《随机过程》第六章习题
随机过程课后习题答案
随机过程课后习题答案随机过程课后习题答案随机过程是概率论和数理统计中的一个重要分支,研究的是随机事件在时间上的演变规律。
在学习随机过程的过程中,习题是不可或缺的一部分。
通过解习题,我们可以更好地理解和掌握随机过程的基本概念和性质。
下面是一些随机过程课后习题的答案,希望对大家的学习有所帮助。
1. 假设随机过程X(t)是一个平稳过程,其自协方差函数为Cov[X(t), X(t+h)] =e^(-2|h|),求该过程的自相关函数。
解:首先,自协方差函数Cov[X(t), X(t+h)]可以通过自相关函数R(t, h)来表示,即Cov[X(t), X(t+h)] = R(t, h) - E[X(t)]E[X(t+h)]。
由于该过程是平稳过程,所以E[X(t)]和E[X(t+h)]是常数,可以将其记为μ。
因此,Cov[X(t), X(t+h)] = R(t, h) - μ^2。
根据题目中给出的自协方差函数,我们有e^(-2|h|) = R(t, h) - μ^2。
将μ^2移到等式左边,得到R(t, h) = e^(-2|h|) + μ^2。
所以,该过程的自相关函数为R(t, h) = e^(-2|h|) + μ^2。
2. 假设随机过程X(t)是一个平稳过程,其自相关函数为R(t, h) = e^(-3|h|),求该过程的均值和方差。
解:由于该过程是平稳过程,所以均值和方差是常数,可以将均值记为μ,方差记为σ^2。
根据平稳过程的性质,自相关函数R(t, h)可以表示为R(h) = E[X(t)X(t+h)] =E[X(0)X(h)]。
根据题目中给出的自相关函数,我们有R(h) = e^(-3|h|)。
将t取为0,得到R(h) = E[X(0)X(h)] = μ^2。
所以,该过程的均值为μ。
根据平稳过程的性质,方差可以表示为Var[X(t)] = R(0) - μ^2。
将t取为0,得到Var[X(t)] = R(0) - μ^2 = e^(-3*0) - μ^2 = 1 - μ^2。
(完整版)上海大学随机过程第六章习题及答案
第三章 习 题1.甲乙两人进行某种比赛,设每局比赛中甲胜的概率为p ,乙胜的概率为q ,平局的概率为r ,其中,,0,1p q r p q r ≤++=,设每局比赛后,胜者得1分,负者得1-分,平局不记分,当两个人中有一个人得到2分时比赛结束,以n X 表示比赛至第n 局时甲获得的分数,则{,1}n X n ≥是一齐冯马尔可夫链.(1)写出状态空间;(2)求一步转移概率矩阵;(3)求在甲获得1分的情况下,再赛2局甲胜的概率. 解(1){,0}n X n ≥的状态空间为{2,1,0,1,2}S =--(2){,0}n X n ≥的一步转移概率矩阵为1000000000001q rp q r p q r p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦P (3)因为两步转移概率矩阵为22(2)22222210000202220200001q rq r pq pr p q rq r pqpr p q qr pq r p pr ⎡⎤⎢⎥++⎢⎥⎢⎥==+⎢⎥++⎢⎥⎢⎥⎣⎦P P所以在甲获得1分的情况下,再赛2局甲胜的概率为(2)12(1)p p pr p r =+=+2.设{,1,2,}i Y i =L 为相互独立的随机变量序列,则 (1){,1,2,}i Y i =L 是否为Markov 链? (2)令1nn ii X Y ==∑,问{,1,2,}iX i =L 是否为Markov 链?解(1)由于11221112211122111221111221(,,,,) (,,,)(,,,)()()()()()()(,,,)n n n n n n n n n n n P Y i Y i Y i Y j P Y j Y i Y i Y i P Y i Y i Y i P Y i P Y i P Y i P Y j P Y j P Y j Y i P Y i Y i Y i ------=========================L L L L L因此,{,1,2,}n Y n =L 是马尔可夫链.(2)取1111()f U X U ==,当11U i =时,212X U U =+是2U 的函数,记为22().f U 依次类推,1121n n X U U U --=+++L 为1n U -的函数,记为1112(),n n n n f U X U U U --=+++L 为n U 的函数,记为().n n f U 由于12,,,,n U U U L L 相互独立,则其相应的函数1122(),(),,(),n n f U f U f U L L 也相互独立,从而122111221111112211 (,,,)(,,,)(,,,)()()nn n i n i n n n n n n P X j X i X i X i P Y j X i X i X i P X Y j X i X i X i P Y j i P X j X i --=---==========+======-===∑L L L因此{,1,2,}n X n =L 是马尔可夫链.3 设,1,2,i X i =L 是相互独立的随机变量,且使得(),0,1,i j P X j a j ===L ,如果max{,1,2,,1}n i X X i n >=-L ,其中0X =-∞,就称在时刻n 产生了一个记录.若在时刻n产生了一个记录,就称n X 为记录值,以n R 表示第n 个记录值. (1)证明,{,1,2,}n R n =L 是Markov 链,并求其转移概率;(2)以i T 表示第i 个与第1i +记录之间的时间,问{,1,2,}n T n =L 是否是Markov 链,若是,则计算其转移概率.证明:(a )根据题意有:k n k n n X R X R X R ===,....,2121,……满足........21k n n n X X X << 且........121k n n n <<<故},...,|{11111i R i R i R z R P k k k k k ====--+}...|{111i i i j z R P k k k >>>>==-+ }|{1k k i j z R P >==+}|{1k k k i R z R P ===+ 故}1,{≥i R i 是一个马尔可夫链且⎩⎨⎧≤>======++i j ij a i X z X P i R z R P j k n n k k k k k ,0,}|{}|{11 (由于i X 的独立性)(b )记i T 为第i 个记录与第1i +个记录之间的时间,i T 是相互独立的随机变量,因为{}i P T t =}1...,2,1,,|{k 1-=<=====+++t k i X i X R z X R P i i i n n i t n i 且}{1z X R P tn i i ===++=⎩⎨⎧≤>ij i j a j ,0,(由于i X 的独立性)故{i T ,1≥i }是一个马尔可夫链 令(,),1i i i Z R T i =≥ 则{}111,,,i i i P Z Z Z Z +-…{}111111(,)(,),(,),,(,)i i i i i i P R t R t R t R t ++--=…{}1111112111111211(,)(,),(,),,(,),(,)i i i t t i t t i t t i t t P X t X t X t X t X t +-+++++++-++=…+?+?+… {}111111(,)(,)i i t t i t t i P X t X t ++++++=…+?+ {}111111(,)(,)i i t t i t t i P X z t X i t ++++++===…+?+,0,j j i j iα>⎧=⎨≤⎩ 故}{,(),1i i R T i ≥是一个马尔可夫链。
《随机过程》第6章习题及参考答案
湖南大学本科课程《随机过程》第6章习题及参考答案主讲教师:何松华 教授1. 给定实数x 和一个平稳随机过程()X t ,定义理想门限系统的特性为1()()0()X t xY t X t x≤⎧=⎨>⎩ 试证:(1) [()]()X E Y t F x =;(2) ()](,,)Y X R F x x ττ=证:(1) ()Y t 在任意时刻为只有两种取值1,0的随机变量,则[()]1{()1}0{()0}{()1}{()}(,)() ()X X E Y t P Y t P Y t P Y t P X t x F x t F x =⨯=+⨯====≤==根据平稳性(2)根据相关函数定义,有()][()()]11{()1,()1}01{()0,()1} 10{()1,()0}00{()0,()0}{()1,()1}{(),()}(,;,)(,;) ()Y X X R E Y t Y t P Y t Y t P Y t Y t P Y t Y t P Y t Y t P Y t Y t P X t x X t x F x x t t F x x ττττττττττ=+=⨯⨯+==+⨯⨯+==+⨯⨯+==+⨯⨯+===+===+≤≤=+=根据平稳性2.设平方律检波器的传输特性为2y x =,在检波器输入端加入一窄带高斯随机过程()X t ,其概率密度函数为22()()}2X Xx a f x σ-=- 在检波器后联接一个理想低通滤波器,求低通滤波器输出过程的一维概率密度和均值;当0a =时结果有何变化。
解:根据题意,()X t 为非零均值的中频窄带随机过程,可以表示为:00()()cos()()sin()C S X t a A t t A t t ωω=+-其中()C A t 、()S A t 为零均值窄带随机过程的同向分量以及正交分量,都服从均值为0、方差为2X σ的正态分布,且在同一时刻互不相关,则检波器输出信号22002222200000()[()cos()()sin()]1111()()2()cos()()cos(2)()cos(2)2222 2()sin()()()sin(2)C S C S C C S S C S X t a A t t A t t a A t A t aA t t A t t A t t aA t t A t A t t ωωωωωωω=+-=++++--- 通过理想低通滤波后,滤波器输出信号为2221()[()()]2C S Z t a A t A t =++由于随机变量()C A t 、()S A t 为互不相关(正态分布情况与独立等价)的正态随机变量,则22122()()()C S XXA t A t Z t σσ=+服从自由度为2的卡方分布,即11121/22/211221()22(2/2)z z Z z ef z e ---==Γ 221()()2X Z t Z t a σ=+,2122[()]()[()]XZ t a Z t h Z t σ-==,根据随机变量函数的概率密度关系,()Z t 的一维概率密度分布函数为22122()1()[()] ()X z a Z Z Xdh z f z f h z e z a dz σσ--==≥2222222211[()]{[()()]}[]22C S X X X E Z t E a A t A t a a σσσ=++=++=+当0a =时,221() (0)X zZ Xf z e z σσ-=≥,2[()]X E Z t σ=。
上海大学随机过程第六章习题及答案
第三章 习 题1.甲乙两人进行某种比赛,设每局比赛中甲胜的概率为p ,乙胜的概率为q ,平局的概率为r ,其中,,0,1p q r p q r ≤++=,设每局比赛后,胜者得1分,负者得1-分,平局不记分,当两个人中有一个人得到2分时比赛结束,以n X 表示比赛至第n 局时甲获得的分数,则{,1}n X n ≥是一齐冯马尔可夫链.(1)写出状态空间;(2)求一步转移概率矩阵;(3)求在甲获得1分的情况下,再赛2局甲胜的概率. 解(1){,0}n X n ≥的状态空间为{2,1,0,1,2}S =--(2){,0}n X n ≥的一步转移概率矩阵为1000000000001q rp q r p q r p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦P (3)因为两步转移概率矩阵为22(2)22222210000202220200001q rq r pq pr p q rq r pqpr p q qr pq r p pr ⎡⎤⎢⎥++⎢⎥⎢⎥==+⎢⎥++⎢⎥⎢⎥⎣⎦P P所以在甲获得1分的情况下,再赛2局甲胜的概率为(2)12(1)p p pr p r =+=+2.设{,1,2,}i Y i =为相互独立的随机变量序列,则 (1){,1,2,}i Y i =是否为Markov 链?(2)令1nn ii X Y ==∑,问{,1,2,}iX i =是否为Markov 链?解(1)由于11221112211122111221111221(,,,,) (,,,)(,,,)()()()()()()(,,,)n n n n n n n n n n n P Y i Y i Y i Y j P Y j Y i Y i Y i P Y i Y i Y i P Y i P Y i P Y i P Y j P Y j P Y j Y i P Y i Y i Y i ------=========================因此,{,1,2,}n Y n =是马尔可夫链.(2)取1111()f U X U ==,当11U i =时,212X U U =+是2U 的函数,记为22().f U 依次类推,1121n n X U U U --=+++为1n U -的函数,记为1112(),n n n nf U X U U U --=+++为n U 的函数,记为().n n f U 由于12,,,,n U U U 相互独立,则其相应的函数1122(),(),,(),n n f U f U f U 也相互独立,从而122111221111112211 (,,,)(,,,)(,,,)()()nn n i n i n n n n n n P X j X i X i X i P Y j X i X i X i P X Y j X i X i X i P Y j i P X j X i --=---==========+======-===∑因此{,1,2,}n X n =是马尔可夫链.3 设,1,2,i X i =是相互独立的随机变量,且使得(),0,1,i j P X j a j ===,如果max{,1,2,,1}n i X X i n >=-,其中0X =-∞,就称在时刻n 产生了一个记录.若在时刻n产生了一个记录,就称n X 为记录值,以n R 表示第n 个记录值. (1)证明,{,1,2,}n R n =是Markov 链,并求其转移概率;(2)以i T 表示第i 个与第1i +记录之间的时间,问{,1,2,}n T n =是否是Markov 链,若是,则计算其转移概率.证明:(a )根据题意有:k n k n n X R X R X R ===,....,2121,……满足........21k n n n X X X << 且........121k n n n <<<故},...,|{11111i R i R i R z R P k k k k k ====--+}...|{111i i i j z R P k k k >>>>==-+ }|{1k k i j z R P >==+}|{1k k k i R z R P ===+ 故}1,{≥i R i 是一个马尔可夫链且⎩⎨⎧≤>======++i j ij a i X z X P i R z R P j k n n k k k k k ,0,}|{}|{11 (由于i X 的独立性)(b )记i T 为第i 个记录与第1i +个记录之间的时间,i T 是相互独立的随机变量,因为{}i P T t =}1...,2,1,,|{k 1-=<=====+++t k i X i X R z X R P i i i n n i t n i 且}{1z X R P tn i i ===++=⎩⎨⎧≤>ij i j a j ,0,(由于i X 的独立性)故{i T ,1≥i }是一个马尔可夫链 令(,),1i i i Z R T i =≥ 则{}111,,,i i i P Z Z Z Z +-…{}111111(,)(,),(,),,(,)i i i i i i P R t R t R t R t ++--=…{}1111112111111211(,)(,),(,),,(,),(,)i i i t t i t t i t t i t t P X t X t X t X t X t +-+++++++-++=…+?+?+… {}111111(,)(,)i i t t i t t i P X t X t ++++++=…+?+ {}111111(,)(,)i i t t i t t i P X z t X i t ++++++===…+?+,0,j j i j iα>⎧=⎨≤⎩ 故}{,(),1i i R T i ≥是一个马尔可夫链。
上海大学随机过程第六章习题与答案
第三章 习 题1.甲乙两人进行某种比赛,设每局比赛中甲胜的概率为p ,乙胜的概率为q ,平局的概率为r ,其中,,0,1p q r p q r ≤++=,设每局比赛后,胜者得1分,负者得1-分,平局不记分,当两个人中有一个人得到2分时比赛结束,以n X 表示比赛至第n 局时甲获得的分数,则{,1}n X n ≥是一齐冯马尔可夫链.(1)写出状态空间; (2)求一步转移概率矩阵;(3)求在甲获得1分的情况下,再赛2局甲胜的概率. 解(1){,0}n X n ≥的状态空间为{2,1,0,1,2}S =--(2){,0}n X n ≥的一步转移概率矩阵为1000000000001q rp q r p q r p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦P (3)因为两步转移概率矩阵为22(2)22222210000202220200001q rq r pq pr p q rq r pqpr p q qr pq r p pr ⎡⎤⎢⎥++⎢⎥⎢⎥==+⎢⎥++⎢⎥⎢⎥⎣⎦P P所以在甲获得1分的情况下,再赛2局甲胜的概率为(2)12(1)p p pr p r =+=+2.设{,1,2,}i Y i =L 为相互独立的随机变量序列,则(1){,1,2,}i Y i =L 是否为Markov 链? (2)令1nn ii X Y ==∑,问{,1,2,}iX i =L 是否为Markov 链?解(1)由于11221112211122111221111221(,,,,) (,,,)(,,,)()()()()()()(,,,)n n n n n n n n n n n P Y i Y i Y i Y j P Y j Y i Y i Y i P Y i Y i Y i P Y i P Y i P Y i P Y j P Y j P Y j Y i P Y i Y i Y i ------=========================L L L L L因此,{,1,2,}n Y n =L 是马尔可夫链.(2)取1111()f U X U ==,当11U i =时,212X U U =+是2U 的函数,记为22().f U 依次类推,1121n n X U U U --=+++L 为1n U -的函数,记为1112(),n n n n f U X U U U --=+++L 为n U 的函数,记为().n n f U 由于12,,,,n U U U L L 相互独立,则其相应的函数1122(),(),,(),n n f U f U f U L L 也相互独立,从而122111221111112211 (,,,)(,,,)(,,,)()()nn n i n i n n n n n n P X j X i X i X i P Y j X i X i X i P X Y j X i X i X i P Y j i P X j X i --=---==========+======-===∑L L L因此{,1,2,}n X n =L 是马尔可夫链.3 设,1,2,i X i =L 是相互独立的随机变量,且使得(),0,1,i j P X j a j ===L ,如果max{,1,2,,1}n i X X i n >=-L ,其中0X =-∞,就称在时刻n 产生了一个记录.若在时刻n 产生了一个记录,就称n X 为记录值,以n R 表示第n 个记录值.(1)证明,{,1,2,}n R n =L 是Markov 链,并求其转移概率;(2)以i T 表示第i 个与第1i +记录之间的时间,问{,1,2,}n T n =L 是否是Markov 链,若是,则计算其转移概率.证明:(a )根据题意有:k n k n n X R X R X R ===,....,2121,……满足........21k n n n X X X << 且........121k n n n <<<故},...,|{11111i R i R i R z R P k k k k k ====--+}...|{111i i i j z R P k k k >>>>==-+ }|{1k k i j z R P >==+}|{1k k k i R z R P ===+ 故}1,{≥i R i 是一个马尔可夫链且⎩⎨⎧≤>======++i j ij a i X z X P i R z R P j k n n k k k k k ,0,}|{}|{11 (由于i X 的独立性)(b )记i T 为第i 个记录与第1i +个记录之间的时间,i T 是相互独立的随机变量,因为{}i P T t =}1...,2,1,,|{k 1-=<=====+++t k i X i X R z X R P i i i n n i t n i 且}{1z X R P t n i i ===++=⎩⎨⎧≤>i j ij a j ,0,(由于i X 的独立性)故{i T ,1≥i }是一个马尔可夫链 令(,),1i i i Z R T i =≥ 则{}111,,,i i i P Z Z Z Z +-…{}111111(,)(,),(,),,(,)i i i i i i P R t R t R t R t ++--=…{}1111112111111211(,)(,),(,),,(,),(,)i i i t t i t t i t t i t t P X t X t X t X t X t +-+++++++-++=…+?+?+… {}111111(,)(,)i i t t i t t i P X t X t ++++++=…+?+ {}111111(,)(,)i i t t i t t i P X z t X i t ++++++===…+?+,0,j j ij iα>⎧=⎨≤⎩ 故}{,(),1i i R T i ≥是一个马尔可夫链。
第六章 随机过程
1、修理一个机器所需要的时间T 是均值为1/2(小时)的指数随机变量 (a )问修理时间超过1/2小时的概率是多少?(b )已知修理持续时间超过12小时,问修理时间至少需要12.5小时的概率是多少?2、考察一个由两个办事员经营的邮局。
假设当甲进入邮局的时候,他发现乙正在接受一个办事员的服务,丙正在接受另一个办事员的服务。
甲被告知,只要乙或丙中的一个离开,他的服务就可以立刻开始。
如果一个办事员用在一个顾客上的时间是以均值为1/λ指数地分布的,那么在这3个顾客中,甲是最后一个离开邮局的概率是多少?3、若X1和X2是独立的非负连续随机变量,证明:)()()(}),min(|{2112121t r t r t r t X X X X P +==<其中)(t r i 是Xi 的失效率函数。
4、某种理论假设细胞分裂的错误按速率每年2.5个的泊松过程发生,而人体在发生了196个这种错误后死亡。
假设该理论成立,求(1)人的平均寿命(2)人在67.2岁前死亡的概率(3)人活到90岁的概率(4)人活到100岁的概率5、令{N(t),t ≥0}是速率为λ的泊松过程,以Sn 记第n 个事件发生的时间。
求(1)][4S E(2)]2)1(|[4=N S E(3)]3)1(|)2()4([=-N N N E6、事件按速率为每小时λ=24的泊松过程发生。
(1)在下午8:00到9:00没有事件发生的概率是多少?(2)从正午开始,到第四个事件发生的期望时间是多少?(3)在下午6:00到8:00有两个或两个以上事件发生的概率是多少?7、顾客按速率为λ的泊松过程进入银行。
假设两个顾客在第一小时内到达。
下面的概率分别是多少?(1)两个顾客都在前20分钟内到达(2)至少一个顾客在前20分钟内到达8、某人负责订阅杂志,设前来订阅的顾客是一天内平均达到率为8的泊松过程,他们分别以概率1/2、1/3和1/6订阅1季、2季和3季的杂志,其选择是相互独立的。
《随机过程及其在金融领域中的应用》习题六答案
P X t h X t 1 X t 为偶数 h h
取初始条件 X 0 0 ,求下列概率
p1 t P X t 奇数, p2 t P X t 偶数
答:
记 p1 t P X t 奇数 X 0 0, p2 t P X t 偶数 X 0 0
k 1
k 1
m0
z m t Pim
m0
t
zm
z2 t
z
m0
Pim
t zm
z2
t
G t, z
z
④
1
t
Pi1
t
k1
k 1
t
Pik 1
t
zk1 z Nhomakorabea
k 1
P X t h 偶数 X t 奇数 p1 t P X t h 偶数 X t 偶数 p2 t
h 1 p2 t 1 h p2 t h
p2 t p2 t
于状态 0 的概率 P00 t 。
答:
设 x t 为 t 时刻所处状态,记
P00 t P xt 0 x0 0, P01 t Px t 1 x 0 0
易知: P00 t P01 t 1 ,采用无穷小分析法
P00 t t P x t t 0 x 0 0 P x t t 0, x t 0 x 0 0 P x t t 0, x t 1 x 0 0 P00 t P x t t 0 x t 0 P01 t P x t t 0 x t 1
随机过程试题与答案
随机过程试题与答案《随机过程》试题一、简答题(每小题4分,共16分) 1、φX t =E e jtX2、acos ωt +π3 ,acos ωt ?π4 . (任意两条即可)3、N t 为参数λ的poison 过程,{X n }是独立同分布的随机变量序列,且与N t相互独立,则称Y t = X n N tn=1为复合poison 过程。
4、二重积分 R X s,t dsdt ba b a 存在且有限。
二、(本题10分)解:(1)P N 12 ?N 8 =0 =e ?12. (5分)(2)f T t =3e ?3t t >00t ≤0(10分)三、(本题12分)解:(1){0,3}是正常返的闭集,{1,4}是正常返的闭集,{2}是非常返的。
(4分)(2)对于{0,3}和{1,4}的转移概率矩阵分别为P 1= 0.60.40.40.6 ,P 2= 0.60.40.20.8 (6分)记z 1 =(z 1 1,z 2 1),z 2 =(z 1 2,z 2 2),求解方程组z 1 =z 1 P 1, z 1 1 +z 2 1=1z 2 =z 2 P 2, z 1 2 +z 2 2=1得z 1 = 12,12 , z 2 = 13,23 。
则平稳分布为(10分)π= λ1,λ2,0,λ1,2λ2(12分)四、(本题13分)解:(1)Q = ?λλμ?(λ+μ) 0 0λ 00 μ0 0 ?(λ+μ)λμ?μ (4分)前进方程dP(t)dt =P(t)Q (6分)后退方程dP(t)dt=QP(t) (8分)(2)由πQ =0,π=1, π=(π0,π1,π2,π3) 解得平稳分布为π0=1?λμ1? λμ4,π1=λμ 1?λμ1? λμ4,π2=λμ2 1?λμ1? λμ4,π3=λμ3 1?λμ1? λμ4(13分) 五、(本题13分)解:(1)对任意的t 1,t 2,?,t n ∈R ,Z t 1 Z t 2 ?Z t n = t 12t 22?t n2 2t 12t 2?2t n X Y + ?2?2?2?2因X,Y 是相互独立的正态分布,所以 XY 是正态分布,又线性变换的性质可知Z t 1 ,Z t 2 ,?,Z t n T 服从多元正态分布,故Z t 是正态过程。
随机过程第六章平稳随机过程
6.1 平稳随机过程的概念
• 宽平稳过程
严平稳过程
• 严平稳过程 二阶矩存在 宽平稳过程
正态过程
• 严平稳过程
宽平稳过程
4
6.1 平稳随机过程的概念
例6.1 设X(t)=Ycos(t)+Zsin(t), t>0,且Y, Z相互独立, EY=EZ=0,DY=DZ=2,试讨论随机过程{X(t), t>0}的平稳 性。
其中ti1 ti ti (i 1, 2, , n)
36
6.3 随机分析简介
定义6.8 如果当n0时,Sn均方收敛于S,即
,
则称 f (t) X (t) 在区间[a, b]上均方可积,并记为
b
n
S
a
f (t) X (t)dt
l.i.m n 0
i 1
f (ti)X (ti)(ti ti1)
令
l.i.m
n
Xn
X,
l.i.m
n
Yn)
l.i.m
n
cn
lim
n
cn
c
(2) l.i.mU U n
(3)
l.i.m
n
cnU
cU
27
6.3 随机分析简介
(4)
l.i.m
n
aX
n
bYn
aX
bY
(5)
lim
n
EX
n
EX
E
ln.i.m
X
n
(6)
lim E
n
XnYm
E[XY ]
则称X(t)和Y(t)是联合平稳随机过程。
18
6.2 联合平稳随机过程
命题:当X(t)和Y(t)是联合平稳随机过程时,W(t)=X(t)+Y(t)是平 稳随机过程。事实上,EW(t)=EX(t)+EY(t)=常数,
(完整版)随机过程习题答案
解 转移概率如图
一步概率转移矩阵为
10000 111
00 333 P 01110
333
00111 333
00001
二步转移概率矩阵为
10 0 00 1 00 0 0
11 1 00 11 1 0 0
3 33
333
P (2)
111
111
0
00
0
33 3
333
00 1 11 0 01 11
333
333
00 0 01 0 00 01
(3) mX (t ) 1 cos( t) 1 2t 1 cos( t ) t
2
2
2
1 mX (1)
2
2 X
(t )
E[ X 2 (t)] [ EX (t )] 2
1 cos2 ( t )
1 ( 2t) 2
1 [ cos( t )
t]2
2
2
2
1 cos2 ( t) 2t 2 1 cos2 ( t) t 2 t cos( t)
。
解 (1) t
1
时,
X ( 1) 的分布列为
2
2
1
0
1
X( )
2
P
1
1
2
2
一维分布函数
0, x 0
1
1
F ( , x) ,
2
2
1,
0 x1 x1
t 1 时, X (1) 的分布列为
-1
2
X (1)
P
1
1
2
2
一维分布函数
0, x 1
1
F (1, x)
,
2
湖南大学《随机过程》课程习题集
湖南大学本科课程《随机过程》习题集主讲教师:何松华教授第一章:概述及概率论复习设一批产品共50个,其中45个合格,5个为次品,从这一批产品中任意抽取 3个,求 其中有次品的概率。
设一批零件共100个,次品率为10%,每次从其中任取一个零件,取出的零件不再放 回,求第3次才取得合格品的概率。
设一袋中有N 个球,其中有M 个红球,甲、乙两人先后各从袋中取出一个球,求乙取 得红球的概率(甲取出的球不放回)。
设一批产品有N 个,其中有M 个次品,每次从其中任取一个来检查,取出后再放回, 求连续n 次取得合格品的概率。
设随机变量X 的概率分布函数为连续的,且其中0为常数,求常数A 、B 的值 设随机变量X 的分布函数为F (x) A Barctg(x) (- <x< )(1)求系数A 、B ; (2)求随机变量落在(-1,1)内的概率;(3)求其概率密度函数。
已知二维随机变量(X,丫的联合概率密度分布函数为6xy(2 x y) 0 x,y 1f xY (x,y )elsewhere(1)求条件概率密度函数f xiY (x|y)、f Y|x (y|x) ; (2)问X 、丫是否相互独立 已知随机变量X 的概率密度分布函数为f X (x)21exp [叮笛■- 2 X2 X随机变量丫与X 的关系为 Y=cX+b 其中c ,b 为常数。
求丫的概率密度分布函数 设X 、丫是两个相互独立的随机变量,其概率密度分布函数分别为F(x)A Be x x 00 x 0求随机变量Z=X+丫的概率密度分布函数。
设随机变量丫与X 的关系为对数关系,丫=ln(X),随机变量丫服从均值为m Y 、标准差为Y的正态分布,求X 的概率密度分布。
的数学期望及方差。
随机变量X 服从均值为m x 、标准差为X 的正态分布,X 通过双向平方率检波器,Y=c*(c>0),求丫的概率密度分布。
设二维随机变量的联合概率密度分布函数为f xY (x, y) Asin(x y) (0 x ,0 y -)2 2(1)求系数A ,(2)求数学期望E[X]、E[Y],方差D[X]、D[Y]; (3)求X 、丫的相关函数及相 关系数。
(完整版)随机过程习题答案
随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的一维概率密度、均值和相关函数。
解 因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的一维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的一维概率密度及),(),(21t t R t EX X 。
解 对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的一维概率密度xtt x f t x f Y 1)ln ();(-=,0>t均值函数⎰∞+--===0)(][)]([)(dy y f e eE t X E t m yt tY X相关函数⎰+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X2.3 若从0=t 开始每隔21秒抛掷一枚均匀的硬币做实验,定义随机过程⎩⎨⎧=时刻抛得反面时刻抛得正面t t t t t X ,2),cos()(π 试求:(1))(t X 的一维分布函数),1(),21(x F x F 和;(2))(t X 的二维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,方差 )1(),(22X Xt σσ。
随机过程课后习题
习题一1.设随机变量X 服从几何分布,即:(),0,1,2,...k P X k pq k ===。
求X 的特征函数、EX 及DX 。
其中01,1p q p <<=-是已知参数。
2.(1)求参数为(p,b )的Γ分布的特征函数,其概率密度函数为(2)求其期望和方差;(3)证明对具有相同的参数b 的Γ分布,关于参数p 具有可加性。
3.设X 是一随机变量,F (x )是其分布函数,且是严格单调的,求以下随机变量的特征函数。
(1)(),(0,)Y aF X b a b =+≠是常数; (2)Z=ln F()X ,并求()k E Z (k 为自然数)。
4.设12,,...,n X X X 相互独立,具有相同的几何分布,试求 的分布。
5.试证函数 为一特征函数,并求它所对应的随机变量的分布。
6.试证函数 为一特征函数,并求它所对应的随机变量的分布。
7.设12,,...,n X X X 相互独立同服从正态分布2(,)N a σ,试求n 维随机向量12,,...,n X X X 的分布,并求出其均值向量和协方差矩阵,再求 的概率密度函数。
8.设X 、Y 相互独立,且(1)分别具有参数为(m, p)及(n, p)的二项分布;(2)分别服从参数为12(,),(,)p b p b 的Γ分布。
求X+Y 的分布。
9.已知随机向量(X, Y )的概率密度函数为试求其特征函数。
10.已知四维随机向量X ,X ,X ,X 1234()服从正态分布,均值向量为0,协方差矩阵为B σ⨯kl 44=(),求(X ,X ,X ,X E 1234)。
11.设X 1,X 2 和X 3相互独立,且都服从(0,1)N ,试求随机变量112Y X X =+和213Y X X =+组成的随机向量(Y 1, Y 2)的特征函数。
12.设X 1,X 2 和X 3相互独立,且都服从2(0,)N σ,试求:(1)随机向量(X 1, X 2, X 3)的特征函数;1,0()0,0()p p bxb x e x p x p x --⎧>⎪Γ⎨⎪≤⎩=0,0b p >>1nk k X =∑(1)()(1)jt jnt jt e e f t n e -=-21()1f t t=+11n i i XX n ==∑221[1()],1,1(,)40,xy x y x y p x y ⎧+--<<⎪=⎨⎪⎩其他(2)设112123123,,S X S X X S X X X ==+=++,求随机向量(S 1, S 2, S 3)的特征函数;(3)121Y X X =-和232Y X X =-组成的随机向量(Y 1, Y 2)的特征函数。
研究生课程 随机过程
1
0
τ
6.复平稳过程
定义:设Z t,t T是复随机过程,
若 mz t EZ t mZ (复常数)t T
且 RZ t1,t2 仅与t2 t1有关,而与t1无关
即:RZ t,t EZ tZ t RZ ,t,t T
则称Z t,t T是复平稳过程。
例:设复随机过程Z t
Z ei1t 1
x f 2
1 1
x1
dx1
2 X
常数
与t无关
DX
t
x 1
X
2
f1x1 dx1
2 X
EX
t X
t
x x 1 2
f2 x1x2;
dx1dx2
RX
EX t
X
X t
X
RX
2 X
BX
仅与有关
3.宽平稳过程(简称平稳过程)
设X t,t T的一、二阶矩存在,且有
①EX t mX为常数; ②EX tX t RX 仅与有关;
fn x1,, xn;t1 h,,tn h 则称X t,t T为严平稳过程,若上述定义只对
n k成立,则称k阶严平稳。
2.平稳过程的一、二维概率密度及数字特征在
密度函数式中,令h t1有
f1x1;t1 f1x1;t1 h f1x1;0 f1x1
f2 x1, x2;t1,t2 f2 x1, x2;t1 h,t2 h
i2t 2
i1 t
1
i2 t
2
E Z e E Z e e e 2 i1 1
2 i2 2
2 i1 1
2 i2 2
RX ( )
与t无关, Z t是复平稳过程。
n
随机过程第26-27讲 第六章 高斯(Gauss)过程
第六章 高斯(Gauss )过程(六)维纳过程(布朗运动)1. 维纳过程的定义设质点每经过t ∆时间,随机地以概率2/1=p 向右移动0>∆x 距离,以概率2/1=q 向左移动0>∆x 距离,且每次移动是相互独立的。
记:−=次质点向左移动第次质点向右移动第i i X i ,1,1若)(t X 表示在t 时刻质点所处的位置,则有:)()(][21tt XX X x t X ∆+++∆=L显然有:1}{}{,0}{2===i i i X E X D X E故有:∆∆==t t t t X D t X E 2)()}({,0)}({假设t c x ∆=∆,其中c 为常数,它由物理意义确定。
0>令∆0→t ,即研究连续的游动,则有:0)}({=t X Et c t t t c t t x t X D t t t 220200lim )(lim )}({lim = ∆∆=∆∆=→∆→∆→∆ 另一方面,任取两个时刻210t t <<,令:∆= ∆=t t n t t n 2211,则有:)()(1211n X X X x t X +++∆=L)()(2212n X X X x t X +++∆=L)()()(21112n n X X x t X t X ++∆=−+L由于(与)121n X X X +++L )(211n n X X +++L )(是相互独立的,因此与相互独立。
即随机过程)(1t X )()12t X −(t X t X 是一独立增量过程。
由此)(t X 可以看作由许多微小的相互独立的随机变量)(1−)(−i t i X t X 组成之和。
由中心极限定理,当∆0→t 时,我们有:)(0200lim x x t c xX P t t i i t Φ=≤−∆∑ ∆=→∆ 即有:∫∞−→∆−=Φ=≤xt du u x x t c t X P }2exp{21)()(lim 220π故当∆0→t 时,)(t X 趋向于正态分布,即0→∆t 时,),0(~)(2t c N t X 由此,我们引入维纳过程(Wienner Process )的定义:定义:若一随机过程{}0);(≥t t W 满足: (1))(t W 是独立增量过程;(2)∀; ),0(~)()(,0,2t c N s W t s W t s −+>(3))(t W 是关于t 的连续函数;则称{}0);(≥t t W 是布朗运动或维纳过程(Wienner Process )。
随机过程课后习题答案
标准教材:随机过程基础及其应用/赵希人,彭秀艳编著索书号:O211.6/Z35-2备用教材:(这个非常多,内容一样一样的)工程随机过程/彭秀艳编著索书号:TB114/P50历年试题(页码对应备用教材)2007一、习题0.7(1)二、习题1.4三、例2.5.1—P80四、例2.1.2—P47五、习题2.2六、例3.2.2—P992008一、习题0.5二、习题1.4三、定理2.5.1—P76四、定理2.5.6—P80五、1、例2.5.1—P802、例2.2.2—P53六、例3.2.3—P992009(回忆版)一、习题1.12二、例2.2.3—P53三、例1.4.2与例1.5.5的融合四、定理2.5.3—P76五、习题0.8六、例3.2.22010一、习题0.4(附加条件给出两个新随机变量表达二、例1.2.1三、例2.1.4四、例2.2.2五、习题2.6六、习题3.3引理1.3.1 解法纠正 许瓦兹不等式()222E XY E X E Y ⎡⎤⎡⎤≤⎡⎤⎣⎦⎣⎦⎣⎦证明:()()()()222222222220440E X Y E X E XY E Y E XY E X E Y E XY E X E Y λλλ +⎡⎤⎡⎤=++≥⎣⎦⎣⎦∴∆≤⎡⎤⎡⎤∴-≤⎡⎤⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤∴≤⎡⎤⎣⎦⎣⎦⎣⎦例1.4.2 解法详解已知随机过程(){},X t t T ∈的均值为零,相关函数为()121212,,,,0a t t t t et t T a --Γ=∈>为常数。
求其积分过程()(){},t Y t X d t T ττ=∈⎰的均值函数()Y m t 和相关函数()12,Y t t Γ。
解:()0Y m t =不妨设12t t >()()()()()()1212222112121122122100,,Y t t t t t t t t t EY t Y t E X d X d d d τττττττττΓ===Γ⎰⎰⎰⎰()()()()()222121122221222112222212221212121212000220022002200222211||111111||211ττττττττττττττττττττττττ--------------=+-=+=---=+-+⎡=++--⎣⎰⎰⎰⎰⎰⎰⎰⎰t t t a a t t a a a a t t t a a at a t a at t a t t at at ed d ed de d e d a ae d e d a a t t e e a a a a t e e e a a⎤⎦同理当21t t >时()()2112112221,1a t t at at Y t t t e e e a a----⎡⎤Γ=++--⎣⎦ (此处书上印刷有误)例1.5.5解法同上例1.5.6 解法详解 普松过程公式推导:(){}()()()()()()()()()()()1lim !lim 1!!!1lim 1!!lim 1lim !lim lim !第一项可看做幂级数展开:第二项将分子的阶乘进行变换:→∞-→∞-→∞---∆-→∞→∞-→∞→∞===-∆∆-⎡⎤⎡⎤⎡⎤=-∆∆⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦⎡⎤⎡⎤-∆==⎢⎥⎣⎦⎣⎦⎡⎤⋅∆=∆⎢⎥--⎣⎦N k N N kkN N k kN N kN kq t qtN N k N kk k N N P X t k C P N q t q t k N k N q t q t N k k q t e e N N N q t q t N k N ()()()()()!lim 1!-→∞⎡⎤⎢⎥⎣⎦⎡⎤⎡⎤=∆⋅=⋅=⎢⎥⎣⎦-⎣⎦N k k k k kN k N q t N qt qt N k (){}()()()()!1lim 1!!!N kkN kqt P X t k N q t q t N k k qt ek -→∞-∴=⎡⎤⎡⎤⎡⎤=-∆∆⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦=例2.1.2 解法详解设(){},X t t -∞<<+∞为零均值正交增量过程且()()2212121,E X t X t t t t t -=->⎡⎤⎣⎦,令()()()1Y t X t X t =--,试证明(){},Y t t -∞<<+∞为平稳过程。
随机过程-习题-第6章
随机过程-习题-第6章(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--设有n 维随机矢量)(21n ξξξξτ =服从正态分布,各分量的均值为n i a E i ,,2,1, ==ξ,其协方差矩阵为⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=2222222000000σσσσσσσa a a B试求其特征函数。
解:n 元正态分布的特征函数为}21exp{),,,(21][Bt t t j t t t n '-'=μφξn i a E i ,,2,1, ==ξ ),,,(21n t t t t =' ,则∑=='ni ijat t j 1μ()()),,,(2122322222121'++='n n t tt t t a t t a t t Bt t σσσσσσ=22223232222221221σσσσσσn t t a t t t a t t t ++++++ =∑∑-=+=+1121122n i i i ni i a t t t σσ∴]21exp[)]21(exp[),,,(112112221][∑∑-=+=--=n i i i ni i i n a t t t jat t t t σσφξ. 设n 维正态分布随机矢量)(21n T ξξξξ =各分量的均值为i E i =ξ,n i ,3,2,1=,各分量间的协方差为n i m i m n b i m ,3,2,1,|,|,=--=设有随机变量∑==ni i 1ξη,求?的特征函数。
解:易得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n ξξξη 21]111[2)1(][][11+===∑∑==n n i E E ni ni i ξη 协方差矩阵为: ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=n nn n n n n n n n321312211121B所以 ]111[]111['⋅⋅= B ηD =223n n +由于高斯分布的随机变量的线形组合依旧是高斯分布的,所以η的特征函数为:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-+=2456822)1(exp )(t n n n t n n j t ηΦ设有三维正态分布随机矢量)(321ξξξξ=T ,其各分量的均值为零,即0][=i E ξ)3,2,1(=i ,其协方差矩阵为⎪⎪⎪⎭⎫⎝⎛=333231232221131211b b b b b b b b b B其中,2332211σ===b b b ,试求:(1)[]321ξξξE(2)[]232221ξξξE (3))])()([(223222221σξσξσξ---E 解:(1) 由教材467P 页可看出()()3,2,1,,,,321321=Φ-=∂Φ∂i t t t u t t t t i i()()()j i j i t t t u u t t t b t t t t t j i ij ji ≠=Φ+Φ-=∂∂Φ∂且3,2,1,,,,,,,3213213212,()()()()()()()3213211232133123213213211233212133213123213213,,,,,,,,,,,,t t t u u u u b u b u b t t t u u u t t t u b t t t u b t t t u b t t t t t t Φ-++=Φ-Φ+Φ+Φ=∂∂∂Φ∂ 其中:()321,,t t t Φ为零均值的三元正态分布随机变量321,,ξξξ的特征函数()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=Φ∑=3132121exp ,,k k k u t t t t∑==31i i ki k t b u令0321===t t t ,则()3,2,1,0,10,0,0===Φk u k ,所以[]()()0,,032132133213213=∂∂∂Φ∂====-t t t t t t t t t jE ξξξ(2)设()321123213312u u u u b u b u b N -++=,则()()3213213213,,,,t t t N t t t t t t Φ=∂∂∂Φ∂21333123321333123312321233122321222132312221133112321111231312123131222213332122231133221132132222u u b u u b u u b b b b b t Nu u b u u b u u b b b b b t Nu u b u u b u u b b b b b t Nb b b b b b b b b b b b t t t N---+=∂∂---+=∂∂---+=∂∂++++=∂∂∂∂()()()()()()()2313123322110132321223132123213212321321303213213023222132164,,,,,,,,,,,,321321321b b b b b b t N t t t t t t N t t t t t t N t t t t t t t t t t t N t t t t t t N t t t t t t t t t t t t t t t -=⎪⎪⎭⎫ ⎝⎛∂∂∂∂Φ∂+∂∂∂∂Φ∂+∂∂∂∂Φ∂+Φ∂∂∂∂=∂∂∂Φ∂=∂∂∂Φ∂========= []()()()()231312332211023222132162322214,,63216b b b b b b jt t t t t t jE t t t -=∂∂∂Φ∂=--===ξξξ(3)()()()[]()()()()[]()2121122221222121122122112221121222112121122122221214,2,,t t u u b u u b u u u b b u u b u b b b b t t u u b t t t t t t Φ-+--++-+=Φ+-∂∂∂=∂∂Φ∂()()()[]()()()()[]()3131132321332131132133113231121333113131133122321314,2,,t t u u b u u b u u u b b u u b u b b b b t t u u b t t t t t t Φ-+--++-+=Φ+-∂∂∂=∂∂Φ∂()()()[]()()()()[]()3232232322332232232233223232222333223232233222322324,2,,t t u u b u u b u u u b b u u b u b b b b t t u u b t t t t t t Φ-+--++-+=Φ+-∂∂∂=∂∂Φ∂[]()21222110222121422212,21b b b t t t t E t t +=∂∂Φ∂===ξξ []()21333110232131423212,31b b b t t t t E t t +=∂∂Φ∂===ξξ []()22333220232232423222,32b b b t t t t E t t +=∂∂Φ∂===ξξ()()()[][][][][]()()()22321321222313126232221423222321222122322212232222212224b b b b b b E E E E E E E E ++--=-+++++-=---σσξξξσξξξξξξσξξξσξσξσξ另一种方法是利用设有三维正态分布的随机矢量T ξ=[1ξ,2ξ,3ξ]的概率密度为f []ξ(x 1,x 2,x 3)=C )}422(21exp{2321222121x x x x x x x +-+--(1)证明经过线性变换η=A ξ=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---100721021411⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321ξξξ 得矢量T η=[321,,ηηη],则321,,ηηη是相互统计独立的随机变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Y (s)ds, t 0 ,在均方可积意义下是否存在?存在的话,试求其相
0
t
(t ) e at B(e 2at 1), t 0, a 0 的常数,试求随机过程 (t ) 和 (t ) 的均值函数和相
关函数,并说明 (t ) 和 (t ) 是否是正态过程。 3、 设 {B(t ) , t 0} 是 标 准 的 布 朗 运 动 , 试 求 B(t ) 与
P{B(t 0 t ) x0 B(t 0 ) x0 } P{B(t 0 t ) x0 B(t 0 ) x0 } 1 / 2 ;
Ta inf{t :t 0, B(t ) a} , (3) 令: 当 a 0 时, Ta 表示布朗运动首次到达 a 的时刻,
试求 Ta 的分布函数。 7、 设 B(t ) , t 0 是初值为零的标准布朗运动,令:
中国科学院大学 2014~201
第六章 高斯过程(维纳过程) 习题
1、 设有随机过程 Y (t ) t X 1, 0 t , X 是正态随机变量,期望为 0,方差为 X 。
2 2
(1) 过程 Y (t ) 是否正态过程?是否平稳过程?均需说明理由; (2) 过程 Z (t ) 关函数。 2、 设 B(t ) , t 0 是 初值 为零 的标 准布朗 运 动, 令 (t ) (1 t ) B[t /(1 t )], 0 t 1 ,
X (t ) B(t ) tB(1) , 0 t 1
称 { X (t ), 0 t 1} 为布朗桥过程。 (1) 试问布朗桥过程是否为正态过程,为什么? (2) 试求布朗桥过程的均值函数和相关函数; (3) 试求布朗桥过程的一维分布密度函数。
a B(t ) b , (t ) B(at ) b ,
其中常数 a 0, b 0 ,t 0 。试分析此两随机过程的前二阶矩是否相同?此两过程是 否同分布?说明理由。 6、 设 { B(t ), t 0} 为零初值的标准布朗运动,试求: (1) 在 B(t1 ) x0 的条件下, B(t 2 ) 的条件概率密度函数,其中 t 2 t1 ; (2) 布朗运动的对称性,即证明:当 t 0 0, t 0 时,有
1 0
B(u )du 的 相 关 系 数 , 其 中 :
0 t 1。
4、 已知 B(t ), t 0 是初值为 0 的标准布朗运动, 求在 B(1) 0 时 B(t ) (0 t 1) 的条件概 率分布密度函数。 5、 已知 B(t ) , t 0 是初值为零的标准布朗运动, 令 (t )