【必考题】数学高考一模试题带答案
上海高中2024年高三第一次模拟考试(数学试题含解析)

上海高中2024年高三第一次模拟考试(数学试题含解析)请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{|1}M x x ==.N 为自然数集,则下列表示不正确的是( )A .1M ∈B .{1,1}M =-C .M ∅⊆D .M N ⊆ 2.下列说法正确的是( )A .“若1a >,则21a >”的否命题是“若1a >,则21a ≤”B .“若22am bm <,则a b <”的逆命题为真命题C .0(0,)x ∃∈+∞,使0034x x >成立D .“若1sin 2α≠,则6πα≠”是真命题 3.已知数列{}n a 中,112,()1,n n n a n a a a n N *+=-=+∈ ,若对于任意的[]*2,2,a n N ∈-∈,不等式21211n a t at n +<+-+恒成立,则实数t 的取值范围为( ) A .(][),21,-∞-⋃+∞B .(][),22,-∞-⋃+∞C .(][),12,-∞-⋃+∞D .[]2,2- 4.已知15455,log log 2a b c ===,则,,a b c 的大小关系为( ) A .a b c >> B .a c b >> C .b a c >> D .c b a >>5.已知m ∈R ,复数113z i =+,22z m i =+,且12z z ⋅为实数,则m =( )A .23-B .23C .3D .-36.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为70%.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表:参加用户比 40% 40% 10% 10%脱贫率 95% 95% 90% 90%那么2019年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的( )A .2728倍B .4735倍C .4835倍D .75倍 7.已知函数()()614,7,7x a x x f x a x -⎧-+≤=⎨>⎩是R 上的减函数,当a 最小时,若函数()4y f x kx =--恰有两个零点,则实数k 的取值范围是( )A .1(,0)2-B .1(2,)2-C .(1,1)-D .1(,1)28.函数()3221f x x ax =-+在()0,∞+内有且只有一个零点,则a 的值为( )A .3B .-3C .2D .-2 9.函数的定义域为( )A .[,3)∪(3,+∞)B .(-∞,3)∪(3,+∞)C .[,+∞)D .(3,+∞)10.2019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则x y +=( )A .170B .10C .172D .12 11.下列与函数y x=定义域和单调性都相同的函数是( ) A .2log 2x y = B .21log 2x y ⎛⎫= ⎪⎝⎭ C .21log y x = D .14y x =12.已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ).A .122B .112C .102D .92二、填空题:本题共4小题,每小题5分,共20分。
2024年高考数学模拟试题与答案解析

2024年高考数学模拟试题与答案解析一、选择题1.设集合A={x|x=2k,k∈Z},B={x|x=3k,k∈Z},则A∩B={()}A.{x|x=6k,k∈Z}B.{x|x=2k,k∈Z}C.{x|x=3k,k∈Z}D.{x|x=k,k∈Z}【答案】B解析:集合A包含所有2的倍数,集合B包含所有3的倍数。
A ∩B表示同时属于A和B的元素,即同时是2和3的倍数的数,也就是6的倍数。
所以A∩B={x|x=6k,k∈Z},故选B。
2.若函数f(x)=x²-4x+c的图像的对称轴是x=2,则c的值为()A.4B.3C.2D.1【答案】A解析:函数f(x)=x²-4x+c的图像的对称轴是x=-b/2a,即x=2。
根据对称轴的公式,得到-(-4)/(21)=2,解得c=4。
故选A。
3.已知等差数列的前n项和为Sn=n(a1+an)/2,若S3=18,S6-S3=24,则a4的值为()A.6B.8C.10D.12【答案】B解析:根据等差数列的前n项和公式,得到S3=3(a1+a3)/2=18,即a1+a3=12。
又因为S6-S3=24,得到a4+a5+a6=24。
由等差数列的性质,a3+a6=a4+a5。
将a3+a6替换为a4+a5,得到3a4+3a5=48,即a4+a5=16。
解方程组a1+a3=12和a4+a5=16,得到a4=8。
故选B。
二、填空题4.若|x-2|≤3,则|x+1|的取值范围是______【答案】-2≤x≤5解析:由|x-2|≤3,得到-3≤x-2≤3,即-1≤x≤5。
再由|x+1|的图像可知,当-3≤x≤5时,|x+1|的取值范围是-2≤x≤5。
5.已知函数f(x)=2x²-3x+1,求f(1/2)的值。
【答案】3/4解析:将x=1/2代入函数f(x),得到f(1/2)=2(1/2)²-3(1/2)+1=2/4-3/2+1=3/4。
三、解答题6.(1)求证:对任意正整数n,都有n²+2n+1≥n+2。
【高三上数学】浙江省宁波市2024届高三上学期高考模拟考试数学试题(解析版)

浙江省宁波市2024届高三上学期高考模拟考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知12i,1i z a z b =−=+(,R a b ∈,i 为虚数单位),若12z z ⋅是实数,则( ) A .10ab −= B .10ab += C .0a b −= D .0a b +=【答案】A 【分析】根据复数乘法及复数的虚部为0计算即可.【详解】因为12(i)(1i)=()(1)i z z a b a b ab =−++−⋅+是实数, 所以10ab −=, 故选:A2.设集合R U =,集合()22{|20},{|log 1}M x x x N x y x =−≥==−,则{|2}x x <=( )A .M N ⋃B .()UN MC .U ()M ND .()UMN【答案】B【分析】化简集合,M N ,根据集合的交集、并集、补集求解.【详解】因为()22{|20}(,0][2,),{|log 1}(,1)M x x x N x y x =−≥=−∞+∞==−=−∞,所以(,1)[2,)M N ⋃=−∞+∞,()U(,1)(0,2)(,2){|2}Nx x M −∞==−∞=<,U 1(,0)][2,)(()[,)[]10,,MN −∞+∞=+∞=+∞∞−,因为(,0]M N =−∞,所以()U(0,)M N =+∞,故选:B3.若,a b 是夹角为60︒的两个单位向量,a b λ+与32a b −+垂直,则λ=( ) A .18B .14C .78D .74【答案】B【分析】由题意先分别算出22,,a b a b ⋅的值,然后将a b λ+与32a b −+垂直”等价转换为)()032a b a b λ−⋅=++,从而即可求解.【详解】由题意有22221,1,cos 60a a b b a b a b ︒====⋅=⋅=又因为a b λ+与32a b −+垂直,所以()()()22132323322a ab a a b b b λλλλ+⋅=−+−⋅+=−+⨯−+1202λ−+=,解得14λ=.B.4.已知数列{}n a 为等比数列,且55a =,则( ) A .19a a +的最小值为50 B .19a a +的最大值为50 C .19a a +的最小值为10 D .19a a +的最大值为105.已知函数32221()2log ,()log ,()log 2xxf x xg x xh x x x ⎛⎫=+=−=+ ⎪⎝⎭的零点分别为,,a b c ,则( ) A .a b c >> B .b a c >> C .c a b >>D .b c a >>由图象可知,a c <,所以a 故选:D6.设O 为坐标原点,12,F F 为椭圆22:142x y C +=的焦点,点P 在C 上,OP =,则12cos F PF ∠=( )A .13−B .0C .13D .3122PF PF PO +=,即可得【详解】如下图所示:不妨设12,PF m PF n ==,根据椭圆定义可得由余弦定理可知1cos 2F PF mn ∠又因为122PF PF PO +=,所以()()22122PF PF PO +=,又22122cos 1m n mn F PF ∠+=+,解得2210m n +=;()22216210n m n mn mn =+−=−=,即3mn =; 所以可得21281081cos 263m n F PF mn ∠+−===;7.已知二面角P AB C −−的大小为3π4,球O 与直线AB 相切,且平面PAB 、平面ABC 截球O 的两个截面圆的半径分别为1O 半径的最大可能值为( )AB .C .3 D的最大值即为MNE 外接圆的OMOE O =,同理可知,AB ⊥平面为MNE外接圆的一条弦,半径OE的最大值即为MNE外接圆的直径,即为π=时,4为MNE外接圆的一条弦,的最大值即为MNE 外接圆的直径,即为的半径的最大可能值为108.已知函数()2f x x ax b =++,若不等式()2f x ≤在[]1,5x ∈上恒成立,则满足要求的有序数对(,)a b 有( ) A .0个 B .1个 C .2个 D .无数个【点睛】关键点点睛:解题的关键是首先得到()()()212232252f f f ⎧−≤≤⎪−≤≤⎨⎪−≤≤⎩,进一步由不等式的性质通过分析即可求解.二、多选题9.已知5250125(12)x a a x a x a x −=++++,则下列说法正确的是( )A .01a =B .380a =−C .123451a a a a a ++++=−D .024121a a a ++=【答案】ABD【分析】根据二项展开式通式以及赋值法即可得到答案. 【详解】对于 A , 取 0x =, 则 01a = ,则A 正确;对B ,根据二项式展开通式得5(12)x −的展开式通项为()55C 12r r rx −−,即()5C 2rr r x ⋅−⋅,其中05,N r r ≤≤∈所以3335C (2)80a =−=−,故B 正确;对C ,取1x =,则0123451a a a a a a +++++=−, 则12345012a a a a a a ++++=−−=−,故C 错误;对D ,取=1x −,则50123453243a a a a a a −+−+−==,将其与0123451a a a a a a +++++=−作和得()0242242a a a ++=, 所以024121a a a ++=,故D 正确; 故选:ABD.10.设O 为坐标原点,直线20x my m +−−=过圆22:860M x y x y +−+=的圆心且交圆于,P Q 两点,则( )A .5PQ =B .12m =C .OPQ △的面积为D .OM PQ ⊥【答案】BCOPQS=)0,0与由直线方程11.函数()sin (0)f x x ωω=>在区间22⎡⎤−⎢⎥⎣⎦,上为单调函数,且图象关于直线2π3x =对称,则( )A .将函数()f x 的图象向右平移2π3个单位长度,所得图象关于y 轴对称 B .函数()f x 在[]π2π,上单调递减 C .若函数()f x 在区间14π(,)9a 上没有最小值,则实数a 的取值范围是2π14π(,)99− D .若函数()f x 在区间14π(,)9a 上有且仅有2个零点,则实数a 的取值范围是4π(,0)3−【答案】AB 【分析】12.已知函数:R R →,对任意满足0x y z ++=的实数,,x y z ,均有()()()3333f x f y f z xyz ++=,则( )A .(0)0f =B .(2023)2024f =C .()f x 是奇函数D .()f x 是周期函数三、填空题13.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边过点()1,3P ,则()sin πα+= .14.已知圆台的上、下底面半径分别为1和2,体积为14π3,则该圆台的侧面积为 .15.第33届奥运会将于2024年7月26日至8月11日在法国巴黎举行.某田径运动员准备参加100米、200米两项比赛,根据以往赛事分析,该运动员100米比赛未能站上领奖台的概率为12,200米比赛未能站上领奖台的概率为310,两项比赛都未能站上领奖台的概率为110,若该运动员在100米比赛中站上领奖台,则他在200米比赛中也站上领奖台的概率是 . )()()()710A B P A P B P A B =+−=,进而求)()3110A B P A B =−=,再利用条件概率公式求出答案【详解】设在200米比赛中站上领奖台为事件)310=,()12P B =,()110P A B =,)()()()31171021010A B P A P B P A B =+−=+−=)()3110A B P A B =−=, )()()3310152P AB B P B ===. 故答案为:3516.已知抛物线Γ:22y x =与直线:4l y x =−+围成的封闭区域中有矩形ABCD ,点A ,B 在抛物线上,点C ,D 在直线l 上,则矩形对角线BD 长度的最大值是 .【点睛】关键点点睛:本题的关键是合理设参,并通过数形结合求出参数的范围也是很重要的,至于求出目标函数表达式只需仔细计算即可.四、解答题17.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知12cos cA b =+.(1)证明:2A B =; (2)若3sin 5B =,13c =,求ABC 的面积. 的值,再利用三角形的面积公式可求得ABC 的面积sin A B =,, ABCS=18.已知数列{}n a 满足11a =,且对任意正整数m ,n 都有2.m n n m a a a mn +=++(1)求数列{}n a 的通项公式; (2)求数列{(1)}n n a −的前n 项和n S .()(112135212n n n n a a n −+−++−=++++−=,符合上式,所以2n a n =.)()2222221234(1)n n ⎡⎤−++−+++−−+⎣⎦(()()321121n n n n +−+++−=, 为奇数时,若n =,则21n n n n S S n −−=+−=时,满足1S 19.如图,已知正方体1111ABCD A B C D −的棱长为4,点E 满足3DE EA =,点F 是1CC 的中点,点G 满足135DG GD =(1)求证:,,,B E G F 四点共面;(2)求平面EFG 与平面1A EF 夹角的余弦值.,即可得出结论;,证明//EG BF 即可;,AH FH ,因为F 由3DE EA =知DE EA ,由135DG GD =知DG GH =所以DE DGEA GH=,所以/AH , 所以EG //BF ,所以,G F 四点共面;法2:如图,以D 为原点,建立空间直角坐标系⎭因为()4,0,2,3,0,BF EG ⎛=−=− ⎝,所以34EG BF =,所以//EG BF ,,,,B E G F 四点共面;)由(1)知,()()()11,4,0,1,0,4,3,4,2BE A E EF =−−=−−=−, 设平面EFG 的法向量为(),,m x y z =,m BE m BF ⎧⋅=⎪⎨⋅=⎪⎩,即40420x y x z −−=⎧⎨−+=⎩,可取()4,1,8m =−,平面1A EF 的法向量(),,n a b c =,则有1403420n A E a c n EF a b c ⎧⋅=−−=⎪⎨⋅=−+=⎪⎩,可取()8,7,2n =−设平面EFG 与平面1A EF 夹角为993m n m nθ⋅==⨯EFG 与平面 20.已知函数()()2e 4e 2x xf x a a x =+−−(e 为自然对数的底数,e 2.71828=).(1)讨论()f x 的单调性;(2)证明:当1a >时,()7ln 4.f x a a >−− 【答案】(1)答案见解析 (2)证明见解析21.某中学在运动会期间,随机抽取了200名学生参加绳子打结计时的趣味性比赛,并对学生性别与绳子打结速度快慢的相关性进行分析,得到数据如下表:(1)根据以上数据,能否有99%的把握认为学生性别与绳子打结速度快慢有关?(2)现有n ()*N n ∈根绳子,共有2n 个绳头,每个绳头只打一次结,且每个结仅含两个绳头,所有绳头打结完毕视为结束.(i )当3n =,记随机变量X 为绳子围成的圈的个数,求X 的分布列与数学期望; (ii )求证:这n 根绳子恰好能围成一个圈的概率为()()212!1!.2!n n n n −⋅−附:()()()()22(),.n ad bc K n a b c d a b c d a c b d −==+++++++)(2422212C 2n n ⋅==))21!2!!n n −=本题第二小问第二步的解决关键是利用分步计数原理得到数列的递推式,从而利用数列的累乘法求得结果点(),0()t t a >的直线l 与双曲线C 的右支交于P ,Q 两点,M 为线段PQ 上与端点不重合的任意一点,过点M 且与1l 平行的直线分别交另一条渐近线2l 和C 于点,T N (1)求C 的方程; (2)求MP MQ OT MN的取值范围.试卷第21页,共21页。
2024年山东省菏泽市高三一模考试数学试题及答案

2024 年高三一模考试数学试题一、选择题: 本题共 8 小题, 每小题 5 分, 共 40 分. 在每小题给出的四个选项中, 只有一项是符合题目要求的.1.已知样本数据为xx1、xx2、xx3、xx4、xx5、xx6、xx7, 去掉一个最大值和一个最小值后的数据与原来的数据相比, 下列数字特征一定不变的是A. 极差B. 平均数C. 中位数D. 方差2.已知复数zz满足zz(1+i)=i2024, 其中i为虚数单位, 则zz的虚部为A. −12B. 12C. −12iD. √223.已知集合AA={xx∣xx=3nn,nn∈ZZ},BB={xx∣0≤xx≤6}, 则AA∩BB=A. {1,2}B. {3,6}C. {0,1,2}D. {0,3,6}4.pp:mm=2,qq:(mmxx+yy)5的展开式中xx2yy3项的系数等于 40 , 则pp是qq的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件5.已知向量aa=(sin θθ,cos θθ),bb=(√2,1), 若aa⋅bb=|bb|, 则tan θθ=A. √22B. √2C. √3D. √326.已知ff(xx)=xxℎ(xx), 其中ℎ(xx)是奇函数且在R上为增函数, 则A. ff�log213�>ff�2−32�>ff�2−23�B. ff�2−32�>ff�2−23�>ff�log213�C. ff�log213�>ff�2−23�>ff�2−32�D. ff�2−23�>ff�2−32�>ff�log213�7.已知圆C1:xx2+(yy−3)2=8与圆C2:(xx−aa)2+yy2=8相交于A、 B两点, 直线AB交xx轴于点P, 则SS△CC1PPCC2的最小值为A. 32B. 92C. 272D. √2328.若数列{aa nn}的通项公式为aa nn=(−1)nn−1nn, 记在数列{aa nn}的前nn+2(nn∈NN∗)项中任取两数都是正数的概率为PP nn, 则A. PP1=23B. PP9<PP10C. PP10<PP11D. PP11<PP12二、选择题: 本题共 3 小题, 每小题 6 分, 共 18 分. 在每小题给出的选项中, 有多项符合题目要求. 全部选对的得 6 分, 部分选对的得部分分, 有选错的得 0 分.9.已知函数ff(xx)=Asin (ωωxx+φφ)(AA>0,ωω>0,0<φφ<ππ)的部分图像如图所示, 令gg(xx)=ff(xx)−2sin2�ππ2+xx�+1, 则下列说法正确的有A. ff(xx)的最小正周期为ππB. gg(xx)的对称轴方程为xx=kkππ+ππ3(kk∈z)C. gg(xx)在�0,ππ2�上的值域为�−1,12�D. gg(xx)的单调递增区间为�kkππ+ππ3,kkππ+5ππ6�(kk∈z)10.如图, 在棱长为 2 的正方体AABBAAAA−AA1BB1AA1AA1中, PP为侧面AAAAAA1AA1上一点, QQ为BB1AA1的中点, 则下列说法正确的有A. 若点PP为AAAA的中点, 则过PP、QQ、AA1三点的截面为四边形B. 若点PP为AA1AA的中点, 则PPQQ与平面BBAAAA1BB1所成角的正弦值为√105C. 不存在点PP, 使PPQQ⊥AA1AAD. PPQQ与平面AAAAAA1AA1所成角的正切值最小为√5511.如图, 过点AA(aa,0)(aa>0)的直线AABB交抛物线yy2=2ppxx(pp>0)于AA,BB两点, 连接AAAA、BBAA,并延长, =−aa于MM,NN两点, 则下列结论中一定成立的有A. BBMM//AANNB. 以AABB为直径的圆与直线xx=−aa相切C. SS△AAAAAA=SS△MMAAMMD. SS△MMCCMM2=4SS△AAMMCC⋅SS△AACCMM三、填空题: 本题共 3 小题, 每小题 5 分, 共 15 分.12.如图, 在正四棱台AABBAAAA−AA1BB1AA1AA1中, AA1BB1=√2,AABB=2√2,该棱台体积V=14√33, 则该棱台外接球的表面积为____________13.已知斜率为√3的直线过双曲线AA:xx2aa2−yy2bb2=1(aa>0,bb>0)的右焦点FF且交双曲线右支于AA、BB两点, AA在第一象限, 若|AAFF|=|AAFF|, 则AA的离心率为_________14.关于xx的不等式xxee aaxx+bbxx−ln xx≥1(aa>0)恒成立, 则bb aa的最小值为_______四、解答题: 本题共 5 小题, 共 77 分. 解答应写出文字说明、证明过程或演算步骤.15.(13 分) 已知数列{aa nn}的前nn项和为SS nn, 且SS nn=2aa nn−2(nn∈NN∗).(1) 求数列{aa nn}的通项公式;(2) 若bb nn=log2aa2nn−1,cc nn=1bb nn bb nn+1, 求证: cc1+cc2+cc3+⋯+cc nn<12.16.(15 分) 某商场举行 “庆元宵, 猜谜语” 的促销活动, 抽奖规则如下: 在一个不透明的盒子中装有若干个标号为1,2,3的空心小球, 球内装有难度不同的谜语. 每次随机抽取 2 个小球, 答对一个小球中的谜语才能回答另一个小球中的谜语, 答错则终止游戏. 已知标号为1,2,3的小球个数比为1:2:1, 且取到异号球的概率为57.(1) 求盒中 2 号球的个数;(2)若甲抽到 1 号球和 3 号球,甲答对球中谜语的概率和对应奖金如表所示, 请帮甲决策猜谜语的顺序 ()球号 1 号球 3 号球答对概率0.8 0.5奖金100 50017.(15 分) 如图, 已知AABBAAAA为等腰梯形, 点EE为以BBAA为直径的半圆弧上一点, 平面AABBAAAA⊥平面BBAAEE,MM为AAEE的中点, BBEE=AABB=AAAA=AAAA=2,BBAA=4.(1) 求证: AAMM/ /平面AABBEE;(2) 求平面AABBEE与平面AAAAEE所成角的余弦值.18.(17 分) 如图, 已知椭圆AA:xx2aa2+yy2bb2=1(aa>bb>0)与yy轴的一个交点为AA(0,√2), 离心率为√22,FF1,FF2为左、右焦点, MM,NN为粗圆上的两动点, 且∠MMAAFF1=∠NNAAFF1.(1) 求粗圆AA的方程;(2) 设AAMM,AANN的斜率分别为kk1,kk2, 求kk1kk2的值;(3) 求△AAMMNN面积的最大值.19.(17 分) 帕德近似是法国数学家亨利. 帕德发明的用有理多项式近似特定函数的方法. 给定两个正整数mm,nn, 函数ff(xx)在xx=0处的[mm,nn]阶帕德近似定义为:RR(xx)=aa0+aa1xx+⋯+aa mm xx mm1+bb1xx+⋯+bb nn xx nn, 且满足: ff(0)=RR(0),ff′(0)=RR′(0),ff′′(0)=RR′′(0),⋯, ff(mm+nn)(0)= RR(mm+nn)(0).(注: ff′′(xx)=[ff′(xx)]′,ff′′′(xx)=[ff′′(xx)]′,ff(4)(xx)=[ff′′′(xx)]′,ff(5)(xx)=�ff(4)(xx)�′,⋯;ff(nn)(xx)为ff(nn−1)(xx)的导数)已知ff(xx)=ln (xx+1)在xx=0处的[1,1]阶帕德近似为RR(xx)=aaxx1+bbxx.(1) 求实数aa,bb的值;(2) 比较ff(xx)与RR(xx)的大小;(3) 若ℎ(xx)=ff(xx)RR(xx)−�12−mm�ff(xx)在(0,+∞)上存在极值, 求mm的取值范围.2024.03高三数学一模试题参考答案一、单选题 1—8.CADA BCBC二、多选题 9—11. ACD AB ACD三、填空题 12.16π 1313+ 14.-1 四、解答题15题解析:(1)由S n =2a n −2 ①当n =1时,S 1=2a 1−2=a 1解得a 1=2 当n ≥2时,S n−1=2a n−1−2 ②①−②得a n =2a n−1 ∴a n =a 12n−1=2n经验证a 1符合上式,所以a n =2n ---------------------------------------6分 (2)证明:由(1)知a 2n−1=22n−1∴b n =log 2a 2n−1=2n −1,b n+1=2n +1------8分则c n =1b n b n+1=12(12n−1−12n+1)---------------------10分 c 1+c 2+c 3+⋯+c n =12(11−13+13−15+⋯+12n −1−12n +1)=12(1−12n +1)<12------------------------------------13分16. (1)由题意可设1,2,3号球的个数分别为n ,2n ,n ,则取到异号球的概率 P =2C n 1C 2n1+C n 1C n 1C 4n2=57 -----2分∴2∙5n 24n(4n −1)=57即n 2=2n 解得n =2 -----4分 所以盒中2号球的个数为4个. -----5分 (2)若甲先回答1号球再回答3号球中的谜语,因为猜对谜语的概率相互独立,记X 为甲获得的奖金总额,则X 可能的取值为0元,100元,600元, P (X =0)=0.2P (X =100)=0.8×(1−0.5)=0.4 P (X =600)=0.8×0.5=0.4X 的分布列为: -----8分X 的均值为 E (X )= -----9分 若甲先回答3号球再回答1号球,因为猜对谜语的概率相互独立,记Y 为甲获得的奖金总额,则Y 可能的取值为0元,500元,600元, P (Y =0)=0.5P (Y =500)=0.5×(1−0.8)=0.1P (Y =600)=0.8×0.5=0.4 -----12分 Y 的分布列为:Y 的均值为E (Y )=290 -----13分 因为E (Y )>E (X ),所以推荐甲先回答3号球中的谜语再回答1号球中的谜语. -----15分17.(1)取BE 的中点N ,连接AN ,MN ,则MN //=12BC又∵AD //=12BC ∴MN //=AD∴ANDM 为平行四边形∴DM ∥AN -----3分 又DM ⊄平面ABE AN ⊂平面ABE∴DM ∥平面ABE -----5分(2)取AD 中点为F ,过点O 作直线BC 的垂线交BC ̂于点G ,分别以OG ,OC ,OF 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系 ∵BC 为直径,∴BE =12BC∴∠BCE =30∘,∠BOE =60∘,∠EOG =30∘,在梯形ABCD 中易求高为√3 -----7分 ∴E(√3,−1,0),C(0,2,0),D(0,1,√3),B(0,−2,0),A(0,−1,√3) ∴CE ⃗⃗⃗⃗⃗ =(√3,−3,0),CD ⃗⃗⃗⃗⃗ =(0,−1,√3),BE ⃗⃗⃗⃗⃗ =(√3,1,0),BA ⃗⃗⃗⃗⃗ =(0,1,√3) ----9分设平面DCE 的法向量为m ⃗⃗ =(x ,y ,z)则{m ⃗⃗ ∙CE ⃗⃗⃗⃗⃗ =0m ⃗⃗ ∙CD⃗⃗⃗⃗⃗ =0∴{√3x −3y =0−y +√3z =0令y =√3则x =3, z =1∴m ⃗⃗ =(3,√3,1)同理求得平面ABE 的法向量为n ⃗ =(1,−√3,1) -----13分 设平面ABE 与平面CDE 所成的角为α 则cos α=|m⃗⃗⃗ ∙n ⃗ |m ⃗⃗⃗ |∙|n ⃗ ||=√6565∴平面ABE 与平面CDE 所成角的余弦值为√6565. -----15分18.解:(1)由题意得,2222b c a a b c ⎧=⎪⎪=⎨⎪⎪=+⎩,解之得2242a b ⎧=⎪⎨=⎪⎩,所以椭圆C 的程为221.42x y +=.----------------3分(2)由(1)知14所以b c AF O π==∠=,设直线AM 、AF 1、AN 的倾斜角分别为1112,tan ,tan ,,4、、、则k k 则MAF F AN αγθπαθβγαβθβγθ+=⎧∠=∠====⎨-=⎩所以πα+β=θ=22,--------------------------------------------------------6分所以所以即πα=-β=αβ==β121tan tan(),tan tan 1,12tan k k ----------------------------------------------------------------------------------------------8分 (3)设直线AM:=+1y k x解方程组⎧=+⎪⎨+=⎪⎩122142y k x x y得221211221212)0,,1212(同理得M Nk x x x x k k ++=∴=-=-++, 由(2)知112211,,2N k k x k =∴=-+ -------------------------------10分2222222221111sin 22()(1)又(y AMNM M M M M SAM AN MAN AM AM AN AM x x k x k x ∴=∠===⋅=+=+=+222222222221122211122222222222221212212111(1)(,,2,1()4,()41(N N N N N N N()同理,,()()M M M N N M NM M N M M M kk AN k x x AM AN x x k k AM AN x y x y x x k x k x x x k AM AN x x AMAN AM AN x x x x k k k ++=+==⋅==+=+∴⋅=∴-⋅=-+=-222221114)(),2N N 1分M M x x k x x k =----------- 1111221111112211111122422211111111211111111221221116163216111,212(12)(2)252252()911,()()令t=则AMNM N AMNSk x x k k k k k k k k k k k k k k k k k k k k k k k k o S k ∴==-=---++--=-=-==-----------++++++-+->=12692,,2932773当2即k =取等号,所以的最大值是1分AMN t t t t t S-±≤====+----------------------19.解:(1)由()l )1n(1(),ax R x x bxf x =+=+,223112(),(),(),(),1(1)(1)(1)知a abf x f x R x R x x x bx bx -''''''==-==++++由题意(0)(0)(0)(0),f R f R ''==,所以11,212所以a=1,b=a ab =⎧⎨=-⎩ --------------------3分(2)由(1)知,2()2x R x x =+,令()()ln(1)2()(1),2-x Rx x x x f x x ϕ=>-+=-+ 则22214()1(2)(1)(2()),所以x x o x x x x x ϕϕ'=-=>++++在其定义域(-1,+∞)内为增函数,又(0)(0()()(0)0;(0)0,0()0() 1()()(0)0时, 时 )f R x R x x f x x f x x R x ϕϕϕϕϕ==-=-≥=-=<∴≥<-=<()(); 0 1()().0所以时,时,f x R x f R x x x x ≥-<<<≥--------------7分222()()11()()()()ln(1),()2111(1)ln(1)ln(1)()1(3)由f x h x m f x m x R x xmx x x x h x m x x x x x ==--=+++-++'∴=-++++()1()()()()2由f x h x m f x R x =--在(0,+∞)上存在极值,所以()h x '在(0,+∞)上存在变号零点. []2()(1)ln(1),()21ln(1)12ln(1),1()21令则g x mx x x x g x mx x mx x g x m x '=+-++=+-++=-+''=-+()()0,()()(0)0,()()(0)00,,.0为减函数,在①当时,上为减函数,无零点,不满足条件g x g x g x g g x g x m g '''''<<=<=<+∞()()0,()()(00)0,()()(0)0,.,21②当2为增函数,在无零点,不满足1,即时,上为增函数,条件m m g x g x g x g g x g x g '''''+>>>>=>=∞min 11()02,1121101()0,()1()0,()22111()(1)2(1)ln(11)12ln 2;2222 即 当时,为减函数;时,为增函1③当021,0时,令数即,m m g x m x x mx g x g x x g x g x m mg x g m m m m m m''<<<<==∴=-+''''''<<-<>->''∴=-=---+=-+2221()1ln ,01,()0,(1)(12)ln 202110,01,(1)01,1ln(1)ln(1);11()(1)ln(1)1令易证恒成立;,H x x x x H x g m m mmx mx x m x m mx x mx x x x mx x g x x x x '=-+<<<∴-=-+<--><<∴-<∴>-∴+-+>-+++⎡⎤+=+-+⎢⎥+⎣⎦221()ln(1)1ln(1)ln(1)(1)ln(1),11ln(1)()(1)(1)(1)22令易证mx x mx l x x x mx x m x x m x x x m m l x m x m x m x +-=-+=+-+>-+=+-+-+++≤⎡∴>+-=+-++-⎢⎣2216161,1,(1)028(1)022令则1 (0<<)mx x x m m m x m m m m +-≥=-+=∴+-=->216()0,(1)0即l x l m ∴>->由零点存在定理可知,2021216,1()(,)122上存在唯x 在一零点m m m m l x m --⎛⎫+∞-∈ ⎪⎝⎭101()0,(),(0)0,21()0,(0,1)2时,为减函数所以此时,在 又由③知,当内无零点,x g x g x g mg x m''''<<-<='<----------------------------------- ----- ------17分()()10,0,.2上存在变号零点,综上所述实数m 的取值范在围为g x ⎛⎫+∞ ⎪⎝⎭∴。
2023高考数学模拟卷(一)(含答案解析)

9.已知抛物线 的焦点为 ,准线为 , 是 上一点,直线 与抛物线交于 两点,若 ,则
A B.8C.16D.
10.已知函数 的图象过点 ,且在 上单调,同时 的图象向左平移 个单位之后与原来的图象重合,当 ,且 时, ,则
A. B.-1C.1D.
11.下图是某四棱锥的三视图,网格纸上小正方形的边长为1,则该四棱锥的外接球的表面积为
20.已知椭圆 的一个焦点为 ,离心率为 .不过原点的直线 与椭圆 相交于 两点,设直线 ,直线 ,直线 的斜率分别为 ,且 成等比数列.
(1)求 的值;
(2)若点 在椭圆 上,满足 直线 是否存在?若存在,求出直线 的方程;若不存在,请说明理由.
21.已程 的两个实数根为 ,求证: ;
设M(x1,y1),N(x2,y2),M,N到准线的距离分别为dM,dN,
由抛物线的定义可知|MF|=dM=x1+1,|NF|=dN=x2+1,于是|MN|=|MF|+|NF|=x1+x2+2.
∵ ,
∴ ,即 ,∴ .
∴ ,∴直线AB的斜率为 ,
∵F(1,0),∴直线PF的方程为y= (x﹣1),
将y= (x﹣1),代入方程y2=4x,得3(x﹣1)2=4x,化简得3x2﹣10x+3=0,
A. B. C. D.
6.已知 展开式中 的系数为0,则正实数
A.1B. C. D.2
7.已知数列 的前 项和 ,若 ,则
A. B.
C. D.
8.如图是正四面体的平面展开图, 分别是 的中点,在这个正四面体中:① 与 平行;② 与 为异面直线;③ 与 成60°角;④ 与 垂直.以上四个命题中,正确命题的个数是()
【必考题】数学高考试题(带答案)

【必考题】数学高考试题(带答案)一、选择题1.在复平面内,O 为原点,向量OA 对应的复数为12i -+,若点A 关于直线y x =-的对称点为点B ,则向量OB 对应的复数为( ) A .2i -+ B .2i -- C .12i +D .12i -+2.已知532()231f x x x x x =++++,应用秦九韶算法计算3x =时的值时,3v 的值为( ) A .27B .11C .109D .363.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(⌝q );④(⌝p )∨q 中,真命题是( ) A .①③B .①④C .②③D .②④4.已知F 1,F 2分别是椭圆C :22221x y a b+= (a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( )A .2,13⎡⎫⎪⎢⎣⎭B .1,32⎡⎢⎣⎦C .1,13⎡⎫⎪⎢⎣⎭D .10,3⎛⎤ ⎥⎝⎦5.设i 为虚数单位,复数z 满足21ii z=-,则复数z 的共轭复数等于( ) A .1-iB .-1-iC .1+iD .-1+i6.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A .2B .2C D .27.已知a 与b 均为单位向量,它们的夹角为60︒,那么3a b -等于( )A BC D .48.设R λ∈,则“3λ=-”是“直线2(1)1x y λλ+-=与直线()614x y λ+-=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件9.已知i 为虚数单位,复数z 满足(1)i z i +=,则z =( )A .14B .12C .2D10.某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数为( )A .7B .8C .9D .1011.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)[)20,40,40,60,60,80,[80,100].若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .12.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A .3B .2C 3D 2二、填空题13.若三点1(2,3),(3,2),(,)2A B C m --共线,则m 的值为 . 14.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3A π=,3a =b=1,则c =_____________15.已知函数()sin ([0,])f x x x π=∈和函数1()tan 2g x x =的图象交于,,A B C 三点,则ABC ∆的面积为__________.16.函数()23s 34f x in x cosx =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是__________. 17.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.18.已知点()0,1A ,抛物线()2:0C y ax a =>的焦点为F ,连接FA ,与抛物线C 相交于点M ,延长FA ,与抛物线C 的准线相交于点N ,若:1:3FM MN =,则实数a 的值为__________.19.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 20.已知四棱锥S ABCD -的三视图如图所示,若该四棱锥的各个顶点都在球O 的球面上,则球O 的表面积等于_________.三、解答题21.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.22.如图,四棱锥P ABCD -的底面ABCD 是平行四边形,连接BD ,其中DA DP =,BA BP =.(1)求证:PA BD ⊥;(2)若DA DP ⊥,060ABP ∠=,2BA BP BD ===,求二面角D PC B --的正弦值.23.如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是11,AC A B 的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.24.如图,在正方体1111ABCD A B C D -中,S 是11B D 的中点,E ,F ,G 分别是BC ,DC ,SC 的中点.求证:(1)直线//EG 平面11BDD B ; (2)平面//EFG 平面11BDD B . 25.(选修4-4:坐标系与参数方程)在平面直角坐标系xOy ,已知曲线3:sin x a C y a⎧=⎪⎨=⎪⎩(a 为参数),在以O 原点为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为2cos()124πρθ+=-. (1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过点()1,0M -且与直线l 平行的直线1l 交C 于A ,B 两点,求点M 到A ,B 的距离之积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】首先根据向量OA 对应的复数为12i -+,得到点A 的坐标,结合点A 与点B 关于直线y x =-对称得到点B 的坐标,从而求得向量OB 对应的复数,得到结果.【详解】复数12i -+对应的点为(1,2)A -, 点A 关于直线y x =-的对称点为(2,1)B -,所以向量OB 对应的复数为2i -+. 故选A . 【点睛】该题是一道复数与向量的综合题,解答本题的关键是掌握复数在平面坐标系中的坐标表示.2.D解析:D 【解析】 【分析】 【详解】 由秦九韶算法可得()())((())532231? 02311,f x x x x x x x x x x =++++=+++++ 0ν1∴=1ν=1303⨯+= 2ν33211=⨯+= 3ν113336=⨯+=故答案选D3.C解析:C 【解析】试题分析:根据不等式的基本性质知命题p 正确,对于命题q ,当,x y 为负数时22x y>不成立,即命题q 不正确,所以根据真值表可得,(p q p ∨∧q )为真命题,故选C.考点:1、不等式的基本性质;2、真值表的应用.4.C解析:C 【解析】 如图所示,∵线段PF 1的中垂线经过F 2,∴PF 2=12F F =2c ,即椭圆上存在一点P ,使得PF 2=2c. ∴a-c≤2c≤a+c.∴e=1[,1)3c a ∈.选C. 【点睛】求离心率范围时,常转化为x,y 的范围,焦半径的范围,从而求出离心率的范围。
浙江省新2025届高三下学期一模考试数学试题含解析

浙江省新2025届高三下学期一模考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()ln(1)f x x ax =+-,若曲线()y f x =在点(0,(0))f 处的切线方程为2y x =,则实数a 的取值为( ) A .-2B .-1C .1D .22.已知函数()f x 的定义域为()0,∞+,且()()2224m f m f f n n ⎛⎫⎪⎝⎭⋅=,当01x <<时,()0f x <.若()42f =,则函数()f x 在[]1,16上的最大值为( ) A .4B .6C .3D .83.半正多面体(semiregular solid ) 亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为( )A .83B .4C .163D .2034.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( )A .B .C .D .5.已知实数x ,y 满足约束条件2211x y y x y kx +≥⎧⎪-≤⎨⎪+≥⎩,若2z x y =-的最大值为2,则实数k 的值为( )A .1B .53C .2D .736.已知定义在R 上的偶函数()f x ,当0x ≥时,22()2xx x f x e +=-,设22),(2),(ln a f b f c f ===,则( ) A .b a c >>B .b a c >=C .a c b =>D .c a b >>7.一只蚂蚁在边长为4的正三角形区域内随机爬行,则在离三个顶点距离都大于2的区域内的概率为( ) A .31πB .34C 3πD .148.若a >b >0,0<c <1,则 A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b9.在ABC ∆中,60BAC ∠=︒,3AB =,4AC =,点M 满足2B M M C =,则AB AM ⋅等于( ) A .10B .9C .8D .710.已知等比数列{}n a 的各项均为正数,设其前n 项和n S ,若14+=nn n a a (n *∈N ),则5S =( )A .30B .312C .2D .6211.已知等差数列{}n a 中,若5732a a =,则此数列中一定为0的是( ) A .1aB .3aC .8aD .10a12.已知等差数列{}n a 的公差为-2,前n 项和为n S ,若2a ,3a ,4a 为某三角形的三边长,且该三角形有一个内角为120︒,则n S 的最大值为( ) A .5B .11C .20D .25二、填空题:本题共4小题,每小题5分,共20分。
浙江省温州市2022-2023学年高三一模数学试题

浙江省温州市2022-2023学年高三一模数学试题参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题“x R ∃∈,21x =”的否定形式是()A .x R ∃∈,1x ≠或1x ≠-B .x R ∃∈,1x ≠且1x ≠-C .x R ∀∈,1x ≠或1x ≠-D .x R ∀∈,1x ≠且1x ≠-【解答】解:由特称命题的否定形式得:命题“x R ∃∈,21x =”的否定形式是:x R ∀∈,1x ≠且1x ≠-.故选:D .2.(5分)已知x C ∈,下列选项中不是方程31x =的根的是()A .1B .12+C .12-D .12-【解答】解:因为31x =,x C ∈,所以310x -=,即2(1)(1)0x x x -++=,解得1x =或1313222x -±==-±,故选项ACD 中是方程31x =的根,B 中不是.故选:B .3.(5分)A ,B 是C 上两点,4AB AC ⋅=,则弦AB 的长度是()A .1B .2C .D .不能确定【解答】解:设C 半径为r ,ACB θ∠=,则22()()cos 4AB AC CB CA CA r r θ⋅=-⋅-=-+=,由余弦定理知AB ====,故选:C .4.(5分)通过长期数据研究某人驾驶汽车的习惯,发现其行车速度v (公里/小时)与行驶地区的人口密度p (人/平方公里)有如下关系:0.0000450(0.4)p v e -=⋅+,如果他在人口密度为a 的地区行车时速度为65公里/小时,那么他在人口密度为2a的地区行车时速度约是()A .69.4公里/小时B .67.4公里/小时C .62.5公里/小时D .60.5公里/小时【解答】解:由题知0.000046550(0.4)a e -=⋅+,整理得0.000040.9a e -=∴10.000020.000042()aaee--==∴当他在人口密度为2a的地区行车时速度:0.0000250(0.4)50(0.467.4av e -=⋅+=⋅+≈公里/小时,故选:B .5.(5分)29(1)(1)x x x -++展开式中含5x 的系数是()A .28B .28-C .84D .84-【解答】解:9(1)x +展开式的通项为91991r r r r r r T C x C x -+=⋅⋅=⋅,0r =,1,2, ,9,当21x x -+选取2x 时,由已知可得,应选取9(1)x +展开式中含3x 的项,由3r =,可得3334984T C x x =⋅=;当21x x -+选取x -时,由已知可得,应选取9(1)x +展开式中含4x 的项,由4r =,可得44459126T C x x =⋅=;当21x x -+选取1时,由已知可得,应选取9(1)x +展开式中含5x 的项,由5r =,可得55569126T C x x =⋅=,所以29(1)(1)x x x -++展开式中含5x 的系数是1841126112684⨯-⨯+⨯=.故选:C .6.(5分)某医院对10名入院人员进行新冠病毒感染筛查,若采用单管检验需检验10次;若采用10合一混管检验,检验结果为阴性则只要检验1次,如果检验结果为阳性,就要再全部进行单管检验.记10合一混管检验次数为ξ,当()10E ξ=时,10名人员均为阴性的概率为()A .0.01B .0.02C .0.1D .0.2【解答】解:设10人全部为阴性的概率为p ,混有阳性的概率为1p -,若全部为阴性,需要检测1次,若混有阳性,需要检测11次,则随机变量ξ的分布列为:ξ111Pp1p-()11(1)10E p p ξ∴=+-=,解得0.1p =,故选:C .7.(5分)下列实数中,最小的是()A .2sin 0.1B .2sin 0.1C .2tan 0.1D .2tan 0.1【解答】解:当(0,1)x ∈时,sin sin (1cos )tan sin sin cos cos x x x x x x x x--=-=,其中sin 0x >,cos 0x >,所以tan sin 0x x ->,则tan sin x x >,即22tan 0.1sin 0.1>;当(0,1)x ∈时,tan 0x >,sin 0x >,所以22tan sin (tan sin )(tan sin )0x x x x x x -=+->,则22tan sin x x >,即22tan 0.1sin 0.1>;设()sin h x x x =-,(0,1)x ∈,所以()cos 10h x x '=-<,()h x 在(0,1)上单调递减,所以()(0)0h x h <=,即sin x x <,又cos y x =在(0,1)上单调递减,且(0,1)x ∈时,2x x <,所以2cos cos x x >,作差法有22sin 0.1sin 0.1-,设22()sin sin f x x x =-,(0,1)x ∈,所以222()2sin cos 2cos 2cos 2cos 2(cos cos )0f x x x x x x x x x x x x '=-<-=-<,则函数()f x 在(0,1)上单调递减,则()(0)0f x f <=,所以22sin sin x x <,即22sin 0.1sin 0.1<;综上,可知2sin 0.1最小.故选:A .8.(5分)直线l 与双曲线22221(0,0)x y a b a b-=>>的左,右两支分别交于点A ,B ,与双曲线的两条渐近线分别交于点C ,(D A ,C ,D ,B 从左到右依次排列),若OA OB ⊥,且||AC ,||CD ,||DB 成等差数列,则双曲线的离心率的取值范围是()A .)+∞B .C .D .)+∞【解答】解:设1(A x ,1)y ,2(B x ,2)y ,3(C x ,3)y ,4(D x ,4)y ,设直线AB 的方程为y kx m =+,联立22221y kx m x y a b =+⎧⎪⎨-=⎪⎩,整理得222222222()20b a k x ka mx a m a b ----=,则2122222222122222a kmx x a k b a m a b x x a k b ⎧-+=⎪⎪-⎨+⎪=⎪-⎩①,联立22220y kx m x y a b =+⎧⎪⎨-=⎪⎩,整理得2222222()20b a k x ka mx a m ---=,则2341222222342222a km x x x x a k b a m x x a k b ⎧-+=+=⎪⎪-⎨⎪=⎪-⎩②,OA OB ⊥ ,1212()()0x x kx m kx m ∴+++=,即222222(1)0a b k m b a +=>-③,20m > ,22b a ∴>,即22e >,故e >,3412x x x x +=+ ,CD ∴中点为AB 的中点,即||||AC BD =,||AC ,||CD ,||BD 成等差数列,||||||AC CD BD ∴==,又A ,C ,D ,B 从左到右依次排列,||3||AB CD ∴=,翻译1234||3||x x x x -=-,将①②③代入得2222222(9)(9)b b a k a b a -=-,20k 且22e >,且22b a >,229b a ∴>,且229b a ,219e ∴-,即e ,综上所述,双曲线的离心率的取值范围是,)+∞,故选:D .二、选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(5分)设函数()sin()(0)5f x x πωω=+>,则()A .若1ω=,则()f x 在[0,2π上单调递增B .若2ω=,则()f x 在[0,]π有2个极值点C .若3ω=,则()f x 的图象关于(,0)15π-中心对称D .若(6)()f x f x π+=,则ω的最大值为13【解答】解:当1ω=时,()sin()5f x x π=+, 02x π ,∴75510x πππ+,故()f x 在[0,]2π上不单调,故A 不正确;当2ω=时,()sin(2)5f x x π=+,0x π ,∴112555x πππ+,当252x ππ+=或3252x ππ+=时,函数取得极值,故函数有2个极值点320π,1320π,故B 正确;当3ω=时,()sin(3)5f x x π=+,15x π=-代入,可得()sin(3())sin 0015155f πππ-=⨯-+==,即(,0)15π-为函数图象的一个对称中心,故C 正确;当(6)()f x f x π+=时,26T ππω= ,所以13ω ,故D 错误.故选:BC .10.(5分)《国家学生体质健康标准》是国家学校教育工作的基础性指导文件和教育质量基本标准,它适用于全日制普通小学、初中、普通高中、中等职业学校、普通高等学校的学生.某高校组织4000名大一新生进行体质健康测试,现抽查200名大一新生的体测成绩,得到如图所示的频率分布直方图,其中分组区间为[70,75),[75,80),[80,85),[85,90),[90,95),[95,100).则下列说法正确的是()A .估计该样本的众数是87.5B .估计该样本的均值是80C .估计该样本的中位数是86D .若测试成绩达到85分方可参加评奖,则有资格参加评奖的大一新生约为2200人【解答】解:由频率分布直方图可得,最高小矩形为[85,90),所以可估计该样本的众数是859087.52+=,故A 正确;由频率分布直方图,可估计该样本的均值是0.020572.50.030577.50.040582.50.050587.50.035592.50.025597.585.625⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=,故B 错误;由频率分布直方图可得,成绩在[70,85)之间的频率为0.02050.03050.04050.45⨯+⨯+⨯=,在[70,90)之间的频率为0.02050.03050.04050.05050.7⨯+⨯+⨯+⨯=,所以可估计该样本的中位数在[85,90)内,设中位数为x ,则由850.450.250.59085x -+⨯=-可得,86x =,故C 正确;由频率分布直方图可得,测试成绩达到8(5分)的频率为0.05050.03550.02550.55⨯+⨯+⨯=,所以可估计有资格参加评奖的大一新生约为40000.552200⨯=人,故D 正确.故选:ACD .11.(5分)如图,ABCD 为等腰梯形,//AB CD ,且122AD DC CB AB ====,1AA ,1BB ,1CC ,1DD 均垂直于平面ABCD .11112DD BB CC AA ==-=,则以下结论正确的是()A .11190A DB ∠=︒B .111A BC ∠有可能等于90︒C .111D A B ∠最大值为60︒D .123AA =时,点1A ,1B ,1C ,1D 共面【解答】解:对于A ,过D 作DE AB ⊥,连接DB ,11D B ,因为ABCD 为等腰梯形,且2AB CD =,2CD =,所以1AE =,则DE =,在Rt DEB ∆中,BD =所以222AB AD BD =+,则BD AD ⊥,由1DD ⊥平面ABCD ,且BD ⊂平面ABCD ,所以1DD BD ⊥,又1DD AD D = ,1DD ⊂平面11A ADD ,AD ⊂平面11A ADD ,所以BD ⊥平面11A ADD ,又11A D ⊂平面11A ADD ,所以11BD A D ⊥.因为1BB ⊥平面ABCD ,1DD ⊥平面ABCD ,所以11//BB DD ,又因为11BB DD =,所以四边形11BB D D 为矩形,所以11//DB D B ,则1111B D A D ⊥,所以11190A D B ∠=︒,故选项A 正确;对于B ,过点1A 分别作11A Q CC ⊥,11A F BB ⊥,过点1B 作11B P CC ⊥,连接AC ,由选项A 的分析可知:AC BD ==因为1AA ⊥平面ABCD ,1BB ⊥平面ABCD ,1CC ⊥平面ABCD ,1DD ⊥平面ABCD ,且11112DD BB CC AA ==-=,所以1A Q AC ==12QC =,在Rt △11A QC 中,114AC ==,设1AA t =,则12CC t =+,1C P t =,所以11B C =,同理11A B =若11190A B C ∠=︒,则222111111AC A B B C =+,即2162424t t =-+,也即2240t t -+=,易知该方程无解,所以111A B C ∠不可能等于90︒,故选项B 错误;对于C ,过1A 作11A G DD ⊥,由题意可知:12D G t =-,则11A D ==,由选项B分析可得11A B =,由选项A的分析可得11B D BD ==,设111D A B α∠=,在△111D A B 中,由余弦定理可知:22221111111111cos 2A B A D B D A B A D α+-===⋅令2248(2)t t m m -+=,则cos α==,因为24m ,所以21203m <,则12<,所以1cos 12α< ,因为0180α︒<<︒,所以060α︒<︒ ,则111D A B ∠的最大值为60︒,故选项C 正确;对于选项D ,根据前面选项的分析可知:DE ,1DD ,DC 两两垂直,建立如图所示空间直角坐标系,因为123AA =,122AD DC CB AB ====,11112DD BB CC AA ==-=,则1(0D ,0,2),121,3A -,12)B ,18(0,2,3C ,则114(0,4,)3A B = ,122(0,2,3D C = ,所以11112A B D C = ,则1111//A B D C ,所以点1A ,1B ,1C ,1D 四点共面,故选项D 正确,故选:ACD .12.(5分)已知正m 边形12m A A A ⋯,一质点M 从1A 点出发,每一步移动均为等可能的到达与其相邻两个顶点之一.经过n 次移动,记质点M 又回到1A 点的方式数共有n a 种,且其概率为n P ,则下列说法正确的是()A .若3m =,则34a =B .若4m =,则2122n n a -=C .若6m =,则210k P -=,*k N ∈D .若6m =,则61132P =【解答】解:对A 选项,若3m =时,如图,经3步从A 回到A ,仅有1231A A A A →→→,与1321A A A A →→→两种,所以32a =,故A 选项错误;对B 选项,若4m =时,如图,10a ∴=,22a =,121(A A A →→与141)A A A →→,设从3A 出发经过n 步到1A 的方法数为n b ,则222222222222n n n n n n aa b b b a ++=+⎧⎨=+⎩(先走两步回到1A 有2种,化归为2n a ,先走两步到3A 有2种,化归为2)n b ,2224n n a a +∴=,又22a =,∴1212242n n n a --=⋅=,故B 选项正确;对C 选项,若6m =时,显然走奇数步无法回到A ,故*210,k P k N -=∈,故C 选项正确;对D 选项,若6m =时,走6步共有6264=种走法(每一步顺时针或逆时针),A 出发回到A 有2种情形:①一个方向连续走6步,有2种;②2个方向各走3步,有3620C =种,620222a ∴=+=,∴622116432P ==,故D 正确.故选:BCD .三、填空题:本大题共4小题,每题5分,共20分,把答案填在题中的横线上13.(5分)若抛物线以坐标轴为对称轴,原点为焦点,且焦点到准线的距离为2,则该抛物线的方程可以是24(1)y x =--.(只需填写满足条件的一个方程)【解答】解: 焦点到准线的距离为2,∴①焦点为(1,0),准线为1x =-的抛物线的标准方程为24y x =,将其向左平移一个单位,可得一条焦点为原点,焦点到准线的距离为2的抛物线,此时抛物线的方程为24(1)y x =+,②焦点为(1,0)-,准线为1x =的抛物线的标准方程为24y x =-,将其向右平移一个单位,可得一条焦点为原点,焦点到准线的距离为2的抛物线,此时抛物线的方程为24(1)y x =--,③焦点为(0,1),准线为1y =-的抛物线的标准方程为24x y =,将其向下平移一个单位,可得一条焦点为原点,焦点到准线的距离为2的抛物线,此时抛物线的方程为24(1)x y =+,④焦点为(0,1)-,准线为1y =的抛物线的标准方程为24x y =-,将其向上平移一个单位,可得一条焦点为原点,焦点到准线的距离为2的抛物线,此时抛物线的方程为24(1)x y =--,故答案为:24(1)y x =--或24(1)y x =+或24(1)x y =+或24(1)x y =--(注意答案不唯一,其它满足要求的答案也可)14.(5分)正四面体ABCD棱长为2,E,F,G分别为AB,CD,AD的中点,过G作平面EFα⊥,则平面α截正四面体ABCD,所得截面的面积为1.【解答】解:分别取AC,BC,BD的中点H,G,M,连接GH,HM,MN,NG,EC,EF,ED,由题意可知://NG CD且112NG CD==,又因为//MN CD且112MN CD==,所以//NG MN且NG MN=,所以四边形GHMN为平行四边形,因为//MH AB且112MH AB==,所以MH GH=,则平行四边形GHMN为菱形,因为ABCD为正四面体,所以三角形ABC是边长为2的正三角形,所以CE AB⊥且CE=,同理DE AB⊥且ED=又CE ED E=,CE,ED⊂平面ECD,所以AB⊥平面ECD,又因为CD⊂平面ECD,所以AB CD⊥,因为//MN CD,//MH AB,所以MN MH⊥,所以菱形GHMN为正方形.因为CE=,ED=F为CD的中点,所以EF CD⊥,因为//HG CD,所以EF HG⊥,同理EF HM⊥,HM HG H=,HM,HG⊂平面GHMN,所以EF⊥平面GHMN,所以过G作平面EFα⊥,则平面α截正四面体ABCD所得的图形即为正方形GHMN,所以截面面积为111S=⨯=,故答案为:1.15.(5分)由直线构成的集合{|M l l =的方程为222(1)1tx t y t +-=+,}t R ∈,若1{l ,2}l M ⊆,且12//l l ,则1l 与2l 之间的距离为2.【解答】解:当210t -=时,即1t =±,2:21l tx t =+,当1t =时,:1l x =,当1t =-时,:1l x =-,故1{l ,2}{1l x ==-,1}x M =⊆,此时12//l l ,1l 与2l 的距离为2,当210t -≠时,2222111t t y x t t +=-+--,又12//l l ,所以121222122211t t k k t t =-==---,且22121222121111t t b b t t ++=≠=--,所以2212211212(1)(1)()(1)0t t t t t t t t -=-⇒-+=,因为12t t ≠,所以121t t =-,且1l 过1(t ,1),又直线222222:2(1)1l t x t y t +-=+,由两平行线间的距离公式,可得2222222(1)21t d t +==+.故答案为:2.16.(5分)函数()||cos f x x a x =-+在[0,]b 上的值域为3[1,2π-,则ba 的值为52.【解答】解:因为||0x a - ,cos 1x - ,所以当且仅当||0x a -=且cos 1x =-时()1f x =-,所以2a x k ππ==+,k N ∈,又3(0)||1[1,]2f a π=+∈-,所以a π=,所以()||cos f x x x π=-+,易知()f x 在(0,)π上单调递减,在(,)π+∞单调递增,所以当b π 时,()(0)1f x f π=+ ,不满足题意;当b π>时,因为3()2max f x π=,所以3()cos 2f b b b ππ=-+=,注意到53(22f ππ=,且()f x 在(,)π+∞单调递增,所以52b π=,所以52b a =.故答案为:52.四、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,1=.(1)求B ;(2)若a c +=,ABC ∆内切圆的面积为π,求ABC ∆的面积.【解答】解:(1)因为cos 3sin 1b C Ca c=+,cos sin 0b C C a c ∴--=,根据正弦定理可得:sin cos sin sin sin 0B C B C A C --=又A B C π++=,sin cos sin sin()sin 0B C B C B C C ∴+-+-=,∴sin cos sin sin 0B C B C C --=,又(0,)C π∈,sin 0C ∴>,∴cos 1B B -=,∴1sin(62B π-=,又(0,)B π∈,∴5(,666B πππ-∈-,∴66B ππ-=,∴3B π=;(2)ABC ∆ 内切圆的面积为π,所以内切圆半径1r =.由于11sin ()22ABC S ac B a b c r ∆==++,∴b =,①由余弦定理2222cos b ac ac B =+-得,22()3b a c ac =+-,2483b ac ∴=-,②联立①②可得223483(8)3b =-+,即2240b +-=,解得b =b =-,∴1()2ABC S a b c r =++⨯= .18.(12分)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形且3ABC π∠=,4PB PA ==,PC =.(1)求PD 的值;(2)若BH BP λ=,是否存在λ,使得平面CDH ⊥平面PAB ?若存在,求出λ的值;若不存在,请说明理由.【解答】解:(1)取线段AB 的中点E ,连接CE 、PE ,因为四边形ABCD 是边长为2的菱形,则2BC =,1BE =,因为3ABC π∠=,由余弦定理可得2222cos 33CE BC BE BC BE π=+-⋅=,222BE CE BC ∴+=,所以BE CE ⊥,即CE AB ⊥,又PB PA = 且E 是AB 的中点,PE AB ∴⊥,PE CE E = ,PE 、CE ⊂平面PCE ,AB ∴⊥平面PCE ,PC ⊂ 平面PCE ,PC AB ∴⊥,//CD AB ,PC CD ∴⊥,PC =,∴PD ==;(2)过点C 在平面PCE 内作CM PE ⊥,垂足为点M ,因为AB ⊥平面PCE ,AB ⊂平面PAB ,所以平面PAB ⊥平面PCE ,平面PAB ⋂平面PCE PE =,CM ⊂平面PCE ,CM PE ⊥,所以CM ⊥平面PAB ,过点M 作//HN AB ,分别交PA 、PB 于点N 、H ,因为//CD AB ,则//HN CD ,所以C 、D 、N 、H 四点共面,因为CM ⊂平面CDNH ,所以平面CDNH ⊥平面PAB ,因为4PA PB ==,1AE =,PE AB ⊥,则PE ==,因为CE =,PC =,由余弦定理可得222cos 22PC CE PE PCE PC CE +-∠==-⋅,所以sin PCE ∠=,11sin 22PCE S PC CE PCE CM PE ∆=⋅∠=⋅,所以sin PC CE PCE CM PE ⋅∠==,∴2155EM ==,因为//HN AB ,所以,25BH EM BP PE λ===.19.(12分)已知正项数列{}n a ,12a =,21122n n nn n a a a na na ++=-+.(1)求数列{}n a 的通项公式;(2)已知n n n c a b =⋅,其中*24,21()4,2n n n k b k N n n k-=-⎧=∈⎨-=⎩,{}n c 的前n 项和为n T ,求2n T .【解答】解:(1)由21122n n nn n a a a na na ++=-+可得:1(2)()0n n n a a a n +-+=,则12n n a a +=,又12a =,所以数列{}n a 是以2为首项,以2为公比的等比数列,所以1222n n n a -=⨯=.(2)由(1)可得:1(2)2,21(*)(4)2,2n n n n nn n k c a b k N n n k+⎧-⋅=-==∈⎨-⋅=⎩,所以22112221(42)2(212)22n n n n n c c n n -+-+=-⋅+--⋅=,22231222223(422)2(232)22n n n n n c c n n --+---+=-+⋅+--⋅=,则22122234n n n n c c c c ---+=+,又因为222122222c c +=-+⨯=,所以2123456212()()()()n n n T c c c c c c c c -=++++++++ ,则21246222(14)442222143n n nn T +--=++++==- ,所以12443n n T +-=.20.(12分)中国共产党第二十次全国代表大会报告指出:坚持精准治污、科学治污、依法治污,持续深入打好蓝天、碧水、净土保卫战,加强污染物协同控制,基本消除重污染天气、每年的《中国生态环境状态公报》都会公布全国339个地级及以上城市空气质量检测报告,以下是20172021-五年339个城市空气质量平均优良天数占比统计表.年份2017年2018年2019年2020年2021年年份代码i x 12345百分比iy 7879.3828787.5并计算得:52134321.74ii y ==∑,511268.1i i i x y ==∑.(1)求2017年2021-年年份代码与339个城市空气质量平均优良天数的百分比的样本相关系数(精确到0.01);(2)请用相关系数说明该组数据中y 与x 之间的关系可用线性回归模型进行拟合,并求出y 关于x 的回归直线方程(精确到0.01)和预测2022年(6)x =的空气质量优良天数的百分比;(3)试判断用所求回归方程是否可预测2026年(10)x =的空气质量优良天数的百分比,并说明理由.(回归直线的斜率和截距的最小二乘法估计公式分别为:121()()ˆ()nii i nii xx y y bxx ==--=-∑∑,ˆˆ)ay bx =-附:相关系数()nii xx y y r --=∑,282.766849.22≈27.5≈.【解答】解:(1)根据表中数据可得:1234535x ++++==,7879.3828787.582.765y ++++==,∴5511()()i i i i i i i i x x y y x y xy x y xy ==--=--+∑∑5551115i i i i i i i x y x y y x xy====--+∑∑5151268.15382.7626.7i i i x y x y ==-⋅=-⨯⨯=∑,又521149162555i i x ==++++=∑,∴5522211(510i i i i x x x x ==-=-=∑∑.又5522211(534321.7456849.2275.64i i i i y y y y ==-=-≈-⨯=∑∑,∴5()()26.70.9727.5ii xx y y r --=≈∑;(2)由(1)知,y 与x 的相关系数0.97r ≈接近1,y ∴与x 之间具有极强的线性相关关系,可用线性回归模型进行拟合. 51521()()26.7ˆ 2.6710()ii i ii xx y y bxx ==--===-∑∑,ˆ82.76 2.67374.75a=-⨯=,故回归直线方程为ˆ 2.6774.75yx =+,当6x =时,ˆ 2.67674.7590.77y=⨯+=,故2022年的空气质量优良天数的百分比为90.77%;(3)由(2)知,当10x =时,ˆ 2.671074.75101.45100y=⨯+=>,显然不合常理.其原因如下:根据该组数据的相关系0.97r ≈,是可以推断2017年2021-年间y 与x 两个变量正线性相关,且相关程度很强,由此来估计2022年的空气质量优良天数的百分比有一定的依据.但由于经验回归方程的时效性,随着国家对生态环境的治理,空气质量优良天数的百分比增加幅度会变缓,且都会小于1,故用该回归直线方程去预测今后几年的空气优良天数会误差较大,甚至出现不合情理的数据.21.(12分)如图,椭圆2214x y +=的左右焦点分别为1F ,2F ,点0(P x ,0)y 是第一象限内椭圆上的一点,经过三点P ,1F ,2F 的圆与y 轴正半轴交于点1(0,)A y ,经过点(3,0)B 且与x 轴垂直的直线l 与直线AP 交于点Q .(1)求证:011y y =;(2)试问:x 轴上是否存在不同于点B 的定点M ,满足当直线MP ,MQ 的斜率存在时,两斜率之积为定值?若存在定点M ,求出点M的坐标及该定值;若不存在,请说明理由.【解答】解:(1)证明:由椭圆的方程可得1(F ,0),2F 0),由题意可得经过三点P ,1F ,2F 的圆的圆心在y 轴上,设圆心为(0,)t ,由P 在椭圆上,所以220014x y +=,设圆的方程为222()x y t r +-=,则2222203()t r x y t r ⎧+=⎪⎨+-=⎪⎩,整理可得2222200000000344313222x y y y y t y y y +--+--===,所以圆的方程为22230x y ty +--=,即222001330y x y y y -+--=,令0x =,可得22001330y y y y ---=,即2001(3)30y y y y +--=,解得03y y =-或01y y =,因为10y >,可得01y y =,即证得101y y =;(2)假设存在(,0)M m ,且3m ≠满足条件,由(1)可得01(0,A y ,因为A ,P ,Q 三点共线,所以00113Q y y y y x --=,可得200003(1)Q y x y x y -+=,则2002000000003(1)3(1)3()(3)MP MQy x y x y y x k k x m m x x m m -+-+⋅=⋅=----,而220014x y -=-,所以200000033144()(3)()(3)MP MQx x x k k x x m m x m m -+-+⋅==----,要使MP MQ k k ⋅为定值,需满足3143(3)m m m -=---,整理可得:43m =,即43m =时,MP MQ k k ⋅为定值920-.22.(12分)若函数()f x ,()g x 的图象与直线x m =分别交于A ,B 两点,与直线x n =分别交于C ,D 两点()m n <,且直线AC ,BD 的斜率互为相反数,则称()f x ,()g x 为“(,)m n 相关函数”.(1)()f x ,()g x 均为定义域上的单调递增函数,证明:不存在实数m ,n ,使得()f x ,()g x 为“(,)m n 相关函数”;(2)()ax f x e =,2()g x ax =,若存在实数0mn >,使得()f x ,()g x 为“(,)m n 相关函数”,且||||AB CD =,求实数a 的取值范围.【解答】证明:(1)设(A m ,())f m ,(C n ,())f n .由()f x 单调递增,则()()f n f m >.则()()0AC f n f m k n m-=>-.同理可得,0BD k >.所以直线AC ,BD 的斜率均为正数,不可能互为相反数.即不存在实数m ,n ,使得()f x ,()g x 为“(,)m n 相关函数”.解:(2)情况一:当0a =时,()1f x =,()0g x =,若||1m n -=,则存在实数0mn >,使得()f x ,()g x 为“(,)m n 相关函数”,且||||AB CD =;情况二:当0a ≠时,因为()f x ,()g x 为“(,)m n 相关函数”,所以有()()()()f n g n f m g m +=+.因为||||AB CD =,所以有()()()()f n g n f m g m -=-或()()()()f n g n f m g m -=-+.①联立()()()()()()()()f n g n f m g m f n g n f m g m +=+⎧⎨-=-⎩,可得()()()()f m f n g m g n =⎧⎨=⎩,所以0a =,则有()1f x =,()0g x =,此时有0AC BD k k ==,满足题意;②联立()()()()()()()()f n g n f m g m f n g n f m g m +=+⎧⎨-=-+⎩,可得()()()()f m g n g m f n =⎧⎨=⎩.因为0mn >,所以方程组22am an e an e am⎧=⎨=⎩,则0a >.当m ,0n >时,因为ax e ,2ax 均为[0,)+∞上的单调递增函数,由(1)知不存在实数m ,n ,使得()f x ,()g x 为“(,)m n 相关函数”,所以0m n <<,则由22am an e an e am ⎧=⎨=⎩,可得22()am n lna ln m n a ⎧⎪=⎪⎨⎪+-=⎪⎩,可得22()am lna ln m +-=,所以22()0amlna ln m +-+=,同理可得22()0anlna ln n ae+-+=.则22()0axlna ln x +-+=在(,0)-∞上存在两个不同的实数根.(*)记2()2()(0)axh x lna ln x x =+-+<,则2()h x x '==记2()4axp x =+,则2()(1)2ax ax p x e '=+,解()0p x '=,可得2x a=-.解()0p x '>,可得20x a -<<,所以()h x '在2(,0)a-上单调递增;解()0p x '<,可得2x a <-,所以()h x '在2(,)a-∞-上单调递减.所以()p x 在2x a =-处取得极小值2()222(44a a p e a a --=-+=+.(ⅰ)当204a e <时,2()(40p x p a e-=-+ ,此时有()0h x ' ,即()h x 在(,0)-∞单调递减.又(0h >,(220e e h e e --=-+<-+,则根据零点存在定理可得,存在唯一0(ex -∈,使得0()0h x =,即22()0axlna ln x +-+=有唯一负根0x ,不符合(*)式;(ⅱ)当24a e >时,2()40p a -=<.因为(0)0p >,且22lna a a -<-,有2(44(10lna p a -==>,根据零点存在定理可得,122(,)lna x a a ∃∈--,使得1()0p x =;22(,0)x a ∃∈-,使得2()0p x =,所以当1(,)x x ∈-∞时,有()0p x >,此时()0h x '<,()h x 在1(,)x -∞上单调递减;当1(x x ∈,2)x 时,有()0p x <,此时()0h x '>,()h x 在1(x ,2)x 上单调递增;当2(x x ∈,0)时,有()0p x >,此时()0h x '<,()h x 在2(x ,0)上单调递减.122()24h lna ln lna ln a a --=++=-+,令()4t a lna ln e=-++,24a e >,则1()t a a '=-=,因为24a e >2e >,所以t '(a )0>,所以t (a )在2(4e ,)+∞上单调递增,所以22()(4)(4)40t a t e ln e ln >=-+=,所以2()0h a ->,所以22()()0h x h a>->.根据零点存在定理可知,2(n x ∃∈,0),使得()0h n =.取2anm n=<,即有()()0h m h n ==,符合题意.综上所述,a 的取值范围是2(4e ,){0}+∞ .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.函数 的大致图像为()
A. B.
C. D.
11.设 ,则“ ”是“直线 与直线 平行”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件
12.一个几何体的三视图如图所示,其中正视图是一个正三角形,俯视图是一个等腰直角三角形,则该几何体的外接球的表面积为
由 ,而 ,故由独立性检验的意义可知选A
3.C
解析:C
【解析】
试题分析:因为 ,所以 且圆 的圆心为 ,半径为 ,根据圆与圆外切的判定(圆心距离等于半径和)可得
,故选C.
考点:圆与圆之间的外切关系与判断
4.D
解析:D
【解析】
【详解】
试题分析: ,由 与 垂直可知
考点:向量垂直与坐标运算
5.C
解析:C
【详解】
设线性回归方程 中,由题意得 ,
∴ .
又回归直线过样本点的中心 ,
∴ ,
∴ ,
∴回归直线方程为 .
故选A.
【点睛】
本题考查线性回归方程的求法,其中回归直线经过样本点的中心时解题的关键,利用这一性质可求回归方程中的参数,也可求样本数据中的未知参数,属于基础题.
2.A
解析:A
【解析】
【分析】
【详解】
解析:B
【解析】
【分析】
设圆和x轴相交于M点,根据圆的定义得到CA=CM=R,因为x=-2,是抛物线的准线,结合抛物线的定义得到M点为焦点.
【详解】
圆心C在抛物线上,设与直线 相切的切点为A,与x轴交点为M,由抛物线的定义可知,CA=CM=R,直线 为抛物线的准线,故根据抛物线的定义得到该圆必过抛物线的焦点 .
(1)将曲线C的极坐标方程化为直角坐标方程;
(2)设点 的直角坐标为 ,直线 与曲线C的交点为 , ,求 的值.
22.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.
设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;
【必考题】数学高考一模试题带答案
一、选择题
1.已知回归直线方程中斜率的估计值为 ,样本点的中心 ,则回归直线方程为( )
A. B.
C. D.
2.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:
男
女
总计
爱好
40
20
60
不爱好
20
30
50
总计
60
50
110
由
附表:
0.050
0.010
设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.
23.已知函数 , ,且 的解集为
(1)求 的值;
(2)若 ,且 ,求证
24.若不等式 的解集是 ,求不等式 的解集.
25.红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为 , , ,假设各盘比赛结果相互独立.
故选Bห้องสมุดไป่ตู้
【点睛】
这个题目考查了抛物线的定义的应用以及圆的定义的应用,一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用.尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化.
18.已知 , ,则 __________.
19.函数y= 的定义域是.
20.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答)
三、解答题
21.已知直线 ( 为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线 的极坐标方程为 .
【解析】
【分析】
由正弦定理结合条件可得 ,从而得三角形的三个内角,进而得三角形的形状.
【详解】
由正弦定理可知 ,又 ,
所以 ,有 .
所以 .所以 .
所以 为等腰直角三角形.
故选C.
【点睛】
本题主要考查了正弦定理解三角形,属于基础题.
6.B
解析:B
【解析】
由题意知, ,所以分为 组较为恰当,故选B.
7.B
A.10组B.9组C.8组D.7组
7.一动圆的圆心在抛物线 上,且动圆恒与直线 相切,则此动圆必过定点( )
A. B. C. D.
8.已知向量 , 是不平行于 轴的单位向量,且 ,则 ()
A. B. C. D.
9.若 是一组基底,向量 =x +y (x,y∈R),则称(x,y)为向量 在基底 , 下的坐标,现已知向量 在基底 =(1,-1), =(2,1)下的坐标为(-2,2),则 在另一组基底 =(-1,1), =(1,2)下的坐标为()
A. B. C. D.
二、填空题
13.已知曲线 在点 处的切线与曲线 相切,则a=.
14.设 ,且 ,则 ______.
15.在 中, , ,面积为 ,则 ________.
16.已知圆锥的侧面展开图是一个半径为 ,圆心角为 的扇形,则此圆锥的高为________ .
17.若函数 在 上存在单调增区间,则实数 的取值范围是_______.
3.若圆 与圆 外切,则 ()
A.21B.19C.9D.-11
4.已知平面向量 =(1,-3), =(4,-2), 与 垂直,则 是()
A.2B.1C.-2D.-1
5.若满足 ,则 为()
A.等边三角形B.有一个内角为 的直角三角形
C.等腰直角三角形D.有一个内角为 的等腰三角形
6.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为( )
(I)求红队至少两名队员获胜的概率;
(II)用 表示红队队员获胜的总盘数,求 的分布列和数学期望 .
26.在直角坐标系 中以 为极点, 轴正半轴为极轴建立坐标系.圆 ,直线 的极坐标方程分别为 .
(I)
(II)
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
由题意得在线性回归方程 中 ,然后根据回归方程过样本点的中心得到 的值,进而可得所求方程.
0.001
3.841
6.635
10.828
参照附表,得到的正确结论是()
A.有99%以上的把握认为“爱好该项运动与性别有关”
B.有99%以上的把握认为“爱好该项运动与性别无关”
C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”