一元一次不等式组教案公开课教案
一元一次不等式组教学设计(教案)
一元一次不等式组教学设计(教案)教学目标:1. 理解一元一次不等式组的定义及其解法。
2. 能够列出和解答一元一次不等式组。
3. 能够应用一元一次不等式组解决实际问题。
教学重点:1. 一元一次不等式组的定义。
2. 一元一次不等式组的解法。
教学难点:1. 一元一次不等式组的解法。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引入一元一次不等式概念,复习相关知识。
2. 提问:一元一次不等式有什么特点?如何解一元一次不等式?二、探究(15分钟)1. 介绍一元一次不等式组的概念。
2. 通过示例,引导学生理解一元一次不等式组的特点。
3. 讲解一元一次不等式组的解法。
三、练习(10分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 解答学生遇到的问题,给予指导和帮助。
四、应用(10分钟)1. 给出实际问题,让学生应用一元一次不等式组解决。
2. 引导学生思考如何将实际问题转化为一元一次不等式组。
五、总结(5分钟)1. 回顾本节课所学内容,让学生总结一元一次不等式组的概念和解法。
2. 强调一元一次不等式组在实际问题中的应用。
教学反思:本节课通过导入、探究、练习、应用和总结等环节,让学生掌握一元一次不等式组的概念和解法。
在教学过程中,注意引导学生主动参与,培养学生的动手操作和思考能力。
通过实际问题的解决,让学生感受数学与生活的联系,提高学生的应用能力。
在教学设计中,可根据学生的实际情况,适当调整教学内容和教学时间。
六、案例分析(10分钟)1. 提供具体的案例,让学生分析案例中的不等式组。
2. 引导学生将案例中的实际问题转化为不等式组。
3. 一起讨论如何求解案例中的不等式组。
七、解题策略(10分钟)1. 介绍解一元一次不等式组的策略。
2. 通过示例,讲解如何运用解题策略解不等式组。
3. 强调在解题过程中要注意的问题。
八、课堂练习(10分钟)1. 让学生独立完成练习题,巩固所学知识。
人教版初中数学一元一次不等式教案范文优秀7篇
人教版初中数学一元一次不等式教案范文优秀7篇一元一次不等式教案篇一一、教学目标:(一)知识与能力目标:(课件第2张)1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法。
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:1.掌握一元一次不等式的`解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。
在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。
在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
四、教具:计算机辅助教学。
五、教学流程:(一)、复习:教学环节教师活动学生活动设计意图一元一次不等式教案篇二师:下面我们先看一下购物金额对选择哪家超市有何影响?请同学们根据老师给出的学习目标和问题,自学课文一三1页至一三2页例1上边的内容,要求独立或者小组合作,完成书上的问题(1)、(2),时间是10分钟。
《一元一次不等式组》 word版 公开课一等奖教案1
当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。
这些资料因为用的比较少,所以在全网范围内,都不易被找到。
您看到的资料,制作于2021年,是根据最新版课本编辑而成。
我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。
本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。
本作品为珍贵资源,如果您现在不用,请您收藏一下吧。
因为下次再搜索到我的机会不多哦!一元一次不等式组教学目标1.了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,掌握求一元一次不等式组的解集的常规方法;2.经历知识的拓展过程,感受学习一元一次不等式组的必要性;3.逐步熟悉数形结合的思想方法,感受类比与化归的思想。
教学难点一元一次不等式组解集的理解知识重点一元一次不等式组的解集和解法。
教学过程(师生活动)二次备课创设情境提出问题用每分钟可抽30t水的抽水机抽河道里积存的污水,估计积存的污水在1200~1500t,那么抽完水需要的时间范围是什么?引出新知设用X分钟将污水抽完,则x同时满足不等式30X>1200,30X<1500.类似于方程组,引出一元一次不等式组的概念和记法.(教科书127页)利用数轴,师生一起将问题1、问题2的解集求出来.引出一元一次不等式组解集的概念解法探讨例1 解下列不等式组:(1)⎩⎨⎧-<++>-148112xxxx(2)⎪⎩⎪⎨⎧-<-++≥+xxxx213521132小组讨论:根据不等式组的解集的意义,你觉得解决例1需要哪些步骤?在这些步骤中,哪个是我们原有的知识,哪个是我们今天获得的新方法?在讨论的基础上,师生一起归纳解一元一次不等式组的步骤:(1)求出各个不等式的解集;(2)找出各个不等式的解集的公共部分(利用数轴).师生一起完成例1.例2 x取哪些整数值时,不等式)1(32x5->+x与x x 237121-≤- 都成立? 分析:求出这两个不等式组成的不等式组的解集,解集中的整数就是x 可取的整数值。
数学《一元一次不等式》教学设计(通用6篇)
数学《一元一次不等式》教学设计数学《一元一次不等式》教学设计(通用6篇)作为一名教师,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
一份好的教学设计是什么样子的呢?下面是小编精心整理的数学《一元一次不等式》教学设计,仅供参考,欢迎大家阅读。
数学《一元一次不等式》教学设计篇1【教学目标】:1、知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题。
2、能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型3、情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。
【重点难点】:重点:一元一次不等式在实际问题中的应用。
难点:在实际问题中建立一元一次不等式的数量关系。
关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。
注意问题中隐含的不等量关系,列代数式得到不等式,转化为纯数学问题求解。
【教学过程】:创设情境,研究新知这个周末我们要去杜氏旅游渡假村,为此我们要做两个准备:先选择一家旅行社,然后购买一些必需的旅游用品。
在这个过程中,我们会碰到一些问题,看同学们能不能用数学知识来解决。
问题1:中国旅行社的原价是每人100元,可以给我们打7.7折;蓝天旅行社的原价和他们相同,但可以三人免费,并且其他人费用打8折;根据我们的实际情况,要选择哪一家比较省钱?(从生活中的问题入手,激发学生探究问题的兴趣,这是一个最优方案的选择问题,具有一定的开放性和探索性,解这类问题,一般要根据题目的条件,分别计算结果,再比较、择优。
本题通过问题设置,培养学生分析题意的能力,分析题中相关条件,找到不等关系。
一元一次不等式组教学设计(教案)
一元一次不等式组教学设计(教案)章节一:引言教学目标:1. 让学生了解一元一次不等式组的概念及其在实际生活中的应用。
2. 培养学生对不等式组的兴趣和好奇心。
教学内容:1. 引入不等式组的概念,解释一元一次不等式组的定义。
2. 通过实际例子展示一元一次不等式组的应用场景。
教学活动:1. 引导学生思考实际生活中的不等关系,例如购物时价格的限制。
2. 让学生尝试用不等式表示这些不等关系。
教学评估:1. 观察学生在实际例子中的参与程度和理解程度。
2. 收集学生的不等式表示,评估其理解能力。
章节二:一元一次不等式组的解法(一)教学目标:1. 让学生掌握解一元一次不等式组的基本方法。
2. 培养学生解决实际问题的能力。
教学内容:1. 介绍解一元一次不等式组的基本方法。
2. 通过例子演示解一元一次不等式组的过程。
教学活动:1. 让学生尝试解一些简单的一元一次不等式组。
2. 分组讨论并分享解题方法。
教学评估:1. 观察学生在解题过程中的思路和步骤。
2. 收集学生的解题结果,评估其解题能力。
章节三:一元一次不等式组的解法(二)教学目标:1. 让学生进一步掌握解一元一次不等式组的方法。
2. 培养学生解决复杂问题的能力。
教学内容:1. 介绍解一元一次不等式组的进阶方法。
2. 通过例子演示解一元一次不等式组的进阶过程。
教学活动:1. 让学生尝试解一些较复杂的一元一次不等式组。
2. 分组讨论并分享解题方法。
教学评估:1. 观察学生在解题过程中的思路和步骤。
2. 收集学生的解题结果,评估其解题能力。
章节四:一元一次不等式组的应用教学目标:1. 让学生学会将一元一次不等式组应用于实际问题中。
2. 培养学生解决实际问题的能力。
教学内容:1. 介绍一元一次不等式组在实际问题中的应用方法。
2. 通过例子演示一元一次不等式组在实际问题中的应用。
教学活动:1. 让学生尝试解决一些实际问题,运用一元一次不等式组。
2. 分组讨论并分享解题方法。
一元一次不等式组教案
一元一次不等式组教案【篇一:《一元一次不等式组》教学设计】一元一次不等式组一、课表解读在初中数学课程标准,第三学段数与代数对一元一次不等式组部分是这样描述的:1.充分感受生活中存在着大量的不等式关系,了解不等式组的意义;2.会解简单的一元一次不等式组,并会用数轴确定解集。
二、教材分析1、教材的地位和作用《一元一次不等式组》的主要内容是一元一次不等式组的解法及其简单应用。
是在学习了有理数的大小比较、等式及其性质、一元一次方程的基础上,开始学习简单的数量之间的不等关系,进一步探究现实世界数量关系的重要内容,是继一元一次方程和二元一次方程组之后,又一次数学建模思想的学习,也是后继学习一元二次方程、函数及进一步学习不等式的重要基础,具有承前启后的重要作用。
《一元一次不等式组》是本章的最后一节,是一元一次不等式知识的综合运用和拓展延伸,是进一步刻画现实世界数量关系的数学模型,是下一节利用一元一次不等式组解决实际问题的关键。
2、教学目标设计依据《课程标准》对7—9年级《不等式》学段的目标要求和本班学生实际情况,特确定如下目标:1.通过实例体会一元一次不等式组是研究量与量之间关系的重要模型之一。
2.了解一元一次不等式组及解集的概念。
3.会利用数轴解较简单的一元一次不等式组。
4.培养学生分析、解决实际问题的能力。
5.通过实际问题的解决,体会数学知识在生活中的应用,激发学生的学习兴趣。
培养学生认真倾听,大胆回答,勤于思考、善于反思的良好学习习惯。
3、教学重点、难点:重点:理解一元一次不等式组的有关概念,会解简单的一元一次不等式组;难点:正确理解一元一次不等式组的解集。
三、学情分析1、学生特点从学生学习的心理基础和认知特点来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化能力。
但学生将两个一元一次不等式的解集在同一数轴上表示会产生一定的困惑。
这个年龄段的学生,以感性认识为主,并向理性认知过渡,所以,我对本节课的设计是通过两个学生所熟悉的问题情境,让学生独立思考,合作交流,从而引导其自主学习。
一元一次不等式教案(精选9篇)
一元一次不等式教案(精选9篇)篇1:一元一次不等式教案实际询问题与一元一次不等式教案教学目标1、会从实际询问题中抽象出数学模型,会用一元一次不等式解决实际询问题;2、通过观看、实践、争辩等活动,经受从实际中抽象出数学模型的过程,积存利用一元一次不等式解决实际询问题的阅历,渗透分类争辩思想,感知方程与不等式的内在联系;3、在乐观参与数学学习活动的过程中,初步熟识一元一次不等式的应用价值,形成实事求是的态度和独立思考的适应。
教学难点弄清列不等式解决实际询问题的思想方法,用去括号法解一元一次不等式。
学询问重点查找实际询问题中的不等关系,建立数学模型。
教学过程(师生活动)设计理念提出询问题某学校方案购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,同时多买都有确信的优待.甲商场的优待条件是:第一台按原报价收款,其余每台优待25%;乙商场的优待条件是:每台优待20%.假如你是校长,你该如何考虑,如何选择?(多媒体呈现商场购物情景)通过买电脑那个同学特不生疏的生活实例,引起同学深厚的学习爱好,感受到数学来源于生活,生活中更需要数学。
探究新知1、分组活动.先独立思考,理解题意.再组内沟通,发表自个儿的观点.最终小组汇报,派代表论述理由.2、在同学充分发表意见的基础上,师生共同归纳出以下三种选购方案:(1)啥状况下,到甲商场购买更优待?(2)啥状况下,到乙商场购买更优待?(3)啥状况下,两个商场收费相同?3、我们先来考虑方案:设购买x台电脑,假如到甲商场购买更优待.询问题1:如何列不等式?询问题2:如何解那个不等式?在同学充分争辩的基础上,老师归纳并板书如下:解:设购买x 台电脑,假如到甲商场购买更优待,则6000+6000(1-25%)(x-1)<6000(1-20%)x去括号,得去括号,得:6000+4500x-45004<4800x移项且合并,得:-300x<1500不等式两边同除以-300,得:x<5答:购买5台以上电脑时,甲商场更优待.4、让同学自个儿完成方案(2)与方案(3),并汇报完成状况.老师最终作适当点评.鼓舞同学大胆猜想,对争论的询问题发表见解,进行探究、合作与沟通,涌现出多样化的解题思路.老师准时予以引导、归纳和总结,让同学感知不等式的建模。
一元一次不等式组教案(公开课教案)
§9.3 一元一次不等式组肖慧教学目标知识与技能:1、了解一元一次不等式组及其解集的概念。
2、会利用数轴求不等式组的解集。
过程与方法:1、培养学生分析实际问题,抽象出数学关系的能力。
2、培养学生初步数学建模的能力。
情感态度价值观:加深学生对数形结合的作用的理解,让学生体会数学解题的直观性和简洁性的数学美。
感受探索的乐趣和成功的体验,使学生养成独立思考的好习惯。
教学重难点重点:不等式组的解法及其步骤。
难点:确定两个不等式解集的公共部分。
教法与学法分析教法:启发式、讨论式和讲练结合的教学方法。
学法:实践、比较、探究的学习方式。
教学课型新授课教学用具多媒体课件教学过程一、复习引入一元一次不等式的解法我们已经全部讲完,现在复习一下前面的内容。
1、不等式的三个基本性质是什么?2、一元一次不等式的解法是怎样的?3、情境引入:这个星期的星期天是我母亲的生日,肖老师想买一束康乃馨送给妈妈.要求:这束花不低于20 元,又少于40元如果你是花店售货员,你会拿什么价格的康乃馨给我选择呢?二、讲授新知探究新知:题中一共有两种数量关系,讲解时应注意引导学生自主探究发现。
题中的x应同时满足两个不等式,从而引出一元一次不等式组的概念:把两个一元一次不等式合在一起,就得到一个一元一次不等式组。
同时满足两个不等式的未知数,既是两个不等式解集的公共部分,要找出公共部分,就要利用数轴,在此要引导学生重视数轴的作用,并指导学生在数轴如何观察数轴上对应解集的范围。
记着20≤X<40(引导发现,此就是不等式组的解集。
)不等式解集的概念:不等式组中的几个不等式解集的公共部分。
由此,教师可以引导学生自己总结出解一元一次不等式组的一般步骤。
学生回答后教师总结步骤:分别求出每个不等式的解集;找出它们的公共部分。
三、例题讲解教师提出问题,有了上面的铺垫,我们来完整的解一元一次不等式组。
例1 解不等式组(1)3121 28x xx->+⎧⎨>⎩(2)2311 25123x xxx +≥+⎧⎪+⎨-<-⎪⎩以上两个例题第一个有解,第二个无解,第一个例题教师可以让学生先解完再给出解题过程,本例是按规范格式完整地解答了一个一元一次不等式组,要求学生做作业时按此格式书写。
一元一次不等式组教学设计
一元一次不等式组教学设计一元一次不等式组教学设计(通用10篇)教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
下面是店铺收集整理的一元一次不等式组教学设计,希望大家喜欢。
一元一次不等式组教学设计篇1一、学习目标:1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,掌握求一元一次不等式组的解集的常规方法;2、经历知识的拓展过程,感受学习一元一次不等式组的必要性;3、逐步熟悉数形结合的思想方法,感受类比与化归的思想。
二、学习难点:1、重点:一元一次不等式组的解集和解法。
2、难点:一元一次不等式组解集的理解。
三、学习过程:问题情境:现有两根木条a和b,a长10 cm,b长3 cm。
如果再找一根木条。
,用这三根木条钉成一个三角形木框,那么对木条的长度有什么要求?如果设木条长x cm,那么x仅有小于两边之和还不够,仅有大于两边之差也不行,必须同时满足x10+3和x10—3。
类似于方程组引出一元一次不等式组的概念和记法。
探究新知:解下列不等式组解:解不等式(1),得x1,解不等式(2),得x—4。
在同一条数轴上表示不等式(1)、(2)的解集如图:所以,原不等式组的解是x1巩固新知:P140,1,P141,1归纳总结:不等式解集取值法则同大取大,同小取小,大小取中,矛盾无解。
若ab:①当时,•则不等式的公共解集为;②当时,不等式的公共解集为;③当时,不等式的公共解集为;④当时,不等式组。
作业:1、P141,22、解不等式组:(1);(2)(3);(4)3、若不等式组无解,求m的取值范围。
4、解不等式组,并将解集在数轴上表示出来。
5、解不等式组:(1);(2)6、解不等式:(1);(2)7、若关于x的不等式组的解集是,则下列结论正确的是()A、B、C、D、8、若方程组的解是负数,则的取值范围是()A、B、C、D、无解9、若,则x为()A、B、C、或 D、10、已知方程组的解为负数,求m的取值范围。
一元一次不等式组教案3篇
一元一次不等式组教案3篇Teaching plan of one variable linear inequality group编订:JinTai College一元一次不等式组教案3篇前言:教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。
本教案根据教学设计标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
便于学习和使用,本文档下载后内容可按需编辑修改及打印。
本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】1、篇章1:一元一次不等式组教案2、篇章2:一元一次不等式组教案3、篇章3:一元一次不等式组教案篇章1:一元一次不等式组教案教学目标1.能结合实例,了解一元一次不等式组的相关概念。
2.让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。
3.提高分析问题的能力,增强数学应用意识,体会数学应用价值。
教学重、难点1..不等式组的解集的概念。
2.根据实际问题列不等式组。
教学方法探索方法,合作交流。
教学过程一、引入课题:1.估计自己的体重不低于多少千克?不超过多少千克?若没体重为x千克,列出两个不等式。
2.由许多问题受到多种条件的限制引入本章。
二、探索新知:自主探索、解决第2页“动脑筋”中的问题,完成书中填空。
分别解出两个不等式。
把两个不等式解集在同一数轴上表示出来。
找出本题的答案。
三、抽象:教师举例说出什么是一元一次不等式组。
什么是一元一次不等式组的解集。
(渗透交集思想)四、拓展:合作解决第4页“动脑筋”1.分组合作:每人先自己读题填空,然后与同组内同学交流。
2.讨论交流,求出这个不等式的解集。
五、练习:P5练习题。
六、小结:通过体课学习,你有什么收获?七、作业:第5页习题1.1A组。
《一元一次不等式组》教案
《一元一次不等式组》教案(1)教学目标1、经历实际问题中的数量关系的分析、抽象、建立不等式组模型的过程。
2、知道一元一次不等式组及其解集的意义,会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。
3、通过用不等式组解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用.并以此激发学生学习数学的信心和兴趣.教学重点:一元一次不等式组及其解集的意义教学难点:用数轴确定解集教学方法:讨论探索法.教学过程一、创设问题情境,引入新课某种杜鹃花适宜生长在平均气温为17~20℃的山区,已知这一地区海拔每升高100m,气温下降℃,现测出山脚下的气温是23℃。
估计适宜种植这种杜鹃花的山坡的高度。
二、探索活动1、由几个含有的组成的不等式组叫做一元一次不等式组。
答:同一个未知数、一次不等式。
2、不等式组中所有不等式的解集的,叫做这个不等式组的解集。
答:公共部分。
3、求不等式组的的过程,叫做解不等式组。
答:解集4、一元一次不等式组的两个步骤:(1)求出这个不等式组中各个;(2)利用求出这些不等式的解集的公共部分,即求出这个不等式组的。
答:不等式的解集;数轴;解集。
⎪⎩⎪⎨⎧<--+-≥-②① 1213124326x x x x 三、分组讨论如何求一元一次不等式组的解集呢?(1)不等式组⎩⎨⎧-≥>12x x 的解集是 。
(2)不等式组⎩⎨⎧-<-<12x x 的解集是 。
(3)不等式组⎩⎨⎧><14x x 的解集是 。
(4)不等式组⎩⎨⎧-<>45x x 的解集是 。
答:(1);(2)2x <-;(3)1x 4;(4)无解你能得到什么结论?四、例题教学例1、解不等式组21131x x +<-⎧⎨-≥⎩例2、 解不等式组:,并把它的解集在数轴上表示出来。
例3、解不等式:531x 23≤-<。
思路点拨:(1)本题实质是一个不等式组⎪⎪⎩⎪⎪⎨⎧≤->-②① 5312 3312x x然后解不等式①②,再求出解集的公共部分即原不等式组的解。
9.3一元一次不等式组⑴(公开课教案)
初中数学教案授课者:李华授课班级:七年级7班授课时间:5.8 授课地点:实验中学一元一次不等式组的解, 活动2:下列各式中,哪些是一元一次不等式组?22238,(2)-57 1.x x x x +>+<-⎧⎨⎩583,(4)92.x y +>⎧⎨>-⎩83,(5)3 2.x x >-⎧⎨>⎩13,(6)842,7 1.x x x +>⎧⎪-<≥⎨⎪+⎩221,(1)2 3.x x x +-<-≥⎧⎨⎩√×√××3235,(3)1-7.x x<+>⎧⎪⎨⎪⎩×观察与思考2.动手操作求下列不等式组的解集:3. 总结求公共部分的规律活动3:四、例题讲解教师提出问题,学生独立思考后分组探索,教师深入小组参与活动,观察指导学生,并倾听学生的讨论。
分为四组,分别让学生合作探究,总结出相关规律。
此次活动中关注:(1)学生的参与意识;(2)能否利用数轴找出不等式的解集;(3)能否抓住解不等式的规律:同大取大,同小取小;大小小大中间找,大大小小找不到在学生亲自动手实践的基础上,老师再次总结出规律。
先自主探究解题步骤,后具体解题,可以居高临下地看待一元一次不等式组的解法,并且达到进一步熟悉解题步骤,熟练地利用数轴正确地查找公共部分。
培养学生们的总结概括能力和语言表达能力.培养了学生参与意识和合作交流的意识培养同学们概括.总结能力和参与意识,进一步巩固了所学知识,激发学生的学习兴趣及时巩固练习,加深对知识的理解与记忆. ⎩⎨⎧>>73)1(x x 1(2)4x x >-⎧⎨>⎩3(3)7x x <⎧⎨<⎩1(4)4x x <-⎧⎨<⎩3(5)7x x >⎧⎨<⎩1(6)4x x >-⎧⎨<⎩3(7)7x x <⎧⎨>⎩1(8)4x x <-⎧⎨>⎩练习五、课堂小结这节课你学到了什么?1、概念2、一元一次不等式组的解法六、作业及课后巩固:1、必做题:课本第147页习题9.3第2题的(1)-(4) 2、选做题:解不等式3≤2x-1≤5,你觉得该怎样思考这个问题,你有解决的办法吗?对于例题,解不等式并非新内容.注重解题步骤的归纳教师板演例题,书写完整的解题步骤,强调格式。
一元一次不等式组的数学教案
一元一次不等式组的数学教案一、教学目标1. 让学生理解一元一次不等式组的含义和特点。
2. 学会解一元一次不等式组的方法。
3. 能够应用一元一次不等式组解决实际问题。
二、教学内容1. 一元一次不等式组的定义2. 解一元一次不等式组的方法3. 一元一次不等式组的应用三、教学重点与难点1. 重点:一元一次不等式组的解法及应用。
2. 难点:解含多个不等式的复杂不等式组。
四、教学方法1. 采用问题驱动法,引导学生主动探究一元一次不等式组的解法。
2. 通过案例分析,让学生学会将实际问题转化为不等式组问题。
3. 利用数形结合法,帮助学生直观地理解不等式组的解集。
五、教学过程1. 导入:回顾一元一次方程的解法,引导学生思考如何解决不等式问题。
2. 新课导入:介绍一元一次不等式组的定义和特点。
3. 案例分析:给出具体的不等式组案例,引导学生运用解法求解。
4. 方法讲解:讲解解一元一次不等式组的方法,如“同大取大、同小取小、大小小大中间找、大大小小无解了”等。
5. 练习巩固:让学生独立解决一些简单的不等式组问题,加深对解法的理解。
6. 拓展提高:引入含有多个不等式的复杂不等式组,引导学生运用解法求解。
8. 课后作业:布置一些有关一元一次不等式组的练习题,巩固所学知识。
9. 教学反思:根据学生的反馈,调整教学方法和解题策略,提高教学效果。
10. 教学评价:通过课堂表现、作业完成情况和课后反馈,评价学生对一元一次不等式组的掌握程度。
六、教学案例分析1. 案例一:小明有2个苹果,小华有3个苹果,请问谁有更多的苹果?解:根据题意,可以列出不等式组:\[\begin{cases}2 <3 \\\end{cases}\]解得:小明没有小华有更多的苹果。
2. 案例二:某商品打8折后的价格不超过120元,原价是多少?解:设商品原价为x元,根据题意,可以列出不等式组:\[\begin{cases}0.8x \leq 120 \\\end{cases}\]解得:商品原价不超过150元。
一元一次不等式组教案6篇
一元一次不等式组教案6篇(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!一元一次不等式组教案6篇通过教案的内容是可以看出教师的教学能力的,教案是教师与学生和家长进行有效的沟通和交流,共同关注学生的学习进展,本店铺今天就为您带来了一元一次不等式组教案6篇,相信一定会对你有所帮助。
9.3.1一元一次不等式组(教案)
1.理论介绍:首先,我们要了解一元一次不等式组的基本概念。一元一次不等式组是由几个含有同一个未知数的一元一次不等式组合而成的。它在解决实际问题中起着重要作用,帮助我们确定未知数的取值范围。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过解一元一次不等式组来确定某个学生在数学和英语两门课程中的最低及格分数要求。
其次,在新课讲授环节,我发现学生们对一元一次不等式组的理解还存在一些困难。在讲解重点难点时,我应该更加注意用简洁明了的语言和具体的例子来阐述,让学生更容易理解。此外,我还可以尝试用图表、动画等辅助教学手段,使抽象的知识更加直观。
在实践活动环节,学生们分组讨论和实验操作的积极性很高,但我发现部分学生在讨论过程中还是过于依赖同学,缺乏独立思考。在今后的教学中,我应该鼓励学生们独立思考,培养他们解决问题的能力。
三、教学难点与重点
1.教学重点
(1)理解一元一次不等式组的定义及解的概念;
(2)掌握一元一次不等式组的解法步骤,包括同大取大、同小取小、大小小大中间找、大大小小无解了;
(3)能够将一元一次不等式组应用于解决实际问题;
(4)了解一元一次不等式组的解与方程组的解之间的关系。
举例:对于一元一次不等式组如:x>-2和x<5,学生需要理解其解集为-2<x<5。
3.重点难点解析:在讲授过程中,我会特别强调一元一次不等式组的解法和其在实际问题中的应用这两个重点。对于难点部分,如“同大取大、同小取小”的原则,我会通过具体的例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元一次不等式组相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过比较不等式组中的不等式来求解。
一元一次不等式组教学设计(教案)
教案:一元一次不等式组教学设计(教案)教学目标:1. 理解一元一次不等式组的定义及其解法。
2. 学会解一元一次不等式组,并能够应用解集解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:1. 一元一次不等式组的定义及其解法。
2. 解一元一次不等式组的方法和技巧。
教学难点:1. 不等式组的解集的表示方法。
2. 解决实际问题时不等式组的应用。
教学准备:1. 教学PPT或黑板。
2. 教学卡片或练习题。
教学过程:一、导入(5分钟)1. 引入不等式的概念,复习一元一次不等式的定义及解法。
2. 提问:我们已经学过如何解决一元一次不等式,如何解决一组不等式呢?二、新课讲解(15分钟)1. 讲解一元一次不等式组的定义:一元一次不等式组是由多个一元一次不等式组成的集合。
2. 讲解解一元一次不等式组的方法:先解每个不等式,根据不等式的关系确定3. 举例讲解如何解一元一次不等式组,并展示解集的表示方法。
三、课堂练习(10分钟)1. 分发练习题,让学生独立解决一元一次不等式组的问题。
2. 选取部分学生的作业进行讲解和讨论。
四、解决问题(10分钟)1. 提出实际问题,让学生应用一元一次不等式组的知识解决问题。
2. 引导学生思考如何将实际问题转化为不等式组的问题,并解决之。
2. 布置作业:解决一些一元一次不等式组的问题。
教学反思:通过本节课的教学,学生应该掌握了一元一次不等式组的解法和解集的表示方法,并能够应用解集解决实际问题。
在教学过程中,要注意引导学生思考和探索,培养学生的逻辑思维能力和解决问题的能力。
也要注重练习和应用,让学生在解决实际问题的过程中巩固所学知识。
六、案例分析(10分钟)1. 提供一些实际案例,让学生运用所学的知识分析和解决。
2. 引导学生思考如何将案例中的问题转化为不等式组的问题,并展示解题过程。
七、练习与讨论(10分钟)1. 分发练习题,让学生独立解决一元一次不等式组的问题。
2. 鼓励学生之间进行讨论,分享解题方法和经验。
一元一次不等式组(公开课教案)
一、学习目标:1.经历通过具体问题抽象出不等式组的过程,理解一元一次不等式组、一元一次不等式组的解集、解不等式组等概念。
2.会用数轴确定由两个一元一次不等式组成的不等式组的解集,进一步巩固数形结合思想。
3.会解由两个一元一次不等式组成的不等式组。
二、学习重难点:学习重点:理解不等式组解集的意义,会解一元一次不等式组。
学习难点:借助数形结合的方法找出不等式组的解集。
三、教学过程设计:四、解决问题我来办:(一)复习引入(3--8)(二)归纳小结(5--8)(三)实践练习,小结提升(8-12)举例:经调查,我校学生均有一定的零花钱,八年级(1)班林燕敏同学如果每周比计划多花4元钱,那么一月(按4周算)总量将超过40元,若她计划每周花x元,则x满足怎样的关系式?为响应学校节俭号召,如果她每周比计划少花4元钱,那么一月(按4周算)总量不足20元。
则x又应满足怎样的关系式?这时,你能求出它的值吗?你是如何解决这个问题的?学生代表展示解决提出的问题,全班补充。
1、关于的几个一元一次不等式合在一起,就组成了一元一次不等式组。
(两个?三个?多个怎样?)2、一元一次不等式组里的各个不等式的解集的,叫做这个一元一次不等式组的解集。
求不等式组解集的过程,叫做。
(公共部分——回顾、对比二元一次方程组的说法)学生代表讲解并解释,其他同学可以提出疑义,如若需要,再进行小组讨论。
*1、(1)不等式的解集,在数轴上表示正确的是()(2)解不等式组,并把解集表示在数轴上。
学生代表讲解解题过程,其余学生补充。
2、总结:你能总结出解一元一次不等式组的步骤通吗?(1);(2);(3)。
学生代表演示分析过程和解题过程。
允许其他同学提问和质疑,引导、点评并发问:(1)当遇到一个量要同时满足两个不等式时应如何解决?(类比方程组)(2)说明今后遇到同时满足时可以通过什么来解决?引导、点评学生表现,鼓励学生大胆说出自己的想法,引导学生对研究的问题归纳总结。
__一元一次不等式组教案
一元一次不等式组教案(第1课时)一、教学目标(一)、知识与技能目标1、通过不等式组的解集与方程组的解进行比较,•抽象出这二者中的异同,由此理解不等式组的公共解集.2、会解由两个一元一次不等式组成的一元一次不等式组,并会用数轴确定解集。
(二)、过程与方法目标通过由二元一次方程组,二元一次方程组的解、•解二元一次方程组的概念来类推学习一元一次不等式组,一元一次不等式组的解集,解一元一次不等式组这些概念,•发展学生的类比推理能力.(三)、情感态度与价值观目标通过培养学生的动手能力发展学生的感性认识与理性认识,•培养学生独立思考的习惯.二、教学重点一元一次不等式组的解法三、教学难点在数轴上找公共部分确定不等式组的解集四、教学方法本节课采用多媒体教学,通过引导发现培养学生的类比推理能力,尝试指导培养学生独立思考能力及语言表达能力。
五、教学过程(一)、复习1、什么叫一元一次不等式?2、解一元一次不等式的步骤(化系数为1时应注意什么)?3、把下列解集在数轴上表示出来。
① x≤2 ② x>-1(二)、探索新知1、比一比2x+6=y像这样含有两个未知数的两个一次方程组成一个二元一次3x+4y=24 方程组。
x+3>6像这样含有同一个未知数的两个一元一次不等式组成一个x -5<8 一元一次不等式组。
2、练一练下列式子中,哪些是一元一次不等式组x+3>6 x2+2 <5 x+3y >-3 2x+4≥5 y-4<5 x-3 >6 x-4≤6 4x<63、比一比①、二元一次方程组中两个方程的公共解叫做二元一次方程组的解。
②、一元一次不等式组中各个不等式解集的公共部分叫做一元一次不等式组的解集。
③、求二元一次方程组解的过程叫做解二元一次方程组。
④、求一元一次不等式组解集的过程叫做解一元一次不等式组。
4、做一做解不等式组 3x+1>5-x 并把解集在数轴上表示出来2(x+1) -6≤x5、总结规律把下列不等式组的解集在数轴上表示出来x>2 x<2x >3 x≤-1所以不等式组的解集是x >3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式组教案公
开课教案
The pony was revised in January 2021
§9.3一元一次不等式组
肖慧
教学目标
知识与技能:
1、了解一元一次不等式组及其解集的概念。
2、会利用数轴求不等式组的解集。
过程与方法:
1、培养学生分析实际问题,抽象出数学关系的能力。
2、培养学生初步数学建模的能力。
情感态度价值观:
加深学生对数形结合的作用的理解,让学生体会数学解题的直观性和简洁性的数学美。
感受探索的乐趣和成功的体验,使学生养成独立思考的好习惯。
教学重难点
重点:不等式组的解法及其步骤。
难点:确定两个不等式解集的公共部分。
教法与学法分析
教法:启发式、讨论式和讲练结合的教学方法。
学法:实践、比较、探究的学习方式。
教学课型
新授课
教学用具
多媒体课件
教学过程
一、复习引入
一元一次不等式的解法我们已经全部讲完,现在复习一下前面的内容。
1、不等式的三个基本性质是什么?
2、一元一次不等式的解法是怎样的?
3、情境引入:这个星期的星期天是我母亲的生日,肖老师想买一束康乃馨送给妈妈.
要求:这束花不低于20元,又少于40元
如果你是花店售货员,你会拿什么价格的康乃馨给我选择呢
二、讲授新知
探究新知:
题中一共有两种数量关系,讲解时应注意引导学生自主探究发现。
题中的x 应同时满足两个不等式,从而引出一元一次不等式组的概念:把两个一元一次不等式合在一起,就得到一个一元一次不等式组。
同时满足两个不等式的未知数,既是两个不等式解集的公共部分,要找出公共部分,就要利用数轴,在此要引导学生重视数轴的作用,并指导学生在数轴如何观察数轴上对应解集的范围。
记着20≤X<40(引导发现,此就是不等式组的解集。
)
不等式解集的概念:不等式组中的几个不等式解集的公共部分。
由此,教师可以引导学生自己总结出解一元一次不等式组的一般步骤。
学生回答后教师总结步骤:分别求出每个不等式的解集;找出它们的公共部分。
三、例题讲解
教师提出问题,有了上面的铺垫,我们来完整的解一元一次不等式组。
例1解不等式组
(1)312128
x x x ->+⎧⎨>⎩
(2)231125
123x x x x +≥+⎧⎪+⎨-<-⎪⎩
以上两个例题第一个有解,第二个无解,第一个例题教师可以让学生先解完再给出解题过程,本例是按规范格式完整地解答了一个一元一次不等式组,要求学生做作业时按此格式书写。
第二个不等式组的解法中,学生会先求出两个不等式的解集,再在数轴上表示出每个不等式的解集,如果每个不等式的解集有公共部分,就是该不等式组的解,公共部分就是它的解集;如果每个不等式的解集没有公共部分,就说该不等式组无解。
解:(1)解不等式①,得2x >
解不等式②,得4x >
把不等式①和②的解集在数轴上表示出来:
则原不等式的解集为4x >
(2)解不等式①,得8x ≥
解不等式②,得4
5
x <
把不等式①和②的解集在数轴上表示出来:
在这里引导学生发现,没有公共部分,即无解。
四、课堂练习
这个表格教师应尽量引导学生自主探究完成,教师最后做出总结:同大取大,同小取小,大小小大中间找,大大小小找不了。
2、学以致用
(1)比一比:看谁反应快运用规律求下列不等式组的解集
(2)、根据数轴说出不等式组的解集
解集:解集:解集:解集:
五、课时小结
学生学习了一节后有自己的收获,教师应让学生首先总结,教师再做补充。
(一)概念
⎩⎨⎧>>.7,3)1(x x 1,(2) 4.x x >-⎧⎨>⎩3,
(3)7.x x <⎧⎨
<⎩1,(4) 4.x x <-⎧⎨
<⎩3,(5)7.x x >⎧⎨
<⎩1,(6) 4.x x >-⎧⎨<⎩3,(7)7.
x x <⎧⎨
>⎩1,
(8) 4.
x x <-⎧⎨
>⎩ 第一 第二
第三 第四
1、由几个一元一次不等式所组成的不等式组叫做一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
(二)解简单一元一次不等式组的方法:
1、求不等式组中各个不等式的解集。
2、利用数轴找出两个不等式的公共部分,即求出了不等式的解集。
(三)本节课的思想方法
(1)类比的思想(2)数形相结合的思想
六、总结升华
设a、b是已知实数且a>b,那么不等式组
表一:不等式组解集
这个表格教师应尽量引导学生自主探究完成,教师最后做出总结:皆大取大,皆小取小,大小小大取中间,大大小小是无解。
七、作业布置
必做:课本129练习
板书设计
表二板书设计表。