-x2+7xy-2y;(2)解:(a+b)-2(2a-3b)+3(-2b)=a+b-4a+6b-6b=b-3a.小提示:本题考查的是整式的加减,掌握整式的加减运算法则是解题的关键.。

七年级上册数学整式的加减法知识点归纳

七年级上册数学整式的加减法知识点归纳

整式的加减法是初中数学中的重要知识点,掌握好整式的加减法对于学生来说非常关键。

在七年级上册数学教学中,学生们将接触整式的加减法,并且在以后的学习中会不断用到这些知识。

我们有必要对七年级上册数学整式的加减法知识点进行归纳和总结。

一、整式的概念整式是指由常数、变量及其指数和次数有限次加、减、乘、除运算得到的代数和。

一般表示为a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0,其中a_n、a_{n-1}、...、a_1、a_0为常数,x为变量,n为自然数。

二、整式的加法1. 同类项的加法同类项是指它们具有相同的字母和字母的指数相同的项。

在进行整式的加法时,首先要将同类项合并,然后将它们的系数相加。

例如:3x^2y+2xy^2-5x^2y-3xy^2= 3x^2y-5x^2y+2xy^2-3xy^2= -2x^2y-xy^22. 不同类项的加法对于不同类项的加法,直接将它们按照位置进行相加即可。

例如:2x^2y+3xy^2+4xy-5y+ 3x^2y+6xy^2-2xy+8y= 5x^2y+9xy^2+2xy+3y三、整式的减法整式的减法与加法相似,只是减法需要将被减数取相反数,然后按照加法的规则进行计算。

例如:2x^2y-3xy+4y-5- (x^2y+2xy-3y+6)= 2x^2y-3xy+4y-5-x^2y-2xy+3y-6= x^2y-5xy+7y-11四、综合运用在实际运用整式的加减法时,需要综合运用多种运算法则。

例如:(3x^2y+5xy^2-2xy+7y) - (2x^2y-3xy+4y-5)= 3x^2y+5xy^2-2xy+7y-2x^2y+3xy-4y+5= x^2y+5xy^2-5xy+3y+2五、练习题1. 计算:(2x^2y-3xy+4y-5) + (x^2y+2xy-3y+6)2. 计算:(3x^2y+5xy^2-2xy+7y) - (2x^2y-3xy+4y-5)3. 计算:2x^2y+3xy^2+4xy-5y - (3x^2y+6xy^2-2xy+8y)4. 计算:(3x^2y+2xy^2-5x^2y-3xy^2) + (4x^2y-xy^2+2x^2y+3xy^2)六、总结与思考整式的加减法是基础中的基础,对学生来说需要理解清楚,并且在反复练习中掌握。

七年级数学上册整式的加减知识点及题型总结

七年级数学上册整式的加减知识点及题型总结

第二单元(整式的加减)【考点一】用字母表示数(1)用字母表示数时,数字与字母,字母与字母相乘,中间的( )可以忽略不写,或用( )表示。

(2)数字与字母相乘时,数字应写在( )前(3)系数是带分数时,带分数要化成( )(4)出现除式时,用( )表示(5)结果含加减运算的,单位前加( )例1:下列各式:①x 411; ②2•3 ; ③20%x ; ④c b a ÷-; ⑤3n m - ;⑥5-x 千克 其中符合书写要求的有( )A. 5个B. 4个C. 3个D. 2个 例2:用式子表示:a 的2倍与3的和,下列表示正确的是( )A.32-aB. 32+aC. )3(2-aD. )3(2+a例3:某种苹果的单价是x 元/ kg(x <10),用50元买5kg 这种苹果,应找回 元. 例4:用不同的方法表示出阴影部分的面积。

(至少写出两种)【考点二】单项式(1)单个数,单个字母,数和字母的乘积,字母和字母的乘积,都是单项式,数与字母相乘通常把数写在前面。

例如:1,a ,a 4,ab 都是单项式(2)单项式的系数:单项式的数字因数叫做这个单项式的系数,例如:单项式ab 100的系数是100,a 的是1(3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数,例如a 100次数为1,b a 2100次数为3例题1:判断下列代数式是否为单项式,如果是,请写出它的系数和次数,0 ,1- xy -, 3a , x -3, x 1, 21x -, ab π31, 22yz x -, b例题2:如果15--m xy 为四次单项式,则=m ( ) 例题3:当21-=x ,2=y 时,求y x 42-的值。

例3:已知单项式426y x 与2231+-m z y 的次数相同,求m 的值.【考点三】多项式(1)几个单项式的和叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,在多项式里,次数最高项的次数,叫做这个多项式的次数。

人教版数学七年级上册 整式的加减

人教版数学七年级上册   整式的加减

整式的加减(一)——合并同类项(基础)【要点梳理】要点一、同类项定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.要点诠释:(1)判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关.(3)一个项的同类项有无数个,其本身也是它的同类项.要点二、合并同类项1. 概念:把多项式中的同类项合并成一项,叫做合并同类项.2.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变. 要点诠释:合并同类项的根据是乘法分配律的逆运用,运用时应注意:(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有.(2) 合并同类项,只把系数相加减,字母、指数不作运算.【典型例题】类型一、同类项的概念1.指出下列各题中的两项是不是同类项,不是同类项的说明理由.(1)233x y 与32y x -; (2)22x yz 与22xyz ; (3)5x 与xy ; (4)5-与8举一反三:【变式】下列每组数中,是同类项的是( ) .①2x 2y 3与x 3y 2 ②-x 2yz 与-x 2y ③10mn 与23mn ④(-a )5与(-3)5 ⑤-3x 2y 与0.5yx 2 ⑥-125与12A .①②③B .①③④⑥C .③⑤⑥D .只有⑥2.(2014•咸阳模拟)已知﹣4xy n+1与是同类项,求2m+n 的值.类型二、合并同类项3.合并下列各式中的同类项:(1)-2x 2-8y 2+4y 2-5x 2-5x+5x -6xy(2)3x 2y -4xy 2-3+5x 2y+2xy 2+5举一反三:【变式】(2015•玉林)下列运算中,正确的是( )A. 3a+2b=5abB. 2a 3+3a 2=5a 5C. 3a 2b ﹣3ba 2=0D. 5a 2﹣4a 2=14.已知35414527m n ab pa b a b ++-=-,求m+n -p 的值.举一反三: 【变式】若223m a b 与40.5n a b -的和是单项式,则m = ,n = .类型三、化简求值5. 当2,1p q ==时,分别求出下列各式的值.(1)221()2()()3()3p q p q q p p q -+-----;(2)2283569p q q p -+--举一反三:【变式】先化简,再求值:(1)2323381231x x x x x -+--+,其中2x =;(2)222242923x xy y x xy y ++--+,其中2x =,1y =.类型四、“无关”与“不含”型问题6.李华老师给学生出了一道题:当x =0.16,y =-0.2时,求6x 3-2x 3y -4x 3+2x 3y -2x 3+15的值.题目出完后,小明说:“老师给的条件x =0.16,y =-0.2是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?【思路点拨】要判断谁说的有道理,可以先合并同类项,如果最后的结果是个常数,则小明说得有道理,否则,王光说得有道理.【巩固练习】一、选择题1.判断下列各组是同类项的有 ( ) .(1)0.2x 2y 和0.2xy 2;(2)4abc 和4ac ;(3)-130和15;(4)-5m 3n 2和4n 2m 3A .1组B .2组C .3组D .4组2.下列运算正确的是( ).A .2x 2+3x 2=5x 4B .2x 2-3x 2=-x 2C .6a 3+4a 4=10a 7D .8ab 2-8ba 2=03.(2015•柳州)在下列单项式中,与2xy 是同类项的是( )A .2x 2y 2B .3yC .xyD .4x4.在下列各组单项式中,不是同类项的是( ).A .212x y -和2yx - B .-3和100 C .2x yz -和2xy z - D .abc -和52abc 5.如果xy ≠0,22103xy axy +=,那么a 的值为( ). A .0 B .3 C .-3 D .13- 6. 买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )元.A .47m n +B .28mnC .74m n +D .11mn 7.计算a 2+3a 2的结果是( ).A .3a 2B .4a 2C .3a 4D .4a 4 二、填空题8.写出325x y -的一个同类项 .9. 已知多项式ax bx +合并后的结果为零,则a b 与的关系为: .10.若3m n x y 与312xy -是同类项,则______,_______m n ==. 11. 合并同类项22381073x x x x ---++,得 .12.在22226345xy x x y yx x ---+中没有同类项的项是 .13.100252100(________)___t t t t t -+==;223(______)ab b a +=-.14(2015•遵义)如果单项式﹣xy b+1与x a ﹣2y 3是同类项,那么(a ﹣b )2015= .三、解答题15. (2014秋•嘉禾县校级期末)若单项式a 3b n+1和2a 2m ﹣1b 3是同类项,求3m+n 的值.16.化简下列各式:(1)22226547a b ab b a a b +--(2)22223232x y x y xy xy -++-(3)2222630.835m n mn mn n m mn n m --+--(4)33331()2()()0.5()3a b a b b a a b +-+-+-+17. 已知关于x ,y 的代数式2213383x kxy y xy ----中不含xy 项,求k 的值.。

数学七年级上册整式的加减知识点

数学七年级上册整式的加减知识点

数学七年级上册整式的加减知识点数学七年级上册整式的加减知识点主要包括以下内容:1. 整式的加法和减法:整式是由常数和字母按照乘法运算符号连接起来的表达式。

整式的加法和减法是指将同类项相加或相减,并保留结果中的同类项。

例如,对于整式3x^2 + 2xy + 5和2x^2 - 3xy + 6,进行加法运算时,将同类项相加得到:(3x^2 + 2xy + 5) + (2x^2 - 3xy + 6) = 5x^2 - xy + 11。

2. 合并同类项:在整式中,有时会出现相同的字母的幂次相同的项,这些项叫做同类项。

进行整式的加减运算时,需要将同类项合并,即将同类项的系数相加或相减,并保留相同的字母和幂次。

例如,对于整式2x^2 + 3x^2 + 4x^2,将同类项合并得到:2x^2 + 3x^2 + 4x^2 = 9x^2。

3. 去括号:在整式的加减运算中,如果遇到括号,需要先去括号。

可以使用分配律进行括号的去除。

例如,对于整式2(x + y) - 3x(x - y),可以先去括号得到:2(x + y) = 2x + 2y,-3x(x - y) = -3x^2 + 3xy,然后再进行合并同类项或简化运算。

4. 提取公因式:在整式的加减运算中,如果遇到相同的公因式,可以将公因式提取出来。

公因式是指能够整除所有同类项的因式。

例如,对于整式4x^2 + 6xy,可以提取公因式2得到:4x^2 + 6xy = 2(2x^2 + 3xy)。

5. 消去同类项:在整式的加减运算中,如果遇到相反数的同类项,可以互相消去。

相反数是指具有相同绝对值但符号相反的数。

例如,对于整式5x + 2y - 3x - 2y,可以将同类项5x和-3x互相消去,将2y和-2y互相消去,最终得到:5x + 2y - 3x - 2y = 2x。

七年级数学上册第二章整式的加减重点归纳笔记

七年级数学上册第二章整式的加减重点归纳笔记

(名师选题)七年级数学上册第二章整式的加减重点归纳笔记单选题1、古希腊毕达哥拉斯学派的“三角形数”是一列点(或圆球)在等距的排列下可以形成正三角形的数,如1,3,6,10,15,….我国宋元时期数学家朱世杰在《四元玉鉴》中所记载的“垛积术”其中的“落一形”堆垛就是每层为“三角形数”的三角锥的锥垛(如图所示顶上一层1个球,下一层3个球,再下一层6个球),若一个“落一形”三角锥垛有10层,则该堆垛球的总个数为()A.55B.220C.285D.385答案:B分析:“三角形数”可以写为:1,3=1+2,6=1+2+3,10=1+2+3+4,15=1+2+3+4+5,所以第n层“三角形数”为n(n+1)2,再把n=10代入计算即可.解:∵“三角形数”可以写为:第1层:1,第2层:3=1+2,第3层:6=1+2+3,第4层:10=1+2+3+4,第5层:15=1+2+3+4+5,∴第n层“三角形数”为n(n+1)2,n层时,垛球的总个数为:12+22+⋯+n22+1+2+⋯+n2=n(n+1)(2n+1)12+n(n+1)4∴若一个“落一形”三角锥垛有10层,则该堆垛球的总个数为10×11×2112+10×114=220故选:B.小提示:本题考查了等腰三角形的性质以及数字变化规律,得出第n层“三角形数”为n(n+1)2是解答本题的关键.2、若单项式2xy3−b是三次单项式,则()A.b=0B.b=1C.b=2D.b=3答案:B分析:根据单项式次数的概念列式计算即可解:若单项式2xy3−b是三次单项式,则3-b=2,解得:b=1,故选:B.小提示:本题考查了单项式,单项式是数与字母的乘积,单独一个数或一个字母也是单项式,单项式的次数是字母指数和,单项式的系数是数字因数.3、周末,奶奶买了一些小桔子,小亮、姐姐、弟弟做了一个有趣的游戏:首先姐姐,小亮,弟弟手中拿上相同数量的桔子(每人手中的桔子大于4个),然后依次完成以下步骤:第一步:姐姐给小亮2个桔子;第二步:弟弟给小亮1个桔子;第三步:此时,姐姐手中有几个桔子,小亮就给姐姐几个桔子.请你确定,最终小亮手中剩余的桔子有几个()A.3B.4C.5D.6答案:C分析:本题是整式加减法的综合运用,设每人有x个桔子,解答时依题意列出算式,求出答案.解:设刚开始姐姐,小亮,弟弟手中都拿x个桔子(x>4),那么,姐姐给小亮2个桔子,姐姐手中剩下的桔子数为:x-2,接着,弟弟给小亮1个桔子,此时小亮手中的桔子数为:x+2+1=x+3,然后,姐姐手中有几个桔子,小亮就给姐姐几个桔子.最终小亮手中剩余的桔子数为:x+3-(x-2)=x+3-x+2=5.故选:C.小提示:此题考查了列代数式以及整式的加减,解题的关键是根据题目中所给的数量关系列代数式运算.4、如果代数式2x−3y+2的值为5,那么代数式5+6y−4x的值为()A.−1B.11C.7D.−3答案:A分析:先根据题意得到2x−3y=3,然后整体代入到5+6y−4x=5−2(2x−3y)中进行求解即可.解:∵代数式2x−3y+2的值为5,∴2x−3y+2=5,∴2x−3y=3,∴5+6y−4x=5−2(2x−3y)=5−2×3=−1,故选A.小提示:本题主要考查了代数式求值,正确得到2x−3y=3是解题的关键.5、单项式−3xy34的系数是()A.3B.4C.−3D.−34答案:D分析:根据单项式的系数的概念解答即可.解:单项式-3xy 34的系数是-34.故选:D.小提示:本题考查的是单项式的系数的概念,单项式中的数字因数叫做单项式的系数,理解单项式的系数的概念是解答关键.6、下面图案是用长度相同的火柴棒按一定规律拼搭而成,若第n个图案需要y根火柴棒,则y与n的函数关系式为()A.y=3n B.y=3n+3C.y=4n+3D.y=4n−1答案:A分析:根据题意可得第1个图,火柴棒个数是3;第2个图,火柴棒个数是3+3=2×3;第3个图,火柴棒个数是3+3+3=3×3;第4个图,火柴棒个数是3+3+3+3=4×3;......由此发现规律,即可求解.解:根据题意得:第1个图,火柴棒个数是3;第2个图,火柴棒个数是3+3=2×3;第3个图,火柴棒个数是3+3+3=3×3;第4个图,火柴棒个数是3+3+3+3=4×3;......第n个图,火柴棒个数是3+3+3+3+......+3=3n;故选:A.小提示:本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.7、如图,小明在3×3的方格纸上写了九个式子(其中的n是正整数),每行的三个式子的和自上而下分别记为B1,B2,B3,每列的三个式子的和自左至右分别记为A1,A2,A3,其中值可以等于732的是()A.A1B.B1C.A2D.B3答案:D分析:将A1,A2,B1,B3的式子表示出来,使其等于732,求出相应的n的数值即可判断答案.解:A1=2n−2+2n−4+2n−6=732,整理可得:2n=248,n不为整数;故选项A不符合题意;A2=2n−8+2n−10+2n−12=732,整理可得:2n=254,n不为整数;故选项B不符合题意;B1=2n−2+2n−8+2n−14=732,整理可得:2n=252,n不为整数;故选项C不符合题意;B3=2n−6+2n−12+2n−18=732,整理可得:2n=256,n=8;故选项D不符合题意;故选:D.小提示:本题主要考查规律型的数字变化问题,解答本题的关键是能够理解题意,写出相对应的式子并进行求解.8、下列计算正确的是( )A.3ab+2ab=5ab B.5y2−2y2=3C.7a+a=7a2D.m2n−2mn2=−mn2答案:A分析:运用合并同类项的法则∶1.合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母连同它的指数不变.字母不变,系数相加减.2.同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.即可得出答案.解:A、3ab+2ab=5ab,故选项正确,符合题意;B、5y2−2y2=3y2,故选项错误,不符合题意;C、7a+a=8a,故选项错误,不符合题意;D、m2n和2mn2不是同类项,不能合并,故选项错误,不符合题意;故选:A.小提示:本题考查了合并同类项,解题的关键是知道如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,还要掌握合并同类项的运算法则.9、下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面:(−x2+3xy−12y2)−2(−52x2+4xy−32y2)=−5xy+52y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是()A.4x2−5y B.2y−x C.5x D.4x2答案:D分析:根据题意易得(−x2+3xy−12y2)−2(−52x2+4xy−32y2)+5xy−52y2,然后进行求解即可.解:由题意得:(−x2+3xy−12y2)−2(−52x2+4xy−32y2)+5xy−52y2=−x2+3xy−12y2+5x2−8xy+3y2+5xy−52y2 =4x2故选:D.小提示:本题主要考查整式的加减,熟练掌握整式的加减运算是解题的关键.10、下列各正方形中的四个数之间都有相同的规律,根据此规律,x的值为()A.135B.153C.170D.189答案:C分析:由观察发现每个正方形内有:2×2=4,2×3=6,2×4=8,可求解b,从而得到a,再利用a,b,x之间的关系求解x即可.解:由观察分析:每个正方形内有:2×2=4,2×3=6,2×4=8,∴2b=18,∴b=9,由观察发现:a=8,又每个正方形内有:2×4+1=9,3×6+2=20,4×8+3=35,∴18b+a=x,∴x=18×9+8=170.故选C.小提示:本题考查的是数字类的规律题,掌握由观察,发现,总结,再利用规律是解题的关键.填空题11、三个连续整数中,n是最小的一个,则这三个数的和为 ________.答案:3n+3分析:根据最小的整数为n,表示出三个连续整数,求出之和即可.解:根据题意三个连续整数为n,n+1,n+2,则三个数之和为n+n+1+n+2=3n+3.所以答案是:3n+3.小提示:此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.12、将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第67个数为______.答案:5151分析:首先得到前n个图形中每个图形中的黑色圆点的个数,得到第n个图形中的黑色圆点的个数再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第67个能被3整除的数所在组,为原数列中第101个数,解:第①个图形中的黑色圆点的个数为1;=3;第②个图形中的黑色圆点的个数为(1+2)×22=6;第③个图形中的黑色圆点的个数为(1+3)×32=10;第④个图形中的黑色圆点的个数为(1+4)×42……;由此发现,第n个图形中的黑色圆点的个数为n(1+n)2∴这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,……,其中每3个数中,都有2个能被3整除,∵67÷2=33…1,33×3+2=101.=5151.则第67个被3整除的数为原数列中第101个数,即101×1022所以答案是:5151小提示:本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.13、若2x2−3x−2=0,则代数式3−4x2+6x的值为________.答案:-1分析:将2x2−3x−2=0变形为2x2-3x=2,再将3−4x2+6x变形为3-2(2x2-3x),然后整体代入计算即可.解:∵2x2−3x−2=0∴2x2-3x=2,∴3−4x2+6x=3-2(2x2-3x)=3-2×2=-1,所以答案是:-1.小提示:本题考查代数式求值,将式子恒等变形,利用整体思想求解是解题的关键.14、若x−2y=3,则代数式2x−4y−4的值等于___________.答案:2分析:把2x-4y-4转化为2(x-2y)-4,然后整体代入进行计算即可得解.解:∵x−2y=3,∴2x−4y-4=2(x−2y)-4=2×3-4=2.故答案为∶2.小提示:本题考查了代数式求值,熟练掌握整体思想的应用是解题的关键.15、观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.答案:不存在分析:首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n个“○”的个数是n(n+1);最后根据图形中的2“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n的值是多少即可.解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n个图形中“•”的个数是3n;;又∵n=1时,“○”的个数是1=1×(1+1)2n=2时,“○”的个数是3=2×(2+1),2n=3时,“○”的个数是6=3×(3+1),2n=4时,“○”的个数是10=4×(4+1),2……∴第n个“○”的个数是n(n+1),2由图形中的“○”的个数和“.”个数差为2022∴3n −n (n+1)2=2022①,n (n+1)2−3n =2022②解①得:无解解②得:n 1=5+√162012,n 2=5−√162012所以答案是:不存在小提示:本题考查了图形类规律,解一元二次方程,找到规律是解题的关键. 解答题16、观察下列等式:第1个等式:a 1=11×3=12×(1−13);第2个等式:a 2=13×5=12×(13−15);第3个等式:a 3=15×7=12×(15−17);第4个等式:a 4=17×9=12×(17−19);……请解答下列问题:(1)按以上规律列出第5个等式:a 5= = ;(2)按以上规律列出第2015个等式:a 2015= = ;(3)求a 1+a 2+a 3+a 4+…+a 2016的值.答案:(1)19×11,12×(19−111) (2)14029×4031=12×(14029−14031)(3)20164033分析:(1)根据所给的等式的形式进行求解即可;(2)根据所得规律求出第n 个等式,从而得到第2015个等式;(3)利用(2)中的规律进行求解即可.(1)解:由题意得:第5个等式为:a 5=19×11=12×(19−111),所以答案是:19×11,12×(19−111);(2)第1个等式:a 1=11×3=12×(1−13);第2个等式:a 2=13×5=12×(13−15);第3个等式:a 3=15×7=12×(15−17);第4个等式:a 4=17×9=12×(17−19); ……∴第n 个等式:a n =1(2n−1)(2n+1)=12×(12n−1−12n+1), ∴第2015个等式:a 2015=14029×4031=12×(14029−14031);(3)a 1+a 2+a 3+a 4+⋯+a 2016=11×3+13×5+15×7+...+14031×4033=12×(1−13+13−15+15−17+17+...+14031−14033) =12×(1−14033) =12×40324033=20164033.小提示:本题考查数字的规律,能够通过所给式子,找到数字的变化规律,并归纳出一般结论是解题的关键.17、小明在计算 5x 2+3xy +2y 2加上多项式A 时,由于粗心,误算成减去这个多项式而得到2x 2-3xy +4y 2.(1)求多项式 A ;(2)求正确的运算结果.答案:(1)3x 2+6xy ﹣2y 2(2)8x 2+9xy分析:(1)根据题意得出A 的表达式,再去括号,合并同类项即可;(2)根据题意得出整式相加减的式子,再去括号,合并同类项即可.(1)∵(5x 2+3xy +2y 2)﹣A =2x 2﹣3xy +4y 2,∴A=(5x2+3xy+2y2)﹣(2x2﹣3xy+4y2)=5x2+3xy+2y2﹣2x2+3xy﹣4y2=3x2+6xy﹣2y2;(2)由题意得,(5x2+3xy+2y2)+(3x2+6xy﹣2y2)=5x2+3xy+2y2+(3x2+6xy﹣2y2=8x2+9xy.小提示:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.18、已知多项式M=(2x2+3xy+2y)−2(x2+x+yx+1).(1)当x=1,y=2,求M的值;(2)若多项式M与字母x的取值无关,求y的值.答案:(1)2(2)y=2分析:(1)先化简多项式,将x=1,y=2,代入化简结果求值即可求解;(2)根据(1)的结果,令x的系数为0,即可求得y的值.(1)解:M=2x2+3xy+2y−2x2−2x−2yx−2=xy﹣2x+2y﹣2,当x=1,y=2时,原式=2﹣2+4﹣2=2;(2)(2)∵M=xy﹣2x+2y﹣2=(y﹣2)x+2y﹣2,且M与字母x的取值无关,∴y﹣2=0,解得:y=2.小提示:本题考查了整式的加减运算化简求值,整式加减中无关类型问题,正确的计算是解题的关键.。

七年级数学上册第二章整式的加减知识点整理

七年级数学上册第二章整式的加减知识点整理

第二章整式的加减一、整式单项式的概念:表示数或字母的积的代数式,叫做单项式,特别地,单独一个数或一个字母也叫做单项式。

1.任意个字母和数字的积(除法中有:除以一个数等于乘这个数的倒数)。

2.一个字母或数字也叫单项式。

3.分母中不含未知数的积的式子叫做单项式注意:单独一个数或一个字母也是单项式,2πr中2π是单项式的系数,单项式的次数。

单项式的系数:是指单项式中的数字因数;(如果一个单项式,只含有字母因数,如果是正数的单项式系数为1,如果是负数的单项式系数为-1)单项数的次数:是指单项式中所有字母的指数的和(如果一个单项式,只含有数字因数,那么它的次数为0)多项式:由若干个单项式的和组成的代数式。

多项式中每个单项式叫做多项式的项,不含字母的项叫做常数项,这些单项式中的最高次数,就是这个多项式的次数。

它们都是用字母表示数或列式表示数量关系。

注意单项式和多项式的每一项都包括它前面的符号。

单项式和多项式统称为整式。

二、整式的加减同类项:所含字母相同,并且相同字母的指数也相同的项。

与字母前面的系数(≠0)无关。

同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关合并同类项:把多项式中的同类项合并成一项。

可以运用交换律,结合律和分配律。

合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;字母的升降幂排列:按某个字母的指数从小(大)到大(小)的顺序排列。

如果括号外的因数是正(负)数,去括号后原括号内各项的符号与原来的符号相同(反)。

整式加减的一般步骤:1、如果遇到括号按去括号法则先去括号.2、结合同类项.3、合并同类项三、整式的乘法法则 :单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式 ;单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。

多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

七年级上册数学整式的加减全章知识点总结

七年级上册数学整式的加减全章知识点总结

七年级上册数学整式的加减全章知识点总结第二章整式的加减知识点1:单项式的概念单项式是由数或字母的积组成的式子。

它只包含一种运算,即乘法,不能有加、减、除等运算符号。

单项式可以分为三种类型:数字与字母相乘组成的式子,如2ab;字母与字母组成的式子,如xy;单独的一个数或字母,如2,-a,m。

知识点2:单项式的系数单项式中的数字因数叫做这个单项式的系数。

系数可以是整数、分数或小数,并且可以是正数或负数。

对于只含有字母因素的单项式,其系数是1或-1,不能认为是0.表示圆周率的π,在单项式中应将其作为系数的一部分,而不能当成字母。

知识点3:单项式的次数一个单项式中,所有字母的指数和叫做这个单项式的次数。

计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。

单项式是一个单独字母时,它的指数是1,单项式是单独的一个常数时,一般不讨论它的次数。

单项式的指数只和字母的指数有关,与系数的指数无关。

知识点4:多项式的有关概念多项式是由几个单项式相加组成的式子。

多项式中的每个单项式叫做多项式的项。

不含字母的项叫做常数项。

多项式里次数最高项的次数叫做多项式的次数。

单项式与多项式统称整式。

B、一个多项式中的每一项都包含符号,例如多项式-2xy+6a-9共有三项,分别是-2xy,6a,-9.一个多项式中包含几个单项式,就称这个多项式为几项式,例如-332xy3+6a-9就是一个三项式。

C、多项式的次数不是所有项的次数之和,也不是各项字母的指数和,而是组成这个多项式的单项式中次数最高的那个单项式的次数。

例如多项式-2xy+6a-9由三个单项式-2xy,6a,-9组成,其中-2xy的次数最高,为4次,因此这个多项式的次数就是4.它是一个四次三项式。

对于一个多项式而言,没有系数这一说法。

1)书写含乘法运算的式子时,要注意省略乘号,数字与字母相乘时,数字必须写在字母的前面。

带分数要化成假分数。

2)书写含除法运算的式子时,结果一般用分数线表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式加减
一、本节学习指导
本节不是太难,我们抓住几个“式”的概念,并且会判断是否为同类项,同学们对概念要反复推敲理解,然后多做一些练习题就能掌握.
二、知识要点
1、单项式
(1)、都是数或字母的积的式子叫做单项式。

(单独的一个数或一个字母也是单项式。


如:2,2bc,3m,a,都是单项式。

(2)、单项式中的数字因数叫做这个单项式的系数。

如:2ab中2是这个单项式的系数。

(3)、单项式系数应注意的问题:
① 单项式表示数字与字母相乘时,通常把数字写在前面;
② 当单项式的系数是带分数时,要把带分数化成假分数;
③ 当单项式的系数是1或-1时,“1”通常省略不写;
④ 圆周率π是常数;
⑤ 单项式的系数应包括它前面的“正”、“负”符号。

(4)、一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如:xy2,这个单项式的次数是 3 次,而不是2次。

(单独的一个数的次数是0.)
2、多项式
(1)、几个单项的和叫做多项式。

其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

多项式的每一项都包含它前面的符号。

如:2a2+3b-5 是一个多项式,2a2,3b,-5是这个多项式项,-5是常数项。

(2)、多项式里次数最高项的次数,叫做这个多项式的次数。

如:2a2+3b-5的次数是2.
(3)、单项式与多项式统称整式。

3、合并同类项
(1)、所含字母相同,并且相同字母的指数也相同的项叫做同类项。

几个常数项也是同类项。

如:2a+3a-a+3a2中2a,3a,a是同类项,而2a,3a2则不是同类项。

(2)、把多项式里的同类项合并成一项,叫做合并同类项。

(3)、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

如:2a+3a-a 合并同类项得:4a,数字相加或相减,字母不变。

4、去括号
(1)、去括号法则:
① 如果括号外的因数是正数,去括号后括号内每一项的符号都不变。

(“+”不变)
如:(2a+5)去括号后不变:2a+5
② 如果括号外的因数是负数,去括号后括号内每一项的符号都变。

(“-”全变)
如:-(2a+5)去括号后变成:-2a-5
(2)、去括号应注意:
① 去括号应考虑括号内的每一项的符号,做的要变都变,要不变都不变;
② 括号内原来有几项,去掉括号后仍有几项,同时括号前的符号也要去掉。

(3)、当括号前的因数是1或-1时:
① 先把数字与括号内的每一项相乘;② 再根据去括号法则去括号。

(4)、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项
三、经验之谈:
本节知识点中我们要特别注意两点,一、同类项的判断,字母完全相同的项,我们成为同类项,数字部分不用管。

二、去括号,这是最容易出错的地方,我们要注意括号前面是负号的情况。

本文由索罗学院整理。

相关文档
最新文档