初中数学.圆的概念及性质.教师版
人教版初中九年级上册数学《圆》精品课件
固定的端点 O 叫做圆心;
A
线段 OA 叫做半径;
r
以点 O 为圆心的圆,记作⊙O,
·
O
读作“圆O”.
O
同心圆
等圆
圆心相同,半径不同 半径相同,圆心不同
确定一个圆的两个要素:
一是圆心, 二是半径.
A ·r O
问题1:圆上各点到定点(圆心 O)的距离 有什么规律?
问题2:到定点的距离等于定长的点又有什 么特点?
知识点2 与圆有关的概念
弦和直径的定义 连接圆上任意两点的线段叫做弦,如图中的 AC. 经过圆心的弦叫做直径,如图中的 AB.
B
O
A
C
半径是弦吗?
弧
圆上任意两点间的部分叫
B
做圆弧,简称弧.以 A、B 为
端点的弧记作AB,读作“圆
O
弧 AB”或“弧 AB”.
圆的任意一条直径的两个 A
C
端点把圆分成两条弧,每一条
形成性定义(动态):在一个平面内,线段 OA 绕它 固定的一个端点 O 旋转一周,另一个端点 A 所形成的图 形叫做圆.
集合性定义(静态):圆心为 O、 半径为 r 的圆可以看成是所有到定点 O 的距离等于定长 r 的点的集合.
战国时的《墨经》 就有“圆,一中同长也” 的记载.它的意思是圆 上各点到圆心的距离都 等于半径.
2.下列说法中,不正确的是( ) D A.过圆心的弦是圆的直径 B.等弧的长度一定相等 C.周长相等的两个圆是等圆 D.长度相等的两条弧是等弧
3.一个圆的最大弦长是10cm,则此圆的半径是5
cm.
4.在同一平面内与已知点A的距离等于5cm的所有点所组成 的图形圆是 .
5.如右图,以AB为直径的半圆O上有两点D、E,ED与BA
人教版初三数学九年级上册 第24章 《圆》教材分析 课件(共38张PPT)
能利用垂径定理解决有关简单问题; 能利用圆周角定理及其推论解决有关 简单问题
运用圆的性质的有关 内容解决有关问题
点和圆 的
位置关系
了解点与圆的位置关系
尺规作图(利用基本作图完成):过 不在同一直线上的三点作圆;能利用 点与圆的位置关系解决有关简单问题
图图 形形 与的 几性 何质
直线和圆 的
位置关系
了解直线和圆的位置关系;会判断直 线和圆的位置关系;理解切线与过切 点的半径的关系;会用三角尺过圆上 一点画圆的切线
三角形的内切圆;了解三角形的内心; 有关简单问题;尺规作图(利用基本
了解正多边形的概念及正多边形与圆 作图完成):作三角形的外接圆、内
的关系
切圆,作圆的内接正方形和正六边形
弧长、扇形面 会计算圆的弧长和扇形的面积;会计
积 算圆锥的侧面积和全面积
和圆锥
能利用圆的弧长和扇形的面积解决一 些简单的实际问题
O
O
适当补充“知二推三”,灵活运用所学 知识,特别是体会如何证明圆心在弦上 (某弦是直径)。
O
C
A
B
例. 根据条件求解:
D
(1)已知⊙O半径为5,弦长为6,求弦心距和弓形高.
(2)已知⊙O半径为4,弦心距为3,求弦长和弓形高.
(3)已知⊙O半径为5,劣弧所对的弓形高为2,求弦长和 弦心距.
(4)已知⊙O弦长为2,弦心距为,求⊙O半径及弓形高.
A
B
半径为5dm。则水深______dm.
5.注重数学核心素养的培养
本章的教学内容能进一步发展学生的几何 直观、推理能力等数学核心素养。
在教学过程中引导学生多画图、敢画图, 借助对几何图形直观的感知、分析问题, 并在此基础之上,在解决问题的过程中, 运用合情推理探索思路,发现结论,运用 演绎推理用于证明结论。
圆的基本概念与性质
圆的基本概念与性质圆是我们生活中常见的几何图形之一,它具有许多独特的特点和性质。
作为一位初中数学特级教师,我将为大家介绍圆的基本概念和一些重要的性质,并通过实例和分析来说明它们的应用。
一、圆的基本概念圆是由平面上到一个固定点的距离等于定长的点的集合。
这个固定点称为圆心,定长称为半径。
圆的符号通常用大写字母O表示圆心,小写字母r表示半径。
例如,我们可以用O(r)来表示半径为r的圆。
二、圆的性质1. 圆的周长和面积圆的周长是圆的边界上所有点到圆心的距离之和。
我们知道,圆的周长公式是C=2πr,其中π是一个无理数,约等于3.14。
这个公式告诉我们,圆的周长与半径成正比,半径越大,周长也越大。
圆的面积是圆内部所有点到圆心的距离之和。
圆的面积公式是A=πr²。
这个公式告诉我们,圆的面积与半径的平方成正比,半径越大,面积也越大。
2. 圆的切线和弦圆上的切线是与圆相切且只有一个交点的直线。
切线与半径垂直,切点在切线上的两条半径相等。
圆内的弦是连接圆上任意两点的线段。
弦的长度小于或等于圆的直径,且直径是圆的最长弦。
3. 圆的相交关系当两个圆的圆心距离小于两个圆的半径之和时,这两个圆相交。
当两个圆的圆心距离等于两个圆的半径之和时,这两个圆相切。
当两个圆的圆心距离大于两个圆的半径之和时,这两个圆相离。
三、圆的应用举例1. 圆的周长和面积的计算假设一个圆的半径为5cm,我们可以使用周长公式C=2πr来计算它的周长。
代入半径r=5,得到C=2π×5≈31.4cm。
同样,我们可以使用面积公式A=πr²来计算它的面积。
代入半径r=5,得到A=π×5²≈78.5cm²。
2. 圆的切线和弦的应用在建筑设计中,我们经常需要确定一个圆的切线或弦的位置。
例如,如果我们要在一个圆形花坛周围铺设一条环形步道,我们可以通过确定切线的位置来确定步道的宽度和形状。
另外,如果我们要在一个圆形游泳池内部建造一个桥梁,我们可以通过确定弦的位置来确定桥梁的长度和位置。
苏科版数学九年级上册2.1圆(第2课时)说课稿
苏科版数学九年级上册2.1 圆(第2课时)说课稿一. 教材分析苏科版数学九年级上册第2.1节“圆”是整个初中数学的重要内容,也是九年级上学期的重点和难点。
本节课主要介绍圆的定义、圆的性质、以及圆与直线、圆与圆的位置关系。
通过本节课的学习,使学生掌握圆的基本概念和性质,能够解决一些与圆有关的问题,为后续学习圆的方程、圆的切线、圆的弧长和面积等知识打下基础。
二. 学情分析九年级的学生已经具备了一定的几何知识,如平面几何中点、线、面的基本性质,对图形的认知和观察能力也有一定的提高。
但同时,圆的知识比较抽象,学生需要较强的空间想象能力和逻辑思维能力。
因此,在教学过程中,要充分考虑学生的认知水平,注重启发引导,让学生在原有的知识基础上更好地理解和掌握圆的知识。
三. 说教学目标1.知识与技能目标:理解圆的定义和性质,掌握圆与直线、圆与圆的位置关系,会使用圆的性质解决一些实际问题。
2.过程与方法目标:通过观察、思考、讨论,培养学生的空间想象能力和逻辑思维能力,提高学生解决几何问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:圆的定义、圆的性质、圆与直线、圆与圆的位置关系。
2.教学难点:圆的性质的推导和证明,圆与直线、圆与圆的位置关系的理解和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等,引导学生主动探究,培养学生的独立思考能力和团队合作精神。
2.教学手段:利用多媒体课件、实物模型、几何画板等,直观展示圆的性质和位置关系,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入新课:通过展示生活中的圆形物体,如硬币、圆桌等,引导学生思考圆的特点,引出圆的定义和性质。
2.自主学习:让学生通过阅读教材,了解圆的定义和性质,尝试解答相关问题。
3.合作交流:分组讨论圆与直线、圆与圆的位置关系,分享各自的学习心得和解题方法。
培养初中生的几何思维认识圆的性质与应用
培养初中生的几何思维认识圆的性质与应用几何学是数学的一个重要分支,对于学生的思维培养具有重要意义。
其中,圆作为几何学中的重要对象,其性质与应用也是初中几何学中的基础内容。
本文将探讨如何培养初中生对圆的性质与应用的认识,以帮助他们建立扎实的几何思维。
一、认识圆的性质在初中阶段,学生需要了解圆的定义以及与其他几何图形的关系。
首先,定义圆为平面上所有到圆心距离相等的点的集合。
这一定义对学生来说可能有些抽象,因此可以通过实际例子引入,例如让学生观察圆桌、篮球等具有圆形的物体,帮助他们直观感受到“到圆心距离相等”这一特征。
除了定义,学生还需要了解圆的重要性质。
例如,圆的半径是连接圆心与圆上任意一点的线段,圆的直径是连接圆上两点且经过圆心的线段。
教师可以通过示意图来帮助学生理解这些概念,并以具体例子展示半径与直径的关系。
此外,学生还需要认识到圆的周长与面积的计算公式。
周长的计算公式为C = 2πr,其中r为圆的半径。
面积的计算公式为A = πr²。
教师可以通过课堂活动,如测量真实物体的周长与面积,让学生学以致用,加深他们对这些公式的理解与记忆。
二、认识圆的应用圆不仅在几何学中具有重要性质,也在现实生活中有着广泛的应用。
学生需要了解一些基本的圆的应用,以加深对圆的认识,并将所学的几何知识与实际应用相结合。
1. 圆在日常生活中的应用圆在日常生活中的应用非常广泛。
例如,车的车轮、钟表的表盘、光盘等都是圆形的,学生可以观察这些物体,并思考它们为什么选择了圆形。
在建筑设计中,圆形也被广泛应用。
例如,建筑物的圆形窗户、圆形天井等都可以为建筑增添美感,并提供自然光线的照射。
此外,学生还可以通过测量和计算圆形物体的相关参数,如直径、半径、周长、面积等来加深对圆形的认识。
2. 圆在数学问题中的应用圆在数学问题中也有重要的应用。
例如,当学生学习到角度的概念时,教师可以引入圆的弧度,通过弧度的引入,学生可以更好地理解角度的计算及运用。
2024-2025学年沪科版初中数学九年级(下)教案第24章圆24.2圆的基本性质(第1课时)
第24章圆24.2 圆的基本性质第1课时圆的定义及与圆有关的概念教学目标教学反思1.认识圆,理解圆的本质属性.2.理解弦、弧、直径、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联系.3.会判断点与圆的位置关系,并应用这一关系进行解题.教学重难点重点:认识圆,理解圆的本质属性.难点:理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联系.教学过程导入新课问题情境:观察下列图片,从图片中找出共同的图形.教师追问:你还能举出生活中的圆形吗?师生活动:学生列举生活中的圆形,教师适当引导.思考:车轮为什么做成圆形? 做成三角形、正方形可以吗?师生活动:如果把车轮做成圆形,车轴安装在圆心上,当车轮在地面滚动的时候,车轴离开地面的距离总是等于车轮半径长.因此车厢里坐的人都将平稳地被车子拉着走.假设车轮是个破的,已经不成圆形了,轮缘上高一块低一块的,也就是说从轮缘到轮子圆心的距离不相等,那么这种车子行驶起来一定很颠簸.同样道理,如果车轮设计成三角形或是正方形,因为其中心点到周边各点的距离不等长,所以行驶起来也一定会很颠簸!探究新知1.圆的定义教师提问:同学们,你们知道怎样画一个圆吗?你有哪些方法?师生活动:学生畅所欲言,教师圆规演示画圆的过程,总结圆的定义.1.定好半径长(即圆规两脚间的距离);2.固定圆心(即把有针尖的脚固定在一点);教学反思3.旋转一圈(使铅笔在纸上画出封闭曲线);4.用字母表示圆心、半径、直径.【归纳总结】圆的旋转定义:在一个平面内,线段OP绕它固定的一个端点O旋转一周,另一个端点P所形成的图形叫做圆.以点O为圆心的圆,记作“⊙O”,读作“圆O”.问题情境:1.以1 cm为半径能画几个圆,以点O为圆心能画几个圆?2.如何画一个确定的圆?师生活动:学生独立思考并回答,教师引导.教师追问:从画圆的过程可以看出什么呢?【归纳总结】①圆上各点到定点(圆心O)的距离都等于半径.②平面内到定点的距离等于定长的所有点都在同一个圆上.【归纳总结】圆的集合定义:平面内到定点(圆心O )的距离等于定长(半径r)的所有点组成的图形.探究:确定一个圆的要素.教师提问:当圆的圆心确定时,这个圆唯一确定吗?当圆的半径确定时,这个圆唯一确定吗?师生活动:学生小组讨论,举出反例,思考确定圆的要素,教师引导.①②【解】如图①,圆心相同,半径不同,能画出无数个同心圆;如图②,半径相同,圆心不同,能画出无数个等圆.【归纳总结】确定一个圆的要素一是圆心,圆心确定其位置;二是半径,半径确定其大小.圆的基本性质:同圆的半径相等.【新知应用】例1 如图,矩形ABCD 的对角线AC ,BD 相交于点O .求证:A ,B ,C ,D 四个点在以点O 为圆心的同一个圆上.师生活动:(学生思考,教师引导)要使A ,B ,C ,D 四个点在以点O 为圆心的同一圆上,结合圆的集合性定义,点A ,B ,C ,D 与点O 的距离有什么关系?【证明】∵ 四边形ABCD 为矩形, ∴ OA =OC =12AC ,OB =OD =12BD ,AC =BD ,∴ OA =OB =OC =OD ,∴ A ,B ,C ,D 四个点在以点O 为圆心,OA 为半径的圆上.【归纳总结】(学生总结,老师点评)由圆的集合性定义可知,圆上各点到定点(圆心O )的距离都等于定长(半径r ). 2.点与圆的位置关系圆心为O ,半径为r 的圆可以看成是所有到定点O 的距离等于定长r 的点的集合.请你用集合的语言描述下面的两个概念:(1)圆的内部是到圆心的距离小于圆的半径r 的所有点的集合; (2)圆的外部是到圆心的距离大于圆的半径r 的所有点的集合. 【新知讲解】点与圆的位置关系: 1.点P 在圆上⇔OP =r (如图①). 2.点P 在圆内⇔OP <r (如图②). 3.点③练一练:1.正方形ABCD 的边长为3 cm ,以A 为圆心,3cm 长为半径作⊙A ,则点A 在⊙A ,点B 在⊙A ,点C 在⊙A ,点D 在⊙A .2.一点和⊙O 上的最近点距离为4 cm ,最远距离为10 cm ,则这个圆的半径是 cm.3.与圆有关的概念 (1)弦连接圆上任意两点的线段(如图中的AB )叫做弦.图中的弦还有 .经过圆心的弦(如图中的AC )叫做直径.注意:①弦和直径都是线段.②直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦不一定是直径. (2)弧圆上任意两点间的部分叫做圆弧,简称弧.以A ,B 为端点的弧记作AB ,读作“圆弧AB ”或“弧AB ”. (3)半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.教学反思(4)劣弧与优弧小于半圆的弧叫做劣弧,如图中的AC .大于半圆的弧叫做优弧,如图中的ABC .(5)等圆能够重合的两个圆叫做等圆.等圆是两个半径相等的圆. (6)等弧在同圆或等圆中,能够互相重合的弧叫做等弧. 3.概念辨析(1)长度相等的弧是等弧吗?师生活动:学生思考并回答,说明理由,教师引导归纳总结.【归纳总结】(学生总结,老师点评)长度相等的弧不一定是等弧,只有在同圆或等圆中,长度相等的弧才是等弧.(2)直径是弦吗?弦是直径吗?师生活动:学生思考并回答,说明理由,教师引导归纳总结.【归纳总结】(学生总结,老师点评)直径是弦,但弦不一定是直径,只有在弦经过圆心时,这条弦才叫直径,因此直径是圆中最长的弦.(3)半圆是弧吗?弧是半圆吗?师生活动:学生思考并回答,说明理由,教师引导归纳总结.【归纳总结】(学生总结,老师点评)半圆是弧,但弧不一定是半圆,只有直径的两个端点把圆分成的两条弧才是半圆.【新知应用】例2 下列说法:①弧分为优弧和劣弧;②半径相等的圆是等圆;③过圆心的线段是直径;④长度相等的弧是等弧;⑤半径是弦.其中正确的是________.(填序号)师生活动:(引发学生思考)优弧、劣弧、等圆、直径、等弧的定义分别是什么?圆上的弧可以分为哪几类?【答案】②【归纳总结】(学生总结,老师点评)由圆的有关概念可知,连接圆上任意两点的线段是弦;过圆心的弦是直径;在同圆或等圆中,能够互相重合的弧是等弧;圆上的弧分为优弧、半圆、劣弧.例3 如图.(1)请写出以点B 为端点的劣弧及优弧; (2)请写出以点B 为端点的弦及直径; (3)请任选一条弦,写出这条弦所对的弧.师生活动:发对优弧、劣弧概念的思考.【解】(1)劣弧:BD ,BF ,BC ,BE .优弧:BFE ,BFC ,BCD ,BCF .(2)弦BD , AB , BE .其中弦AB 又是直径.(3)答案不唯一.如:弦DF ,它所对的弧是DF 和DEF . 【归纳总结】大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.要按照一定的顺序书写,不要遗漏.【拓展延伸】 例4 下列说法:①经过点P 的圆有无数个;②以点P 为圆心的圆有无数个;③半径为3 cm ,且经过点P 的圆有无数个;④以点P 为圆心,以3 cm 为半径的圆有无数个.其中错误的有( )A .1个 B.2个 C.3个 D.4个师生活动:(引发学生思考)结合圆的定义分析怎样确定一个圆?确定一个圆的条件有哪些?【答案】A教学反思【归纳总结】(学生总结,老师点评)确定一个圆需要两个要素:一是圆心,确定圆的位置;二是半径,确定圆的大小.两者缺一不可.例5A,B是半径为5的⊙O上两个不同的点,则弦AB的取值范围是()A.AB>0B.0<AB<5C.0<AB<10D.0<AB≤10师生活动:(引发学生思考)连接圆上任意两点的线段是弦,求弦AB的取值范围,就要知道连接圆上任意两点构成的最长线段和最短线段分别是什么.【答案】D【归纳总结】(学生总结,老师点评)圆上最长的弦是直径,则圆上不同两点构成的弦长大于0且小于等于直径长.课堂练习1.填空:(1)______是圆中最长的弦,它是______的2倍.(2)如图所示,图中有条直径,条非直径的弦.2.一点和⊙O上的点最近距离为6 cm,最远距离为12 cm,则这个圆的半径是 .3.判断下列说法的正误.(1)弦是直径. ()(2)过圆心的线段是直径. ()(3)半圆是弧. ()(4)过圆心的直线是直径. ()(5)直径是最长的弦. ()(6)半圆是最长的弧. ()(7)长度相等的弧是等弧. ()(8)同心圆也是等圆. ()4.给出下列说法:①直径是弦;②优弧是半圆;③半径是圆的组成部分;④两个半径不相等的圆中,大的半圆的弧长小于小的半圆的周长.其中正确的是.(填序号)5.如图,点A,B,C,E在⊙O上,点A,O,D与点B,O,C分别在同一直线上,图中有几条弦?分别是哪些?第5题图6.如图,点A,N在半圆O上,四边形ABOC和四边形DNMO均为矩形,求证:BC=MD.参考答案1.(1)直径半径(2)两三2.9 cm或3 cm3.(1)×(2)×(3)√(4)×(5)√(6)×(7)×(8)×4.①5.解:图中有3条弦,分别是弦AB,BC,CE.6.证明:如图,连接ON,OA.∵点A,N在半圆O上,∴ON=OA.∵四边形ABOC和四边形DNMO均为矩形,∴ON=MD,OA=BC,∴BC=MD. 教学反思第6题答图课堂小结学生独立思考,进行总结,教师补充概括. ⎧⎧⎪⎪⎨⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎪⎪⎨⎪⎪⎨⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩圆的旋转定义圆的定义圆的集合定义弦—直径劣弧圆弧半圆圆的有关概念优弧等圆等弧 布置作业教材第14页练习板书设计24.2 圆的基本性质第1课时 圆的定义及与圆有关的概念1.圆的定义(1)圆的旋转定义 (2)圆的集合定义2.与圆有关的概念:弦;直径;弧;半圆;等圆;等弧.3.点与圆的位置关系: 点P 在圆上⇔OP =r ; 点P 在圆内⇔OP <r ; 点P 在圆外⇔OP >r. 教学反思。
北师大版数学九年级下册3.1《圆》教学设计
北师大版数学九年级下册3.1《圆》教学设计一. 教材分析北师大版数学九年级下册3.1《圆》是本册教材中的重要内容,主要介绍了圆的定义、圆的性质、圆的方程等基础知识。
本节课的内容是学生对圆的基本认识,为后续学习圆的运算、圆与圆的位置关系等知识打下基础。
教材通过丰富的图片和实例,激发学生的学习兴趣,引导学生主动探究圆的特征,从而培养学生的空间想象能力和抽象思维能力。
二. 学情分析九年级的学生已经掌握了初中阶段的基础数学知识,对图形的认识有了初步的了解。
但是,对于圆的概念和性质,部分学生可能还比较模糊。
因此,在教学过程中,教师需要关注学生的认知水平,针对学生的实际情况进行针对性的教学。
同时,由于圆的知识在实际生活中的应用非常广泛,学生对圆的兴趣和认知程度也会影响他们的学习效果。
三. 教学目标1.知识与技能:让学生掌握圆的定义、性质和方程,能够运用圆的知识解决实际问题。
2.过程与方法:通过观察、操作、探究等方法,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的重要性。
四. 教学重难点1.重点:圆的定义、性质和方程。
2.难点:圆的性质的理解和应用。
五. 教学方法1.情境教学法:通过丰富的图片和实例,激发学生的学习兴趣,引导学生主动探究圆的特征。
2.问题驱动法:教师提出问题,引导学生思考,培养学生解决问题的能力。
3.合作学习法:学生分组讨论,共同完成任务,培养学生的团队合作精神。
六. 教学准备1.教具:圆的模型、图片、PPT等。
2.学具:学生分组准备,每组一份圆的模型、图纸等。
七. 教学过程1.导入(5分钟)教师通过展示生活中的圆形物体,如硬币、轮子等,引导学生关注圆的特征。
然后提出问题:“你们对圆有什么认识?圆有哪些性质?”让学生回忆和思考圆的基本知识。
2.呈现(10分钟)教师通过PPT展示圆的定义和性质,引导学生观察和理解圆的特征。
初中数学_圆的认识教学设计学情分析教材分析课后反思
《圆的认识》教学设计教学目标:知识与技能:理解并掌握圆的有关概念;能灵活运用圆的有关概念解决相关的实际问题。
过程与方法:在教学过程中,积极鼓励学生动手、动口、动脑,并进行同伴之间的交流,注重学生思维能力的培养与提高。
情感态度与价值观:通过解决圆的有关问题,发展学生有条理的思考能力及解决实际问题的能力。
教学重点:理解圆的有关概念,灵活运用圆的概念解决一些实际问题。
教学难点:灵活运用圆的知识解决相关实际问题。
教学准备:1、作图工具,2、自制教具;3、多媒体课件课堂教学过程:一、创设情境,引入课题同学们,今天早上你们怎么上的学?你们有没有想过为什么车轮是圆的呢?下面就让我们带着这个问题来进行本节课的学习。
二、动手动脑,得出定义1.我们在小学对圆已经有了一定的了解,请你列举生活中的圆形物体?学生列举后,师总结:圆是一种非常美丽的图形,具有独特的对称性,无论从哪个角度看,它都具有同一形状。
古希腊数学家毕达哥拉斯认为:“一切立体图形中最美的是球,一切平面图形中最美的是圆。
2.你能画一个圆吗?你能想到几种画圆的方法呢?如何在操场上画一个半径是2米的圆呢?3.教师利用自制的教具展示画圆的过程,引导学生归纳总结圆的动态定义。
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.4.请同学们利用圆规画一个以O为圆心,半径为5厘米的圆。
圆上各点到圆心的距离等于2吗?是不是每个点到圆心的距离都是2呢?到点O的距离等于5厘米的点在哪里?这些满足条件的点都在圆上吗?教师结合图形和学生共同总结归纳圆的静态定义。
圆心为O 、半径为r 的圆可以看成是所有到定点O 的距离等于定长r 的点组成的图形.4.结合上面画的两个圆,教师提出问题:(1)两个圆的位置和大小是否相同?(2)圆的位置由谁确定?圆的大小由谁来确定?师生共同归纳圆的两要素。
5.回扣课前提出的问题。
(为什么车轮是圆的?)学生结合教具到黑板上进行展示。
初中数学圆集体备课
初中数学圆集体备课1.引言1.1 概述在初中数学教学中,圆是一个非常重要的概念。
学生从小学阶段就接触到了圆的基本知识,但在初中阶段需要更深入地了解和应用圆的性质与定理。
因此,一个好的圆集体备课对于学生的学习效果和兴趣培养非常重要。
本文旨在为初中数学教师提供一份详细的圆集体备课,通过系统、全面地介绍圆的基本概念、性质与定理,帮助教师更好地准备课堂教学。
同时,本文还将总结备课过程中的经验与感悟,希望能够给广大教师提供一些实用的教学参考。
在本文的正文部分,我们将首先介绍圆的基本概念,包括圆的定义、圆心、半径等概念的解释和理解。
接着,我们将系统地介绍圆的性质与定理,例如切线与弦的关系、圆周角与弧度的转化、弧长与扇形面积等知识点。
通过归纳和总结这些性质与定理,可以更好地帮助学生理解和记忆,从而更熟练地运用到实际问题中。
最后,在结论部分,本文将对整篇备课进行总结,并分享备课过程中的一些感悟。
备课不是一项简单的工作,它需要教师们具备扎实的数学基础和严谨的思维方式,同时需要对学生的学习特点和教材的要求有深入的了解。
通过这篇长文的准备和编写,我们希望能够为广大教师提供一些有益的借鉴和指导,帮助他们更好地备课和教学。
在阅读完整篇章之后,相信教师们会对圆的教学有更系统、更全面的认识,能够更好地把握教学重点和难点。
同时,我们也希望学生们通过这样的集体备课能够对圆有更深入的了解,并能够将所学知识应用到实际生活和问题解决中。
最终,我们的目标是培养学生的数学思维能力和创新意识,为他们的未来学习打下坚实的基础。
1.2 文章结构文章结构部分的内容可以包括以下内容:本文主要分为三个部分:引言、正文和结论。
引言部分主要概述了文章的背景和目的。
首先,介绍了初中数学中圆的重要性和研究圆的意义。
然后,阐述了文章的结构和内容安排,包括基本概念和性质与定理两个方面。
正文部分则详细介绍了圆的基本概念和圆的性质与定理。
在2.1节中,会深入讨论圆的基本概念,包括圆的定义、圆心、半径等,并介绍如何通过坐标表示圆。
圆的专题(数与代数几何与图形)教师版
圆的专题教学建议-----数与代数与图形与空间的结合初中数学的教学内容主要分为四个部分,它们是数与代数、图形与空间、概率与统计、综合与实践。
其中数与代数、图形与空间是最主要的两大块,这两大块看似互不影响、是泾渭分明的河流,其实它们是在互相影响。
圆这一章的学习就体现了数与代数、图形与空间的综合思想。
在初中几何的教学中,《圆》章节为最大章节,而且是北师大版教材最后一章节,这一章内容所体现的各种数学思想是非常丰富的,它不仅在平面几何占重要的地位,还在整个中学数学中起承上启下的作用。
毕达哥拉斯曾经说过:“一切立体图形中最美的是球,一切平面图形中最美的是圆。
”圆从笔画上说是最简单的图形,它是初中学习的唯一的一种曲线形知识,它具有与直线型完全不同的图形、性质,它的内容却相当丰富。
任何教学内容从总体上可以分为两个层次,一个是表层知识,另一个是深层知识。
表层知识包括概念、性质、法则、公式、公理、定理等基本的知识,深层知识主要是数学思想与数学方法。
表层知识是深层知识的基础,是课标中明确规定的,教材中明确给出的,具有操作性的知识。
教师必须在传授表层知识的过程中不断渗透相关的深层知识,让学生掌握表层知识的同时,领悟到深层知识的,才能使学生的表层知识达到一个质的飞跃,从而使数学教学脱离题海的苦海,使其具有朝气和创造性。
学生只有通过对教材的学习掌握了一定的的表层知识之后,才能更进一步学习和领悟相关的深层知识。
《圆》章节相对其它章节来说,教授难度较高。
为了提高教师的上课效率,将《圆》章节教好,本人进行了一点探索,现抛砖引玉,希望能让更多的教师参与进来,能将圆这一章的教学质量进一步提高。
一、表层知识《圆》这章教材的表层知识主要分为四大节。
第一大节是圆的概念与性质,给出圆的定义,点与圆的位置关系,研究圆很重要的性质:(垂径定理,圆周角与圆心角关系,确定圆的条件)。
第二大节主要是直线与圆的位置关系,研究了直线与圆的三种位置关系、切线长定理,重点研究了直线与圆相切的位置关系以及切线的性质和判定。
人教版数学九年级初三上册 24.1.1圆 (2) 名师教学教案 教学设计反思
24.1.1圆(第一课时)一、内容和内容解析1、内容圆的概念以及一些与圆相关概念。
2、内容解析圆是在学习了直线图形的有关性质的基础上来研究的一种特殊的曲线图形。
它是常见的几何图形之一,在初中数学中占有重要地位,中考中分值占有一定比例,与其它知识的综合性较强。
本节课的内容是对已学过的旋转及轴对称等知识的巩固,也为本章即将要探究的圆的性质、圆与其它图形的位置关系、数量关系等知识打下坚实的基础。
基于以上的分析,确定本节课的敎學重点是:理解圆的概念以及与圆相关的概念。
二、目标和目标解析1、目标(1)探索圆的两种定义,理解确定一个圆要有两个要素;理解并掌握弧、弦、优弧、劣弧、半圆、等圆、等弧等基本概念,能够从图形中识别。
(2)在解决问题过程中使学生体会数学知识在生活中的普遍性。
2、目标解析达成目标(1)的标志是:通过画圆的过程,让学生理解圆的两种定义,确定一个圆要有两个要素:圆心和半径,圆心确定圆的位置,半径确定圆的大小。
从圆中熟练地找出弧、弦、等圆、等弧的概念。
达成目标(2)的标志是:知道可以通过圆的定义可以解决生活中圆的有关问题三、敎學问题诊断分析九年级学生在过去的生活和学习中对圆的知识已经有了一些认识,初步体会到圆在生活、工农业生产、交通运输、土木建筑等方面均广泛存在,这对进一步探究圆的定义及相关性质奠定了一定的基础。
但对圆的相关性质掌握较少,对知识的转化能力较差,所以重在要学生参与,主动探究,增加解决实际问题的能力。
基于以上分析,本节课的敎學难点是:能运用圆的有关性质解决生活中的实际问题。
四、敎學过程设计1、情景引入问题1教师演示视频,让学生欣赏生活中的圆.师生活动:学生观察生活中的圆,然后回答问题,此时学生可以再举出一些生活中类似的图形.设计意图:导入新课感受圆和实际生活的密切联系,同时激发学生的学习渴望以及探究热情。
2、探索新知我们已经认识了什么是生活中的圆,那在数学上对圆又是怎样定义的呢?1.请同学们阅读教材79页并在学案上完成探究:(1)、通过阅读教材79页,思考你想到了哪些方法画圆,给同学们展示一下。
9年级数学 北师大 版下册 教案 第3章《 圆》
教学设计圆一、教材分析圆是(北师版)《数学》九年级下册第三章第一节内容,本章主要研究圆的性质及与圆有的关的应用;本节课要求经历形成圆的概念的过程,经历探索点与圆位置关系的过程,理解圆的概念,理解点与圆的位置关系。
一堂数学课,既要让学生获得具体的数学知识,又要让学生在获得知识的过程中,提高数学思维能力,掌握一些数学的分析方法,从而形成一定的数学素养.经历形成圆的概念的过程有两个目标,一是得到圆的概念,这是基础目标;二是经历由生活现象揭示其数学本质的过程,培养抽象思维,这是能力目标.经历探索点与圆位置关系的过程,初步体会定性分析与定量分析之间的关系.二、教学目标1.经历圆的形成过程,理解圆的相关概念及它们之间的关系;2.经历定性描述点与圆的位置关系,定量刻画点与圆的位置关系的过程,发展学生几何直观和逻辑推理能力;3.运用点与圆的位置关系的性质解决问题,发展学生数学建模能力。
三、教学重、难点教学重点:理解圆的概念,理解点与圆的位置关系。
教学难点:用集合的观点研究圆的概念。
四、教学过程环节一、回顾旧知,引出概念问题:(1)小明等四位同学正在做投圈游戏,他们呈“一”字型排开,这样的队形对每个人公平吗?你认为他们应当排成什么样的队形?相信这个问题难不倒大家,这个游戏不公平,他们应该以目标物为圆心站成一个圆形,说起圆,大家并不陌生,对于圆的知识你知道哪些?(2)请同学们仔细回忆初中几何学习的历程,想一想我们已经学习了哪些平面几何对象,又是如何研究的.【学生回忆,教师有条理地板书(如图1)】(3)之前我们研究的都是直线形图形,遵循了从简单到复杂、从一般到特殊的研究思路,从今天起,我们将开启曲线图形的学习之旅,从最简单的曲线图形——圆展开研究. 请同学们展望一下:在本章中将要研究哪些内容以及如何研究呢?根据几何研究的基本套路,学生猜测将研究圆的定义、性质、判定,圆的有关计算,以及圆与其他图形.【设计意图】上述过程借助学生的最近发展区,创设情境引入概念;从已有知识出发,通过回忆旧知,寻找新知的生长点;通过对旧知研究内容的梳理,为新知建构找到方向.其中第(3)小问从生活素材中抽象并判断圆,引发认知冲突,从而明确本课的学习任务,让学生感受到进一步研究的必要性.环节二、动手操作,生成概念探究活动1:探究活动一,请用圆规在草稿纸上,画一个圆.画圆时,需要注意什么?“固定点”“固定长”通过刚才的画图,你能用自己的语言描述出圆的定义吗?(学生抽象、概括及用语言表达,教师给出圆的符号表示)【设计意图】学生经历了画圆的过程,切身体会到了圆是怎么产生的.这种通过直观感知,用运动的观点(可类比“角”的生成)进行抽象概括的方法,自然能建构起圆的描述性定义.同时,在师生的补充中不断完善概念,强调“在平面内”及“圆”指的是“圆周”,并根据圆的定义,纠正了学生的认知偏差.追问:通过画圆的过程思考一下,要想确定一个圆,需要知道哪些条件.【设计意图】此处的追问为了顺势引出同心圆、等圆的概念,教给学生发现新结论的研究方法.探究活动2:阅读理解(识圆一,了解圆的有关概念)。
浙教版数学九年级上册《3.1 圆》教学设计3
浙教版数学九年级上册《3.1 圆》教学设计3一. 教材分析浙教版数学九年级上册《3.1 圆》是整个初中数学的重要内容,主要让学生了解圆的定义、圆的性质、以及圆的方程。
这一章节为后续学习圆的周长、面积、弧、扇形等知识打下基础。
本节课的内容主要包括圆的定义、圆心和半径、圆的性质等。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和变换有一定的了解。
但是,对于圆这一概念,学生可能在生活中有所接触,但对其严格定义和性质的理解还有待提高。
此外,学生对于圆的方程的学习可能存在一定的困难,需要教师在教学中给予引导和帮助。
三. 教学目标1.理解圆的定义,掌握圆心和半径的概念。
2.掌握圆的性质,包括圆的对称性、唯一性等。
3.会用圆的方程表示圆,并理解其意义。
4.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.圆的定义和性质的理解。
2.圆的方程的推导和应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索和发现圆的性质。
2.使用多媒体课件,生动展示圆的图形,帮助学生直观理解圆的性质。
3.采用合作学习的方式,让学生在小组讨论中共同解决问题,提高学生的沟通能力。
4.注重学生数学思维的培养,引导学生从直观到抽象的思维过程。
六. 教学准备1.多媒体课件和教学素材。
2.圆规、直尺等绘图工具。
3.练习题和测试题。
七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾之前学过的几何图形,如三角形、四边形等,然后提出问题:“有没有一种图形,它的所有边都相等,并且对折后可以重合?”让学生思考并尝试描述这种图形。
呈现(10分钟)教师通过多媒体课件呈现圆的图形,让学生直观地感受圆的特点。
然后,教师给出圆的定义:“圆是平面上所有到定点距离相等的点的集合。
”同时,介绍圆心和半径的概念。
操练(15分钟)教师引导学生使用圆规和直尺绘制圆,并测量圆的直径、半径等。
学生通过实际操作,加深对圆的理解。
巩固(10分钟)教师提出一系列问题,如:“圆心和半径对圆的性质有什么影响?”“圆的直径和半径有什么关系?”让学生在小组内讨论并回答问题。
九年级秋季班 (1)-第9讲圆的基本性质-教师版
圆的基本性质内容分析圆的基本性质是初中数学九年级下学期第一章第一节的内容.需要掌握点与圆的位置关系,理解圆心角、弧、弦、弦心距的概念和掌握它们之间的关系,重点是这四者关系的灵活运用,以及垂径定理及其推论的应用.知识结构模块一:圆的确定知识精讲1、圆的概念圆:平面上到一个定点的距离等于定长的所有点所成的图形.圆心:以上概念中的“定点”;以点O 为圆心的圆称为“圆O”,记作O .半径:联结圆心和圆上任意一点的线段;以上概念中的“定长”是圆的半径长.2、点与圆的位置关系设一个圆的半径长为R,点P 到圆心的距离为d,则有以下结论:当点P 在圆外时,d > R;当点P 在圆上时,d = R;当点P 在圆内时,0 ≤d <R .反之亦然.3、相关定理:不在同一直线上的三个点确定一个圆.三角形的三个顶点确定一个圆.经过一个三角形各顶点的圆叫做这个三角形的外接圆,外接圆的圆心叫做这个三角形的外心;这个三角形叫做这个圆的内接三角形.如果一个圆经过一个多边形的各顶点,那么这个圆叫做这个多边形的外接圆,这个多边形叫做这个圆的内接多边形.OlHa 2aAB【例1】 在平面直角坐标系内,A ( -3 , - tan 30︒ ),B ( ,0), A 的半径为 4,试说明点 B 与 A 的位置关系.【例2】 过一个点可以画个圆,过两个点可以画 个圆,过三个点可以画个圆.【例3】 已知,如图,在 O 中,AB 、BC 为弦,OC 交 AB 于点 D .求证:(1) ∠ODB > ∠OBD ;(2) ∠ODB > ∠OBC .OBAD C【例4】 如图, O 的半径为 15,O 到直线 l 的距离 OH = 9,A 、B 、C 为直线 l 上的三个点,AH = 9,QH = 12,RH = 15,请分别说明点 A 、B 、C 与 O 的位置关系.【例5】 若 A (a , -27 )在以点 B ( -35 , -27 )为圆心,37 为半径的圆上,求 a 的值.【例6】 如图,作出 AB 所在圆的圆心,并补全整个圆.例题解析EBD O C A【例7】如图,CD 是半圆的直径,O 是圆心,E 是半圆上一点,且∠EOD = 45︒,A 是DC 延长线上一点,AE 与半圆交于B,若AB = OC,求∠EAD 的度数.【例8】已知,如图,AB 是O 的直径,半径OC ⊥AB ,过OC 的中点D 作EF // AB.求证:∠ABE =1∠CBE .2CE D FAOB【例9】已知:AB 是O 的直径,点P 是OA 上任意一点,点C 是O 上任意一点.求证:PA ≤PC ≤PB .CAO B知识精讲1、圆心角、弧、弦、弦心距的概念圆心角:以圆心为顶点的角叫做圆心角;弧:圆上任意两点之间的部分叫做圆弧,简称弧;弦:连接圆上任意两点的线段叫做弦,过圆心的弦就是直径;弦心距:圆心到弦的距离叫做弦心距.2、半圆、优弧、劣弧半圆:圆的任意一条直径的两个端点将圆分成两条弧,每一条弧都叫做半圆.优弧:大于半圆的弧叫做优弧.劣弧:小于半圆的弧叫做劣弧.如图,以A、C 为端点的劣弧记作AC,读作“弧AC”;以A、C 为端点的优弧记作ABC,读作“弧ABC”.3、等弧和等圆能够重合的两条弧称为等弧,或者说这两条弧相等.若AB 与A' B ' 是等弧,记作AB A' B ' .半径相等的两个圆一定能够重合,我们把半径相等的两个圆称为等圆.4、圆心角、弧、弦、弦心距之间关系的定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.5、圆心角、弧、弦、弦心距之间关系的定理的推论在同圆或等圆中,如果两个圆心角、两条劣弧(或优弧)、两条弦、两条弦的弦心距得到的四组量中有一组量相等,那么它们所对应的其余三组量也分别相等.模块二:圆心角、弧、弦、弦心距之间的关系ADEOCB【例10】 下列命题中真命题的个数是( )○ 1 相等的圆心角所对的弧也相等;○ 2 在同圆中,如果两条弦相等,那么所对的弧也相等; ○ 3 A 、B 是 O 上任意两点,则 AO + BO 等于 O 的直径长; ○ 4 三角形的外心到三角形三边的距离相等.A .1 个B .2 个C .3 个D .4 个 【例11】 一条弦把圆分成 1 : 3 两部分,则弦所对的圆心角为 °.A【例12】 如图,在 O 中, AB = AC , ∠B = 70︒ ,则∠BAC = .OBC【例13】 如图,已知 O 的半径是 6, ∠BOD = 30︒ , BD = BC ,CD =.【例14】 如图, O 1 和O 2 是等圆,P 是O 1O 2 的中点,过点 P 作直线 AD 交 O 1 于点 A 、B ,交 O 2 于点C 、D . 求证:AB = CD .【例15】 已知,如图,AB 、CD 是 O 的直径,弦 AE // CD ,联结 CE 、BC . 求证:BC = CE .例题解析AOCBDDCBPAC DAM O N B【例16】如图,O 是∆ABC 的外接圆,AO 平分∠BAC ,∠AOB =∠BOC ,判断∆ABC 的形状,并说明理由.AOB C【例17】已知,如图,AB 是O直径,M、N 分别是AO、BO 的中点,CM ⊥AB ,DN ⊥AB .求证:AC =BD .【例18】如图,以点O 为圆心的圆弧上依次有四个点A、B、C、D,且∠A O B求证:四边形ABCD 是等腰梯形.=∠C O D.OA DB C1、 垂径定理如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,并且平分这条弦所对的弧. 2、 相关结论(1)如果圆的直径平分弦(这条弦不是直径),那么这条直径垂直于这条弦,并且平分这条弦所对的弧.(2)如果圆的直径平分弧,那么这条直径就垂直平分这条弧所对的弦. (3)如果一条直线是弦的垂直平分线,那么这条直线经过圆心,并且平分这条弦所对的弧.(4)如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦.(5)如果一条直线垂直于弦,并且平分弦所对的一条弧,那么这条直线经过圆心, 并且平分这条弦.总结:在圆中,对于某一条直线“经过圆心”、“垂直于弦”、“平分弦”、“平分弦所对的弧”这四组关系中,如果有两组关系成立,那么其余两组关系也成立.【例19】 O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB的长为 . 【例20】 在半径为2 的 O 中,弦AB 的长为2 2 ,则弦AB 所对的圆心角∠AOB =°.【例21】 如图, O 是∆ABC 的外接圆,圆心 O 在这个三角形的高 CD 上,点 E 和点 F分别是边 AC 和 BC 的中点. 求证:四边形 CEDF 是菱形.模块三:垂径定理知识精讲例题解析CE OF A DBCGQODER FPHOBCA【例22】 如图,一根横截面为圆形的输水管道,阴影部分为有水部分,此时水面宽 AB为 0.6 米,污水深 CD 为 0.1 米,求圆形的下水管道的直径.【例23】 如图,在 O 中,弦 CD 、EF 的延长线相交于点 P ,G 、H 分别是CD 、EF 的中点,GH 与 PC 、PE 分别相交于 Q 、R 两点,试判断∆PQR 的形状,并证明所得到的结论.【例24】 如图,P 是 O 的弦 AB 的中点,PC ⊥ OA ,垂足为 C ,求证:PA PB = AC AO .【例25】 位于本市浦东临港新城的滴水湖是圆形人工湖.为测量该湖的半径,小智和小方沿湖边选取 A 、B 、C 三根木柱,使得 A 、B 之间的距离与 A 、C 之间的距离相等,并测得 BC 长 240 米,A 到 BC 的距离为 5 米,如图所示.请你帮他们求出滴水湖的半径.O A D BCBPACO【例26】 如图,弦 CD 垂直于 O 的直径 AB ,垂足为 H ,且CD = 2 2 , BD = 3 ,则AB的长为 .C B HODA【例27】 已知 O 的半径r = 4 ,AB 、CD 为 O 的两条弦,AB 、CD 的长分别是方程x 2 - (4 + 4)x + 16 = 0 的两根,其中 AB > CD ,且 AB // CD ,求 AB 与 CD 间的距离.【例28】 已知,如图, O 1 与 O 2 交于 A 、B ,过 A 的直线分别交 O 1 与 O 2 于 M 、N ,C 是 MN 的中点,P 是O 1O 2 的中点.【例29】 如图,已知四边形 ABCD 外接圆 O 的半径为 2,对角线 AC 与 BD 的交点为E ,AE = EC , AB = 2AE ,且 BD = 2 ,求四边形 ABCD 的面积.ABD EOCB P NC AM3 3 3BDCEOA【例30】 如图,在半径为 2 的扇形 AOB 中,∠AOB = 90︒ ,点 C 是弧 AB 上的一个动点(不与点 A 、B 重合), OD ⊥ BC , OE ⊥ AC ,垂足分别为 D 、E .(1)在∆DOE 中是否存在长度保持不变的边?如果存在,请指出并求其长度, 如果不存在,请说明理由.(2)设 BD = x , ∆DOE 的面积为 y ,求 y 关于 x 的函数关系式,并写出它的定义域.BA C EFOBD【习题1】已知 半径为 5,若点 P 不在上,则线段 OP 的取值范围为.【习题2】 如图,AB 是直径, BC = CD = DE , ∠BOC = 40︒ ,则∠AOE = .EDCAOB【习题3】如图,为方便三个村庄居民子女的上学问题,上级镇政府决定在 A 、B 、C 三个村庄旁边造一所学校,要求它到各村庄的距离相等,请你在图中画出学校的位置.(保留作图痕迹)【习题4】如图, AB = CD , OE ⊥ AB , OF ⊥ CD , ∠OEF = 25︒ ,求∠EOF 的度数.【习题5】 如图,在∆ABC 中, ∠B = 90︒ , ∠A = 60︒ ,以点 B 为圆心,AB 为半径画圆,交 AC 于点 D ,交 BC 于点 E .求证:(1)AD = 2DE ;(2)D 是 AC 的中点.随堂检测ACADBECO OA OB CA O BDCECEFO D【习题6】如图,AB 为O直径,E 为BC的中,OE 交BC 于点D,BD = 3,AB = 10,则AC = .【习题7】如图,一条公路的转弯处是一段圆弧(即图中的CD),点O 是CD的圆心,其中CD = 600 米,E 为CD 上一点,且OE ⊥CD ,垂足为F,EF = 90 米,求这段弯路的半径.【习题8】如图,在∆ABC 中,∠A = 70︒,O 截∆ABC 的三边所得的弦长都相等,求∠BOC 的度数.【习题9】已知,如图,∆ABC 是等边三角形,AB 是O 的直径,AE =EF =FB ,CE、CF 交AB 于点M、N.求证:AM = MN = NB.CA M NOBE F【习题10】 如图,AB 为 O 的直径,CD 为弦,过点C 、D 分别作CN ⊥ CD 、DM ⊥ CD ,分别交 AB 于点 N 、M ,请问图中的 AN 与 BM 是否相等,说明理由.【作业1】在下列命题中,正确的个数是()○ 1 圆心角相等,则它们所对的弦必相等;○ 2 经过线段的两个端点及线段所在直线外一点可以确定一个圆; ○ 3 直径平分弦,则必垂直于弦;○ 4 如果同圆中,两条弦互相平分,那么这两条弦都是直径.A .0 个B .1 个C .2 个D .3 个【作业2】在∆ABC 中,∠C = 90︒ ,D 、E 分别是 AB 、AC 的中点,AC = 7,BC = 4.若以点 C 为圆心,BC 为半径作圆,判断点 D 、E 与 C 的位置关系.【作业3】已知直线 a 和直线外两点 A 、B ,经过 A 、B 作一圆,使它的圆心在直线 a上.aM BAN OCD课后作业ABD E F C AGOB【作业4】已知 O 外一点 A 和圆上的点最大距离为 23 厘米,最小距离为 10 厘米,则 O 的半径为厘米.【作业5】如图,在 O 中, 2AB BC ,试确定 AB 与 2BC 的大小关系.【作业6】如图,矩形 ABCD 与圆心在 AB 上的 O 交于点 G 、B 、F 、E ,GB = 8 厘米,AG = 1 厘米,DE = 2 厘米,则 EF =厘米.【作业7】 已知点 A (1,0),B (4,0), P 是经过 A 、B 两点的一个动圆,当与 y 轴相交,且在 y 轴上两交点的距离为 3 时,求圆心 P 的坐标.【作业8】 已知,如图,在 O 中,弦 AB 的长是半径 OA 的 3 倍,C 为 AB 的中点,AB 、OC 相交于 P .求证:四边形 OACB 为菱形.BAOCCBAP OPCAPOB D EF 【作业9】 已知:过圆 O 内一点 P 作弦 AB 、CD ,且 AB = CD ,在 BD 上取两点 E 、F ,且 BE = DF .求证:直线 PO 是 EF 的垂直平分线.【作业10】 如图,O 1 与 O 2 交于 A 、B ,M 为O 1O 2 的中点,过点 A 作 EF ⊥ AM 分别 交 O 1 与 O 2 于点 E 、F .若∠O 1 AO 2 = 90︒ , AO 1 AO 2 = O 1O 2 = m ( m ≥ 2 ), 求 EF 的长.BMFAE。
初中数学.与圆有关的位置关系.教师版
与圆有关的位置关系中考内容中考要求A B C圆的有关概念理解圆及其有关概念会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关1可题圆周角了解圆周角与圆心角的关系;知道直径所对的圆周角是直角会求圆周角的度数,能用圆周角的知识解决与角有关的简单问题能综合运用几何知识解决与圆周角有关的问题垂径定理会在相应的图形中确定垂径定理的条件和结论能用垂径定理解决有关1可题点与圆的位置关系了解点与圆的位置关系直线与圆的位置关系了解直线与圆的位置关系;了解切线的概念,理解切线与过切点的半径之间的关系;会过圆上一点圆圆的切线;了解切线长的概念能判定直线和圆的位置关系;会根据切线长的知识解决简单的问题;能利用直线和圆的位置关系解决简单问题能解决与切线有关的问题圆与圆的位置关系了解圆与圆的位置关系能利用圆与圆的位置关系解决简单问题中考内容与要求,中考考点分析圆是北京中考的必考内容,主要考查圆的有关性质与圆的有关计算,每年的第20题都会考查,第1小题一般是切线的证明,第2小题运用圆与三角形相似、解直角三角形等知识求线段长度问题,有时也以阅读理解、条件开放、结论开放探索题作为新的题型。
要求同学们重点掌握圆的有关性质,掌握求线段、角的方法,理解概念之间的相互联系和知识之间的相互转化,理解直线和圆的三种位置关系,掌握切线的性质和判定方法,会根据条件解决圆中的动态问题。
与圆有关的位置关系点和圆的位置关系[直线利阅的位置关系点和国的位苫矢系的ft 质利判定 直技和剧的位宥关系的性质和判定确定留的条件~| @线的性质用判定TM 角形外接冏|园和圆的位置关系定义示例剖析点和圆的位置关系:点P 在圆外:点和圆的位置关系有:点在圆上、点在圆内、点在圆外三种,这三种关系由这个点到圆心的距 离与半径的大小关系决定.设。
O 的半径为r ,点P 到圆心O 的距离为 点P 在圆上:d ,则有:/VA点在圆外 d r ;点在圆上 d r ; 点在圆内 d r .点P 在圆内:确定圆的条件:1.圆的确定确、个圆有两个基本条件:①圆心(定点) ,确正圆的位置;②半径(正长),确正圆的大小.只 Qy C有当圆心和半径都确定时,圆才能确定.模块点和圆的位置关系知识导航 生【例1】1.已知△ ABC 中, ACB 90 , AC 2 , BC 3, AB 的中点为 M ,⑴ 以C 为圆心,2为半径作OC,则点A , B , M 与OC 的位置关系如何?⑵ 若以C 为圆心作。
人教版九年级数学上册教案:24.1 圆的有关性质
数学教学设计人教版九年级数学第二十四章《圆》——24.1圆的有关性质(一)课题:圆圆一、教学设计思想本节课是九年义务制教育九年级上册第二十四章第一节的内容,选用的是人民教育出版社教材。
圆是初中几何中重要的内容之一。
本节通过第一课时建立圆的概念,认识圆的轴对称性与中心对称性。
讲解时将观察与思考、操作与实践等活动贯穿于教学全过程,使学生积累一定的数学活动经验。
《新课程标准》提出“使数学教育面向全体学生,实现人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展。
”本节课在遵循这一基本理念下,尽量实现几何课程的教育价值。
数学源于生活,又服务于生活,最终要解决生活中的问题。
利用现代多媒体帮助学生理解和学习数学,探索与分析,讨论与归纳等数学活动是学习的主要方式。
形成应用数学意识和创新思维,进而使学生获得对数学知识理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
二、教学背景分析(一)教学内容分析圆是继三角形、四边形等基本图形后的又一个重要内容。
圆的知识在科学技术和日常生活中有广泛应用。
圆是平面几何中最基本的图形之一,它在几何中有重要的地位。
圆的有关概念是圆这一章的起始课,在本节课之前学生小学已经学习了圆的初步知识,联系学生实际,整合课外资源来充实课堂教学内容。
圆的有关概念是中学阶段应用圆知识解决实际问题的开端,也是为今后学习圆的知识奠定基础.通过对实际问题的探索让学生初步感受从实际问题中抽象出数学问题的过程,培养学生的数学价值观,增强学数学、用数学的意识。
(二)学生情况分析初三年级的学生是初中阶段的高年级的学生,课堂中的学习行为趋于理性化,思维的成熟度,内心深处探求真理的欲望比初二年级高,因此要引导轻松和谐的课堂气氛,充分激活学生的创造欲望,让学生在教师创设的情境中充满好奇心的学,留给学生充分的自主活动和相互交往的空间,在观察中不断地发现数学问题,在实践中日益领悟数学思想,在评价中逐步形成数学价值观。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考内容中考要求A B C圆的有关概念理解圆及其有关概念会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关问题圆周角了解圆周角与圆心角的关系;知道直径所对的圆周角是直角会求圆周角的度数,能用圆周角的知识解决与角有关的简单问题能综合运用几何知识解决与圆周角有关的问题垂径定理会在相应的图形中确定垂径定理的条件和结论能用垂径定理解决有关问题点与圆的位置关系了解点与圆的位置关系直线与圆的位置关系了解直线与圆的位置关系;了解切线的概念,理解切线与过切点的半径之间的关系;会过圆上一点画圆的切线;了解切线长的概念能判定直线和圆的位置关系;会根据切线长的知识解决简单的问题;能利用直线和圆的位置关系解决简单问题能解决与切线有关的问题圆与圆的位置关系了解圆与圆的位置关系能利用圆与圆的位置关系解决简单问题中考内容与要求圆的概念及性质弧长会计算弧长能利用弧长解决有关问题扇形会计算扇形面积能利用扇形面积解决有关问题圆锥的侧面积和全面积会求圆锥的侧面积和全面积能解决与圆锥有关的简单实际问题圆是北京中考的必考内容,主要考查圆的有关性质与圆的有关计算,每年的第20题都会考查,第1小题一般是切线的证明,第2小题运用圆与三角形相似、解直角三角形等知识求线段长度问题,有时也以阅读理解、条件开放、结论开放探索题作为新的题型。
要求同学们重点掌握圆的有关性质,掌握求线段、角的方法,理解概念之间的相互联系和知识之间的相互转化,理解直线和圆的三种位置关系,掌握切线的性质和判定方法,会根据条件解决圆中的动态问题。
年份2010年2011年2012年题号11,20 20,25 8,20,25分值9分13分17分考点垂径定理的应用;切线判定、圆与解直角三角形综合圆的有关证明,计算(圆周角定理、切线、等腰三角形、相似、解直角三角形);直线与圆的位置关系圆的基本性质,圆的切线证明,圆同相似和三角函数的结合;直线与圆的位置关系中考考点分析定 义示例剖析圆:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆. 固定的端点O 叫做圆心,线段OA 叫做半径. 由圆的定义可知:⑴ 圆上的各点到圆心的距离都等于半径长;在一个平面内,到圆心的距离等于半径长的点都在同一个圆上.因此,圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形. ⑵ 要确定一个圆,需要两个基本条件,一个是圆心的位置,另一个是半径的长短,其中,圆心确定圆的位置,半径长确定圆的大小. 圆O半径圆心AO表示为“O ⊙”圆心相同且半径相等的圆叫做同圆;圆心相同,半径不相等的两个圆叫做同心圆; 能够重合的两个圆叫做等圆.等圆O‘O同心圆O知识互联网模块一 圆的基本概念知识导航弦和弧:1. 连结圆上任意两点的线段叫做弦.经过圆心的弦叫做直径,并且直径是同一圆中最长的弦,直径等于半径的2倍.2. 圆上任意两点间的部分叫做圆弧,简称弧.以A B 、为端点的弧记作AB ,读作弧AB . 在同圆或等圆中,能够互相重合的弧叫做等弧. 3. 圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.4. 在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧. Cm劣弧优弧弦BAO表示:劣弧AB优弧ACB 或AmB圆心角和圆周角:1. 顶点在圆心的角叫做圆心角.2. 顶点在圆上,并且两边都和圆相交的角叫做圆周角.O DC BA 圆周角圆心角下面这些都不是圆周角:【例1】 如图,若点O 为O ⊙的圆心,则线段_________________是圆O 的半径;线段___________是圆O 的弦,其中最长的弦是________;________是劣弧;___________是半圆.若40A ∠=︒,则ABO ∠=_________,C ∠=_______,ABC ∠=_______. (西城区教研)【解析】 OA OB OC ,,;AB BC AC ,,;AC ;AB BC ,;AC ABC ,;40︒;50︒;90︒夯实基础O CBAOEDCB A A B CDEO【例2】 如图,AB 为O ⊙的直径,CD 是O ⊙的弦,AB CD 、的延长线交于点E ,若2AB DE =,18E ∠=︒,求AOC ∠的度数.【解析】 连结OD∵AB 是直径,2AB DE =,∴12DE AB OD ==∴18DOE E ∠=∠=︒,∴36ODC DOE E ∠=∠+∠=︒∵OC OD =,∴36OCD ODC ∠=∠=︒,【解析】 ∴54AOC OCD E ∠=∠+∠=︒.定 理示例剖析1. 垂直于弦的直径平分弦,并且平分弦所对的两条弧. 2. 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图,AB 是O ⊙的直径,CD 是弦E DCBAO1. 若AB CD ⊥于E ,则CE DE =; AC AD =;BC BD =.2. 若CE DE =,则AB CD ⊥; AC AD =;BC BD =.能力提升知识导航模块二 垂直于弦的直径【例3】 1.如图,M N 、分别是O ⊙中长度相等但不平行的两条弦AB CD 、的中点.求证:AMN CNM ∠=∠.【解析】 连结OM ON 、、OB 、OD .∵M N 、分别是弦AB CD 、的中点,∴OM AB ON CD ⊥⊥,∵AB CD =,∴MOB NOD △≌△∴OM ON =∴OMN ONM ∠=∠,∴AMN CNM ∠=∠. 2.如图,∠P AC =30°,在射线AC 上顺次截取AD =3cm ,DB =10cm ,以DB 为直径作⊙O 交射线AP 于E 、F 两点,则线段EF 的长是 cm . (2012辽宁锦州)【解析】6 FE ADOB CP H FE ADO B CP3.如图,⊙O 的半径为2,弦32=AB ,点C 在弦AB 上,AB AC 41=,则OC 的长为( )(2012山东淄博)A .B .C .D . 【解析】如图,过点O 作OD ⊥AB 于点D ,则 AD =BD .∵32=AB ,AB AC 41=, ∴3==BD AD ,23=CD .又∵⊙O 的半径为2,即OB =2,∴122=-=BD OB OD .∴2722=+=OD CD OC .故选D .ONMD C BA BCAODBCAOOD C BA MO D C B A DCBA N M OA OCBA OH DE CB AO【例4】 ⊙O 的半径为5cm ,弦AB ∥CD ,且AB =8 cm ,CD =6cm ,求AB 与C 之间的距离.(2012黑龙江牡丹江)【解析】1 cm 或7 cm .F E AC D BOFEACDBO【备选】1. 如图所示,同心圆中,大圆的弦AB 交小圆于C ,D 两点,试证明:AC BD =. 【解析】 作OM AB ⊥,垂足为M ,大圆中,∵OM AB ⊥,∴AM BM =小圆中,∵OM CD ⊥,∴CM DM =∴AM CM BM DM -=- 即AC BD =.2. 如图,M N 、分别是O ⊙中长度相等但不平行的两条弦AB CD 、的中点. 求证:AMN CNM ∠=∠.【解析】 连结OM ON 、、OB 、OD .∵M N 、分别是弦AB CD 、的中点, ∴OM AB ON CD ⊥⊥,∵AB CD =,∴MOB NOD △≌△ ∴OM ON =∴OMN ONM ∠=∠,∴AMN CNM ∠=∠.【备选】已知O ⊙的半径是5,点A 到圆心O 的距离为3,求过点A 的所有弦中最短弦的长度. 【解析】 连结OA ,过A 点作OA 的垂线交O ⊙于B C 、两点,则弦BC 即为所求.连结OB ,由垂径定理得12AB BC =.在Rt AOB △中,90OAB ∠=︒,53OB OA ==,,∴224AB OB OA =-=, ∴28BC AB ==.【点评】 此题是经典的垂径定理的应用,也是一个十分有用的结论.当然,在使用前需要证明一下.这里编辑给出一种常规证法,如果各位老师有更好的证法,希望能提供分享. 证明:过A 点再任意作一条与BC 不同的弦DE , 过O 点作OH DE ⊥于H .在Rt AOC △和Rt EOH △中,显然OE OC =,又AOH △是直角三角形,∴OH OA <,则222222OE OH EH AC OC OA -=>=- 能力提升ON M DC BA∴DE BC>.定理示例剖析弧、弦、圆心角之间的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量分别相等.ODCBA如图,由定理可知:若AOB COD∠=∠,则AB CD=、AB CD=;若AB CD=,则AOB COD∠=∠、AB CD=;若AB CD=,则AB CD=、AOB COD∠=∠.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等.推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.CBAO2AOB ACB∠=∠EODCBA若ACB AED∠=∠,则AB AD=直角直径OCBA圆内接多边形:如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.圆内接四边形的对角互补.如图,A B C D、、、四点都在圆上,ODCBA则180A C∠+∠=︒,180B D∠+∠=︒知识导航模块三弧、弦、圆心角和圆周角、【例5】 ⑴ 已知,A B C 、、分别为O ⊙圆周上任意三点,请你判断同弧所对的ACB ∠与AOB∠的大小关系.O OO根据上面的推理,可以发现:__________________________________________________.⑵ 若点D 是优弧AB 上任意一点,试判断ADB ∠与ACB ∠的大小关系. 根据上面的推理,可以发现:__________________________________________________.⑶ 如果点D 在劣弧AB 上,此时ADB ∠和ACB ∠的大小关系还一样吗?可 以得到什么结论?【解析】 ⑴应分为三种情况:图3图2图1D A BCOOCBA OCBA辅助线如图所示,证明过程不再赘述.可以发现:同弧所对圆周角是圆心角的一半.⑵ 由⑴可知,ADB ACB ∠=∠,可以发现:同弧所对的圆周角相等.⑶ 如图,ADB ∠与ACB ∠互补.可以得到:圆内接四边形的对角互补.夯实基础ODCAO D C AE O B DFCA【例6】 ⑴ 如图,△ACD 和△ABE 都内接于同一个圆,则∠ADC +∠AEB +∠BAC =(2012黑龙江大庆)⑵ 在⊙O 中,直径AB ⊥CD 于点E ,连接CO 并延长交AD 于点F , 且CF ⊥AD .则∠D = .(2012宁夏)⑶ 如图,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠OAD +∠OCD = °.(2012安徽)(2013东城期末)⑷ 如图,A B C D 、、、是O ⊙上的点,直径AB 交CD 于点E ,已知57C ∠=︒,45D ∠=︒,则CEB ∠=________.(北大附中练习)⑸ 已知O ⊙的弦AB 长等于圆的半径,则该弦所对的圆周角为 .【解析】 ⑴︒60;⑵︒60;⑶ 102︒;⑷ 22;⑸ 30︒或150︒.【例7】 已知:在半径为52的⊙O 内,有互相垂直的两条弦AB ,CD ,它们相交于P 点. (1)求证:P A ·PB =PC ·PD ;(2)设BC 的中点为F ,连接FP 并延长交AD 于E ,求证:EF ⊥AD ; (3)如果AB =8,CD =6,求O 、P 两点之间的距离.(2013大兴期末)【解析】(1)证明:∵∠A ,∠C 所对的圆弧相同,∴∠A =∠C ∵AB ⊥CD,∴Rt △APD ∽Rt △CPB . ∴AP PD C P PB=. ∴PA ·PB =PC ·PD .(2)证明:∵F 为BC 的中点,△CPB 为直角三角形, 能力提升探索创新NM P EDOBFCA PEDOBFCA EDCBA OCBADCB ED A∴PF=FC,∠CPF =∠C.又∵∠A =∠C,∠DPE =∠CPF,∴∠A =∠DPE.∵∠A +∠D=90°,∴∠DPE +∠D=90°.∴EF⊥AD.(3)解:作OM⊥AB于M, ON⊥CD于N, ∴OMPN为矩形.连接OB,OD,OP,由垂径定理,得AM=BM=4,CN=DN=3.由勾股定理,得222O N=-=.(25)311(25)44O M=-=,222∴2215N=+=.MOP OO判断正误⑴半圆是弧⑵半径相等的两个圆是等圆⑶过圆心的线段是直径⑷两个端点能够重合的弧是等弧⑸圆的任意一条弦把圆分成优弧和劣弧两部分⑹长度相等的弧是等弧⑺直径是最大的弦⑻半圆所对的弦是直径⑼两个劣弧的和是半圆⑽圆的半径是R,则弦长的取值范围是大于0且不大于2R【解析】正确的是⑴⑵⑺⑻⑽不理解圆中相关的概念和定义,或产生概念上的混淆。