基因定位与连锁遗传图
连锁遗传-1
X
无色饱满ccShSh
X 无色凹陷 ccshsh 无色饱满 ccShsh 21096 48.5% 无色凹陷 ccshsh 672 1.5%
F1 有色、饱满 CcShsh 有色饱满 CcShsh 638 1.5% 有色凹陷 Ccshsh 21379 48.5%
第二节 交换值及其测定
1、交换值:也称重组率/重组值,指同源染色体非姐妹染 色单体间 有关基因的染色体片段发生交换的频率,一般 利用重新组合配子数占总配子数的百分率进行估算。
本章重点
一、连锁遗传的现象和解释; 二、连锁和交换机理; 三、交换值及其测定; 四、基因定位和连锁遗传图; 五、性别决定与性连锁。
第一节 连锁与交换
一、连锁遗传的发现:
贝特生(1861~1926): 英国生物学家, 曾经重复过孟德尔的实验
组合一:紫花、长花粉粒×红花、圆花粉粒
按9:3:3:1: 3910.5
得到下面4种植株:
圆形、单一花序(OS)23 长形、单一花序(oS)83 圆形、复状花序(Os)85
长形、复状花序(os)19
问O—s间的交换值是多少?
3/双杂合体产生的配子比例可以用测交来估算。现有一交 配如下:
( 1/2 -
P )
P
P
( 1/2 - P )
(1)独立分配时,P=?
(2)完全连锁时,P=?
4、影响交换值的因素
(1)性别:雄果蝇、雌家蚕 (2)温度:例如家蚕 饲养温度(℃ ): 30 28 26 23 19
交换值(%): 21.48 22.34 23.55 24.98 25.86
(3)两个基因位于染色体上的部位: 离着丝点越近,交换值越小。 (4)其它因素: 年龄、染色体畸变等。
基因的连锁与遗传作图课件
1crossingAover)。
2
3
4
a
Ⅰห้องสมุดไป่ตู้
Ⅱ
C
从交换涉及到的染色
单体看,邻接的两个
交换的关系可有I-II1
二线双交换,I-II2四
线双交换,I-II3 三线
c
双交换,I-II4三线双
交换。三线、四线双
交换属多线交换。
• 双交换的特点:
• (1)双交换的频率显著低于单交换。如果两次同时发 生的交换互不干扰,各自独立,则双交换发生的频率 是:
(2)三两个连个锁单基交因换间各发自生发双交生换频的率结的果乘是积旁(侧基乘因法无定重律组)。。
3个基因中,只有处在中央位置的基因改变了位置,两端的 基因相对位置不变。因此,A-B、B-C之间发生重组,A-C之间 不发生重组,但发生了两次交换。因此,A-C之间重组率低于 实际交换值。
(三)重组率及其测定
• 如果交换发生在所研究的基因之外,就不会出现特定 基因的染色体内重组的产物。
(二)双交换
• 假定有一个互引相杂交组合AC/ac,A、C两个基因在I
、II区发生两次交换,I区发生交换的位置固定,II区在
非姊妹染色单体之间随机地发生另一次交换,即A、C
之间同时发生了两次交换,这就是双交换(double
2、自交法:进行测交比较困难时,可利用自交结果计算重组率。
RF=?
设F1产生四种配子PL,Pl,pL,pl 的比例分别为a, b, c, d。
则a+b+c+d=1,a=d,b=c
重组值
(重组率
)
重组型配子数目 总配子数目
100
%
F2的基因型的分离比例=(aPL:bPl:cpL:dpl)2,其中表现型为纯合双隐 性ppll的个体数是d2。
第四章 连锁遗传规律
第一节性状连锁遗传的表现●性状连锁遗传现象的发现最早是由Bateson等于1906在香豌豆的两对性状杂交试验中首先发现的。
●Bateson等的香豌豆实验实验一:P 紫花、长花粉粒× 红花、圆花粉粒PPLL ↓ ppllF紫花、长花粉粒1PpLl↓ ⊗紫、长紫、圆红、长红、圆总数F2P_L_ P_ll ppL_ ppll实际个体数 4831 390 393 1338 6952按9:3:3:1推算的理论数 3910.5 1303.5 1303.5 434.5 6952 从上图看出,F2代也出现四种表现型,但二种新组合的表现型比理论推算少得多,即象亲本组合的实际数偏多,而重新组合的实际数偏少。
实验二:P 紫花、圆花粉粒× 红花、长花粉粒PPll ↓ ppLLF紫花、长花粉粒1PpLl↓⊗紫、长紫、圆红、长红、圆总数F2P_L_ P_ll ppL_ ppll实际个体数 226 95 97 1 419按9:3:3:1推算的理论数235.8 78.5 78.5 26.2 419 这二个试验的结果都不能用独立分配规律来解释。
●连锁遗传的定义原来为同一亲本所具有的两个状性,F中常有连系在一起遗传的倾向,称2为连锁遗传。
(图4-1)●相引相(coupling phase)和相斥相(repulsion phase)○相引相:甲乙二个显性性状连系在一起遗传,甲乙两个隐性性状连系在一起遗传的杂交组合,称相引相。
○相斥相:甲显性和乙隐性性状连系在一起遗传,乙显和甲隐连系在一起遗传的杂交组合,称为相斥相。
虽然也表现4种表型,但不符合9:3:3:1比例,亲本组合的偏多重新F2组合的偏少。
不符合独立分配规律。
例果蝇杂交实验:首先获得纯种作亲本♂灰身残翅×黑身长翅♀BBvv bbVV↓♂灰长×黑翅BbVv bbvv↓侧交灰残:黑长=1:1♀灰长×黑长↓侧交灰残黑长黑残灰长41.5% 41.5% 8.5% 8.5%问题1.为什么侧交后代比例是如此?作♂或♀侧交后代不一样?2.为何F1中常常有连上述的实验结果表明:原来为同一亲本所具有的2个性状,在F2在一起遗传的倾向,这种现象即为——连锁遗传。
连锁遗传规律
浙江大学农学院
遗传学第4章
29
交换值(重组率): 指重新组合配子数占总配子数的百分率。
交换值(%)=(重新组合配子数/总配子数)×100
浙江大学农学院
遗传学第4章
30
一、测交法:
浙江大学农学院
遗传学第4章
31
上例玉米测交: 相引组 交换值为3.6%,两种重组配子各1.8 %; 相斥组 交换值为2.99%,两种重组配子各1.5 %。
浙江大学农学院
遗传学第4章
37
四、影响交换值的因子:
浙江大学农学院
遗传学第4章
38
1.性别:雄果蝇、雌蚕根本不发生交换; 2.温度:家蚕第二对染色体上PS-Y(PS黑斑、Y幼虫黄血)
饲养温度(℃) 30 28 26 23 19 交换值(%) 21.48 22.34 23.55 24.98 25.86 3.基因位于染色体上的部位: 离着丝点越近,其交换值越小,着丝点不发生交换。 4.其它:年龄、染色体畸变等也会影响交换值。 • 由于交换值具有相对稳定性,常以该数值表示两个基因在同一染色体上的 相对距离——遗传距离。 例如:3.6%即可称为3.6个遗传单位 • 遗传单位值愈大,两基因间距离愈远,愈易交换; 遗传单位值愈小,两基因间距离愈近,愈难交换。
第五节 基因定位与 连锁遗传图
浙江大学农学院
遗传学第4章
40
一、基因定位:
浙江大学农学院
遗传学第4章
24
二、交换与不完全连锁的形成:
浙江大学农学院
遗传学第4章
25
1.交换:成对染色体间基因的互换。
2.交换的过程:杂种减数分裂时期(前期I的粗线期)。
3.根据染色体细胞学行为和基因位置上的变化关系 可以
遗传作图及基因定位
连锁分析的原理
遗传标记与疾病基因连锁
通过分析遗传标记在疾病家系中的传递 情况,判断遗传标记与疾病基因是否连 锁。
VS
遗传距离与重组率
利用遗传标记与疾病基因的相对位置关系 ,计算遗传距离和重组率,进一步定位疾 病基因。
连锁分析的应用
定位到特定的染色体 区域。
生物信息学方法
利用计算机技术对大量基因组数据进 行整合分析,确定基因位置。
03
遗传标记与连锁分析
遗传标记的种类
形态学标记
利用个体的形态差异进行标记,如身高、肤色等。
细胞学标记
利用细胞分裂和染色体变异进行标记,如染色体数目和结构异常。
分子遗传标记
利用DNA序列变异进行标记,如单核苷酸多态性(SNP)。
遗传信息传递
生物体的遗传信息通过DNA分 子传递给后代,基因型的不同
会导致表型的不同。
连锁分析
利用基因型和表型之间的连锁 关系,通过统计分析确定基因 在染色体上的位置。
分子标记技术
利用DNA分子的多态性,通过比较 不同个体间的基因型差异,构建基 因型和表型之间的对应关系。
全基因组测序
通过对全基因组进行测序和分析,确 定基因在染色体上的位置和功能,进
疾病风险预测
基因定位可以帮助预测个体患某种疾病的风险,为预防措施提供指 导。
生物进化研究
01
物种起源与演化
基因定位有助于揭示物种的起源 和演化过程,了解生物多样性的 形成机制。
02
适应性进化研究
03
系统发生学研究
通过基因定位技术,可以研究生 物对环境变化的适应性进化过程。
基因定位有助于构建物种之间的 系统发生关系,为生物分类提供 依据。
连锁遗传规律(定位、作图、真菌连锁、性别决定、染色体
连锁遗传规律•连锁与交换规律•基因定位和遗传学图•链孢霉的连锁、互换和基因定位•性别决定•人类性别异常•伴性遗传、限性遗传和从性遗传粗糙链孢菌(Neurospora crassa)粗糙链孢菌的特点:⒈子囊孢子是单倍体,表型直接反映基因型。
⒉一次只分析一个减数分裂产物。
⒊体积小,易繁殖,易于培养。
⒋可进行有性生殖,染色体结构和功能类似于高等生物。
粗糙链孢酶的生活史:顺序四分子分析及其特点减数分裂产生4个孢子,按一定顺序排列在子囊内,叫顺序四分孢子或顺序四分子,对其进行分析叫顺序四分子分析。
特点:①一个顺序四分子是一个合子一次减数分裂的产物,它不和其它合子的减数分裂产物相混合,因此能够对合子进行单个的分析。
②顺序四分子中的四分孢子来源清楚。
③链孢霉是单倍体,无显隐性之分,不管显性还是隐性都能表现,表现型就代表基因型。
着丝粒作图(centromere mapping)利用四分子分析法,测定基因与着丝粒之间的距离。
将着丝粒作为一个位点(locus)来计算基因与着丝粒之间的距离。
链孢霉的野生型又称为原养型(prototroph),子囊孢子按时成熟呈黑色。
营养缺陷型(auxotroph),只能在完全培养基上生长,成熟较慢,子囊孢子呈灰白色。
Prototrophauxotroph测定营养缺陷型的方法:重组值=(交换型子囊数/交换+非交换型子囊数)×100% × 1/2例:++++---- 105----++++ 129++--++-- 9--++--++ 5++----++ 10--++++-- 16重组值=(9+5+10+16/9+5+10+16+105+129)×100% ×1/2=7.3%Lys 基因与着丝粒之间的距离是7.3cM 。
1/2的含义:在子囊孢子发生交换时,每发生一个交叉,一个子囊中有半数孢子发生重组。
配子数与子囊数性染色体决定型-XY型果蝇:2n=8 人类:雌性:AA(44)+XX(2)雄性:AA(44)+XY(2)性染色体决定型-XY型果蝇、鼠、牛、羊、人等属于这一类型。
基因定位常用的方法ppt课件
4)原位杂交的步骤
制备中期染色体 DNA原位变性 变性 放射性或非放射性标记探针 杂交(在载玻片上) 洗膜 放射性标记:放射自显影 检测 非放射性标记:荧光染料与抗体或蛋白结合 记录杂交信号 结合染色体形态进行基因定位
DMD女性患者的核型
X染色体与常染色体易位时X染色体失活的结果
两个研究小组分别采用两种不同的方法克隆了DMD基因: 一组是通过X常染色体易位,克隆了该基因的一部分。 另一研究组使用有Xp21.1微小缺失的男孩的DNA,利用消减技术,获得了在正常X染色体存在而在这个男孩DNA中缺乏的DNA克隆片段。
遗传做图:是以研究家族的减数分裂,以了解两个基因分离趋势为基础来绘制基因座位间的距离,它表明基因之间连锁关系和相对距离,并以重组率来计算和表示,以厘摩(cM)为单位。 染色体定位:只把基因定位到某条染色体上。 细胞水平上的基因图又称细胞遗传图 区域定位:从细胞遗传学水平,用染色体显带等技术在光学显微镜下观察,将基因定位到染色体的具体区带。
5)荧光原位杂交 (florescence in situ hybridization,FISH)
用特殊荧光素(dig或Biotin)标记探针DNA(Nick translation 标记法),变性成单链后与变性后的染色体或细胞核靶DNA杂交。在荧光显微镜下观察并记录结果。 FISH 优点:可用来作基因或特定DNA片段的染色体区 域定位。 缺点:必须在已知探针的情况下方可进行。
HAT选择系统:
人的突变细胞株:缺乏HGPRT酶 小鼠细胞株:缺乏TK酶 两者融合培养于HAT培养基中 HAT培养基: H为次黄嘌呤,是HGPRT的底物,为DNA合成提供原料(核苷酸旁路合成原料) A可阻断正常的DNA合成(嘌呤及TMP合成受抑制) T在胸苷激酶(TK)的作用下生成胸腺嘧啶核苷酸,为DNA合成提供原料
遗传学第3章连锁交换定律
1
本章内容
第一节 连锁交换定律的实质 第二节 重组率及其测定 第三节 基因定位 第四节 连锁和交换定律的意义
2
背景
1900年孟德尔遗传规律重新发现以后,生物界广 泛重视,进行了大量试验。
其中有些属于两对性状的遗传结果不符合自由组 合定律→ 摩尔根以果蝇为材料进行深入细致研究→ 提出连锁遗传定律→ 创立基因论→认为基因成直线排 列在染色体上,进一步发展为细胞遗传学。
20
在全部孢母细胞中,各联会的同源染色体在C与Sh基因间 不可能全部都发生交换,故重组率<50%;
例如玉米F1的100个孢母细胞中,交换发生在Cc和Shsh相 连区段之内的有7个,则重组率为3.5 %。 亲本组合=((193+193)/400)×100%=96.5% 重新组合=((7+7)/400)×100%=3.5%
14
三、 完全连锁和不完全连锁
(一)完全连锁 (complete linkage)
同源染色体上非等位基因间不能发生 非姐妹染色单体之间的交换→ F1只产生两 种亲型配子、其自交或测交后代个体的表 现型均为亲本组合。
15
(a)F1代自交,F2代表现 1:2:1的分离比 ;
(b)F1代的测交,测交后 代表现1:1的分离比
例如第一节中的香豌豆资料:
F2有4种表现型 F1有4种配子 设各配子的比例为
紫长 紫圆 红长 红圆
PL Pl pL pl
a
b cd
F2组合为
(aPL bPl cpL dpl)2
♣ 其中F2中纯合双隐性ppll个体数即为d2;
组成F2表现型ppll的F1配子必然是pl,其频率d 。
26
已知香豌豆ppll个体数为1338株(相引组); ∴ 表现型比率= d2 =1338/6952×100%=19.2%。
第4章——连锁遗传分析
不完全连锁
交换与不完全连锁的形成
• 重组合配子的产生是由于:减数分裂前期 I 同源染色体的 非姊妹染色单体间发生了节段互换。(基因论的核心内容)
1. 同一染色体上的各个非等位基因在染色体上各有一定的位置,呈
线性排列; 2. 染色体在间期进行复制后,每条染色体含两条姊妹染色单体,基 因也随之复制;
的准确性就不够高。
三点测验:步骤
1. 用三对性状差异的两个纯系作亲本进行杂交、测交: 2. 考察测交后代的表现型、进行分类统计。 3. 按各类表现型的个体数,对测交后代进行分组; 4. 进一步确定两种亲本类型和两种双交换类型; 5. 确定三对基因在染色体上的排列顺序。 用两种亲本型配子与两种双交换型配子比较,双交换配子与亲本型配子中 不同的基因位点位于中间。 6. 计算基因间的交换值。 由于双交换实际上在两个区域均发生交换,所以在估算每个区域交换值时, 都应加上双交换值,才能够正确地反映实际发生的交换频率。 7. 绘制连锁遗传图。
3. 同源染色体联会、非姊妹染色单体节段互换,导致基因交换,产生交换型染色单体; 4. 发生交换的性母细胞中四种染色单体分配到四个子细胞中,发育成四种配子(两种亲 本型、两种重组合型/交换型)。 5. 相邻两基因间发生断裂与交换的机会与基因间距离有关:基因间距离越大,断裂和 交换的机会也越大
重组型配子的比例
连锁分析与染色体作图
Part 02
重组值与交换值的概念
• 重组率/重组值:是指重组型配子占总配子的百分率。即:
重组型配子数 重组值(%) 100 % 总配子数
亲本型配子+重组型配子
•27
交换值:一般重组值也称交换值。 但是,实际上交换值一般大于重组值,因为有 时非等位基因间的多重交换并不形成重组配子。
05 生物竞赛之基因定位与染色体作图
计算ec—cv之间的重组值
ec +
F1
+ sc + cv
计算出ec-cv间的重组值为9.7%。
计算sc—cv之间的重组值
ec +
F1
+ sc + cv
算出sc-cv间的重组值为17.3%。
ec
7.6
sc
ec
9.7
cv
sc-cv间的重组值为17.3%。
这样,就可画出这三个基因在连锁图上的相对位置:
表型
实得数 810
828 62 88 89 103 1980 测交后代 的表型比例反 映F1雌果蝇的
测 交 后 代
ec + +
+ sc cv
ec sc +
+ + cv + sc + ec + cv 合计
配子的比例。
首先计算ec-sc间的重组值:
ec +
F1
+ sc + cv
亲组合为:810 + 828 + 89 + 103 =1830 重组合为:62 + 88 = 150 ec-sc间的重组值为150 /(1830+150)= 7.6%
实得数 2125 2207 273 265 217 223 5 3 5318
比例 81.5% 10.1% 8.3% 0.1%
ec + ec + ec + + ec
表型 ct + + ct + ct + ct
比例 + cv cv + + cv + cv 81.5% 10.1% Nhomakorabea8.3%
连锁遗传规律(定位、作图、真菌连锁、性别决定、染色体
连锁遗传规律•连锁与交换规律•基因定位和遗传学图•链孢霉的连锁、互换和基因定位•性别决定•人类性别异常•伴性遗传、限性遗传和从性遗传粗糙链孢菌(Neurospora crassa)粗糙链孢菌的特点:⒈子囊孢子是单倍体,表型直接反映基因型。
⒉一次只分析一个减数分裂产物。
⒊体积小,易繁殖,易于培养。
⒋可进行有性生殖,染色体结构和功能类似于高等生物。
粗糙链孢酶的生活史:顺序四分子分析及其特点减数分裂产生4个孢子,按一定顺序排列在子囊内,叫顺序四分孢子或顺序四分子,对其进行分析叫顺序四分子分析。
特点:①一个顺序四分子是一个合子一次减数分裂的产物,它不和其它合子的减数分裂产物相混合,因此能够对合子进行单个的分析。
②顺序四分子中的四分孢子来源清楚。
③链孢霉是单倍体,无显隐性之分,不管显性还是隐性都能表现,表现型就代表基因型。
着丝粒作图(centromere mapping)利用四分子分析法,测定基因与着丝粒之间的距离。
将着丝粒作为一个位点(locus)来计算基因与着丝粒之间的距离。
链孢霉的野生型又称为原养型(prototroph),子囊孢子按时成熟呈黑色。
营养缺陷型(auxotroph),只能在完全培养基上生长,成熟较慢,子囊孢子呈灰白色。
Prototrophauxotroph测定营养缺陷型的方法:重组值=(交换型子囊数/交换+非交换型子囊数)×100% × 1/2例:++++---- 105----++++ 129++--++-- 9--++--++ 5++----++ 10--++++-- 16重组值=(9+5+10+16/9+5+10+16+105+129)×100% ×1/2=7.3%Lys 基因与着丝粒之间的距离是7.3cM 。
1/2的含义:在子囊孢子发生交换时,每发生一个交叉,一个子囊中有半数孢子发生重组。
配子数与子囊数性染色体决定型-XY型果蝇:2n=8 人类:雌性:AA(44)+XX(2)雄性:AA(44)+XY(2)性染色体决定型-XY型果蝇、鼠、牛、羊、人等属于这一类型。
遗传学 连锁遗传规律
c. 交换结果:产生非亲本型(重组型)配子
×
F1
偶线期同源染 色体联会
配子产生
粗线期同源染色 体的非姊妹染色 单体交换
配子
中期Ⅰ
减数第二分裂
细胞学证据:交换后的交叉
交换与交叉
交换:遗传学术语,是指等位基因交换
连锁遗传
不同性状联系在一起向后代传递的现象。
完全连锁(complete linkage) 不完全连锁 (incomplete linkage)
(三)完全连锁与不完全连锁
1、连锁的本质 由于生物的基因有成千上万,而染色体
只有几十条,所以一条染色体必然也必须载
荷许多基因,同一染色体上的基因彼此制约 具有一起向后传递的趋势,就形成了连锁。
P 紫花、长花粉粒(PPLL)× 红花、圆花粉粒(ppll) ↓ F1 F2 紫长(PpLl) ↓ 紫长(P_L_) 紫圆(P_ll) 红长(ppL_) 红圆(ppll)
观察数: 4831
390
393
1338
6952
F1
紫长(PpLl)
利用自交资料计算重组率
从隐性纯合体入手,首先计算出 双隐性配子的频率,再推测双显 性配子的频率。
aB ab
AaBb Aabb n1 n2
aaBb aabb n3 n4
Rf=(n2+n3)/(n1 +n2+n3+n4)
利用自交测定重组率
P 紫花、长花粉粒(PPLL)× 红花、圆花粉粒(ppll) ↓ F1 F2 紫长(PpLl) ↓ 紫长(P_L_) 紫圆(P_ll) 红长(ppL_) 红圆(ppll)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三点测验法
P 凹陷、非糯性、有色 × 饱满、糯性、无色
shsh++++ ↓ ++wxwxcc
F1 饱满、非糯性、有色 × 凹陷、糯性、无色
+sh+wx+c ↓ shshwxwxcc
+wxc 2708
}亲 型
sh++
2538
++ c
626
}单交换
shwx+ 601
sh+ c
113
}单交换
+ wx+ 116
b
c 5%C 5%B Nhomakorabea 5%a
C 20%
b
c 20%
三对基因不完全连锁
❖ 确定基因顺序 按照“一变或一不变” 的法则确定之。
首先从Ft中选出亲本基因型,如:上例
变)
+ wx c ++ +
亲型 双交换型 (一不
+ wx c sh wx c
亲型 双交换型 (一变)
该基因sh 就位于中间 ,其基因顺序为:
│
│
│
│←─── 16.4 ────→│← 3.6→ │
│←─────── 20 ─────→ │
用两点测验法进行基因定位步骤 多,比较麻烦;
用两点测验法当基因相距较远时,
其间可能发生两次以上的部分染色体 片断交换,使重组配子出现频率小于 实际交换频率。使测定的交换值不准 确,因此实际工作中常常采用三点测 验法。
3.50%
连锁遗传图
c
Sh
Wx
━┿━━━━┿━━━━━━━━━━━┿━
3.50
18.38
Wx-c之间的距离为:18.38 + 3.50 = 21.88
干扰与符合
❖ 一个单交换发生后,在它邻近再发生第 二个单交换的机会就会减少。这种现象 称为干扰 (interference)。对于受到干 扰的程度,通常用符合系数 (coefficient of coincidence)来表示:
❖ 已知交换值为2.4%,说明F1的两种重组配子( Pi-zt lm, pi-zt Lm)各为2.4%/2=1.2%,两种亲型配子 (Pi-zt Lm, pi-zt lm)各为 (100-2.4)%/2=48.8%。
❖ F2中选得5株理想的纯合体,按10000:1.44二x:5的比例式计 算,其群体至少须种3.5万株,这样才能满足原订计划的要 求。
+++
4
}双交换
shwxc
2
总数 6708
三点测验法的具体步骤
❖ Ft表型判断三基因是否连锁 ❖ 确定三基因连锁后,推断三基因的顺序 ❖ 计算交换值 ❖ 绘制基因位置图 ❖ 干扰和符合
Ft表型判断三基因是否连锁
❖ 若三基因为完全连锁关系,则Ft只能表 现二种表型。
❖ 若三基因是独立遗传的,则Ft应该表现 出八种表型, 且数目相等;
例如:玉米的C-c、Wx-wx、Shsh 基因位于一条染色体上
❖ C-c(玉米子粒有色与无色)
❖ Wx-wx(玉米子粒淀粉非糯与糯性)
❖ Sh-sh (玉米子粒形状饱满与凹陷)
测定程序
❖ 第一个杂交:
有色饱满 无色凹陷
CCShSh × ccshsh ─→F1 CcShsh
❖ 第一个测交:
有色饱满 无色凹陷
CcShsh × ccshsh ─→Ft
亲组合CcShsh 4032 4035
ccshsh
重组合Ccshsh 149
ccShsh
152
三基因位点间的距离已定,接着确定它们之间 的顺序:有两种可能:
第一种:
c
Sh
Wx
━┿━━━━┿━━━━━━━━━━━┿━
3.6
20
第二种:
Wx
C
Sh
━┿━━━━━━━━━━━┿━━━━┿━
❖ 若三基因中有两基因连锁,一基因独立 遗传,则Ft应该表现出八种表型,两组 比例,每四种表型的比例一样;(例如)
❖ 现在Ft八种表型分四组且各组之间的比 例不同,说明三基因只能是同在一条染 色体上,且三基因为不完全连锁关系。
AB/ab,C/c,a-b间交换值为
20%
C 20%
B c 20%
A
C 5%
wx-sh -c
+ wx c
sh + + ++c
sh wx + sh + c
+ wx + ++ +
sh wx c 总数 交换值
交换值的计算
2708 }亲 型
sh-wx
2538
626 }单交换 18.29%
601
113 }单交换
116
4 }双交换 0.09%
2
6708
18.38%
sh-c
3.41% 0.09%
❖ 符合系数=实际双交换/理论双交换
=0.09%/(18.38%*3.50%)=0.14 %
连锁遗传规律的应用
❖ 例如,已知水稻的抗稻瘟病基因 (Pi-zt)与晚熟基因 (Lm) 都是显性,而且是连锁遗传的,交换值仅2·4%。如果用抗病、 晚熟材料作为一个亲本,与染病、早熟的另一亲本杂交,计 划的在己F群3选体出至抗少病要、种早植熟若的干5株个?纯合株系,那末这个杂交组合