光的衍射偏振作业习题及解答赵近芳编
光的衍射、偏振(章世)习题库(答案)
=
3 2
fλ2
a
则两个第一级明纹之间距为:
x
x2
x1
3 2
f
/a
0.0027m
(2) 由光栅衍射主极大的公式:
d sin1 k1 1 , d sin2 k2 2
且有: sin tan x / f
所以: x x2 x1 f / d 0.018m
16. 两偏振片叠在一起,其偏振化方向夹角为45°.由强度相同的自然光和线 偏振光混合而成的光束垂直入射在偏振片上,入射光中线偏振光的光矢量振 动方向与第一个偏振片的偏振化方向间的夹角为30°.
三.计算题
13.一衍射光栅,每厘米200条透光缝,每条透光缝宽为a=2×10-3cm,在 光栅后放一焦距f=1m的凸透镜,现以λ=600nm(1nm=10-9m)的单色平行光
垂直照射光栅,求:
(1) 透光缝a的单缝衍射中央明条纹宽度为多少?
(2) 在该宽度内,有几个光栅衍射主极大?
解:(1) a sin = k tg = x / f
小一半,原来第三级暗纹处将是
纹明。
09. 波长为λ=550 nm(1nm=109m)的单色光垂直入
射于光栅常数d=2×10-4 cm的平面衍射光栅上,可能
观察到光谱线的最高级次为第3
级。
10. 某单色光垂直入射到一个每毫米有800 条刻线的光 栅上,如果第一级谱线的衍射角为30°,则入射光的波长
应为___6_2_5_0_Å_(_或__6_2_5_n_m__) ____。
(A) 100 nm (B) 400 nm (C) 500 nm (D) 600 nm
x0
2
f
b
3. 一束平行单色光垂直入射在光栅上,当光栅常数
(完整版)光的衍射习题(附答案)
光的衍射(附答案)一. 填空题1. 波长入=500 nm (1 nm = 10 -9m)的单色光垂直照射到宽度a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹•今测得屏幕上中央明条纹之间的距离为 d = 12 mm,则凸透镜的焦距f为3_m .2. 在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光( 入〜589 nm )中央明纹宽度为4.0 mm,贝U k ~442 nm (1 nm = 10-9m)的蓝紫色光的中央明纹宽度为3.0 mm .3. 平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f = 400 mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm (或5 X 410- mm).4. 当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3 a时,衍射光谱中第±±…级谱线缺级.5. 一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30角入射,在屏幕上最多能看到第5级光谱.6. 用波长为入的单色平行红光垂直照射在光栅常数d = 2 pm (1 m = 10-6m)的光栅上,用焦距f = 0.500 m的透镜将光聚在屏上,测得第一级谱线与透633nm.7. 一会聚透镜,直径为3 cm,焦距为20 cm .照射光波长550nm .为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于 2.24 x i0-5rad .这时在透镜焦平面上两个衍射图样中心间的距离不小于 4.47 m .8. 钠黄光双线的两个波长分别是589.00 nm和589.59 nm (1 nm = 10 -9m), 若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9. 用平行的白光垂直入射在平面透射光栅上,波长为21= 440 nm的第3级光谱线将与波长为2=660 nm的第2级光谱线重叠(1 nm = 10 -9m).10. X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11. 在某个单缝衍射实验中,光源发出的光含有两种波长入和2,垂直入射于单缝上.假如入的第一级衍射极小与2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系?(2)在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1)由单缝衍射暗纹公式得a sin a= 1 入 a sin Q = 2 2由题意可知Q= Q, sin Q= sin &代入上式可得2= 2 2(2) a sin Q = k12=2 k12 (k1=1,2,…)sin Q = 2 k12/ aa sin &= k2 A (k2=1,2,…)sin(2= 2 k2 A/ a若k2= 2 k i,贝U e i= 即A的任一k i级极小都有A的2 k i级极小与之重合. 12. 在单缝的夫琅禾费衍射中,缝宽a = 0.100 mm,平行光垂直如射在单缝上,波长A= 500 nm,会聚透镜的焦距f = 1.00 m .求中央亮纹旁的第一个亮纹的宽度A x.解:单缝衍射第1个暗纹条件和位置坐标X i为a sin d = AX1 = f tan d ~f sin d ~f A/ a (v d 很小)单缝衍射第2个暗纹条件和位置坐标X2为a sin d= 2 AX2 = f tan d ~f sin d~2 f A/ a (v d很小)单缝衍射中央亮纹旁第一个亮纹的宽度7 4A x1 = X2 - X1 ~f (2 A/ a - A a)= f A/ a= 1.00X5.00X10" /(1.00 X10" ) m=5.00mm .13. 在单缝夫琅禾费衍射中,垂直入射的光有两种波长,A= 400 nm,A= 760nm (1 nm = 10 "9m).已知单缝宽度a = 1.0 X10-2cm,透镜焦距f = 50 cm .(1) 求两种光第一级衍射明纹中心间的距离.(2) 若用光栅常数a = 1.0X10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1)由单缝衍射明纹公式可知1 1a sin$= (2 k + 1) A= 2 A (取k = 1)1 3a sin礎=^ (2 k + 1) A= ? Atan $ = x1 / f,tan 心=x1 / fsin 帀 ~tan 召,sin 血 ~tan 心由于3所以治=㊁f入/ a3x2= 2 f 入/ a则两个第一级明纹之间距为3A x1 = x2 - x1 = 2 f AA/ a = 0.27 cm(2)由光栅衍射主极大的公式d sin召=k入=1入d sin &= k A= 1 A且有sin © = tan ©二 x / f所以A x1= x2 - x1 = f A A/ a = 1.8 cm14. 一双缝缝距d = 0.40 mm,两缝宽度都是a = 0.080 mm,用波长为A= 480 nm (1nm = 10 "m)的平行光垂直照射双缝,在双缝后放一焦距 f = 2.0 m 的透镜.求:(1)在透镜焦平面的屏上,双缝干涉条纹的间距I; (2)在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1)第k级亮纹条件:d sin B= k A第k 级亮条纹位置:X1= f tan 6 ~f sin d ~k f A/ d相邻两亮纹的间距:3A x= X k+1 - X k = (k + 1) f A d - k A/ d = f A/ d = 2.4 X10" m = 2.4 mm ⑵单缝衍射第一暗纹:a sin 6= A单缝衍射中央亮纹半宽度:A = f tan 6 ~f sin 6 ~k f A d = 12 mmA x0/ A x = 5•••双缝干涉第i5级主极大缺级.•••在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±,吃,±3, ±4级亮纹或根据d / a = 5指出双缝干涉缺第i5级主极大,同样可得出结论。
光的衍射偏振作业习题及解答赵近芳编
13-11 一单色平行光垂直照射一单缝,若其第三级明条纹位置正好与6000οA 的单色平行光的第二级明条纹位置重合,求前一种单色光的波长.解:单缝衍射的明纹公式为: sin (21)2a k λϕ=+设x λλ=时,3=k ,由已知:当6000=λoA 时,2=k ,二者重合时ϕ角相同,所以有)132(26000)122(sin +⨯=+⨯=ϕa 2x λ解得 4286600075=⨯=x λ(o A )=428.6 ( nm)13-12 单缝宽0.10mm ,透镜焦距为50cm ,用5000=λoA 的绿光垂直照射单缝.求: (1) 位于透镜焦平面处的屏幕上中央明条纹的宽度和半角宽度各为多少? (2) 若把此装置浸入水中(n =1.33),中央明条纹的半角宽度又为多少? 解:单缝衍射暗纹公式为:sin na k ϕλ=,k =1时,有1sin naλϕ=单缝衍射中央明纹的半角宽度为一级暗纹的角宽度,故101sin ()nanaλλϕϕ-==≈单缝衍射中央明纹的宽度为:11122tan 2sin 2x x f f fnaλϕϕ∆==≈=暗,(1) 空气中,1=n ,所以有:3310100.51010.01050005.02---⨯=⨯⨯⨯⨯=∆x (m )101013033500010500010sin 5.0100.10100.1010ϕ------⨯⨯=≈=⨯⨯⨯ (rad ) (2) 浸入水中,33.1=n ,所以有:33101076.31010.033.110500050.02---⨯≈⨯⨯⨯⨯⨯=∆x (m ) 101013033500010500010sin 3.76101.330.110 1.330.110ϕ------⨯⨯=≈≈⨯⨯⨯⨯⨯ (rad ) 13-15 波长为5000oA 的平行单色光垂直照射到每毫米有200条刻痕的光栅上,光栅后的透镜焦距为60cm .求: (1) 屏幕上中央明条纹与第一级明条纹的间距;(2) 当光线与光栅法线成 30°斜入射时,中央明条纹的位移为多少?解:由已知,光栅常数为: 31mm5.010200a b -+==⨯mm =6100.5-⨯m (1) 由光栅衍射明纹公式:λϕk b a =+sin )(,对中央明纹0k =, 00sin 0,0x ϕ=∴=,对第一级明条纹1=k , 有:1016500010sin 0.15.010a b λϕ--⨯===+⨯,又11tan x fϕ=,所以2211tan6010 6.0310(m) 6.03(cm) x f fϕ--===⨯≈⨯=【或:ϕ较小时,有sin tanxfϕϕ≈=,对第一级明条纹1=k, 有:λ=+fxba1)(,即:62101100.51060105000---⨯⨯⨯⨯=+=bafxλ2100.6-⨯=(m)6=(cm)】则屏幕上中央明条纹与第一级明条纹的间距为:1016.03cmx x x x∆=-==【或6cm】(2) 对应中央明纹,有0=k。
光的衍射、光的偏振--课时作业(含解析) (7)
光的偏振同步测试一、单选题(共8题;共16分)1.能说明光波是横波的现象是()A. 光的干涉现象B. 光的衍射现象C. 光的偏振现象D. 光的反射现象2.下列现象中可以说明光是横波的是()A. 光的干涉现象B. 光的衍射现象C. 光的全反射现象D. 光的偏振现象3.如图所示,偏振片正对工作的液晶显示器,透过偏振片看到显示器亮度正常,将镜片转动90°,透过镜片看到的屏幕漆黑,则()A. 显示器发出的光是纵波B. 显示器发出的光是纵波C. 显示器发出的光是自然光D. 显示器发出的光是偏振光4.下列说法中不符合事实的是()A. 机场安检时,借助X射线能看到箱内物品B. 交通警示灯选用红灯是因为红光更容易穿透云雾烟尘C. 建筑外装涂膜玻璃应用了光的全反射D. 液晶显示应用了偏振光5.关于光的偏振现象,下列说法中正确的是()A. 偏振光沿各个方向振动的光波的强度都相同B. 自然光在水面反射时,反射光和折射光都是一定程度的偏振光C. 光的偏振现象说明光是一种纵波D. 照相机镜头表面的镀膜是光的偏振现象的应用6.在拍摄日落时水面下的景物时,应在照相机镜头前装一个偏振片,其目的是()A. 减弱反射光,从而使景物的像清晰B. 增强反射光,从而使景物的像清晰C. 增强透射光,从而使景物的像清晰D. 减弱透射光,从而使景物的像清晰7.两个偏振片紧靠在一起将它们放在一盏灯的前面以致没有光通过.如果将其中的一片旋转180度,在旋转过程中,将会产生下述的哪一种现象()A. 透过偏振片的光强先增强,然后又减少到零B. 透过偏振片的光强先增强,然后保持不变C. 透过偏振片的光强在整个过程中都增强D. 透过偏振片的光强先增强,再减弱,然后又增强8.两个偏振片紧靠在一起,将它们放在一盏白炽灯的前面以致没有光通过.如果将其中的一个偏振片旋转180°,在旋转过程中,将会产生下述的哪一种现象()A. 透过偏振片的光强先增强,然后又减弱到零B. 透过偏振片的光强先增强,然后减弱到非零的最小值C. 透过偏振片的光强在整个过程中都增强D. 透过偏振片的光强先增强,再减弱,然后又增强二、填空题(共3题;共9分)9.如图所示,画有直角坐标系Oxy的白纸位于水平桌面上.M是放在白纸上的半圆形玻璃砖,其底面的圆心在坐标原点,直边与x轴重合.OA是画在纸上的直线,P1、P2为竖直地插在直线OA上的两枚大头针,P3是竖直地插在纸上的第三枚大头针,α是直线OA与y轴正方向的夹角,β是直线OP3与y轴负方向的夹角.只要直线OA画得合适,且P3的位置取得正确,测出角α和β,便可求得玻璃的折射率.某学生在用上述方法测定玻璃的折射率时,在他画出的直线OA上竖直地插上了P1、P2两枚大头针,但在y<0的区域内,不管眼睛放在何处,都无法透过玻璃砖看到P1、P2的像,他应采取的措施是________.若他已透过玻璃砖看到P1、P2的像,确定P3的位置方法是________.若他已正确地测得了α、β的值,则玻璃的折射率n=________.10.如图所示,S为一点光源,P、Q是偏振片,R是一光敏电阻,R1、R2是定值电阻,电流表和电压表均为理想电表,电源电动势为E ,内阻为r .则当偏振片Q由图示位置转动90°的过程中,电流表和电压表的示数变化情况________.11.有些光,包含着在垂直光的传播方向上沿________方向振动的光,这些方向上的光的强度都________,这样的光叫________光。
大学物理学习指导(赵近芳)自测题答案10
自测题10一、选择题1.(D ) 利用菲涅耳半波带法sin 2a kλϕ=,由题意,则3=32sin 2sin 30a k λλλϕ==⨯⨯︒。
2.(D )中央明纹的线宽度为02x f a λ∆=,若单缝宽度变为原来的32,入射光波长变为原来的34,则03142322x f f x a a λλ∆===∆。
3.(C )中央明纹的线宽度为02x f a λ∆=,当a 稍稍变宽,0x ∆变小,即中央衍射条纹变窄;根据几何光学成像原理规律,沿主光轴入射的平行光应会聚于焦平面的焦点处,所以,只要透镜位置不动,缝上下平移对衍射条纹没有影响。
4.(B )光栅公式为:()sin a b k ϕλ+= 0,1,2,k =±±,从公式可以看出,光栅常数愈大,明条纹级数愈多,所以应换一个光栅常数较大的光栅。
5.(A )光栅公式()sin a b k ϕλ+= 0,1,2,k =±±,当()a b +与a 有简单整数比时,将出现缺级现象,所以排除(B )、(C )选项,因为所有偶数级次的主极大在每缝衍射的暗纹上,则()a b a+为偶数,所以选择(A )选项。
6.(E ) 光强为0I 的自然光通过偏振片1P 后光强为012I I '=,由题意,偏振光再通过偏振片2P 后光强为22001cos cos 303/82I I I I α'==︒=。
7.(B )设第二个偏振片与第一个偏振片的夹角为θ,则光通过第一个偏振片后的光强为:012I I =,根据马吕斯定律,光通过第二个偏振片后的光强为:22021cos cos 2I I I θθ==,光通过第三个偏振片后的光强为: 2222200322cos (90)sin sin cos sin 228I I I I I θθθθθ=-=== 依题意可知:2003sin 288I I I θ==,所以2sin 21θ=,得到:45θ=。
光的衍射、光的偏振--课时作业(含解析) (30)
13.5、6光的衍射光的偏振每课一练(人教版选修3-4)【课堂训练】1.人隔着墙说话,能听见声音而看不见人,下列说法中解释正确的是( )A.光波是电磁波,而声波是纵波B.光波是横波,而声波是机械波C.光速太大D.声波波长大,光波波长小2.图甲、乙所示是单色光通过窄缝后形成明暗相间的两种条纹图样,下列判断正确的是(图中阴影部分表示亮条纹)( )A.甲为单缝衍射的图样B.乙为双缝干涉的图样C.甲为双缝干涉的图样D.乙为单缝衍射的图样3.光的偏振现象说明( )A.光是电磁波B.光是一种横波C.光是一种纵波D.光是概率波4.在某些特定的环境下照相时,常常在照相机的镜头前装一个偏振片使景象清晰,关于其原理,下列说法正确的是( )A.增强透射光的强度B.减弱所拍景物周围反射光的强度C.减弱透射光的强度D.增强所拍景物周围反射光的强度【课后巩固】1.对光的衍射现象的定性分析,下列说法正确的是( )A.只有障碍物或孔的尺寸可以跟光波波长相当甚至比光波波长还要小的时候,才能产生明显的衍射现象B.衍射现象是光特有的现象,只有光才会发生衍射C.光的衍射现象否定了光的直线传播的结论D.光的衍射现象说明了光具有波动性2.(2012·泰州高二检测)如图所示,电灯S发出的光先后经过偏振片A和B,人眼在P处迎着入射光方向,看不到光亮,则( )A.图中a光为偏振光B.图中b光为偏振光C.以SP为轴将B转过180°后在P处将看到光亮D.以SP为轴将B转过90°后在P处将看到光亮3.关于光的衍射现象,下面说法正确的是( )A.红光的单缝衍射图样是红暗相间的直条纹B.白光的单缝衍射图样是红暗相间的直条纹C.光照到不透明的小圆盘上出现泊松亮斑,说明发生了光的衍射D.光照到较大圆孔上出现大光斑说明光沿直线传播,不存在光的衍射4.对于光的偏振,下列说法正确的是( )A.自然光是偏振光B.自然光通过偏振片后成为偏振光C.偏振光不能再通过偏振片D.如果偏振片的透振方向与偏振光的振动方向垂直,偏振光不能透过偏振片5.(2012·衡水高二检测)在垂直于太阳光的传播方向前后放置两个偏振片P和Q,在Q的后边放上光屏,以下说法正确的是( )A.Q不动,旋转偏振片P,屏上光的亮度不变B.Q不动,旋转偏振片P,屏上光的亮度时强时弱C.P不动,旋转偏振片Q,屏上光的亮度不变D.P不动,旋转偏振片Q,屏上光的亮度时强时弱6.观察单缝衍射现象时,把缝宽由0.1 mm逐渐增大到1 mm,猜想应该看到衍射条纹的间距如何变化?衍射的明显程度又如何变化?7.某同学把卡尺间的窄缝调节到0.5 mm去观察某一线光源,看到了彩色条纹.他把缝的宽度增加到0.8 mm,再观察同一光源,看到的现象是_____________,但亮度增大.若他把缝的宽度减小到0.2 mm,则看到的现象是_____________.这说明在衍射现象中,衍射图样条纹的宽度及亮度与__________有关,当其__________时,衍射现象更为明显.8.一束光由真空入射到平面玻璃上,当其折射角为30°时,反射光恰好发生完全偏振(反射光线与折射光线垂直),由此可以计算出玻璃的折射率是多少?此时的入射角称为起偏角,也叫布儒斯特角,试求折射率为n的介质的布儒斯特角的通用表达式.答案解析【课堂训练】1.【解析】选D.由于声波的波长大,远大于一般障碍物的尺寸,能够发生明显的衍射现象,因此墙另一边的人能听到声音,而光波的波长小,远小于一般障碍物的尺寸,不能发生明显的衍射现象,因此只闻其声,不见其人.D正确.2.【解析】选A、B.干涉条纹为等间距的,衍射条纹为非等间距的,中央宽两边窄.3.【解析】选B.偏振现象是波特有的现象,光的偏振说明光是一种横波,所以B对,A、C、D错.4.【解析】选B.加偏振片是为了减弱所拍景物周围反射光的强度,透射光的强度并没有发生变化,所以B对,A、C、D错.【课后巩固】1.【解析】选A、D.干涉和衍射现象是波特有的现象,光的干涉现象和衍射现象无疑都说明了光具有波动性,所以B错、D对;光的衍射现象和直线传播是在不同条件下出现的两种现象,当障碍物或孔的尺寸跟光波的波长相当甚至比波长还要小时,会产生明显的衍射现象;当光波的波长小于障碍物或没有障碍物时沿直线传播,二者并不矛盾,所以A对、C错.2.【解析】选B、D.自然光沿各个方向传播是均匀分布的,通过偏振片后,透射光是只沿着某一特定方向振动的光.从电灯直接发出的光为自然光,故A错;它通过A偏振片后,即变为偏振光,故B正确;设通过A的光沿竖直方向振动,而B偏振片只能通过沿水平方向振动的偏振光,则P点无光亮,将B转过180°后,P处仍无光亮,故C错;若将B转过90°,则该偏振片将变为能通过竖直方向上振动的光的偏振片,则偏振光能通过B,即在P 处有光亮,故D正确.3.【解析】选A、C.单色光照到狭缝上产生的衍射图样是亮暗相间的直条纹,白光的衍射图样是彩色条纹,A对,B错;光照到不透明圆盘上,在其阴影处出现亮点,是衍射现象,C正确.光的衍射现象只有明显与不明显之分,D项中屏上大光斑的边缘模糊,正是光的衍射造成的,不能认为不存在衍射现象,D错.4.【解析】选B、D.自然光垂直于传播方向的所有方向上都存在光振动,不是偏振光,A选项错.自然光透过偏振片后的光振动方向只沿着偏振片的透振方向,故自然光透过偏振片后变为偏振光,B正确.只要偏振光的振动方向与偏振片的透振方向不垂直就能通过偏振片,当两者方向平行时,透射光强度最大,C选项错误.当两者方向垂直时,偏振光将不能通过偏振片,D正确.5.【解析】选B、D. P是起偏器,它的作用是把太阳光(自然光)转为偏振光,该偏振光的振动方向与P的透振方向一致,所以当Q与P 的透振方向平行时,通过Q的光强最大;当Q与P的透振方向垂直时,通过Q的光强最小,即无论旋转P或Q,屏上光的亮度都是时强时弱的.6.【解析】由单缝衍射实验的实验现象可知,狭缝宽度越小,衍射现象越明显,衍射条纹越宽,条纹间距也越大.本题的调整是将缝调宽,现象向相反的方向发展,即衍射条纹的间距逐渐变小,衍射现象逐渐不明显.答案:衍射条纹的间距逐渐变小衍射现象逐渐不明显7.【解析】当窄缝宽度变窄时,它和光波的波长越接近,衍射现象越明显,同时通过窄缝的光能越少,到达光屏上的条纹的宽度越宽,亮度就越弱.答案:彩色条纹变窄彩色条纹变宽但亮度减弱单缝宽度变窄【总结提升】判断衍射现象是否明显的标志在光的单缝衍射现象中,窄缝宽度变窄时,衍射现象越来越明显,但是由于透过光的能量减少,使得透过光的亮度变低,可见衍射现象明显与否的标志是条纹宽度,而不是条纹亮度.8.【解题指南】解答本题应明确以下两点:(1)光从一种介质进入另一种介质时,如果反射光线垂直于折射光线,反射光与折射光都是偏振光.(2)根据几何角度关系和折射定律可求布儒斯特角.【解析】光由空气进入玻璃,光路图如图所示,根据折射定律可得12sin n sin θ=θ,而θ1+θ2=90°所以122sin n cot sin θ==θθ 由题意知θ2=30° n=cot30°所求的布儒斯特角为θ1,所以由112sin n tan sin θ==θθ 可得表达式为θ1=arctann 答案:θ1=arctann。
光的衍射和偏振练习解答
4、解:
x ① 暗纹满足: a sin a tan a k , f f x暗 2k , a 2 第一级暗纹距中心的距离为: f x1 1.47( mm ) a x ② 明纹满足: a sin a tan a ( 2k 1) f 2 f x明 (2k 1 , ) a 2 第二级明纹距中心的距离为: 5 f x2 3.68( mm) 2a
l m 1.22 D L
照相机镜头的口径至少为: 知:
1.22 L D 0.134 m l
第18次课(下)
1、解: 入射光为振动方向在入射面内的线 偏振光,以起偏角入射,如图。
i0
第18次课(下)
2、解: 设两次入射的自然光的光强分别为 I 10 和 I 20 由马吕斯定律有:
3.85, km 3
由缺级的条件:
d sin k a sin k'
d k k' 2k' , a
(k' 1,2)
即:偶数级的主极大明纹缺级 , 故可见:0,±1,±3。共5条光栅衍射光谱线。
第16次课(下)
2.解:
(2) 斜入射时光栅方程为:
550 10 m 1.22 1.22 D 3 103 2.2 104 ( rad )
9
恰好能分辨相距1cm的平行线时,距离黑板为:
1 10 Lm 45.5(m ) 4 m 2.2 10 l
2
第17次课(下)
3、解:
由最小分辨角: min
第15次课(下)
4、解:
③ 斜入射时,衍射角为的一组平行衍射光的 0 最大光程差为: a(sin sin30 )
(完整版)光的衍射习题(附答案)
光的衍射(附答案)一.填空题1.波长λ= 500 nm(1 nm = 10−9 m)的单色光垂直照射到宽度a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f为3 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为4.0 mm,则λ2 ≈ 442 nm(1 nm = 10−9 m)的蓝紫色光的中央明纹宽度为3.0 mm.3.平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f = 400mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×10−4mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 10−6 m)的光栅上,用焦距f= 0.500 m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l= 0.1667 m,则可知该入射的红光波长λ=632.6或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于2.24×10−5rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于4.47μm.8.钠黄光双线的两个波长分别是589.00 nm和589.59 nm(1 nm = 10−9 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 10−9 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1a sinθ2= 2 λ2由题意可知θ1 = θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1= k1λ1=2 k1λ2(k1=1, 2, …)sinθ1= 2 k1λ2/ aa sinθ2= k2λ2(k2=1, 2, …)sinθ2= 2 k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2 k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = 0.100 mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f = 1.00 m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx 1 = f tanθ1≈f sinθ1≈f λ/ a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2 = 2 λx 2 = f tanθ2≈f sinθ2≈ 2 f λ/ a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx1= x2− x1≈f (2 λ/ a −λ/ a)= f λ/ a=1.00×5.00×10−7/(1.00×10−4) m=5.00mm.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 10−9 m).已知单缝宽度a = 1.0×10−2 cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a= 1.0×10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1=12(2 k + 1)λ1=12λ1(取k = 1)a sinφ2=12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于 sin φ1 ≈ tan φ1,sin φ2 ≈ tan φ2 所以 x 1 = 32 f λ1 / ax 2 = 32f λ2 / a则两个第一级明纹之间距为Δx 1 = x 2 − x 1 = 32f Δλ / a = 0.27 cm(2) 由光栅衍射主极大的公式d sin φ1 = k λ1 = 1 λ1 d sin φ2 = k λ2 = 1 λ2且有sin φ = tan φ = x / f所以Δx 1 = x 2 − x 1 = f Δλ / a = 1.8 cm14. 一双缝缝距d = 0.40 mm ,两缝宽度都是a = 0.080 mm ,用波长为λ = 480 nm (1 nm = 10−9 m )的平行光垂直照射双缝,在双缝后放一焦距f = 2.0 m 的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l ;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N 和相应的级数. 解:双缝干涉条纹(1) 第k 级亮纹条件:d sin θ = k λ第k 级亮条纹位置:x 1 = f tan θ1 ≈ f sin θ1 ≈ k f λ / d 相邻两亮纹的间距:Δx = x k +1 − x k = (k + 1) f λ / d − k λ / d = f λ / d = 2.4×10−3m = 2.4 mm(2) 单缝衍射第一暗纹:a sin θ1 = λ单缝衍射中央亮纹半宽度:Δx 0 = f tan θ1 ≈ f sin θ1 ≈ k f λ / d = 12 mm Δx 0 / Δx = 5∴ 双缝干涉第 ±5级主极大缺级.∴ 在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9 分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d / a = 5指出双缝干涉缺第 ±5 级主极大,同样可得出结论。
光的偏振习题(附答案)
光的偏振(附答案)一. 填空题1. 一束光垂直入射在偏振片P 上,以入射光为轴旋转偏振片,观察通过偏振片P 的光强的变化过程. 若入射光是自然光或圆偏振光, 则将看到光强不变;若入射光是线偏振光, 则将看到明暗交替变化, 有时出现全暗;若入射光是部分偏振光或椭圆偏振光, 则将看到明暗交替变化, 但不出现全暗.2. 圆偏振光通过四分之一波片后, 出射的光一般是线偏振光.3. 要使一束线偏振光通过偏振片之后振动方向转过90度角,则至少需要让这束光通过2块理想偏振片,在此情况下,透射光强最大是原来的1/4 倍.4. 两个偏振片叠放在一起,强度为I 0的自然光垂直入射其上,若通过两个偏振片后的光强为I/8,则此两偏振片的偏振化方向间的夹角为(取锐角)是60度,若在两片之间再插入一片偏振片, 其偏振化方向间的夹角(取锐角)相等,则通过三个偏振片后的投射光强度为9/32 I 0.5. 某种透明媒质对于空气的临界角(指全反射)等于450, 则光从空气射向此媒质的布儒斯特角是54.70, 就偏振状态来说反射光为完全偏振光, 反射光矢量的振动方向垂直入射面, 透射光为部分偏振光.6. 一束自然光从空气透射到玻璃表面上(空气折射率为1), 当折射角为300时, 反射光是完全偏振光, 则此玻璃的折射率等于1.732.7. 一束钠自然黄光(λ=589.3×10-9m)自空气(设n=1)垂直入射方解石晶片的表面,晶体厚度为0.05 mm, 对钠黄光方解石的主折射率n 0=1.6584、n e =1.4864, 则o 、e 两光透过晶片后的光程差为 8.6 μm , o 、e 两光透过晶片后的相位差为91.7 rad.8. 在杨氏双缝干涉实验中, 若用单色自然光照射狭缝S, 在屏幕上能看到干涉条纹. 若在双缝S 1和 S 2后分别加一个同质同厚度的偏振片P 1、P 2, 则当P 1与P 2的偏振化方向互相平行或接近平行时, 在屏幕上仍能看到清晰的干涉条纹.二. 计算题9. 有一束自然光和线偏振光组成的混合光, 当它通过偏振片时改变偏振片的取向, 发现透射光强可以变化7倍. 试求入射光中两种光的光强度各占总入射光强的比例.解:设入射光的光强为0I , 其中线偏振光的光强为01I ,自然光的光强为02I .在该光束透过偏振片后, 其光强由马吕斯定律可知:201021cos 2I I I α=+ 当α=0时, 透射光的光强最大,max 010212I I I =+,当α=π/2时, 透射光的光强最小,min 0212I I =max min 0102020102177322I I I I I I I =∴+=⇒=入射总光强为:00102I I I =+01020031,44I I I I ∴== 10. 如图所示, 一个晶体偏振器由两个直角棱镜组成(中间密合). 其中一个直角棱镜由方解石晶体制成, 另一个直角棱镜由玻璃制成, 其折射率n 等于方解石对e 光的折射率n e . 一束单色自然光垂直入射, 试定性地画出折射光线, 并标明折射光线光矢量的振动方向. (方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:由于玻璃的折射率n 等于方解石对e 光的折射率, 因此e 光进入方解石后传播方向不变. 而n=n e >n o , 透过因此o 光进入方解石后的折射角<450, 据此得光路图.11. 用方解石割成一个正三角形棱镜, 其光轴与棱镜的棱边平行, 亦即与棱镜的正三角形横截面垂直. 如图所示. 今有一束自然光入射于棱镜, 为使棱镜内的 e 光折射线平行于棱镜的底边, 该入射光的入射角i 应为多少? 并在图中画出 o 光的光路并标明o 光和e 光的振动方向. 已知n e = 1.49 (主折射率, n o =1.66.解:由于e 光在方解石中的振动方向与光轴相同, o 光在方解石中的振动方向与光轴垂直, 所以e 光和o 光在方解石内的波面在垂直于光轴的平面中的截线都是圆弧. 但 v e > v o ,所以e 波包围o 波.由图可知, 本题中对于e 光仍满足折射定律sin sin e e i n γ=由于 e 光在棱镜内折射线与底边平行,30e γ=︒ 0sin sin 30 1.490.50.745e i n ==⨯=入射角 4810o i '= 又因为sin sin o o i n γ= sin sin 4810sin 0.4491.66o o o i n γ'∴===故o 光折射角2640o o γ'=12. 有三个偏振片堆叠在一起, 第一块与第三块的偏振化方向相互垂直, 第二块和第一块的偏振化方向相互平行, 然后第二块偏 振片以恒定角速度ω绕光传播的方向旋转, 如图所示. 设入射自然光的光强为I 0. 求此自然光通过这一系统后, 出射光的光强.解:经过P 1, 光强由I 0变为I 0/2, P 2以ω转动, P 1, P 2的偏振化方向的夹角θ=ωt202cos 2I I t ω=P 2以ω转动, P 2, P 3的偏振化方向的夹角β=π/2-ωt22203222000cos cos sin 2(2sin cos )sin 2(1cos 4)8816I I I t t I I I t t t t βωωωωωω==⋅===- 13. 有一束钠黄光以50角入射在方解石平板上, 方解石的光轴平行于平板表面且与入射面垂直, 求方解石中两条折射线的夹角.(对于钠黄光n o =1.658, n e =1.486)解: 在此题的特殊条件下, 可以用折射定律求出o 光, e 光折射线方向. 设i 为入射角, o γ和e γ分别为o 光和e 光的折射角.由折射定律:sin sin o o i n γ=sin sin e e i n γ=sin sin /0.463o o i n γ∴==, 27.5o o γ=sin sin /0.516e e i n γ==, 31.0o e γ=31.027.5 3.5o o o e o γγγ∆=-=-=14. 如图所示的各种情况下, 以非偏振光和偏振光入射两种介质的分界面, 图中i 0为起偏角, i 试画出折射光线和反射光线, 并用点和短线表示他们的偏振状态.15. 如图示的三种透光媒质I 、II 、III, 其折射率分别为n 1=1.33、n 2=1.50、n 3=1, 两个交界面相互平行, 一束自然光自媒质I 中入射到I 与II 的交界面上, 若反射光为线偏振光,(1) 求入射角I;(2) 媒质II 、III 交界面上的反射光是不是线偏振光?为什么?解:(1)由布儒斯特定律:()21/ 1.50/1.33tgi n n ==4826o i '=令介质II 中的折射角为γ,则/241.56o i γπ=-=此γ在数值上等于在II 、III 界面上的入射角.若II 、III 界面上的反射光是线偏振光, 则必满足布儒斯特定律()032/ 1.0/1.5tgi n n ==033.69o i =因为0i γ≠, 故II 、III 界面上的反射光不是线偏振光.16. 一块厚0.025mm 的方解石晶片, 表面与光轴平行并放置在两个正交偏振片之间, 晶片的光轴与两偏振片的偏振化方向均成45度角. 用白光垂直入射到第一块偏振片上, 从第二块偏振片出射的光线中, 缺少了那些波长的光.(假定n o =1.658, n e =1.486为常数)解: 2()C o e n n d πφλ∆=-2()o e n n d πφπλ⊥∆=-+ 045α=相干相消:(21)k φπ⊥∆=+缺少的波长:()o e n n dk λ-=, 6,7,8,9,10k =717,614,538,478,430nm λ=17. 一方解石晶体的表面与其光轴平行, 放在偏振化方向相互正交的偏振片之间, 晶体的光轴与偏振片的偏振化方向成450角. 试求:(1)要使λ = 500nm 的光不能透过检偏器, 则晶片的厚度至少多大?(2)若两偏振片的偏振化方向平行, 要使λ =500nm 的光不能透过检偏器, 晶片的厚度又为多少?(方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:(1)如图(a )所示, 要使光不透过检偏器, 则通过检偏器的两束光须因干涉而相消, 通过P 2时两光的光程差为0()e n n d ∆=-对应的相位差为:02π()2πππe n n d δφλλ-∆=+=+由干涉条件:(21)π(0,1,2......)k k φ∆=+=02π()π(21)πe d n n k λ-+=+当k=1时, 镜片厚度最小, 为760510 2.910(m)()(1.658 1.486)e d n n λ--⨯===⨯-- (2)由图(b)可知当P 1, P 2平行时, 通过P 2的两束光没有附加相位差π, '02π()(21)π(0,1,2..)e d n n k k φλ∴∆=-=+=当k=0时, 此时晶片厚度最小,7065102()2(1.658 1.486)1.4510(m)e d n n λ--⨯==-⨯-=⨯18. 一束平行的线偏振光在真空中的波长为589nm, 垂直入射到方解石晶体上,晶体的光轴与表面平行, 如图所示. 已知方解石晶体对该单色o 光和e 光的折射率分别为1.658、1.486, 方解石晶体中寻常光的波长和非常光的波长分别等于多少?解:方解石晶体中o 光和e 光的波长分别为o o n λλ=658.1589=)nm (2.355=e e n λλ=486.1589=)nm (4.396= 三. 证明与问答题19. (证明题)一块玻璃的折射率为2 1.55n =, 一束自然光以θ角入射到玻璃表面, 求θ角为多少时反射光为完全偏振光?证明在下表面反射并经上表面透射的光也是完全偏振光.解:根据布儒斯特定律201tg n i n =121tg 571017n n θ-'''== 由折射定律:12sin sin n n θγ=π/2θγ+=πsin sin()cos 2θγγ=-=γ角满足布儒斯特定律.20. (问答题)用自然光源以及起偏器和检偏器各一件, 如何鉴别下列三种透明片:偏振片、半波片和1/4波片?答:令自然光先通过起偏器, 然后分别通过三种透明片, 改变起偏器的透振方向, 观察现象, 出现消光的透明片为偏振片, 再通过检偏器, 改变检偏器的透振方向, 出现消光的透明片为半波片.。
光的偏振习题(附答案)-(1)汇编
光的偏振(附答案)填空题1. 一束光垂直入射在偏振片P上,以入射光为轴旋转偏振片,观察通过偏振片P 的光强的变化过程•若入射光是自然光或圆偏振光,则将看到光强不变;若入射光是线偏振光,则将看到明暗交替变化,有时出现全暗;若入射光是部_ 分偏振光或椭圆偏振光,则将看到明暗交替变化,但不出现全暗•2. 圆偏振光通过四分之一波片后,出射的光一般是线偏振光.3. 要使一束线偏振光通过偏振片之后振动方向转过90度角,则至少需要让这束光通过2块理想偏振片,在此情况下,透射光强最大是原来的14倍•4. 两个偏振片叠放在一起,强度为I o的自然光垂直入射其上,若通过两个偏振片后的光强为I/8,则此两偏振片的偏振化方向间的夹角为(取锐角)是60度, 若在两片之间再插入一片偏振片,其偏振化方向间的夹角(取锐角)相等,则通过三个偏振片后的投射光强度为9/32 I o.5. 某种透明媒质对于空气的临界角(指全反射)等于45°,贝比从空气射向此媒质的布儒斯特角是54.7°,就偏振状态来说反射光为完全偏振光,反射光矢量的振动方向垂直入射面,透射光为部分偏振光.6. 一束自然光从空气透射到玻璃表面上(空气折射率为1),当折射角为30°时,反射光是完全偏振光,则此玻璃的折射率等于1.732.7. 一束钠自然黄光(入=589.3 X9m)自空气(设n=1)垂直入射方解石晶片的表面,晶体厚度为0.05 mm,对钠黄光方解石的主折射率n o=1.6584 n e =1.4864, 则o、e两光透过晶片后的光程差为86um。
、e两光透过晶片后的相位差为91.7 rad.8. 在杨氏双缝干涉实验中,若用单色自然光照射狭缝S,在屏幕上能看到干涉条纹.若在双缝S1和S2后分别加一个同质同厚度的偏振片P1、P2,则当P1与P2的偏振化方向互相平行或接近平行时,在屏幕上仍能看到清晰的干涉条纹.计算题9. 有一束自然光和线偏振光组成的混合光,当它通过偏振片时改变偏振片的取向,发现透射光强可以变化7倍.试求入射光中两种光的光强度各占总入射光强的比例.解:设入射光的光强为10,其中线偏振光的光强为101,自然光的光强为I 02.在该光束透过偏振片后,其光强由马吕斯定律可知:= I°1COSJ 」|2当口=0时,透射光的光强最大当「二二/2时,透射光的光强最小入射总光强为:I^ I 01 I 0210. 如图所示,一个晶体偏振器由两个直角棱镜组成(中间密合)•其中一个直 角棱镜由方解石晶体制成,另一个直角棱镜由玻璃制成,其折射率n 等于方 解石对e 光的折射率n e . 一束单色自然光垂直入射,试定性地画出折射光线, 并标明折射光线光矢量的振动方向.(方解石对o 光和e 光的主折射率分别 为 1.658 和 1.486.)解:由于玻璃的折射率n 等于方解石对e 光的折射率,因此e 光进入方解石 后传播方向不变.而n=n e >n 。
光的偏振计算题及答案
《光的偏振》计算题1. 将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45︒和90︒角.(1) 强度为I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2) 如果将第二个偏振片抽走,情况又如何?解:(1) 自然光通过第一偏振片后,其强度 I 1 = I 0 / 2 1分通过第2偏振片后,I 2=I 1cos 245︒=I 1/ 4 2分 通过第3偏振片后,I 3=I 2cos 245︒=I 0/ 8 1分 通过每一偏振片后的光皆为线偏振光,其光振动方向与刚通过的偏振片的偏振化方向平行. 2分(2) 若抽去第2片,因为第3片与第1片的偏振化方向相互垂直,所以此时I 3 =0. 1分I 1仍不变. 1分2. 两个偏振片叠在一起,在它们的偏振化方向成α1=30°时,观测一束单色自然光.又在α2=45°时,观测另一束单色自然光.若两次所测得的透射光强度相等,求两次入射自然光的强度之比.解:令I 1和I 2分别为两入射光束的光强.透过起偏器后,光的强度分别为I 1 / 2和I 2 / 2马吕斯定律,透过检偏器的光强分别为 1分1211cos 21αI I =', 2222cos 21αI I =' 2分 按题意,21I I '=',于是 222121cos 21cos 21ααI I = 1分 得 3/2cos /cos /221221==ααI I 1分3. 有三个偏振片叠在一起.已知第一个偏振片与第三个偏振片的偏振化方向相互垂直.一束光强为I 0的自然光垂直入射在偏振片上,已知通过三个偏振片后的光强为I 0 / 16.求第二个偏振片与第一个偏振片的偏振化方向之间的夹角.解:设第二个偏振片与第一个偏振片的偏振化方向间的夹角为θ.透过第一个偏振片后的光强 I 1=I 0 / 2. 1分 透过第二个偏振片后的光强为I 2,由马吕斯定律,I 2=(I 0 /2)cos 2θ 2分 透过第三个偏振片的光强为I 3,I 3 =I 2 cos 2(90°-θ ) = (I 0 / 2) cos 2θ sin 2θ = (I 0 / 8)sin 22θ 3分 由题意知 I 3=I 2 / 16所以 sin 22θ = 1 / 2,()2/2sin 211-=θ=22.5° 2分4. 将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o 60,一束光强为I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.(1) 求透过每个偏振片后的光束强度;(2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.解:(1) 透过第一个偏振片的光强I 1I 1=I 0 cos 230° 2分=3 I 0 / 4 1分透过第二个偏振片后的光强I 2, I 2=I 1cos 260°=3I 0 / 16 2分(2) 原入射光束换为自然光,则I 1=I 0 / 2 1分I 2=I 1cos 260°=I 0 / 8 2分5.强度为I 0的一束光,垂直入射到两个叠在一起的偏振片上,这两个偏振片的偏振化方向之间的夹角为60°.若这束入射光是强度相等的线偏振光和自然光混合而成的,且线偏振光的光矢量振动方向与此二偏振片的偏振化方向皆成30°角,求透过每个偏振片后的光束强度. 解:透过第一个偏振片后的光强为2001cos 212121⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=I I I 30° 2分 =5I 0 / 8 1分 透过第二个偏振片后的光强I 2=( 5I 0 / 8 )cos 260° 1分=5I 0 / 32 1分6.两个偏振片P 1,P 2叠在一起,一束强度为I 0的光垂直入射到偏振片上.已知该入射光由强度相同的自然光和线偏振光混合而成,且入射光穿过第一个偏振片P 1后的光强为0.716 I 0;当将P 1抽出去后,入射光穿过P 2后的光强为0.375I 0.求P 1、P 2的偏振化方向之间的夹角.解:设入射光中线偏振光的光矢量振动方向与P 1的偏振化方向之间的夹角为θ1,已知透过P 1后的光强I 1=0.716I 0,则I 1=0.716 I 0=0.5(I 0 / 2)+0.5(I 0 cos 2θ1) 3分cos 2θ1=0.932 θ1=15.1°(≈15°) 1分设θ2为入射光中线偏振光的光矢量振动方向与P 2的偏振化方向之间的夹角.已知入射光单独穿过P 2后的光强I 2=0.375I 0,则由 ()22000cos 212121375.0θI I I +⎪⎭⎫ ⎝⎛= 得 θ2=60° 2分 以α 表示P 1、P 2的偏振化方间的夹角,α有两个可能值α=θ2+θ1=75° 2分或α=θ2-θ1=45° 2分7. 两个偏振片P 1、P 2叠在一起,其偏振化方向之间的夹角为30°.一束强度为I 0的光垂直入射到偏振片上,已知该入射光由强度相同的自然光和线偏振光混合而成,现测得连续透过两个偏振片后的出射光强与I 0之比为9 /16,试求入射光中线偏振光的光矢量方向. 解:设入射光中线偏振光的光矢量振动方向与P 1的偏振化方向之间的夹角为θ,透过P 1后的光强I 1为 ()θ2001cos 212121I I I +⎪⎭⎫ ⎝⎛= 2分透过P 2后的光强I 2为 I 2=I 1 cos 2 30°()2022/32/cos 21⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=I θ 3分 I 2 / I 1=9 / 16cos 2 θ=1 2分 所以 θ=0°即入射光中线偏振光的光矢量振动方向与P 1的偏振化方向平行.1分8.由两个偏振片(其偏振化方向分别为P 1和P 2)叠在一起,P 1与P 2的夹角为α.一束线偏振光垂直入射在偏振片上.已知入射光的光矢量振动方向与P 2的夹角为A (取锐角),A 角保持不变,如图.现转动P 1,但保持P 1与E 、P 2的夹角都不超过A (即P 1夹在E 和P 2之间,见图).求α等于何值时出射光强为极值;此极值是极大还是极小?解:入射光振动方向E 与P 1、P 2的关系如图.出射光强为 ()αα2202cos cos -=A I I 3分 由三角函数“积化和差”关系,得20221cos 21cos 41⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=αA I I A 3分 因为A 为锐角,α≤A ,所以A A 2121≤-α (见图).所以 021cos 21cos >≥⎪⎭⎫ ⎝⎛-A A α 所以,I 2只在α = A / 2处取得极值,且显然是极大值. 2分 (用求导数的办法找极值点也可以)9.两个偏振片叠在一起,欲使一束垂直入射的线偏振光经过这两个偏振片之后振动方向转过了90°,且使出射光强尽可能大,那么入射光振动方向和两偏振片的偏振化方向之间的夹角应如何选择?这种情况下的最大出射光强与入射光强的比值是多少?解:以P 1、P 2表示两偏振化方向,其夹角记为θ,为了振动方向转过90°,入射光振动方向E 必与P 2垂直,如图. 2分设入射光强为I 0,则出射光强为I 2=I 0 cos 2(90°- θ ) cos 2θ ()θθθ2sin 4/cos sin 20220I I == 3分当2θ=90°即θ=45°时,I 2取得极大值,且 I 2max =I 0 / 4, 2分 即 I 2max / I 0=1 / 4 1分10.两个偏振片P 1、P 2叠在一起,一束单色线偏振光垂直入射到P 1上,其光矢量振动方向与P 1的偏振化方向之间的夹角固定为30°.当连续穿过P 1、P 2后的出射光强为最大出射光强的1 / 4时,P 1、P 2的偏振化方向夹角α是多大?解:设I 0为入射光强,I 为连续穿过P 1、P 2后的透射光强.I =I 0cos 230°cos 2α 2分 显然,α=0时为最大透射光强,即I max =I 0 cos 230°=3I 0 / 4 1分 由 I 0cos 230°cos 2α =I max / 4 可得 cos 2α 1 / 4=, α=60° 2分P 1P 2 E θ1 21 211.两个偏振片P 1、P 2叠在一起,其偏振化方向之间的夹角为30°.由强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上.已知穿过P 1后的透射光强为入射光强的2 / 3,求(1) 入射光中线偏振光的光矢量振动方向与P 1的偏振化方向的夹角θ为多大?(2) 连续穿过P 1、P 2后的透射光强与入射光强之比.解:设I 0为自然光强.由题意知入射光强为2 I 0. 1分(1) I 1=2·2 I 0 / 3=0.5 I 0+I 0cos 2θ4 / 3=0.5+cos 2θ所以 θ=24.1° 2分(2) I 1= (0.5 I 0+I 0 cos 224.1°)=2(2 I 0) / 3,I 2=I 1cos 230°=3 I 1 / 4所以I 2 / 2I 0 = 1 / 2 2分12.三个偏振片P 1、P 2、P 3顺序叠在一起,P 1、P 3的偏振化方向保持相互垂直,P 1与P 2的偏振化方向的夹角为α,P 2可以入射光线为轴转动.今以强度为I 0的单色自然光垂直入射在偏振片上.不考虑偏振片对可透射分量的反射和吸收.(1) 求穿过三个偏振片后的透射光强度I 与α角的函数关系式;(2) 试定性画出在P 2转动一周的过程中透射光强I 随α角变化的函数曲线.解:(1) 连续穿过三个偏振片之后的光强为 I =0.5I 0cos 2α cos 2(0.5π-α ) 2分 =I 0sin 2(2α) / 8 1分(2) 画出曲线 2分13.如图,P 1、P 2为偏振化方向相互平行的两个偏振片.光强为I 0的平行自然光垂直入射在P 1上. (1) 求通过P 2后的光强I . (2) 如果在P 1、P 2之间插入第三个偏振片P 3,(如图中虚线所示)并测得最后光强I =I 0 / 32,求:P 3的偏振化方向与P 1的偏振化方向之间的夹角α (设α为锐角). 解:(1) 经P 1后,光强I 1=21I0 1分 I 1为线偏振光.通过P 2.由马吕斯定律有I =I 1cos 2θ 1分 ∵ P 1与P 2偏振化方向平行.∴θ=0.故 I =I 1cos 20°=I 1=21I 01分 (2) 加入第三个偏振片后,设第三个偏振片的偏振化方向与第一个偏振化方向间的夹角为α.则透过P 2的光强αα2202cos cos 21I I =α40cos 21I = 2分 由已知条件有 32/cos 21040I I =α ∴ cos 4α=1 / 16 2分得 cos α=1 /2 即 α =60° 1分I 014.有一平面玻璃板放在水中,板面与水面夹角为θ (见图).设水和玻璃的折射率分别为1.333和1.517.已知图中水面的反射光是完全偏振光,欲使玻璃板面的反射光也是完全偏振光,θ 角应是多大?解:由题可知i 1和i 2应为相应的布儒斯特角,由布儒斯特定律知tg i 1= n 1=1.33; 1分tg i 2=n 2 / n 1=1.57 / 1.333, 2分 由此得 i 1=53.12°, 1分 i 2=48.69°. 1分 由△ABC 可得 θ+(π / 2+r )+(π / 2-i 2)=π 2分 整理得 θ=i 2-r由布儒斯特定律可知, r =π / 2-i 1 2分 将r 代入上式得θ=i 1+i 2-π / 2=53.12°+48.69°-90°=11.8° 1分15.一束自然光自水(折射率为1.33)中入射到玻璃表面上(如图).当入射角为49.5°时,反射光为线偏振光,求玻璃的折射率.解:设n 2为玻璃的折射率,由布儒斯特定律可得 n 2=1.33 tg49.5°3分=1.56 2分16.一束自然光自空气入射到水(折射率为1.33)表面上,若反射光是线偏振光,(1) 此入射光的入射角为多大?(2) 折射角为多大?解:(1) 由布儒斯特定律 tg i 0=1.33得 i 0=53.1°此 i b 即为所求的入射角 3分(2) 若以r 表示折射角,由布儒斯特定律可得r =0.5π-i 0=36.9° 2分17.一束自然光由空气入射到某种不透明介质的表面上.今测得此不透明介质的起偏角为 56°,求这种介质的折射率.若把此种介质片放入水(折射率为1.33)中,使自然光束自水中入射到该介质片表面上,求此时的起偏角.解:设此不透明介质的折射率为n ,空气的折射率为1.由布儒斯特定律可得n =tg 56°=1.483 2分 将此介质片放入水中后,由布儒斯特定律tg i 0=n / 1.33=1.112i 0=48.03° (=48°2') 3分此i 0即为所求之起偏角.水玻璃。
大学物理课后习题答案全 赵近芳版
t 习题十二12-1 某单色光从空气射入水中,其频率、波速、波长是否变化?怎样变化?解: υ不变,为波源的振动频率;nn 空λλ=变小;υλn u =变小.12-2 在杨氏双缝实验中,作如下调节时,屏幕上的干涉条纹将如何变化?试说明理由. (1)使两缝之间的距离变小;(2)保持双缝间距不变,使双缝与屏幕间的距离变小; (3)整个装置的结构不变,全部浸入水中; (4)光源作平行于1S ,2S 联线方向上下微小移动; (5)用一块透明的薄云母片盖住下面的一条缝. 解: 由λdDx =∆知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作相反方向的上下移动;(5)零级明纹向下移动.12-3 什么是光程? 在不同的均匀媒质中,若单色光通过的光程相等时,其几何路程是否相同?其所需时间是否相同?在光程差与位相差的关系式∆λπϕ∆2= 中,光波的波长要用真空中波长,为什么?解:nr =∆.不同媒质若光程相等,则其几何路程定不相同;其所需时间相同,为Ct ∆=∆. 因为∆中已经将光在介质中的路程折算为光在真空中所走的路程。
12-4 如题12-4图所示,A ,B 两块平板玻璃构成空气劈尖,分析在下列情况中劈尖干涉条纹将如何变化?(1) A 沿垂直于B 的方向向上平移[见图(a)]; (2) A 绕棱边逆时针转动[见图(b)].题12-4图 解: (1)由l2λθ=,2λke k =知,各级条纹向棱边方向移动,条纹间距不变;(2)各级条纹向棱边方向移动,且条纹变密. 12-5 用劈尖干涉来检测工件表面的平整度,当波长为λ的单色光垂直入射时,观察到的干涉条纹如题12-5图所示,每一条纹的弯曲部分的顶点恰与左邻的直线部分的连线相切.试说明工件缺陷是凸还是凹?并估算该缺陷的程度.解: 工件缺陷是凹的.故各级等厚线(在缺陷附近的)向棱边方向弯曲.按题意,每一条纹弯曲部分的顶点恰与左邻的直线部分连线相切,说明弯曲部分相当于条纹向棱边移动了一条,故相应的空气隙厚度差为2λ=∆e ,这也是工件缺陷的程度.题12-5图 题12-6图12-6 如题12-6图,牛顿环的平凸透镜可以上下移动,若以单色光垂直照射,看见条纹向中 心收缩,问透镜是向上还是向下移动?解: 条纹向中心收缩,透镜应向上移动.因相应条纹的膜厚k e 位置向中心移动. 12-7 在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求: (1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2)相邻两明条纹间的距离.解: (1)由λk dDx =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm 12-8 在双缝装置中,用一很薄的云母片(n=1.58)覆盖其中的一条缝,结果使屏幕上的第七级明条纹恰好移到屏幕中央原零级明纹的位置.若入射光的波长为5500oA ,求此云母片的厚度.解: 设云母片厚度为e ,则由云母片引起的光程差为e n e ne )1(-=-=δ按题意 λδ7=∴ 610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ 12-9 洛埃镜干涉装置如题12-9图所示,镜长30cm ,狭缝光源S 在离镜左边20cm 的平面内,与镜面的垂直距离为2.0mm ,光源波长=λ7.2×10-7m ,试求位于镜右边缘的屏幕上第一条明条纹到镜边缘的距离.题12-9图解: 镜面反射光有半波损失,且反射光可视为虚光源S '发出.所以由S 与S '发出的两光束到达屏幕上距镜边缘为x 处的光程差为 22)(12λλδ+=+-=D x dr r 第一明纹处,对应λδ=∴25105.44.0250102.72--⨯=⨯⨯⨯==d Dx λmm 12-10 一平面单色光波垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃板上.油的折射率为1.30,玻璃的折射率为1.50,若单色光的波长可由光源连续可调,可观察到5000 oA 与7000oA 这两个波长的单色光在反射中消失.试求油膜层的厚度.解: 油膜上、下两表面反射光的光程差为ne 2,由反射相消条件有λλ)21(2)12(2+=+=k k k ne ),2,1,0(⋅⋅⋅=k ① 当50001=λoA 时,有2500)21(21111+=+=λλk k ne ②当70002=λoA 时,有3500)21(22222+=+=λλk k ne ③因12λλ>,所以12k k <;又因为1λ与2λ之间不存在3λ满足33)21(2λ+=k ne 式即不存在 132k k k <<的情形,所以2k 、1k 应为连续整数,即 112-=k k ④ 由②、③、④式可得:51)1(75171000121221+-=+=+=k k k k λλ 得 31=k2112=-=k k可由②式求得油膜的厚度为67312250011=+=nk e λo A12-11 白光垂直照射到空气中一厚度为3800 oA 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解: 由反射干涉相长公式有λλk ne =+22 ),2,1(⋅⋅⋅=k得 122021612380033.14124-=-⨯⨯=-=k k k ne λ 2=k , 67392=λoA (红色)3=k , 40433=λ oA (紫色)所以肥皂膜正面呈现紫红色.由透射干涉相长公式 λk ne =2),2,1(⋅⋅⋅=k 所以 kk ne 101082==λ 当2=k 时, λ =5054oA (绿色) 故背面呈现绿色.12-12 在折射率1n =1.52的镜头表面涂有一层折射率2n =1.38的Mg 2F 增透膜,如果此膜适用于波长λ=5500 oA 的光,问膜的厚度应取何值?解: 设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即λ)21(22+=k e n ),2,1,0(⋅⋅⋅=k∴ 222422)21(n n k n k e λλλ+=+=)9961993(38.14550038.125500+=⨯+⨯=k k o A 令0=k ,得膜的最薄厚度为996oA . 当k 为其他整数倍时,也都满足要求.12-13 如题12-13图,波长为6800oA 的平行光垂直照射到L =0.12m 长的两块玻璃片上,两玻璃片一边相互接触,另一边被直径d =0.048mm 的细钢丝隔开.求:(1)两玻璃片间的夹角=θ?(2)相邻两明条纹间空气膜的厚度差是多少? (3)相邻两暗条纹的间距是多少? (4)在这0.12 m 内呈现多少条明条纹?题12-13图解: (1)由图知,d L =θsin ,即d L =θ故 43100.41012.0048.0-⨯=⨯==L d θ(弧度) (2)相邻两明条纹空气膜厚度差为7104.32-⨯==∆λe m(3)相邻两暗纹间距641010850100.421068002---⨯=⨯⨯⨯==θλl m 85.0= mm (4)141≈=∆lLN 条 12-14 用=λ 5000oA 的平行光垂直入射劈形薄膜的上表面,从反射光中观察,劈尖的 棱边是暗纹.若劈尖上面媒质的折射率1n 大于薄膜的折射率n (n =1.5).求: (1)膜下面媒质的折射率2n 与n 的大小关系; (2)第10条暗纹处薄膜的厚度;(3)使膜的下表面向下平移一微小距离e ∆,干涉条纹有什么变化?若e ∆=2.0 μm ,原来的第10条暗纹处将被哪级暗纹占据?解: (1)n n >2.因为劈尖的棱边是暗纹,对应光程差2)12(22λλ+=+=∆k ne ,膜厚0=e 处,有0=k ,只能是下面媒质的反射光有半波损失2λ才合题意; (2)3105.15.12500092929-⨯=⨯⨯==⨯=∆n e nλλ mm (因10个条纹只有9个条纹间距)(3)膜的下表面向下平移,各级条纹向棱边方向移动.若0.2=∆e μm ,原来第10条暗纹处现对应的膜厚为)100.2105.1(33--⨯+⨯='∆e mm21100.55.12105.3243=⨯⨯⨯⨯='∆=∆--n e N λ 现被第21级暗纹占据.12-15 (1)若用波长不同的光观察牛顿环,1λ=6000oA ,2λ=4500oA ,观察到用1λ时的第k个暗环与用2λ时的第k+1个暗环重合,已知透镜的曲率半径是190cm .求用1λ时第k 个暗环的半径.(2)又如在牛顿环中用波长为5000oA 的第5个明环与用波长为2λ的第6个明环重合,求未知波长2λ.解: (1)由牛顿环暗环公式λkR r k =据题意有 21)1(λλR k kR r +==∴212λλλ-=k ,代入上式得2121λλλλ-=R r10101010210450010600010450010600010190-----⨯-⨯⨯⨯⨯⨯⨯= 31085.1-⨯=m(2)用A 50001 =λ照射,51=k 级明环与2λ的62=k 级明环重合,则有 2)12(2)12(2211λλR k R k r -=-=∴ 4091500016215212121212=⨯-⨯-⨯=--=λλk k o A 12-16 当牛顿环装置中的透镜与玻璃之间的空间充以液体时,第十个亮环的直径由1d =1.40×10-2m 变为2d =1.27×10-2m ,求液体的折射率.解: 由牛顿环明环公式2)12(21λR k D r -==空nR k D r 2)12(22λ-==液两式相除得n D D =21,即22.161.196.12221≈==D D n12-17 利用迈克耳逊干涉仪可测量单色光的波长.当1M 移动距离为0.322mm 时,观察到干涉条纹移动数为1024条,求所用单色光的波长. 解: 由 2λNd ∆=∆得 102410322.0223-⨯⨯=∆∆=N d λ 710289.6-⨯=m 6289=oA12-18 把折射率为n =1.632的玻璃片放入迈克耳逊干涉仪的一条光路中,观察到有150条干涉条纹向一方移过.若所用单色光的波长为λ= 5000oA ,求此玻璃片的厚度. 解: 设插入玻璃片厚度为d ,则相应光程差变化为λN d n ∆=-)1(2∴ )1632.1(2105000150)1(210-⨯⨯=-∆=-n N d λ5109.5-⨯=m 2109.5-⨯=mm习题十三13-1 衍射的本质是什么?衍射和干涉有什么联系和区别? 答:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象.其实质是由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生.而干涉则是由同频率、同方向及位相差恒定的两列波的叠加形成.13-2 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会 跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动? 答:把单缝沿透镜光轴方向平移时,衍射图样不会跟着移动.单缝沿垂直于光轴方向平移时,衍射图样不会跟着移动.13-3 什么叫半波带?单缝衍射中怎样划分半波带?对应于单缝衍射第3级明条纹和第4级暗 条纹,单缝处波面各可分成几个半波带?答:半波带由单缝A 、B 首尾两点向ϕ方向发出的衍射线的光程差用2λ来划分.对应于第3级明纹和第4级暗纹,单缝处波面可分成7个和8个半波带.∵由272)132(2)12(sin λλλϕ⨯=+⨯=+=k a284sin λλϕ⨯==a13-4 在单缝衍射中,为什么衍射角ϕ愈大(级数愈大)的那些明条纹的亮度愈小? 答:因为衍射角ϕ愈大则ϕsin a 值愈大,分成的半波带数愈多,每个半波带透过的光通量就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小.13-5 若把单缝衍射实验装置全部浸入水中时,衍射图样将发生怎样的变化?如果此时用公式),2,1(2)12(sin =+±=k k a λϕ来测定光的波长,问测出的波长是光在空气中的还是在水中的波长?解:当全部装置浸入水中时,由于水中波长变短,对应='='λϕk a sin nk λ,而空气中为λϕk a =sin ,∴ϕϕ'=sin sin n ,即ϕϕ'=n ,水中同级衍射角变小,条纹变密.如用)12(sin +±=k a ϕ2λ),2,1(⋅⋅⋅=k 来测光的波长,则应是光在水中的波长.(因ϕsin a 只代表光在水中的波程差).13-6 在单缝夫琅禾费衍射中,改变下列条件,衍射条纹有何变化?(1)缝宽变窄;(2)入 射光波长变长;(3)入射平行光由正入射变为斜入射.解:(1)缝宽变窄,由λϕk a =sin 知,衍射角ϕ变大,条纹变稀; (2)λ变大,保持a ,k 不变,则衍射角ϕ亦变大,条纹变稀;(3)由正入射变为斜入射时,因正入射时λϕk a =sin ;斜入射时,λθϕk a '=-)sin (sin ,保持a ,λ不变,则应有k k >'或k k <'.即原来的k 级条纹现为k '级.13-7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾?怎样 说明?答:不矛盾.单缝衍射暗纹条件为kk a 2sin ==λϕ2λ,是用半波带法分析(子波叠加问题).相邻两半波带上对应点向ϕ方向发出的光波在屏上会聚点一一相消,而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为λθk d =sin ,描述的是两路相干波叠加问题,其波程差为波长的整数倍,相干加强为明纹.13-8 光栅衍射与单缝衍射有何区别?为何光栅衍射的明条纹特别明亮而暗区很宽?答:光栅衍射是多光束干涉和单缝衍射的总效果.其明条纹主要取决于多光束干涉.光强与缝数2N 成正比,所以明纹很亮;又因为在相邻明纹间有)1(-N 个暗纹,而一般很大,故实际上在两相邻明纹间形成一片黑暗背景.13-9 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明条纹缺级?(1) a+b=2a;(2)a+b=3a;(3)a+b=4a.解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即⎩⎨⎧=''±==±=+)2,1(sin ),2,1,0(sin )( k k a k k b a λϕλϕ 可知,当k aba k '+=时明纹缺级. (1)a b a 2=+时,⋅⋅⋅=,6,4,2k 偶数级缺级; (2)a b a 3=+时,⋅⋅⋅=,9,6,3k 级次缺级;(3)a b a 4=+,⋅⋅⋅=,12,8,4k 级次缺级.13-10 若以白光垂直入射光栅,不同波长的光将会有不同的衍射角.问(1)零级明条纹能 否分开不同波长的光?(2)在可见光中哪种颜色的光衍射角最大?不同波长的光分开程度与什 么因素有关? 解:(1)零级明纹不会分开不同波长的光.因为各种波长的光在零级明纹处均各自相干加强. (2)可见光中红光的衍射角最大,因为由λϕk b a =+sin )(,对同一k 值,衍射角λϕ∞. 13-11 一单色平行光垂直照射一单缝,若其第三级明条纹位置正好与6000οA 的单色平行光的第二级明条纹位置重合,求前一种单色光的波长. 解:单缝衍射的明纹公式为)12(sin +=k a ϕ2λ 当6000=λoA 时,2=kx λλ=时,3=k重合时ϕ角相同,所以有)132(26000)122(sin +⨯=+⨯=ϕa 2x λ得 4286600075=⨯=x λo A13-12 单缝宽0.10mm ,透镜焦距为50cm ,用5000=λoA 的绿光垂直照射单缝.求:(1)位于透镜焦平面处的屏幕上中央明条纹的宽度和半角宽度各为多少?(2)若把此装置浸入水中(n=1.33),中央明条纹的半角宽度又为多少? 解:中央明纹的宽度为f nax λ2=∆半角宽度为naλθ1sin -=(1)空气中,1=n ,所以3310100.51010.01050005.02---⨯=⨯⨯⨯⨯=∆x m33101100.51010.0105000sin ----⨯=⨯⨯=θ rad (2)浸入水中,33.1=n ,所以有33101076.31010.033.110500050.02---⨯≈⨯⨯⨯⨯⨯=∆x m331011076.3101.033.1105000sin ----⨯≈⨯⨯⨯=θ rad 13-13 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f=40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?解:(1)由于P 点是明纹,故有2)12(sin λϕ+=k a ,⋅⋅⋅=3,2,1k由ϕϕsin tan 105.34004.13≈=⨯==-f x 故3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ3102.4121-⨯⨯+=k mm 当 3=k ,得60003=λoA4=k ,得47004=λoA(2)若60003=λoA ,则P 点是第3级明纹; 若47004=λoA ,则P 点是第4级明纹. (3)由2)12(sin λϕ+=k a 可知,当3=k 时,单缝处的波面可分成712=+k 个半波带; 当4=k 时,单缝处的波面可分成912=+k 个半波带.13-14 用5900=λoA 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹?解:5001=+b a mm 3100.2-⨯= mm 4100.2-⨯=o A 由λϕk b a =+sin )(知,最多见到的条纹级数m ax k 对应的2πϕ=,所以有39.35900100.24max ≈⨯=+=λba k ,即实际见到的最高级次为3max =k .13-15 波长为5000oA 的平行单色光垂直照射到每毫米有200条刻痕的光栅上,光栅后的透镜焦距为60cm . 求:(1)屏幕上中央明条纹与第一级明条纹的间距;(2)当光线与光栅法线成30°斜入射时,中央明条纹的位移为多少?解:3100.52001-⨯==+b a mm 6100.5-⨯m (1)由光栅衍射明纹公式 λϕk b a =+sin )(,因1=k ,又f x ==ϕϕtan sin 所以有λ=+f x b a 1)( 即 62101100.51060105000---⨯⨯⨯⨯=+=b a fx λ 2100.6-⨯=m 6= cm(2)对应中央明纹,有0=k正入射时,0sin )(=+ϕb a ,所以0sin =≈ϕϕ斜入射时,0)sin )(sin (=±+θϕb a ,即0sin sin =±θϕ因︒=30θ,∴21tan sin ±==≈f x ϕϕ 故22103010602121--⨯=⨯⨯==f x m 30= cm 这就是中央明条纹的位移值.13-16 波长6000=λo A 的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在20.0sin =ϕ与30.0sin =ϕ处,第四级缺级.求:(1)光栅常数;(2)光栅上狭缝的宽度;(3)在90°>ϕ>-90°范围内,实际呈现的全部级数.解:(1)由λϕk b a =+sin )(式对应于20.0sin 1=ϕ与30.0sin 2=ϕ处满足:101060002)(20.0-⨯⨯=+b a101060003)(30.0-⨯⨯=+b a得 6100.6-⨯=+b a m(2)因第四级缺级,故此须同时满足 λϕk b a =+sin )(λϕk a '=sin解得 k k b a a '⨯='+=-6105.14取1='k ,得光栅狭缝的最小宽度为6105.1-⨯m(3)由λϕk b a =+sin )( λϕsin )(b a k +=当2πϕ=,对应max k k =∴ 10106000100.6106max =⨯⨯=+=--λb a k 因4±,8±缺级,所以在︒︒<<-9090ϕ范围内实际呈现的全部级数为9,7,6,5,3,2,1,0±±±±±±±=k 共15条明条纹(10±=k 在︒±=90k 处看不到).13-17 一双缝,两缝间距为0.1mm ,每缝宽为0.02mm ,用波长为4800oA 的平行单色光垂直入射双缝,双缝后放一焦距为50cm 的透镜.试求:(1)透镜焦平面上单缝衍射中央明条纹的宽度;(2)单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹?解:(1)中央明纹宽度为 02.010501048002270⨯⨯⨯⨯==-f a l λmm 4.2=cm (2)由缺级条件λϕk a '=sinλϕk b a =+sin )(知k k a b a k k '='=+'=502.01.0 ⋅⋅⋅=',2,1k 即⋅⋅⋅=,15,10,5k 缺级. 中央明纹的边缘对应1='k ,所以单缝衍射的中央明纹包迹内有4,3,2,1,0±±±±=k 共9条双缝衍射明条纹.13-18 在夫琅禾费圆孔衍射中,设圆孔半径为0.10mm ,透镜焦距为50cm ,所用单色光波长为5000oA ,求在透镜焦平面处屏幕上呈现的爱里斑半径.解:由爱里斑的半角宽度 47105.302.010500022.122.1--⨯=⨯⨯==D λθ∴ 爱里斑半径5.1105.30500tan 24=⨯⨯=≈=-θθf f d mm 13-19 已知天空中两颗星相对于一望远镜的角距离为4.84×10-6rad ,它们都发出波长为5500oA 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星?解:由最小分辨角公式 D λθ22.1=∴ 86.131084.4105.522.122.165=⨯⨯⨯==--θλD cm 13-20 已知入射的X 射线束含有从0.95~1.30o A 范围内的各种波长,晶体的晶格常数为2.75o A ,当X 射线以45°角入射到晶体时,问对哪些波长的X 射线能产生强反射? 解:由布喇格公式 λϕk d =sin 2 得kd ϕλsin 2=时满足干涉相长 当1=k 时, 89.345sin 75.22=⨯⨯=︒λoA2=k 时,91.1245sin 75.22=⨯⨯=︒λo A 3=k 时,30.1389.3==λo A 4=k 时, 97.0489.3==λo A 故只有30.13=λo A 和97.04=λo A 的X 射线能产生强反射.。
大学物理学第四版课后习题答案(赵近芳)上册
大学物理学第四版课后习题答案(赵近芳)上册大学物理学第四版课后习题答案(赵近芳)上册I. 力学基础1.1 物理量、单位和量纲1.2 一维运动1.3 二维运动1.4 多维运动1.5 动力学定律1.6 四个基本定律的应用II. 力学进阶2.1 万有引力定律2.2 物体的机械平衡2.3 力的合成和分解2.4 刚体的平衡条件2.5 动力学定律的矢量形式2.6 力的合成与分解在动力学中的应用III. 力学应用3.1 动量和冲量3.2 动量定理和动量守恒定律3.3 质心运动3.4 矩和对称性3.5 碰撞和动能IV. 振动与波动4.1 简谐振动的基本概念4.2 简谐振动的物理规律4.3 简谐振动的叠加4.4 波的基本概念4.5 机械波的传播4.6 声波的特性V. 热学基础5.1 温度和热量5.2 热学平衡5.3 理想气体状态方程5.4 热力学第一定律5.5 热力学第二定律5.6 热力学循环VI. 热学进阶6.1 热传导6.2 理想气体的物态方程6.3 热机的工作原理6.4 理想气体的热力学过程6.5 热力学第三定律6.6 热力学中的熵VII. 光学基础7.1 几何光学的基本假设7.2 反射和折射7.3 薄透镜的成像7.4 光的衍射7.5 光的干涉与衍射VIII. 光学进阶8.1 光的波动性8.2 波动光学中的衍射现象8.3 干涉与衍射的应用8.4 偏振光的特性和产生8.5 偏振的应用IX. 电学基础9.1 电荷和电场9.2 电场中的电荷9.3 静电场中的电势能9.4 电介质中的电场9.5 电容器和电容9.6 电容器在电场中的应用X. 电学进阶10.1 电流和电阻10.2 欧姆定律和电功率10.3 理想电源和内阻10.4 串联和并联电路10.5 微观电流与输运过程10.6 磁场和电流的相互作用XI. 磁学基础11.1 磁场的基本概念11.2 安培力和磁场的作用11.3 安培环路定理和比奥-萨伐尔定律11.4 磁场中的磁矩和磁矢势11.5 磁场中的电荷和电流XII. 电磁感应12.1 法拉第电磁感应定律12.2 电磁感应的应用12.3 洛伦兹力和电磁感应的关系12.4 电磁感应中的能量转换XIII. 光学和电磁波13.1 光的多普勒效应13.2 光的全反射和光导纤维13.3 电磁波的基本特性13.4 电磁波的干涉和衍射13.5 电磁波的产生和传播XIV. 原子物理14.1 原子的组成和结构14.2 原子能级和辐射14.3 布拉格衍射和X射线的产生14.4 原子谱和拉曼散射14.5 布居和粒子统计XV. 物质内部结构15.1 固体的晶体结构15.2 固体的导电性15.3 半导体的性质和应用15.4 介质的极化和磁化15.5 核能和放射性以上是《大学物理学第四版课后习题答案(赵近芳)上册》的大纲,根据各个章节的内容进行详细解答可帮助学生更好地掌握物理学知识。
08 光的衍射和偏振习题
光的衍射和偏振习题班级 姓名 学号 成绩一、选择题1、根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强决定于波阵面上所有面元发出的子波各自传到P 点的【 】(A )振动振幅之和 (B )光强之和 (C )相干叠加 (D )振动振幅之和的平方 2、在单缝衍射实验中,缝宽2.0=a mm ,透镜焦距m 4.0=f ,入射光波长nm 500=λ,则在屏上中央亮纹中心位置上方2mm 处是亮纹还是暗纹?从这位置看去可以把波阵面分为几个半波带? 【 】(A )暗纹,4个半波带 (B )亮纹,3个半波带 (C )暗纹,3个半波带 (D )亮纹,4个半波带3、在单缝夫琅禾费衍射实验中,若增大缝宽(还可以衍射),其他条件不变,则中央明条纹【 】(A) 宽度不变,且中心强度也不变 (B) 宽度变小 (C) 宽度变大 (D) 宽度不变,但中心强度增大4、某元素的特征光谱中含有波长分别为λ1=450 nm 和λ2=750 nm (1 nm =10-9 m)的光谱线.在光栅光谱中,这两种波长的谱线有重叠现象,重叠处λ2的谱线的级数将是【 】(A) 2,3,4,5 ... (B) 3,6,9,12...(C) 2,5,8,11... (D) 2,4,6,8 ...5、一束单色光垂直入射在光栅上,当光栅常数)(b a +为下列哪种情况时(a 为缝宽),9,6,3=k 等主极大缺级?【 】(A )a b a 4=+ (B )a b a 6=+ (C )a b a 2=+ (D )a b a 3=+6、自然光从空气连续射入介质A 和B ,光入射角 600=i 时得到的反射光A R 和B R 都是完全偏振光(振动方向垂直入射面),由此可知,介质A 和介质B 的折射率之比为【 】(A )21 (B )31(C )12 (D )37、一束光强为0I 的自然光,相继通过三个偏振片1P 、2P 、3P 后出射光强为80I 。
大学物理简明教程(赵近芳)习题10详解
习题101.选择题(1)在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是[ ](A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.[答案:C](2)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的[ ](A) 间隔变小,并向棱边方向平移.(B) 间隔变大,并向远离棱边方向平移.(C) 间隔不变,向棱边方向平移.(D) 间隔变小,并向远离棱边方向平移.[答案:A](3)一束波长为λ的单色光由空气垂直入射到折射率为n的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为[ ](A) λ / 4.(B) λ / (4n).(C) λ / 2.(D) λ / (2n).[答案:B](4)在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为d的透明薄片,放入后,这条光路的光程改变了[ ](A) 2 ( n-1 ) d.(B) 2nd.(C) 2 ( n-1 ) d+λ / 2.(D) nd.(E) ( n-1 ) d.[答案:A](5)在迈克耳孙干涉仪的一条光路中,放入一折射率为n的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是[](A) λ / 2.(B) λ / (2n).(C) λ / n.(D) λ / [2(n-1)].[答案:D](6)在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹[ ](A) 对应的衍射角变小.(B) 对应的衍射角变大.(C) 对应的衍射角也不变.(D) 光强也不变.[答案:B](7)波长λ=500 nm (1nm=10-9m)的单色光垂直照射到宽度a =0.25mm的单缝上,单缝后面放一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。
光的衍射习题(附答案)1(1)
光的衍射(附答案)一.填空题1.波长λ = 500 nm(1 nm = 10−9 m)的单色光垂直照射到宽度a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f为1 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为4.0 mm,则λ2 ≈ 442 nm(1 nm = 10−9 m)的蓝紫色光的中央明纹宽度为3.0 mm.3.平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f = 400mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×10−4mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 10−6 m)的光栅上,用焦距f = 0.500 m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l = 0.1667 m,则可知该入射的红光波长λ=632.6或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于2.24×10−5rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于4.47μm.8.钠黄光双线的两个波长分别是589.00 nm和589.59 nm(1 nm = 10−9 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 10−9 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1 a sinθ2= 2 λ2由题意可知θ1= θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1=k1λ1=2k1λ2(k1=1, 2, …)sinθ1=2k1λ2/ aa sinθ2=k2λ2(k2=1, 2, …)sinθ2=2k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = 0.100 mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f = 1.00 m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx1 = f tanθ1≈f sinθ1≈f λ/ a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2 = 2 λx2 = f tanθ2≈f sinθ2≈ 2 f λ/ a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx1 = x2− x1≈f (2 λ/ a −λ/ a)= f λ/ a=1.00×5.00×10−7/(1.00×10−4) m =5.00mm.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 10−9 m).已知单缝宽度a = 1.0×10−2 cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a= 1.0×10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1= 12(2 k + 1)λ1 =12λ1(取k = 1)a sinφ2= 12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于sinφ1≈ tanφ1,sinφ2≈ tanφ2所以x1= 32f λ1 /ax2= 32f λ2 /a则两个第一级明纹之间距为Δx1= x2− x1= 32fΔλ/a = 0.27 cm(2) 由光栅衍射主极大的公式d sinφ1= k λ1 = 1λ1d sinφ2= k λ2 = 1λ2且有sinφ = tanφ = x / f所以Δx1= x2− x1 = fΔλ/a = 1.8 cm14.一双缝缝距d = 0.40 mm,两缝宽度都是a = 0.080 mm,用波长为λ = 480 nm(1 nm = 10−9 m)的平行光垂直照射双缝,在双缝后放一焦距f = 2.0 m的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1) 第k级亮纹条件:d sinθ=kλ第k级亮条纹位置:x1= f tanθ1≈f sinθ1≈k f λ/ d相邻两亮纹的间距:Δx= x k +1− x k = (k + 1) fλ/ d −k λ/ d= f λ/ d = 2.4×10−3 m = 2.4 mm(2) 单缝衍射第一暗纹:a sinθ1= λ单缝衍射中央亮纹半宽度:Δx= f tanθ1≈ f sinθ1≈ k f λ / d = 12 mmΔx/ Δx = 5∴双缝干涉第±5级主极大缺级.∴在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d /a= 5指出双缝干涉缺第±5 级主极大,同样可得出结论。
赵近芳大学物理学 第五版 部分解答
第11章变化的电磁场11.1选择题(1)圆形线圈在磁场中作下列运动时,那些情况会产生感应电流( )。
(A)沿垂直磁场方向平移(B)以直径为轴转动,轴跟磁场垂直(C)沿平行磁场方向平移(D)以直径为轴转动,轴跟磁场平行[答案:B] (2)下列哪些矢量场为保守力场(阅读全文请关注VX公众号高校课后习题)。
(A)静电场(B)稳恒磁场(C)感生电场(D)变化的磁场[答案:A] (3)用线圈的自感系数L来表示载流线圈磁场能量的公式W m=LI2/2( )。
(A)只适用于无限长密绕线管(B)只适用于一个匝数很多,且密绕的螺线环(C)只适用于单匝圆线圈(D)适用于自感系数L一定的任意线圈[答案:D]第10章 稳恒磁场10.1选择题(1) 对于安培环路定理的理解,正确的是(A)若环流等千零,则在回路L 上必定是H 处处为零(B)若环流等于零,则在回路L 上必定不包围电流(C)若环流等于零,则在回路L 所包围传导电流的代数和为零(D)回路L 上各点的H 仅与回路L 包围的电流有关 [答案:C](2)对半径为R 载流为I 的无限长直圆柱体,距轴线r 处的磁感应强度B (A)内外部磁感应强度B 都与r 成正比(B)内部磁感应强度B 与r 成正比,外部磁感应强度B 与r 成反比(C)内外部磁感应强度B 都与r 成反比(D)内部磁感应强度B 与r 成反比,外部磁感应强度B 与r 成正比[答案:B]第12章 光的干涉12.1选择题(1)在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是 ( )(A)使屏靠近双缝 (B)使两缝的间距变小(C)把两个缝的宽度稍微调窄 (D))改用波长较小的单色光源[答案:C](2)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射,若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则于涉条纹的 ( )(A)间隔变小,并向棱边方向平移 (B)间隔变大,并向远离棱边方向平移(C)间隔不变,向棱边方向平移 (D)间隔变小,并向远离棱边方向平移[答案:A]第13章 光的衍射13.1选择题(1)在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹( )。
光的衍射与偏振习题答案
第7章 光的衍射一、选择题1(D),2(B),3(D),4(B),5(D),6(B),7(D),8(B),9(D),10(B)二、填空题(1). 1.2mm ,3.6mm(2). 500nm (或4105-⨯mm)(3). 一 三(4). 0,1±,3±(5). 5(6). 更窄更亮(7). 0.025(8). 照射光波长,圆孔的直径(9). 2.24×10-4(10). 13.9三、计算题1.某种单色平行光垂直入射在单缝上,单缝宽a = 0.15 mm .缝后放一个焦距f = 400 mm 的凸透镜,在透镜的焦平面上,测得中央明条纹两侧的两个第三级暗条纹之间的距离为8.0 mm ,求入射光的波长. 解:设第三级暗纹在3方向上,则有 a sin 3 = 3 此暗纹到中心的距离为 x 3 = f tg 3 因为3很小,可认为tg 3≈sin 3,所以 x 3≈3f / a .两侧第三级暗纹的距离是 2 x 3 = 6f / a = 8.0mm∴ = (2x 3) a / 6f = 500 nm2.在夫琅禾费单缝衍射实验中,如果缝宽a 与入射光波长的比值分别为(1) 1,(2) 10,(3) 100,试分别计算中央明条纹边缘的衍射角.再讨论计算结果说明什么问题.解:(1) a =,sin ==1 , =90°(2) a =10,sin =/10=0.1 =544'(3) a =100,sin =/100=0.01 =34'这说明,比值 /a 变小的时候,所求的衍射角变小,中央明纹变窄(其它明纹也相应地变为更靠近中心点),衍射效应越来越不明显. ( /a )→0的极限情形即几何光学的情形: 光线沿直传播,无衍射效应.3.在某个单缝衍射实验中,光源发出的光含有两秏波长1和2,垂直入射于单缝上.假如1的第一级衍射极小与2的第二级衍射极小相重合,试问(1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其他极小相重合?解:(1) 由单缝衍射暗纹公式得111sin λθ=a 222sin λθ=a由题意可知 21θθ= , 21sin sin θθ=代入上式可得 212λλ=(2) 211112sin λλθk k a == (k 1 = 1, 2, ……)a k /2sin 211λθ=222sin λθk a = (k 2 = 1, 2, ……)a k /sin 222λθ=若k 2 = 2k 1,则1 = 2,即1的任一k 1级极小都有2的2k 1级极小与之重合.4.氦放电管发出的光垂直照射到某光栅上,测得波长=0.668m 的谱线的衍射角为=20°.如果在同样角处出现波长2=0.447m 的更高级次的谱线,那么光栅常数最小是多少?解:由光栅公式得 sin = k 1 1 / (a +b ) = k 2 2 / (a +b ),k 1 1 = k 2 2k 2 k 1 = 1/ 2=0.668 / 0.447将k 2 k 1约化为整数比k 2 k 1=3 / 2=6 / 4=12 / 8 ......取最小的k 1和k 2, k 1=2,k 2=3,则对应的光栅常数(a + b ) = k 1 1 / sin =3.92 m.5.一束平行光垂直入射到某个光栅上,该光束有两种波长的光,1=440 nm ,2=660 nm (1nm = 10-9 m).实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角=60°的方向上.求此光栅的光栅常数d .解:由光栅衍射主极大公式得111sin λϕk d =222sin λϕk d = 212122112132660440sin sin k k k k k k =⨯⨯==λλϕϕ 当两谱线重合时有1=2 即 69462321===k k 两谱线第二次重合即是4621=k k , k 1=6, k 2=4 由光栅公式可知 d sin60°=6160sin 61λ=d =3.05×10-3 mm 6.以波长400 nm ─760 nm (1 nm =10-9 m)的白光垂直照射在光栅上,在它的衍射光谱中,第二级和第三级发生重叠,求第二级光谱被重叠的波长范围.解:令第三级光谱中=400 nm 的光与第二级光谱中波长为的光对应的衍射角都为, 则 d sin =3, d sin =2λ'λ'= (d sin / )2==λ23600nm ∴第二级光谱被重叠的波长范围是 600 nm----760 nm 7.用每毫米300条刻痕的衍射光栅来检验仅含有属于红和蓝的两种单色成分的光谱.已知红谱线波长R 在 0.63─0.76 m 范围内,蓝谱线波长B 在0.43─0.49 m 范围内.当光垂直入射到光栅时,发现在衍射角为24.46°处,红蓝两谱线同时出现.(1) 在什么角度下红蓝两谱线还会同时出现?(2) 在什么角度下只有红谱线出现?解:∵ a +b = (1 / 300) mm = 3.33 m(1) (a + b ) sin =k ,∴ k = (a + b ) sin24.46°= 1.38 m∵ R =0.63─0.76 m ; B =0.43─0.49 m 对于红光,取k =2 , 则 R =0.69 m ; 对于蓝光,取k =3,则 B =0.46m.红光最大级次 k max = (a + b ) / R =4.8,取k max =4则红光的第4级与蓝光的第6级还会重合.设重合处的衍射角为 ,则 ()828.0/4sin =+='b a R λψ,∴ =55.9°(2) 红光的第二、四级与蓝光重合,且最多只能看到四级,所以纯红光谱的第一、三级将出现.()207.0/sin 1=+=b a R λψ 1 = 11.9°()621.0/3sin 3=+=b a R λψ 3 = 38.4°8.一衍射光栅,每厘米200条透光缝,每条透光缝宽为a=2×10-3 cm ,在光栅后放一焦距f=1m 的凸透镜,现以=600 nm (1 nm =10-9 m)的单色平行光垂直照射光栅,求:(1) 透光缝a 的单缝衍射中央明条纹宽度为多少?(2) 在该宽度内,有几个光栅衍射主极大?解:(1) a sin = k tg = x / f当 x << f 时,ϕϕϕ≈≈sin tg , a x / f = k ,取k = 1有x = f l / a = 0.03 m∴中央明纹宽度为 x = 2x = 0.06 m(2) ( a + b ) sin λk '=='k ( a +b ) x / (f )= 2.5取k = 2,共有k = 0,±1,±2 等5个主极大.四 研讨题1. 假设可见光波段不是在nm 700~nm 400,而是在毫米波段,而人眼睛瞳孔仍保持在mm 3左右,设想人们看到的外部世界是什么景象?参考解答:将人的瞳孔看作圆孔。
光的衍射和偏振同步练习(word版含答案)
4.6光的衍射和偏振同步练习2021—2022学年高中物理粤教版(2019)选择性必修第一册一、选择题(共15题)1.辽某电力公司曾举办“计量日进您家”活动,免费上门为市民进行家庭用电耗能诊断分析,针对每户家庭提出个性化的节能建议。
在上门实测过程中,电力技术人员发现,家电待机耗电成为最容易被市民忽略的问题。
以电视机为例,待机一天的耗电量在0.2度左右,小小机顶盒一天待机耗电量更是高达0.4度。
根据专家统计:每使用1度(千瓦时)电,就相应消耗了0.4 kg标准煤,同时产生0.272 kg碳粉尘、0.997 kg二氧化碳、0.03 kg二氧化硫、0.015 kg氮氧化物。
根据下表提供的数据,若按照1度电电费为0.5元,估算一户普通家庭待机一年()A.多消耗电能14度B.多交电费7元C.相应多消耗了标准煤56 kg D.相应产生的二氧化碳为1 400 kg2.一定质量的理想气体,初始状态为p、V、T,经过一系列状态变化后,压强仍为p,则下列过程中能实现的是()A.先等温膨胀,再等容降温B.先等温压缩,再等容升温C.先等容升温,再等温压缩D.先等容降温,再等温压缩3.如图,图线a是线圈在匀强磁场中匀速转动时所产生正弦交流电的图像,当调整线圈转速后,所产生正弦交流电的图像如图线b所示。
以下关于这两个正弦交流电的说法正确的是()=t时刻穿过线圈的磁通量均为零B.交流电b的电压最大值为5VA.在图中0C.线圈先后两次周期之比为3:2D.交流电a的瞬时值表达式为10sin5u tπ=(V)4.如图所示,在同一竖直平面内有两个正对着的半圆形光滑轨道,轨道的半径都是R.轨道端点所在的水平线相隔一定的距离x.一质量为m的小球能在其间运动而不脱离轨道,经过最低点B时的速度为v.小球在最低点B与最高点A对轨道的压力之差为ΔF(ΔF>0),不计空气阻力.则A.m、x一定时,R越大,ΔF一定越大B.m、x一定时,v越大,ΔF一定越大C.m、R一定时,x越大,ΔF一定越大D.m、R一定时,v越大,ΔF一定越大5.如图所示,平行板电容器A、B极板上的O、O'接点与直流电源连接,下极板B接地,开关S闭合,一带电油滴位于电容器中的P点恰处于静止状态,则下列说法正确的是()A.当开关S闭合,A极板上移一小段距离,P点电势将升高B.当开关S断开,B极板下移一小段距离,油滴将沿竖直方向向上运动C.当开关S闭合,A、B极板分别以O点、O'点为转轴在纸面内逆时针快速转动α角,油滴将水平向左做匀加速直线运动D.当开关S断开,B极板上移一小段距离,油滴的电势能保持不变6.下列说法正确的是()A.波尔理论认为电子的轨道是量子化的,电子在这些轨道上绕核转动时由于有加速度会不断向外辐射出电磁波B.光电效应揭示了光的粒子性,光电效应表明光子具有能量和动量C.裂变产生的中子速度很大,于是要通过镉棒将快中子变成慢中子,链式反应才能进行D.黑体辐射中电磁波的辐射强度按波长的分布只与黑体的温度有关,与材料以及表面积无关7.下列说法中正确的是()A.质能方程2E mc中的E是核反应中释放的核能B.在核反应中,比结合能小的核变成比结合能大的核时,核反应吸收能量C.氢原子光谱巴耳末系最小波长与最大波长之比为5:9D.一群氢原子处于同一较高的激发态,它们向较低激发态或基态跃迁的过程中,可能吸收一系列频率不同的光子8.一只蚂蚁在水平纸面上爬行,先沿正东方向移动了12cm,接着又沿正南方向移动了12cm,则蚂蚁在该过程中发生的位移为()A.位移大小为24cm,方向为东南方向B.位移大小为24cm,方向为西南方向C.位移大小为,方向为东南方向D.位移大小为cm,方向为西南方向9.如图所示,一根绳的两端分别固定在两座山的A、B处,A、B两点水平距离BD=16m,竖直距离AD=2m,A、B间绳长为20m.重为120N的猴子抓住套在绳子上的滑环在AB间滑动,某时刻猴子在最低点C处静止,则此时绳的张力大小为(绳处于拉直状态)A.75N B.100N C.150N D.200N10.如图所示,平行板电容器A、B间有带电油滴P正好静止在极板正中间,现将B极板匀速向下移动到虚线位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13-11 一单色平行光垂直照射一单缝,若其第三级明条纹位置正好与6000οA 的单色平行光的第二级明条纹位置重合,求前一种单色光的波长.解:单缝衍射的明纹公式为: sin (21)2a k λϕ=+设x λλ=时,3=k ,由已知:当6000=λoA 时,2=k ,二者重合时ϕ角相同,所以有)132(26000)122(sin +⨯=+⨯=ϕa 2x λ解得 4286600075=⨯=x λ(o A )=428.6 ( nm)13-12 单缝宽0.10mm ,透镜焦距为50cm ,用5000=λoA 的绿光垂直照射单缝.求: (1) 位于透镜焦平面处的屏幕上中央明条纹的宽度和半角宽度各为多少? (2) 若把此装置浸入水中(n =1.33),中央明条纹的半角宽度又为多少? 解:单缝衍射暗纹公式为:sin na k ϕλ=,k =1时,有1sin naλϕ=单缝衍射中央明纹的半角宽度为一级暗纹的角宽度,故101sin ()nanaλλϕϕ-==≈单缝衍射中央明纹的宽度为:11122tan 2sin 2x x f f fnaλϕϕ∆==≈=暗,(1) 空气中,1=n ,所以有:3310100.51010.01050005.02---⨯=⨯⨯⨯⨯=∆x (m )101013033500010500010sin 5.0100.10100.1010ϕ------⨯⨯=≈=⨯⨯⨯ (rad ) (2) 浸入水中,33.1=n ,所以有:33101076.31010.033.110500050.02---⨯≈⨯⨯⨯⨯⨯=∆x (m ) 101013033500010500010sin 3.76101.330.110 1.330.110ϕ------⨯⨯=≈≈⨯⨯⨯⨯⨯ (rad ) 13-15 波长为5000oA 的平行单色光垂直照射到每毫米有200条刻痕的光栅上,光栅后的透镜焦距为60cm .求: (1) 屏幕上中央明条纹与第一级明条纹的间距;(2) 当光线与光栅法线成 30°斜入射时,中央明条纹的位移为多少?解:由已知,光栅常数为: 31mm5.010200a b -+==⨯mm =6100.5-⨯m (1) 由光栅衍射明纹公式:λϕk b a =+sin )(,对中央明纹0k =, 00sin 0,0x ϕ=∴=,对第一级明条纹1=k , 有:1016500010sin 0.15.010a b λϕ--⨯===+⨯,又11tan x fϕ=,所以2211tan6010 6.0310(m) 6.03(cm) x f fϕ--===⨯≈⨯=【或:ϕ较小时,有sin tanxfϕϕ≈=,对第一级明条纹1=k, 有:λ=+fxba1)(,即:62101100.51060105000---⨯⨯⨯⨯=+=bafxλ2100.6-⨯=(m)6=(cm)】则屏幕上中央明条纹与第一级明条纹的间距为:1016.03cmx x x x∆=-==【或6cm】(2) 对应中央明纹,有0=k。
正入射时,0sin)(=+ϕba,所以sin0,0xϕϕ===斜入射时,0)sin)(sin(=±+θϕba,即sin sin0,30,sin0.5ϕθθϕ±==∴=±oQ,所以tanxfϕ===226010 3.510x f--==⨯≈±⨯(m)35=±(cm)故中央明条纹的位移值为:35cmx x x x∆=-==±(正、负号分别相应于入射方向在法线的下方和上方两种斜入射情况)13-16 波长6000=λo A的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在20.0sin=ϕ与30.0sin=ϕ处,第四级缺级.求:(1) 光栅常数;(2) 光栅上狭缝的宽度;(3) 在90°>ϕ>-90°范围内,实际呈现的全部级数.解:(1) 由光栅公式:λϕkba=+sin)(,由题意知:100.20()2600010a b-⋅+=⨯⨯,100.30()3600010a b-⋅+=⨯⨯,解得6100.6-⨯=+ba m(2) 因第四级缺级,故此光栅须同时满足:λϕkba=+sin)(,λϕka'=sin,解得kkbaa'⨯='+=-6105.14,取1='k,得光栅狭缝的最小宽度为:6min1.510a-=⨯m(3) 由λϕkba=+sin)(,得λϕsin)(bak+=,当2πϕ=,对应maxkk=,∴10106000100.6106max=⨯⨯=+=--λbak,由于接收屏有限大,故在90ϕ︒=±处的10±=k实际看不到,又因4(1,2,)k k k''==±±L缺级,即4±,8±缺级,所以在︒︒<<-9090ϕ范围内,实际呈现的全部明条纹级数为:9,7,6,5,3,2,1,0±±±±±±±=k,共15条明条纹。
13-17 一双缝,两缝间距为0.1mm,每缝宽为0.02mm,用波长为4800oA的平行单色光垂直入射双缝,双缝后放一焦距为50cm的透镜.试求:(1) 透镜焦平面上单缝衍射中央明条纹的宽度;(2) 单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹?解:由题知,0.1mm,=0.02mma b a+=(1) 单缝衍射暗纹公式为:sinna kϕλ=,k=1时,有1sin/()naϕλ=单缝衍射中央明纹的宽度为:011122tan 2sin 2l x f f fnaλϕϕ==≈=暗,空气中n =1,则中央明纹宽度为:02.010501048002270⨯⨯⨯⨯==-f a l λmm 4.2=cm(2) 由缺级条件:λϕk b a =+sin )(,λϕk a '=sin ,知k k a b a k k '='=+'=502.01.0(1,2,k '=±±⋅⋅⋅) 即5,10,15,k =±±±⋅⋅⋅缺级.中央明纹的边缘对应1k '=±,所以单缝衍射的中央明纹包迹内有4,3,2,1,0±±±±=k 共9条双缝衍射明条纹.13-19已知天空中两颗星相对于一望远镜的角距离为4.84×10-6rad ,它们都发出波长为5500oA 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星?解:由最小分辨角公式: 1.22/D θλ=,则能分辨出这两颗星的望远镜的口径至少为:565.5101.22 1.22cm 13.864.8410D λθ--⨯==⨯=⨯cm 14-8 使自然光通过两个偏振化方向夹角为60°的偏振片时,透射光强为1I ,今在这两个偏振片之间再插入一偏振片,它的偏振化方向与前两个偏振片均成30°,问此时透射光I 与1I 之比为多少? 解:设自然光的光强为I 0,插入偏振片P 3前,如解14-8图1所示,插入一偏振片P 3后, 如解14-8图(2)所示,由已知: α=60°, α1=α2=30°, 又 01012I I = 则由马吕斯定律:22ο0101cos cos 602I I I α==80I =220020113cos cos 3028I II I α===o22ο002239cos cos 30832I I I I α===∴ 0019932 2.2548I I I I ===14-9 自然光入射到两个重叠的偏振片上.如果透射光强为:(1)透射光最大强度的三分之一,(2)入射光强的三分之一,则这两个偏振片透光轴方向间的夹角为多少? 解:设自然光光强为I 0,自然光通过第一片偏振片的透射光强为I 0/2,(1)设两个偏振片透光轴方向间的夹角为1α,由已知,透射光强:1max /3I I =,由马吕斯定律:max 120131cos 2I I I ==α, 又 20max I I =, ∴ ,601I I = 故2ο'1111cos ,cos 544433ααα==∴=图2 (b )P 1P 2P 3α1 α2P 231图2 (a )P 2P 1α图1 (a )图1 (b )解14-8图(2) 设两个偏振片透光轴方向间的夹角为2α,由已知,透射光强:10/3I I = 由马吕斯定律:0220231cos 2I I I ==α, ∴2ο'2222cos ,cos 35163ααα===14-10 一束自然光从空气入射到折射率为1.40的液体表面上,其反射光是完全偏振光.试求: (1) 入射角等于多少? (2) 折射角为多少?解:设入射角为0i ,折射角为γ,当反射光是完全偏振光时,入射角为布儒斯角,即0b i i =。
由布儒斯特定律知:21tan /b i n n =, 由已知,211.40,1n n ==,则(1) 0tan 1.40,i = ∴ 入射角 'ο02854=i(2) 因为入射角为布儒斯角时, 090i γ+=o ,故折射角οο'0903532i γ=-=【或,由折射定律:102sin sin n i n γ=,得折射角ο'3532γ=】补充题1. 用一束具有两种波长(λ1=600nm;λ2=400nm)的平行光垂直入射在某衍射光栅上,发现距中央明纹5cm 处λ1光的第k 级主极大明纹和λ2的第(k +1)级主明纹重合。
知放置在该光栅后的透镜焦距f =50cm ,试问: (1)上述级数k =? (2)光栅常量d = (a +b ) =?解(1): 由题意及光栅方程,有: (a +b ) sin φk =k λ1; (a +b ) sin φk +1=(k +1)λ2两种波长上述的主明纹重合,即: sin φk = sin φk +1, 则有: k λ1=(k +1)λ2则所求的级数为: k =λ2/(λ1-λ2)= 400/200=2(2):由题意,有:(a +b ) sin φ2=2λ1, d = (a +b ) =2λ1/ sin φ2 ,由几何关系,有:25cm x =, tan φ2=x 2/f ,2tan sin ϕϕ=2sin x ϕ∴=【或取近似22sin tan ϕϕ≈得,5112222 1.210(m)tan fd a b x λλϕ-=+≈==⨯】补充题2.自然光和线偏振光的混合光束,通过一偏振片时,随着偏振片以光的传播方向为轴转动,透射光的 强度也跟着改变,如最强和最弱的光强之比为6:1,那么入射光中自然光和线偏振光的强度之比为多大? 解:设入射自然光的光强为I 0, 线偏振光的光强为I P 。