八年级上册数学期中测试卷

合集下载

2022-2023学年人教版八年级数学上册期中测试卷(含答案)

2022-2023学年人教版八年级数学上册期中测试卷(含答案)

人教版八年级数学上册期中测试卷一、单选题(本题共10小题,每小题5分,共50分)1.下列命题正确的是()A.三角形的三条中线必交于三角形内一点B.三角形的三条高均在三角形内部C.三角形的外角可能等于与它不相邻的内角D.四边形具有稳定性【答案】A【解析】【解答】解:A、三角形的三条中线必交于三角形内一点,符合题意;B、钝角三角形的三条高有两条在三角形外部,故不符合题意;C、三角形的外角等于与它不相邻的两个内角之和,故不符合题意;D、四边形具有不稳定性,故不符合题意,故答案为:A.2.若等腰三角形的一边长等于5,另一边长等于3,则它的周长等于().A.10B.11C.13D.11或13【答案】D【解析】【解答】根据题意,需分两种情况讨论:当两腰为5,底边为3时,周长等于13;当两腰为3,底边为5时,周长等于11.且两种情况均符合三角形三边之间关系定理,所以周长为11或13,故答案为:D.3.如图,在△ABC中,AB=5,BC=8,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离为()A.2B.3C.4D.5【答案】B【解析】【解答】解:∵在△ABC中,AB=5,BC=8,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,∴A′B′=AB=5,∠A′B′C=∠B=60°∵将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴A′B′=A′C=5∴△A′B′C为等边三角形∴B′C=A′B′=A′C=5∴平移的距离BB′=BC−B′C=3故答案为:B.4.如图,直线l外有不重合的两点A,B.在直线l上求一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B'.②连接AB'交直线l于点C,则点C即为所求.在解决这个问题时,没有用到的知识点是()A.线段的垂直平分线性质B.两点之间线段最短C.三角形两边之和大于第三边D.角平分线的性质【答案】D【解析】【解答】解:∵点B和点B′关于直线l对称,且点C在l上,∴CB=CB′.∵AB′交l于C,且两条直线相交只有一个交点,∴CB′+CA=AB′,即CA+CB=AB′.任取直线l上一点C′,与点C不重合,则C′B′+C′A>AB′,即AB′是CA+CB的最小值. 本题在解答过程中利用了线段垂直平分线的性质定理:两点之间,线段最短,体现了转化思想,验证时利用三角形的两边之和大于第三边. 没有用到的知识点是:角平分线的性质,故答案为:D.5.如图,CA=CB,AD=BD,M、N分别为CA、CB的中点,∠ADN=80°,∠BDN=30°,则∠CDN的度数为()A.40°B.15°C.25°D.30°【答案】C【解析】【解答】解:在∠CAD和∠CBD中,{CA=CB AD=BD CD=CD,∴∠CAD∠∠CBD(SSS),∴∠CDA=∠CDB,∠A=∠B,又∵AC=CB,M,N分别为CA,CB的中点,∴AM=BN,又AD=BD,∴∠ADM∠∠BDN(SAS),∴∠ADM=∠BDN=30°,∵∠ADN=80°,∴∠ADM+2∠CDN=80°,∴∠CDN=25°,故答案为:C.6.如图,在Rt∠ABC中,∠BAC=90°,AB=AC,AD∠BC,垂足为D、E,F分别是CD,AD上的点,且CE=AF。

八年级上期中测试卷数学

八年级上期中测试卷数学

一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √2B. πC. 3/5D. -3/42. 若a、b、c是三角形的三边,且a+b=c,则下列结论正确的是()A. a、b、c能构成等腰三角形B. a、b、c能构成直角三角形C. a、b、c能构成等边三角形D. a、b、c不能构成三角形3. 下列各式中,同类项是()A. 3x^2yB. 5xy^2C. 4x^2y^2D. 2xy4. 若一个数加上它的倒数等于2,则这个数是()A. 1B. 2C. 3D. 45. 下列各函数中,y是x的一次函数是()A. y = x^2 + 1B. y = 2x - 3C. y = 3x^3 + 4D. y = 5/x二、填空题(每题5分,共25分)6. 等差数列1,4,7,10,…的第10项是______。

7. 若等比数列的首项为2,公比为3,则第4项是______。

8. 已知一元二次方程x^2 - 5x + 6 = 0,其解为______。

9. 若点P(2,3)在直线y = 2x + 1上,则直线y = 2x + 1与x轴的交点坐标为______。

10. 已知正方形的对角线长为10cm,则正方形的面积为______cm^2。

三、解答题(每题15分,共45分)11. (15分)已知数列{an}是等差数列,且a1=3,a4=9,求该数列的通项公式。

12. (15分)已知数列{bn}是等比数列,且b1=2,b3=8,求该数列的通项公式。

13. (15分)已知一元二次方程x^2 - 4x + 3 = 0的解为x1和x2,求下列各式的值:(1)(x1 + x2)^2(2)x1 x2 + x1 x2^214. (15分)已知正方形的边长为4cm,求:(1)正方形的对角线长度(2)正方形的面积四、附加题(每题10分,共20分)15. (10分)已知函数y = kx + b(k≠0),若k和b满足以下条件:(1)当x=1时,y=2;(2)当x=2时,y=5。

八年级数学上册期中试卷【含答案】

八年级数学上册期中试卷【含答案】

八年级数学上册期中试卷【含答案】专业课原理概述部分一、选择题1. 若 a > 0,b < 0,则下列哪个选项正确?( )A. a + b > 0B. a b > 0C. a × b > 0D. a ÷ b > 02. 已知三角形ABC中,∠A=90°,AB=3,AC=4,则BC的长度为( )。

A. 5B. 6C. 7D. 83. 有理数-3/5、-5/7、-7/9的大小关系是( )。

A. -3/5 < -5/7 < -7/9B. -7/9 < -5/7 < -3/5C. -3/5 > -5/7 > -7/9D. -7/9 > -5/7 > -3/54. 下列哪个图形不是轴对称图形?( )A. 等边三角形B. 矩形C. 圆D. 梯形5. 如果一个多项式能被(x-1)整除,那么这个多项式( )。

A. 必定有实数根B. 必定有复数根C. 必定是偶数次的多项式D. 必定能被(x+1)整除二、判断题1. 两个负数相乘的结果一定是正数。

( )2. 平行四边形的对边相等且平行。

( )3. 任何两个有理数之间都存在无数个无理数。

( )4. 二次函数的图像一定经过原点。

( )5. 对角线互相垂直的四边形一定是菱形。

( )三、填空题1. 若 |x-3| = 5,则 x = _______ 或 _______。

2. 已知a = 2 + √3,b = 2 √3,则a² + b² = _______。

3. 在直角坐标系中,点P(3, -4)关于x轴的对称点坐标是 _______。

4. 若一个等差数列的首项为2,公差为3,则第10项的值是 _______。

5. 若一个函数的图像关于y轴对称,则这个函数是 _______ 函数。

四、简答题1. 解释什么是算术平方根,并给出一个例子。

2. 描述平行线的性质。

2024-2025学年八年级数学上学期期中模拟卷(冀教版,八上第12~15章)(考试版A4)

2024-2025学年八年级数学上学期期中模拟卷(冀教版,八上第12~15章)(考试版A4)

2024-2025学年八年级数学上学期期中模拟卷(冀教版)(满分120分,时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:冀教版八年级上册第十二章~第十五章。

5.难度系数:0.65。

第Ⅰ卷一、选择题(本大题共16个小题,共38分,1~6小题每题3分,7~16小题每题2分.每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.在实数15,0,p )A .1B .2C .3D .42.若分式32x x +-有意义,则x 应满足的条件是( )A .2x =B .2x ¹C .3x =-D .3x ¹-3.下列计算正确的是( )A =B =C D 4=4.某校为了丰富学生的校园生活,准备购买一批陶笛.已知A 型陶笛比B 型陶笛的单价低20元,用2700元购买A 型陶笛与用4500元购买B 型陶笛的数量相同,设A 型陶笛的单价为x 元,根据题意列出正确的方程是( )A .2700450020x x=-B .2700450020x x =-C .2700450020x x =+D .2700450020x x =+5.若23(4)270a b -++=,则2023()a b -+的值为( )A .2-B .1-C .1D .26.用※定义一种新运算:对于任意实数m 和n ,规定2m n m n mn =-※,如:21212120=´-´=※.则(的值为( )A +B -C .D .7.若关于x 的方程311x m x x -=--产生增根,则m 的值是( )A .3-B .2-C .2D .08.若 6的整数部分是m ,小数部分是n ,则n m -为( )A 10B .10C 2D .89.如图,在Rt ABC △中,90C Ð=°,12cm AC =,6cm BC =,一条线段PQ AB =,P ,Q 两点分别在线段AC 和AC 的垂线AX 上移动,若以A 、B 、C 为顶点的三角形与以A 、P 、Q 为顶点的三角形全等,则AP 的值为( )A .6cmB .12cmC .12cm 或6cmD .以上答案都不对10.已知()()341212A B m m m m m -+=----,则常数A ,B 的值分别是( )A .1A =,2B =B .2A =,1B =C .1A =-,2B =-D .2A =-,1B =-11.如图,小虎用10块高度都是3cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC BC =,90ACB Ð=°),点C 在DE 上,点A 和B 分别与木墙的顶端重合,则两堵木墙之间的距离DE 的长度为( )A .30cmB .27cmC .24cmD .21cm12.如图1,已知Rt ABC △、画一个Rt A B C ¢¢¢V ,使得Rt Rt A B C ABC ¢¢¢△≌△.在已有90MB N ¢Ð=°的条件下,图2,图3分别是嘉嘉、琪琪两位同学的画图过程.下列说法错误的是( )A .嘉嘉第一步作图时,是以B ¢为圆心,线段BC 的长为半径画弧B .嘉嘉作图判定两个三角形全等的依据是HLC .琪琪第二步作图时,是以C ¢为圆心、线段AC 的长为半径画弧D .琪琪作图判定两个三角形全等的依据是SAS13.根据分式的性质,可以将分式22211m m M m -+=-(m 为整数)进行如下变形:22211(1)2211111m m m m M m m m m -+-+-====--+++,其中m 为整数.结论Ⅰ:依据变形结果可知,M 的值可以为0;结论Ⅱ:若使M 的值为整数,则m 的值有3个.A .Ⅰ和Ⅱ都对B .Ⅰ和Ⅱ都不对C .Ⅰ不对Ⅱ对D .Ⅰ对Ⅱ不对14.如图,给出下列四组条件:①AB DE =,BC EF =,AC DF =;②AB DE =, B E Ð=Ð,BC EF =;③B E Ð=Ð,BC EF =,C F Ð=Ð;④AB DE =,AC DF =,B E Ð=Ð.其中,能使ABC DEF ≌△△的条件共有( )A .1组B .2组C .3组D .4组15.如图,在ABC V 中,50ABC Ð=°,30C Ð=°,作BD 平分ABC Ð交边AC 于D ,过A 作AE BD ^于E ,延长AE 交边BC 于点F ,连接DF ,则CDF Ð的度数为( )A .50°B .60°C .65°D .70°16.如图,在ABC V 中,45ABC Ð=°,CD AB ^于点D ,BE 平分ABC Ð,且BE AC ^于点E ,与CD 相交于点F ,DH BC ^于点H ,交BE 于点G .下列结论:①BD CD =;②AD CF BD +=;③12CE BF =;④AE CF =.其中正确的是( )A .①②B .①③C .①②③D .①②③④第Ⅱ卷二、填空题(本大题共3个小题,共10分;17小题2分,18~19小题各4分,每空2分,答案写在答题卡上)17.若关于x 的分式方程1322m x x x --=--的解为正数,则m 的取值范围是 .18.我市某中学举办剪纸艺术大赛,要求参赛作品的面积在220dm 以上,如图是小悦同学的参赛作品(单位:dm ).(1)小悦的作品 (填“是”或“否)符合参赛标准;(2)小涵给小悦提出建议:在参赛作品周围贴上金色彩条,这样参赛作品更漂亮,则需要彩条的长度约为 dm 1.41»).19.添加辅助线是很多同学感觉比较困难的事情.如图1,在Rt ABC △中,90ABC Ð=°,BD 是高,E 是ABC V 外一点,BE BA =,E C Ð=Ð,若25DE BD =,16AD =,20BD =,求BDE V 的面积,同学们可以先思考一下……,小颖思考后认为可以这样添加辅助线:在BD 上截取BF DE =.(如图2).同学们,根据小颖的提示,聪明的你可以求得:(1)BDEV≌.(2)BDEV的面积为.三、解答题(本大题共7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)计算:221.(本小题满分9分)先化简,再求值:3444x xx x-----,其中x=解:原式34(4)(4)44x xx xx x--=×--×---34x x=-+-1=-(1)求原式正确的化简结果;(2)老师说:“虽然该过程有错误,但最后所求的值是正确的.”求图中被污染的x的值.某校为美化校园,计划对面积为22000m 的区域进行绿化,安排甲、乙两个工程队完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为2480m 区域的绿化时,甲队比乙队少用6天.(1)求甲乙两工程队每天能完成绿化的面积分别是多少2m ?(2)在该次校园绿化工程中,设安排甲队工作y 天①再安排乙队工作_____天,完成该工程(用含有y 的式子表示)②若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.12万元,要使这次的绿化总费用不超过7.6万元,乙队的工作天数不超过34天,如何安排甲队的工作天数?23.(本小题满分10分)如图,在ABC V 中,2AB AC ==,40B Ð=°,点D 在线段BC 上运动(点D 不与点B ,C 重合),连接AD ,作40ADE Ð=°,DE 交线段AC 于点E .(1)当115BDA Ð=°时,EDC Ð=_____ °,AED =∠_____ °.(2)若2DC =,试说明ABD DCE ≌△△.(3)在点D 的运动过程中,ADE V 的形状可以是等腰三角形吗?若可以,求BDA Ð的度数;若不可以,请说明理由.嘉琪在学习《二次根式》时,发现一些含有根号的式子也可以写成完全平方式的形式,如(231+=,善于思考的嘉琪进行了如下探索:设(2a m +=+(其中a ,b ,m ,n 均为正整数),则有2222a m n +=+.所以222,2=+=a m n b mn .这样,嘉琪找到了把类似a +琪的方法探索并解决问题:(1)当a ,b ,m ,n 均为正整数时,若(2a m +=+,用含m ,n 的式子分别表示a 和b ;(2)利用所探索的结论,找一组满足(1)中关系式(2a m +=+的正整数a ,b .m .n ;(3)若(2a m +=+.且a ,b ,m ,n 均为正整数,求a 的值.25.(本小题满分12分)我们给出定义:若一个分式约分后是一个整式,则称这个分式为“巧分式”,约分后的整式称为这个分式的“巧整式”.例如:24842x x x x -=-,则称分式2482x x x --是“巧分式”,4x 为它的“巧整式”.根据上述定义,解决下列问题.(1)下列分式中是“巧分式”的有__________(填序号);①(1)(23)(2)(1)(2)x x x x x --+-+;②253x x ++;③22x y x y-+.(2)若分式24x x m x n-++(m 、n 为常数)是一个“巧分式”,它的“巧整式”为7x -,求m 、n 的值;(3)若分式322x x A -+的“巧整式”为1x -,请判断32242x x x A++是否是“巧分式”,并说明理由.【问题提出】如图1,在ABC V 中,90,BAC AB AC Ð=°=,直线l 经过点A ,分别从点,B C 向直线l 作垂线,垂足分别为,D E .求证:ABD CAE △△≌;【变式探究】如图2,在ABC V 中,AB AC =,直线1经过点A ,点,D E 分别在直线l 上,如果CEA ADB BAC Ð=Ð=Ð,猜想DE BD CE ,,有何数量关系,并给予证明;【拓展应用】小明在科技创新大赛上创作了一幅机器人图案,大致图形如图3所示,以ABC V 的边AB AC ,为一边向外作BAD V 和CAE V ,其中90BAD CAE Ð=Ð=°,,,AB AD AC AE AG ==是边BC 上的高.延长GA 交DE 于点H .(1)求证:点,D E 到直线H G 的距离相等;(2)经测量,50cm DE =,求HE 的长.。

八年级上册数学期中测试题及答案

八年级上册数学期中测试题及答案

八年级上册数学期中测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:B2. 如果一个数的平方等于9,那么这个数可能是:A. 3B. -3C. 3或-3D. 以上都不对答案:C3. 一个数的绝对值是其本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或零D. 以上都不对答案:C4. 一个数的立方等于-8,那么这个数是:A. 2C. 8D. -8答案:B5. 下列哪个选项是不等式3x - 5 > 7的解集?A. x > 4B. x < 4C. x > 2D. x < 2答案:A6. 计算 (-2)^3 的结果是:A. -8B. 8C. -6D. 6答案:A7. 一个角是90°,那么它的补角是:A. 90°B. 180°C. 270°D. 360°答案:B8. 一个数的倒数是1/2,那么这个数是:B. 1/2C. 1D. 0答案:A9. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4D. -4答案:A10. 一个数的立方根是2,那么这个数是:A. 8B. -8C. 2D. -2答案:A二、填空题(每题4分,共20分)1. 一个数的平方等于16,这个数是______。

答案:±42. 如果一个角的补角是120°,那么这个角是______。

答案:60°3. 一个数的绝对值是5,这个数可以是______。

答案:±54. 一个数的立方等于27,这个数是______。

答案:35. 一个数的倒数是1/3,那么这个数是______。

答案:3三、解答题(每题10分,共50分)1. 解方程:3x - 7 = 8。

答案:x = 52. 已知一个角是45°,求它的补角。

八年级上册数学期中检测共5套及答案

八年级上册数学期中检测共5套及答案

八年级上册数学期中测试卷一、选择题(每题3分,共30分)1.下列图形中,不是轴对称图形的是( )2.如果等腰三角形的两边长分别为3和6,那么它的周长为( ) A.9 B.12 C.15 D.12或153.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为( ) A.(-2,-3) B.(2,-3) C.(-3,-2) D.(3,-2) 4.已知一个正多边形的内角是140°,则这个正多边形的边数是( ) A.6 B.7 C.8 D.95.如图,在△ABC中,边AC的垂直平分线交边AB于点D,∠A=50°,则∠BDC=( )A.50°B.100°C.120°D.130°6.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为( )A.40°B.45°C.60°D.70°7.如图,在△ABC中,∠C=90°,BC=35,∠BAC的平分线AD交BC于点D.若DC DB=25,则点D到AB的距离是( )A.10 B.15 C.25 D.208.如图,在△ABC中,AC=2,∠BAC=75°,∠ACB=60°,高BE与AD相交于点H,则DH的长为( )A.4 B.3 C.2 D.19.如图,等边三角形ABC的边长为4,AD是BC边上的中线,F 是AD上的动点,E是AC边上一点.若AE=2,则EF+CF取得最小值时,∠ECF的度数为( )A.15°B.22.5°C.30°D.45°10.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一条直线上,连接BD.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中正确的个数是( )A.1 B.2 C.3 D.4二、填空题(每题3分,共24分)11.一木工师傅有两根木条,木条的长分别为40 cm和30 cm,他要选择第三根木条,将它们钉成一个三角形木架.设第三根木条长为x cm,则x的取值范围是____________.12.如图,在△ABC中,点D在边BC上,∠BAD=80°,AB=AD=DC,则∠C=________.13.如图,在△ABC中,AB=AC=6,BC=4.5,分别以A,B为圆心,4为半径画弧交于两点,过这两点的直线交AC于点D,连接BD,则△BCD的周长是________.14.如图,已知PA⊥ON于A,PB⊥OM于B,且PA=PB,∠MON=50°,∠OPC=30°,则∠PCA=________.15.由于木制衣架没有柔性,在挂置衣服的时候不大方便操作,小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图①,衣架杆OA=OB=18 cm,若衣架收拢时,∠AOB=60°,如图②,则此时A,B两点之间的距离是________ cm.16.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(点E在BC上,点F在AC上)折叠,点C与点O恰好重合,则∠OEC的度数为________.17.如图,在2×2的正方形网格中,有一个以格点为顶点的△ABC,请你找出网格中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有________个.18.在△ABC中,AB=AC=12 cm,BC=6 cm,D为BC的中点,动点P从点B出发,以1 cm/s的速度沿B→A→C的方向运动.设运动时间为t s,当t=____________时,过点D,P两点的直线将△ABC的周长分成两部分,使其中一部分是另一部分的2倍.三、解答题(19~21题每题6分,23,24题每题8分,26题12分,其余每题10分,共66分)19.如图,在五边形ABCDE中,∠A=∠C=90°.求证∠B=∠DEF+∠EDG.20.如图,在△ABC中,AB=AC,∠BAC=120°,P是BC上一点,且∠BAP=90°,CP=4 cm.求BP的长.21. 已知:如图,点O在∠BAC的平分线上,BO⊥AC,CO⊥AB,垂足分别为D,E.求证OB=OC.22.如图,在平面直角坐标系中,A(-3,2),B(-4,-3),C(-1,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标:A1________,B1________,C1________;(3)求△A1B1C1的面积;(4)在y轴上画出点P,使PB+PC最小.23.如图,在等边三角形ABC中,AD⊥BC于点D,以AD为一边向右作等边三角形ADE,DE与AC交于点F.(1)试判断DF与EF的数量关系,并给出证明;(2)若CF的长为2 cm,试求等边三角形ABC的边长.24.如图,在等腰直角三角形ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC,交DE的延长线于点F,连接CF,交AD于点G.(1)求证AD⊥CF;(2)连接AF,试判断△ACF的形状,并说明理由.25.如图,把三角形纸片A′BC沿DE折叠,点A′落在四边形BCDE内部点A处.(1)写出图中一对全等的三角形,并写出它们的所有对应角.(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少(用含x或y的式子表示)?(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律,并说明理由.26.如图,已知在△ABC中,AB=AC=10 cm,BC=8 cm,D为AB的中点.(1)如果点P在线段BC上以3 cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,1 s后,△BPD与△CQP是否全等?请说明理由.②若点Q的运动速度与点P的运动速度不相等,则点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以第(1)题②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,经过多少时间,点P与点Q第一次在△ABC的哪条边上相遇?答案一、1.C 2.C 3.A 4.D 5.B 6.A7.A 8.D 9.C 10.D二、11.10<x <70 12.25° 13.10.5 14.55° 15.18 16.108°17.5 18.7或17三、19.证明:在五边形ABCDE 中,∠A +∠B +∠C +∠EDC +∠AED =180°×(5-2)=540°. ∵∠A =∠C =90°,∴∠B +∠AED +∠EDC =360°.又∵∠AED +∠DEF =180°,∠EDC +∠EDG =180°, ∴∠AED +∠EDC +∠DEF +∠EDG =360°. ∴∠B =∠DEF +∠EDG .20.解:∵AB =AC ,∠BAC =120°,∴∠B =∠C =12(180°-∠BAC )=30°.∵∠PAC =∠BAC -∠BAP =120°-90°=30°,∴∠C =∠PAC . ∴AP =CP =4 cm.在Rt △ABP 中,∵∠B =30°, ∴BP =2AP =8 cm.21.证明:∵点O 在∠BAC 的平分线上,BO ⊥AC ,CO ⊥AB ,∴OE =OD ,∠BEO =∠CDO =90°. 在△BEO 与△CDO 中,⎩⎨⎧∠BEO =∠CDO ,OE =OD ,∠EOB =∠DOC ,∴△BEO ≌△CDO (ASA). ∴OB =OC .22.解:(1)△A 1B 1C 1如图所示.(2)(3,2);(4,-3);(1,-1)(3)△A1B1C1的面积=3×5-12×2×3-12×1×5-12×2×3=6.5.(4)如图,P点即为所求.23.解:(1)DF=EF.证明:∵△ABC是等边三角形,∴∠BAC=60°.又∵AD⊥BC,∴AD平分∠BAC.∴∠DAC=30°.∵△ADE是等边三角形,∴∠DAE=60°.∴∠DAF=∠EAF=30°.∴AF为△ADE的中线,即DF=EF.(2)∵AD⊥DC,∴∠ADC=90°.∵△ADE是等边三角形,∴∠ADE=60°.∴∠CDF=∠ADC-∠ADE=30°.∵∠DAF=∠EAF,AD=AE,∴AF⊥DE.∴∠CFD=90°.∴CD=2CF=4 cm.∵AD⊥BC,AB=AC,∴BD=CD,∴BC=2CD=8 cm.故等边三角形ABC 的边长为8 cm. 24.(1)证明:∵BF ∥AC ,∠ACB =90°,∴∠CBF =180°-90°=90°. ∵△ABC 是等腰直角三角形, ∠ACB =90°,∴∠ABC =45°. 又∵DE ⊥AB , ∴∠BDF =45°, ∴∠BFD =45°=∠BDF . ∴BD =BF .∵D 为BC 的中点, ∴CD =BD .∴BF =CD . 在△ACD 和△CBF 中,⎩⎨⎧AC =CB ,∠ACD =∠CBF =90°,CD =BF ,∴△ACD ≌△CBF (SAS). ∴∠CAD =∠BCF .∴∠CGD =∠CAD +∠ACF =∠BCF +∠ACF =∠ACB =90°. ∴AD ⊥CF .(2)解:△ACF 是等腰三角形.理由如下: 由(1)可知BD =BF . 又∵DE ⊥AB ,∴AB 是DF 的垂直平分线. ∴AD =AF .又由(1)可知△ACD ≌△CBF , ∴AD =CF ,∴AF =CF . ∴△ACF 是等腰三角形.25.解:(1)△EAD ≌△EA ′D ,其中∠EAD 与∠EA ′D ,∠AED 与∠A ′ED ,∠ADE与∠A ′DE 是对应角. (2)∵△EAD ≌△EA ′D ,∴∠A ′ED =∠AED =x ,∠A ′DE =∠ADE =y .∴∠AEA ′=2x ,∠ADA ′=2y . ∴∠1=180°-2x ,∠2=180°-2y . (3)规律为∠1+∠2=2∠A .理由:由(2)知∠1=180°-2x ,∠2=180°-2y , ∴∠1+∠2=180°-2x +180°-2y =360°-2(x +y ). ∵∠A +∠AED +∠ADE =180°, ∴∠A =180°-(x +y ). ∴2∠A =360°-2(x +y ). ∴∠1+∠2=2∠A .26.解:(1)①△BPD 与△CQP 全等.理由如下:运动1 s 时,BP =CQ =3×1=3(cm). ∵D 为AB 的中点,AB =10 cm , ∴BD =5 cm.∵CP =BC -BP =5 cm , ∴CP =BD .又∵AB =AC ,∴∠B =∠C . 在△BPD 和△CQP 中,⎩⎨⎧BD =CP ,∠B =∠C ,BP =CQ ,∴△BPD ≌△CQP (SAS).②∵点Q 的运动速度与点P 的运动速度不相等, ∴BP ≠CQ . 又∵∠B =∠C ,∴两个三角形全等需BP =CP =4 cm ,BD =CQ =5 cm. ∴点P ,Q 运动的时间为4÷3=43(s).∴点Q 的运动速度为5÷43=154(cm/s).(2)设x s 后点Q 第一次追上点P .根据题意,得⎝ ⎛⎭⎪⎫154-3x =10×2.解得x =803.∴点P 共运动了3×803=80(cm). ∵△ABC 的周长为10×2+8=28(cm), 80=28×2+24=28×2+8+10+6,∴点P 与点Q 第一次在△ABC 的AB 边上相遇.八年级(上)期中数学试卷一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的) 1.下列图形中不是轴对称图形的是( ) A .B .C .D .2.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是( )A .1,2,1B .1,2,2C .1,2,3D .1,2,43.如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD ,使其不变形,这样做的根据是( )A .两点之间的线段最短B .长方形的四个角都是直角C .长方形是轴对称图形D .三角形有稳定性4.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点5.等腰△ABC的两边长分别是2和5,则△ABC的周长是()A.9 B.9或12 C.12 D.7或126.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6 B.7 C.8 D.97.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°8.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°9.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50°B.40°C.70°D.35°10.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC 于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°11.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()A.∠CAD=30° B.AD=BD C.BD=2CD D.CD=ED12.如果一个三角形有两个外角(不在同一顶点)的和等于270°,则此三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形13.如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,则△ABC的面积等于△BEF的面积的()A.2倍B.3倍C.4倍D.5倍14.在直角坐标系中,O为坐标原点,已知A(2,2),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有()A.4个B.3个C.2个D.1个二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.已知等腰三角形一个内角的度数为70°,则它的其余两个内角的度数分别是.16.如果一个n边形的内角和等于900°,那么n的值为.17.一个多边形的每一个外角都等于30°,则这个多边形的边数是.18.如图,已知△ABC中,AD是BC边上的高,点E在线段BD上,且AE平分∠BAC,若∠B=40°,∠C=78°,则∠EAD= °.19.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,则△ABD的周长为cm.20.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于度.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.(10分)求图中x的值.22.(10分)已知:如图所示,(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使PA+PC最小,写出作法.23.(10分)如图,在△ABC中;(1)作∠C的角平分线CE交AB于E(保留痕迹,不写作法),过点E分别作AC、BC的垂线EM、EN,垂足分别为M、N;(2)若EN=2,AC=4,求△ACE的面积.24.(8分)如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.25.(10分)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.26.(12分)学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)八年级(上)期中数学试卷参考答案与试题解析一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.下列图形中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,2 C.1,2,3 D.1,2,4【考点】三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+1=2,不能组成三角形,故A选项错误;B、1+2>2,能组成三角形,故B选项正确;C、1+2=3,不能组成三角形,故C选项错误;D、1+2<4,不能组成三角形,故D选项错误;故选:B.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.3.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.长方形的四个角都是直角C.长方形是轴对称图形D.三角形有稳定性【考点】三角形的稳定性.【分析】根据三角形具有稳定性解答.【解答】解:用木条EF固定长方形门框ABCD,使其不变形的根据是三角形具有稳定性.故选:D.【点评】本题考查了三角形具有稳定性在实际生活中的应用,是基础题.4.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点【考点】角平分线的性质.【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.【点评】该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点,易错选项为C.5.等腰△ABC的两边长分别是2和5,则△ABC的周长是()A.9 B.9或12 C.12 D.7或12【考点】等腰三角形的性质;三角形三边关系.【分析】分为两种情况:①当腰是2时,②当腰是5时,看看三角形的三边是否符合三角形的三边关系定理,求出即可.【解答】解:分为两种情况:①当腰是2时,三边为2,2,5,∵2+2<5,∴不符合三角形三边关系定理,此种情况不可能;②当腰是5时,三边为2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;故选C.【点评】本题考查了等腰三角形的性质和三角形三边关系定理的应用,注意要进行分类讨论.6.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6 B.7 C.8 D.9【考点】多边形的对角线.【分析】根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n ﹣3)条对角线,由此可得到答案.【解答】解:设这个多边形是n边形.依题意,得n﹣3=5,解得n=8.故这个多边形的边数是8.故选C.【点评】本题考查了多边形的对角线,如果一个多边形有n条边,那么经过多边形的一个顶点所有的对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.7.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC 的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C===40°.故选:B.【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.8.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°【考点】翻折变换(折叠问题).【分析】由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.【解答】解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC==67°.故选C.【点评】此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.9.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50°B.40°C.70°D.35°【考点】三角形内角和定理;角平分线的定义.【分析】根据数据线的内角和定理以及角平分线的定义,可以证明.【解答】解:∵BE、CF都是△ABC的角平分线,∴∠A=180°﹣(∠ABC+∠ACB),=180°﹣2(∠DBC+∠BCD)∵∠BDC=180°﹣(∠DBC+∠BCD),∴∠A=180°﹣2(180°﹣∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°﹣90°)=40°.故选B.【点评】注意此题中的∠A和∠BDC之间的关系:∠BDC=90°+∠A.10.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.【解答】解:∵等腰△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.11.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()A.∠CAD=30° B.AD=BD C.BD=2CD D.CD=ED【考点】含30度角的直角三角形;角平分线的性质;等腰三角形的判定与性质.【分析】根据三角形内角和定理求出∠CAB,求出∠CAD=∠BAD=∠B,推出AD=BD,AD=2CD即可.【解答】解:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠BAD=30°,∴∠CAD=∠BAD=∠B,∴AD=BD,AD=2CD,∴BD=2CD,根据已知不能推出CD=DE,即只有D错误,选项A、B、C的答案都正确;故选:D.【点评】本题考查了三角形的内角和定理,等腰三角形的判定,含30度角的直角三角形的性质的应用,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.12.如果一个三角形有两个外角(不在同一顶点)的和等于270°,则此三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形【考点】三角形的外角性质.【分析】根据三角形的外角和是360°,则第三个外角是90°,则与其相邻的内角是90°,即该三角形一定是直角三角形.【解答】解:∵一个三角形的两个外角的和是270°,∴第三个外角是90°,∴与90°的外角相邻的内角是90°,∴这个三角形一定是直角三角形.故选B.【点评】本题考查了三角形内角和定理的应用,能求出∠BAC+∠ACB的度数是解此题的关键,注意:三角形的内角和等于180°.13.如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,则△ABC的面积等于△BEF的面积的()A.2倍B.3倍C.4倍D.5倍【考点】三角形的面积.【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【解答】解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE +S△ACE=S△ABC,∴S△BCE =S△ABC,∵点F是CE的中点,∴S△BEF =S△BCE.∴△ABC的面积等于△BEF的面积的4倍.故选C.【点评】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.14.在直角坐标系中,O为坐标原点,已知A(2,2),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有()A.4个B.3个C.2个D.1个【考点】等腰三角形的判定;坐标与图形性质.【分析】分三种情形考虑∠O为顶角,∠P为顶角,∠A为顶角即可解决问题.【解答】解:如图,△AOP为等腰三角形,则符合条件的点P的个数共有4个.故选A.【点评】本题考查等腰三角形的判定和性质、坐标与图形性质等知识,解题的关键是考虑问题要全面,不能漏解,属于基础题,中考常考题型.二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.已知等腰三角形一个内角的度数为70°,则它的其余两个内角的度数分别是55°,55°或70°,40°.【考点】等腰三角形的性质.【分析】已知给出了一个内角是70°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还要用内角和定理去验证每种情况是不是都成立.【解答】解:已知等腰三角形的一个内角是70°,根据等腰三角形的性质,当70°的角为顶角时,三角形的内角和是180°,所以其余两个角的度数是(180﹣70)×=55;当70°的角为底角时,顶角为180﹣70×2=40°.故填55°,55°或70°,40°.【点评】本题主要考查等腰三角形的性质以及三角形的内角和为180度.分类讨论是正确解答本题的关键.16.如果一个n边形的内角和等于900°,那么n的值为7 .【考点】多边形内角与外角.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=900°,然后解方程即可求解.【解答】解:设这个多边形的边数为n,则(n﹣2)•180°=900°,解得n=7.故答案为:7.【点评】本题考查了多边行的内角和定理:n边形的内角和为(n﹣2)•180°.17.一个多边形的每一个外角都等于30°,则这个多边形的边数是12 .【考点】多边形内角与外角.【分析】多边形的外角和为360°,而多边形的每一个外角都等于30°,由此做除法得出多边形的边数.【解答】解:∵360°÷30°=12,∴这个多边形为十二边形,故答案为:12.【点评】本题考查根据多边形的内角与外角.关键是明确多边形的外角和为360°.18.如图,已知△ABC中,AD是BC边上的高,点E在线段BD上,且AE平分∠BAC,若∠B=40°,∠C=78°,则∠EAD= 19 °.【考点】三角形内角和定理.【分析】由三角形的高得出∠ADC=90°,求出∠ADC,由三角形内角和定理求出∠BAC,由角平分线求出∠EAC,即可得出∠EAD的度数.【解答】解:∵△ABC中,AD是BC边上的高,∴∠ADC=90°,∴∠DAC=90°﹣∠C=90°﹣78°=12°,∵∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣78°=62°,∵AE平分∠BAC,∴∠EAC=∠BAC=×62°=31°,∴∠EAD=∠EAC﹣∠DAC=31°﹣12°=19°.故答案为:19.【点评】本题考查了三角形内角和定理、角平分线的定义、角的和差计算;熟练掌握三角形内角和定理,并能进行推理计算是解决问题的关键.19.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,则△ABD的周长为21 cm.【考点】线段垂直平分线的性质.【分析】要求周长,就要求出三角形的三边,利用垂直平分线的性质计算.【解答】解:因为DE⊥AC,AE=CE,则DA=DC,于是C=AB+BD+DA=AB+(BD+DC)=AB+BC=10+11=21.△ABD∴△ABD的周长为21.【点评】此题设计巧妙,解答时要根据垂直平分线的性质将三角形ABC的周长问题转化为三角形ABC的两边长问题.20.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于90 度.【考点】方向角;平行线的性质;三角形内角和定理.【分析】根据方位角的概念和平行线的性质,结合三角形的内角和定理求解.【解答】解:∵C岛在A岛的北偏东50°方向,∴∠DAC=50°,∵C岛在B岛的北偏西40°方向,∴∠CBE=40°,∵DA∥EB,∴∠DAB+∠EBA=180°,∴∠CAB+∠CBA=90°,∴∠ACB=180°﹣(∠CAB+∠CBA)=90°.故答案为:90.【点评】解答此类题需要从运动的角度,结合平行线的性质和三角形的内角和定理求解.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.(10分)(2016秋•秦皇岛期中)求图中x的值.【考点】多边形内角与外角;三角形的外角性质.【分析】(1)根据三角形外角等于与它不相邻的两个内角的和,列出方程即可解决问题.(2)根据四边形内角和为360°,列出方程即可解决问题.【解答】(1)由三角形外角等于与它不相邻的两个内角的和,得x+70°=x+x+10°,解得x=60°,∴x=60°(2)由四边形内角和等于360°,得x+x+10°+60°+90°=360°解得:x=100°,∴x=100°.【点评】本题考查三角形的外角,多边形内角和等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.22.(10分)(2016秋•秦皇岛期中)已知:如图所示,(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使PA+PC最小,写出作法.【考点】轴对称-最短路线问题;作图-轴对称变换.【分析】(1)根据网格结构找出点A、B、C关于y轴对称的点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标;(2)根据网格结构找出点C关于x轴的对称点C″的位置,连接AC″与x轴相交于点P,根据轴对称确定最短路线问题,点P即为所求作的点.【解答】解:(1)△A′B′C′如图所示,A′(﹣1,2),B′(﹣3,1),C′(﹣4,3);(2)如图所示,点P即为使PA+PC最小的点.作法:①作出C点关于x轴对称的点C″(4,﹣3),②连接C″A交x轴于点P,点P点即为所求点.【点评】本题考查了利用轴对称确定最短路线问题,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.(10分)(2014春•邵阳期末)如图,在△ABC中;(1)作∠C的角平分线CE交AB于E(保留痕迹,不写作法),过点E分别作AC、BC的垂线EM、EN,垂足分别为M、N;(2)若EN=2,AC=4,求△ACE的面积.【考点】作图—复杂作图.【分析】(1)利用角平分线的作法以及过一点作已知直线的作法得出即可;(2)利用角平分线的性质以及三角形面积求法求出即可.【解答】解:(1)如图所示:CE为∠ACB的角平线,(2)∵CE为∠ACB的角平线,∠EMC=∠ENC=90°,∴EM=EN=2,∴S=AC×EM=4.【点评】此题主要考查了复杂作图以及角平分线的性质,得出EM的长是解题关键.24.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.【考点】全等三角形的判定与性质.【分析】根据“SAS”可证明△ADB≌△BAC,由全等三角形的性质即可证明AC=BD.【解答】证明:在△ADB和△BAC中,,∴△ADB≌△BAC(SAS),∴AC=BD.【点评】本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.25.(10分)(2011•德州)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD 相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.【考点】全等三角形的判定与性质.【分析】(1)根据全等三角形的判定方法,证明△ACD≌△ABE,即可得出AD=AE,(2)根据已知条件得出△ADO≌△AEO,得出∠DAO=∠EAO,即可判断出OA是∠BAC的平分线,即OA⊥BC.【解答】(1)证明:在△ACD与△ABE中,∵,∴△ACD≌△ABE,∴AD=AE.(2)答:直线OA垂直平分BC.理由如下:连接BC,AO并延长交BC于F,在Rt△ADO与Rt△AEO中,∴Rt△ADO≌Rt△AEO(HL),∴∠DAO=∠EAO,即OA是∠BAC的平分线,又∵AB=AC,∴OA⊥BC且平分BC.【点评】本题考查了全等三角形的判定方法,以及全等三角形的对应边相等,对应角相等的性质,难度适中.26.(12分)(2016秋•秦皇岛期中)学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)【考点】三角形综合题.【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH 全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt △DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;【解答】(1)解:HL;故答案为:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,∴△CBG≌△FEH(AAS),。

专题 期中模拟测试卷(压轴题综合测试卷)(人教版)(原卷版)-2024-2025学年八年级数学上册

专题  期中模拟测试卷(压轴题综合测试卷)(人教版)(原卷版)-2024-2025学年八年级数学上册

专题期中模拟测试卷学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一、选择题(本大题共10小题,每小题3分,满分30分)1.(24-25八年级上·河北廊坊·阶段练习)在下列条件:①∠AA+∠BB=∠CC,②∠AA:∠BB:∠CC=5:3:2,③∠AA= 90°−∠BB,④∠AA=2∠BB=3∠CC,⑤一个外角等于与它相邻的内角.中,能确定△AABBCC是直角三角形的条件有()A.2个B.3个C.4个D.5个2.(24-25八年级上·全国·单元测试)已知数轴上点A,B,C,D对应的数字分别为−1,1,x,7,点C在线段BBBB上且不与端点重合,若线段AABB,BBCC,CCBB能围成三角形,则x可能是()A.2 B.3 C.4 D.53.(23-24八年级上·内蒙古呼伦贝尔·期中)如图,EEBB交AACC于点MM,交FFCC于点BB,∠EE=∠FF=90°,∠BB=∠CC,AAEE=AAFF,给出下列结论:①∠1=∠2;②BBEE=CCFF;③△AACCAA≌△AABBMM;④CCBB=BBAA,其中正确的有()A.①②③B.①②④C.①③④D.②③④4.(24-25八年级上·江苏无锡·阶段练习)如图,∠AA=∠BB=90°,AABB=60,EE、FF分别为线段AABB和射线BBBB上的一点,若点EE从点BB出发向点AA运动,同时点FF从点BB出发向点BB运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AACC上取一点GG,使△AAEEGG与△BBEEFF全等,则AAGG的长为()A.18 B.88 C.88或62 D.18或705.(24-25八年级上·湖北荆州·阶段练习)如图,在△AABBCC中,∠AACCBB=90°,AACC=BBCC,点C的坐标为(−2,0),点B的坐标为(1,6),则A点的坐标为()A.(8,−2)B.(−8,3)C.(−6,2)D.(−6,3)6.(23-24八年级上·福建莆田·期中)如图,在五边形AABBCCBBEE中,∠BBAAEE=142°,∠BB=∠EE=90°,AABB=BBCC,AAEE=BBEE.在BBCC,BBEE上分别找一点MM,AA,使得△AAMMAA的周长最小时,则∠AAMMAA+∠AAAAMM的度数为()A.76° B.84° C.96° D.109°7.(24-25八年级上·重庆江北·开学考试)如图,点D是△AABBCC边BBCC上的中点,点E是AABB上一点且BBEE=3AAEE,F、G是边AABB上的三等分点,若四边形FFGGBBEE的面积为14,则△AABBCC的面积是()A.24 B.42 C.48 D.56 8.(2024·江苏·模拟预测)如图,将四边形纸片AABBCCBB沿MMAA折叠,使点AA落在四边形CCBBMMAA外点AA′的位置,点BB落在四边形CCBBMMAA内点BB′的位置,若∠BB=90°,∠2−∠1=36°,则∠CC等于()A.36°B.54°C.60°D.72°9.(23-24八年级上·江苏南通·期中)如图,在△AABBCC中,∠BBAACC和∠AABBCC的平分线AAEE,BBFF相交于点OO,AAEE交BBCC 于EE,BBFF交AACC于FF,过点OO作OOBB⊥BBCC于BB,下列四个结论:①∠AAOOBB=90°+12∠CC;②当∠CC=60°时,AAFF+ BBEE=AABB;③OOEE=OOFF;④若OOBB=aa,AABB+BBCC+CCAA=2bb,则SS△AAAAAA=aabb.其中正确的结论是()A.①②③B.②③④C.①③④D.①②④10.(23-24八年级上·湖北荆门·期末)如图,C为线段AAEE上一动点(不与点A,点E重合),在AAEE同侧分别作等边△AABBCC和等边△CCBBEE,AABB交于点O,AABB与BBCC交于点P,BBEE与CCBB交于点Q,连接PPPP,OOCC.以下六个结论:①AABB=BBEE;②PPPP∥AAEE;③AAPP=BBPP;④BBEE=BBPP;⑤∠AAOOBB=60°;⑥OOCC平分∠AAOOEE,其中正确的结论的个数是()A.3个B.4个C.5个D.6个评卷人得分二、填空题(本大题共5小题,每小题3分,满分15分)11.(24-25八年级上·江苏宿迁·阶段练习)在的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与△AABBCC关于某条直线对称的格点三角形,最多能画个个.12.(24-25八年级上·黑龙江哈尔滨·阶段练习)风筝又称“纸鸢”、“风鸢”、“纸鹞”等,起源于中国东周春秋时期,距今已有2000多年的历史,如图是一款风筝骨架的简化图,已知AABB=AABB,BBCC=CCBB,AACC=90cm,BBBB=60cm,制作这个风筝需要的布料至少为cm2.13.(24-25八年级上·四川德阳·阶段练习)如图所示,由五个点组成的图形,则∠AA+∠BB+∠CC+∠BB+∠EE=度.14.(24-25八年级上·内蒙古呼和浩特·阶段练习)如图,在Rt△AABBCC中,∠AACCBB=90°,AACC=6,BBCC=8,AABB=10,AABB是∠BBAACC的平分线,若PP,PP分别是AABB和AACC上的动点,则PPCC+PPPP的最小值是.15.(24-25八年级上·福建福州·阶段练习)如图,在△AABBCC中,AABB=AACC,∠BBAACC=120°,AABB⊥BBCC于点D,点P是CCAA延长线上一点,点O在AABB延长线上,OOPP=OOBB,下面的结论:①∠AAPPOO−∠OOBBBB=30°;②△BBPPOO是等边三角形;③AABB−AAPP=AAOO;④SS四边形AAAAAAAA=2SS△AAAAAA,其中正确的结论是.评卷人得分三、解答题(本大题共8小题,满分55分)16.(6分)(23-24八年级上·山东菏泽·期末)如图,在平面直角坐标系中,AA(−1,4),BB(−3,3),CC(−2,1).(1)画出△AABBCC关于xx轴的对称图形△AA1BB1CC1;(2)求△AABBCC的面积;(3)在yy轴上找一点PP,使得△PPBBCC的周长最小.17.(6分)(24-25八年级上·福建莆田·阶段练习)如图,在四边形AABBCCBB中,AACC平分∠BBAABB,过CC作CCEE⊥AABB 于EE,并且∠AABBCC+∠AABBCC=180°.(1)求证:BBCC=BBCC.(2)求证:AAEE=12(AABB+AABB).18.(6分)(24-25八年级上·湖北孝感·阶段练习)如图,△AABBBB和△CCAAEE是等腰直角三角形,其中∠BBAABB=∠CCAAEE=90°,AABB=AABB,AAEE=AACC,过A点作AAFF⊥CCBB,垂足为点F.(1)求证:△AABBCC≌△AABBEE;(2)若CCAA平分∠BBCCEE,求证:CCBB=2BBFF+BBEE.19.(6分)(24-25八年级上·福建莆田·阶段练习)如图,在△AAOOBB和△CCOOBB中,OOAA=OOBB,OOCC=OOBB,若∠AAOOBB=∠CCOOBB=60°,连接AACC、BBBB交于点P;(1)求证∶△AAOOCC≌△BBOOBB.(2)求∠AAPPBB的度数.(3)如图(2),△AABBCC是等腰直角三角形,∠AACCBB=90°,AACC=BBCC,AABB=14cm,点D是射线AABB上的一点,连接CCBB,在直线AABB上方作以点C为直角顶点的等腰直角△CCBBEE,连接BBEE,若BBBB=4cm,求BBEE的值.20.(6分)(23-24八年级上·江苏南通·阶段练习)如图:△AABBCC是边长为6的等边三角形,P是AACC边上一动点.由点A向点C运动(P与点AA、CC不重合),点Q同时以点P相同的速度,由点B向CCBB延长线方向运动(点Q不与点B重合),过点P作PPEE⊥AABB于点E,连接PPPP交AABB于点D.(1)若设AAPP的长为x,则PPCC=_________,PPCC=____________.(2)当∠BBPPBB=30°时,求AAPP的长;(3)点PP,PP在运动过程中,线段EEBB的长是否发生变化?如果不变,直接写出线段EEBB的长;如果变化,请说明理由.21.(8分)(24-25八年级上·湖北省直辖县级单位·阶段练习)如图①,在△AABBCC中,∠AABBCC与∠AACCBB的平分线相交于点P.(1)若∠AA=60°,则∠BBPPCC的度数是;(2)如图②,作△AABBCC外角∠MMBBCC,∠AACCBB的角平分线交于点Q,试探索∠PP,∠AA之间的数量关系;(3)如图③,延长线段BBPP,PPCC交于点E,在△BBPPEE中,存在一个内角等于另一个内角的3倍,请直接写出∠AA的度数是.22.(8分)(23-24八年级上·湖北黄石·期末)在平面直角坐标系中,AA(−5,0),BB(0,5),点C为x轴正半轴上一动点,过点A作AABB⊥BBCC交y轴于点E.(1)如图①,若CC(3,0),求点E的坐标;(2)如图②,若点C在x轴正半轴上运动,且OOCC<5,其它条件不变,连接BBOO,求证:BBOO平分∠AABBCC;(3)若点C在x轴正半轴上运动,当OOCC+CCBB=AABB时,求∠OOBBCC的度数.23.(9分)(24-25八年级上·山东济宁·阶段练习)(1)问题背景:如图1,在四边形AABBCCBB中,AABB=AABB,∠BBAABB= 120°,∠BB=∠AABBCC=90°,E、F分别是BBCC,CCBB上的点,且∠EEAAFF=60°,探究图中线段BBEE、EEFF、FFBB之间的数量关系.小李同学探究此问题的方法是:延长FFBB到点G,使BBGG=BBEE.连接AAGG,先证明△AABBEE≌△AABBGG,再证明△AAEEFF≌△AAGGFF,可得出结论.他的结论应是______________________.(2)如图2,在四边形AABBCCBB中,AABB=AABB,∠BB+∠BB=180°,EE,FF分别是边BBCC,CCBB上的点,且∠EEAAFF= 12∠BBAABB.(1)中的结论是否仍然成立?请写出证明过程.(3)在四边形AABBCCBB中,AABB=AABB,∠BB+∠BB=180°,E,F分别是边BBCC,CCBB所在直线上的点,且∠EEAAFF= 12∠BBAABB.请直接写出线段EEFF,BBEE,FFBB之间的数量关系.。

八年级上册数学期中数学试卷(附解析)

八年级上册数学期中数学试卷(附解析)

八年级数学上册期中测试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)下列线段长能构成三角形的是()A.3、7、5 B.2、3、5C.5、6、11D.1、2、4 2.(3分)下列图形中不是轴对称图形的是()A.B.C.D.3.(3分)下列图形中,不是运用三角形的稳定性的是()A.房屋顶支撑架B.自行车三脚架C.拉闸门D.木门上钉一根木条4.(3分)一个多边形的内角和是它的外角和的2倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形5.(3分)如图所示,△ABC≌△DEF,DF和AC,FE和CB是对应边.若∠A=100°,∠F=47°,则∠B的度数是()A.33°B.47°C.53°D.100°6.(3分)已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2 B.9:4C.2:3D.4:97.(3分)如图,DE是△ABC中AC边的垂直平分线,若BC=8cm,AB=10cm,则△EBC的周长为()A.16cm B.28cm C.26cm D.18cm8.(3分)如图,将矩形纸片ABCD(图1)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E(如图2);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图3);(3)将纸片收展平,那么∠AFE的度数为()A.60°B.67.5°C.72°D.75°9.(3分)如图,在△ABC中,∠B=∠C,D为BC边上的一点,E点在AC边上,∠ADE=∠AED,若∠BAD=20°,则∠CDE =()A.10°B.15°C.20°D.30°10.(3分)如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题(共6小题,每小题3分,共18分)11.(3分)点P(1,3)关于y轴对称点的坐标为.12.(3分)已知△ABC中的∠B=∠A+10°,∠C=∠B+10°,则∠A =,∠B=,∠C=.13.(3分)小华要从长度分别为5cm,6cm,11cm,16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒形成的三角形的周长为cm.14.(3分)如图,点B在AE上,∠CBE=∠DBE,要使△ABC≌△ABD,还需添加一个条件是(填上适当的一个条件即可)15.(3分)如图,已知:∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC =3,则BE=.16.(3分)在△ABC中,AD是高,∠BAD=60°,∠CAD=20°,AE平分∠BAC,则∠EAD的度数为.参考答案与试题解析一、选择题1.A;2.C;3.C;4.B;5.A;6.A;7.D;8.B;9.A;10.A;二、填空题11.(﹣1,3);12.50°;60°;70°; 13.33; 14.BC=BD;15.1.5;16.20°或40°;三、解答题(共8小题,共72分)17.(8分)如图,点C,E,F,B在同一直线上,点A,D在BC 异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.18.(8分)已知等腰三角形的周长是22,一边长为5,求它的另外两边长.19.(8分)如图,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的北偏东82°方向.求∠C的度数.20.(8分)如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(﹣2,﹣2).(1)请在图中作出△ABC关于直线x=﹣1的轴对称图形△DEF (A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;(2)求四边形ABED的面积.21.(8分)如图,在△ABC中,AD是∠BAC平分线,AD的垂直平分线分别交AB、BC延长线于F、E.求证:(1)∠EAD=∠EDA;(2)DF∥AC;(3)∠EAC=∠B.22.(10分)如图,∠ECF=90°,线段AB的端点分别在CE和CF上,BD平分∠CBA,并与∠CAB的外角平分线AG所在的直线交于一点D,(1)∠D与∠C有怎样的数量关系?(直接写出关系及大小)(2)点A在射线CE上运动,(不与点C重合)时,其它条件不变,(1)中结论还成立吗?说说你的理由.23.(10分)在△ABC中,BC=AC,∠BCA=90°,P为直线AC 上一点,过A作AD⊥BP于D,交直线BC于Q.(1)如图1,当P在线段AC上时,求证:BP=AQ.(2)当P在线段AC的延长线上时,请在图2中画出图形,并求∠CPQ.(3)如图3,当P在线段AC的延长线上时,∠DBA=时,AQ=2BD.24.(12分)如图1,A(m,0),B(0,n),且m,n满足(m ﹣2)2+=0.(1)求S△ABO;(2)点C为y轴负半轴上一点,BD⊥CA交CA的延长线于点D,若∠BAD=∠CAO,求的值;(3)点E为y轴负半轴上一点,OH⊥AE于H,HO,AB的延长线交于点F,G为y轴正半轴上一点,且BG=OE,FG,EA的延长线交于点P,求证:点P的纵坐标是定值.参考答案与试题解析三、解答题(共8小题,共72分)17.(8分)【解答】解:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF,∴AB=CD.18.(8分)【解答】解:若底边为5,设腰长为x,则5+2x=22,解得x=8.5,若腰为5,设底边为xcm,则2×5+x=22,解得x=12,∵5+5<12,∴不合题意.所以等腰三角形另外两边长分别为8.5和8.5.19.(8分)【解答】解:过A沿南向做射线AD交BC于D,由题意∠BAD=57°,∠CAD=15°,∠EBC=82°,∵AD∥BE,∴∠EBA=∠BAD=57°.∴∠ABC=∠EBC﹣∠EBA=25°.△ABC中,∠ABC=25°,∠BAC=72°,∴∠C=180°﹣25°﹣72°=83°.即:∠C的度数为83°.20.(8分)【解答】解:(1)D(﹣4,3);E(﹣5,1);F(0,﹣2);(5分)(2)AD=6,BE=8,∴S四边形ABED=(AD+BE)•2=AD+BE=14.(8分)21.(8分)【解答】证明:(1)∵EF是AD的垂直平分线,∴AE=DE,∴∠EAD=∠EDA;(2)∵EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA,∵AD是∠BAC平分线,∴∠FAD=∠CAD,∴∠FDA=∠CAD,∴DF∥AC;(3)∵∠EAC=∠EAD﹣∠CAD,∠B=∠EDA﹣∠BAD,且∠BAD =∠CAD,∠EAD=∠EDA,∴∠EAC=∠B.22.(10分)【解答】解:(1)∠C=2∠D即:∠D=45°,∵BD平分∠CBA,AG平分∠EAB,∴∠EAB=2∠GAB,∠ABC=2∠DBA,∵∠CAB=180°﹣2∠GAB,∠BAC+∠ABC=90°,即180°﹣2∠GAB+2∠DBA=90°,整理得出∠GAB﹣∠DBA=45°,∴∠D=∠C=45°;(2)当A在射线CE上运动(不与点C重合)时,其它条件不变,(1)中结论还成立,∵∠CAB+∠ABC=∠C=90°,不论A在CE上如何运动,只要不与C点重合,这个关系式都是不变的,整理这个式子:∠CAB=180°﹣2∠GAB,∠ABC=2∠DBA,得:180°﹣2∠GAB+2∠DBA=90°,整理得∠GAB﹣∠DBA=45度,恒定不变,即:∠D=45°的结论不变,∴∠C=2∠D恒成立.23.(10分)【解答】(1)证明:∵∠ACB=∠ADB=90°,∠APD=∠BPC,∴∠DAP=∠CBP,在△ACQ和△BCP中,∴△ACQ≌△BCP(ASA),∴BP=AQ;(2)解:如图2所示:∵∠ACQ=∠BDQ=90°,∠AQC=∠BQD,∴∠CAQ=∠DBQ,在△AQC和△BPC中,∴△AQC≌△BPC(ASA),∴QC=CP,∵∠QCD=90°,∴∠CQP=∠CPQ=45°;(3)解:当∠DBA=22.5°时,AQ=2BD;∵AC=BC,∠ACB=90°,∴∠BAC=45°,∴∠P=22.5°,∴∠DBA=∠P,∴AP=AB,∵AD⊥BP,∴AD=DP,∵∠ACQ=∠ADP=90°,∠PAD=∠QAC,∴∠P=∠Q,在△ACQ和△BCP中,∴△ACQ≌△BCP(ASA),∴BP=AQ,∴此时AQ=BP=2BD.故答案为:22.5°.24.(12分)【解答】解:(1)∵(m﹣2)2+=0.∴m=n=2,∴A(2,0),B(0,2),∴OA=2,OB=2,∴S△AOB=OA×OB=2;(2)如图1,在OC上取一点E,使OE=OA=2,由(1)知,OA=OB=2,∴∠OAB=45°,∴AE=2,∵∠BAD=∠CAO,∴∠BAD=∠CAO=67.5°,∵∠ADB=∠AOC=90°,∴∠ABD=∠ACO=22.5°,∴CE=AE=2,∴OC=OE+CE=2(+1),∴AC2=OA2+OC2=4+4(+1)2=8(2+),tan∠ACO==﹣1,在Rt△ABD中,tan∠ABD=tan22.5°=tan∠ACO==﹣1,∴AD=(﹣1)BD,在Rt△AOB中,OA=OB=2,∴AB=2,根据勾股定理得,AD2+BD2=AB2,∴[(﹣1)BD]2+BD2=8,∴BD2=2(2+),==,∴=;(3)如图2,由(1)知,A(2,0),B(0,2),∴直线AB解析式为y=﹣x+2①,设E(0,a),∴OE=|a|=﹣a,∵BG=OE,∴BG=﹣a,∴OG=2﹣a,∴G(0,2﹣a),∵A(0,2),E(0,a),∴直线AE解析式为y=﹣x+a②,∵OH⊥AE,∴直线OH解析式为y=x③,联立①③得,x=,y=,∴F(,),∵G(0,2﹣a),∴直线FG的解析式为y=x+2﹣a④,联立②④得,x=,y=1,∴P(,1),∴点P的纵坐标是定值,定值为1.。

(北师大版)2024-2025学年八年级数学上学期期中押题测试卷(一)(解析版)

(北师大版)2024-2025学年八年级数学上学期期中押题测试卷(一)(解析版)

2024-2025学年八年级数学上学期期中测试卷(一)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:(北师版)八年级上册第一章~第四章。

5.难度系数:0.85。

一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.实数16的平方根是( )A.4B.-4C.±4D.16【答案】C【详解】分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.详解:∵(±4)2=16,∴实数16的平方根是±4.故选C.点睛:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.下列4个数中,3.1415926,22,π7C.πDA.3.1415926B.227故选:C .【点睛】本题主要考查了无理数的实数的分类,熟练地掌握无理数的定义是解题的关键.常见的无理数有:含π的数、开不尽方的数、有规律但是不循环的数.3.下列运算中正确的是( )A B .2+C .2=12D =−24.下列各组数据中的三个数,可以作为直角三角形三边长的是( )A .1,2,3B .2,4,7C .6,8,10D .13,14,155.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了几步路,却踩伤了花草.他们少走的路长为()A.2m B.3m C.3.5m D.4m6.在平面直角坐标系中,点5,−2所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【分析】根据各象限内的点的坐标符号规律即可得.【详解】解:因为点5,−2的横坐标为5>0,纵坐标为−2<0,所以点5,−2所在的象限是第四象限,故选:D.【点睛】本题考查了点所在的象限,熟练掌握各象限内的点的坐标符号规律是解题关键.7.关于直线l:y=−2x+4,下列说法不正确的是()A.函数的图象经过第一、二、四象限B.y随x的增大而减小C.函数的图象是由y=−2x的图象向上平移4个单位长度得到的D.若A(x1,y1),B(x2,y2)两点在该函数图象上,且x1<x2,则y1<y2【答案】D【分析】由k=−2<0,b=4>0,可得图象经过一、二、四象限,y随x的增大而减小,再分别求解一次函数与坐标轴的交点坐标,从而可得答案.【详解】解:∵y =−2x +4,k =−2<0,b =4>0,∴图象经过一、二、四象限,y 随x 的增大而减小,故A ,B 不符合题意;∵y =−2x +4函数的图象是由y =−2x 的图象向上平移4个单位长度得到的,故C 不符合题意;当x =0时,y =4,∴A(x 1,y 1),B(x 2,y 2)两点在该函数图象上,且x 1<x 2,则y 1>y 2,故D 符合题意;故选:D .【点睛】本题考查的是一次函数的图象与增减性,一次函数与坐标轴的交点坐标,熟记一次函数的性质是解本题的关键.8.一次函数y =kx +b 与y =x−2的图象如图所示,则关于x ,y 的方程组y =kx +b y =x−2 的解是( )A .x =4y =2B .x =4y =−2C .x =2y =1D .x =2y =−1【答案】A 【分析】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.先利用y =x−2确定交点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标进行判断.【详解】解:对于y =x−2,当x =4时,y =4−2=2,∴两直线交点坐标为(4,2),∴方程组y =kx +b y =x−2 的解x =4y =2 ,故选:A .9.若kb >0,则正比例函数y =kx 与一次函数y =bx +k 在同一坐标系中的图象可能是( )A .B .C .D .【答案】A 【分析】本题考查一次函数的图象,解答本题的关键是明确一次函数的性质,由kb >0,得k 、b 同号,再分k >0,b >0及k <0,b <0,两种情况讨论即可得答案.【详解】解:∵kb >0,∴k 、b 同号,若k >0,b >0,y =kx 图象经过第一、三象限,y =bx +k 经过第一、二、三象限,若k <0,b <0,y =kx 图象经过第二、四象限,y =bx +k 经过第二、三、四象限,只有选项A 符合,故选:A .10.如图,一次函数交x 轴于点A (4,0),交y 轴于点B (0,3),过点A 作AC ⊥AB ,且AC =AB .连接BC ,当点C在第一象限时,直线BC 的解析式为( )A .y =17x +3B .y =16x +3C .y =15x−3D .y =14x +3【答案】A【分析】根据点A 和B 的坐标求出线段OA 和OB 的长,过点C 作CD ⊥x 轴于D ,由全等三角形的判定可得出△ABO≌△CAD ,由全等三角形的性质可得AD =OB =3,CD =OA =4,从而求出点C 的坐标,继而可求出直线BC 的解析式.【详解】过点C 作CD ⊥x 轴于D ,二、填空题(本题共6小题,每小题3分,共18分.)11.若电影院的5排3号记为(5,3),则4排7号记为.【答案】(4,7)【分析】根据题意明确对应关系,排在前,号在后,然后进行分析解答.【详解】解:电影院中的5排3号记为(5,3),则4排7号记为(4,7).故答案为:(4,7).【点睛】本题主要考查坐标确定位置,掌握在平面中确定一个点的位置需要知道纵坐标和横坐标两个条件.12.如图,已知RtΔABC中,∠C=90°,BC=20,AC=15,CD是斜边AB上的高,求AD的长度为.13.请你写出一个图象过点(1,2),且y随x的增大而减小的一次函数解析式.【答案】y=﹣x+3【分析】将点(1,2)代入一次函数解析式为y=kx+b,得到k+b=2,又因为y随x的增大而减小,可得出k小于0,取k=-1,可得出b=3,确定出满足题意的一次函数解析式,本题答案不唯一.【详解】解:设一次函数的解析式为y=kx+b,将x=1,y=2代入得:k+b=2,又此一次函数y随x的增大而减小,∴k<0,若k=-1,可得出b=3,则一次函数为y=-x+3.故答案为y=-x+3【点睛】此题考查了一次函数的性质,一次函数y=kx+b(k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.此外本题的答案不唯一,只要满足k为负数,且k+b=2即可.14.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞m.15.如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF=.16.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为.【答案】(21008,21009)【分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化即可找出变化规律“A4n+1(22n,22n+1),A4n+2(−22n+1,22n+1),A4n+3(−22n+1,−22n+2),A4n+4(22n+2,−22n+2)(n为自然数)”,依此规律结合2017=1008×2+1即可找出点A2017的坐标.【详解】由图可知:A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…,∵2017=504×4+1,∴点A2017在第一象限,∵2017=1008×2+1,∴A2n+1((﹣2)n,2(﹣2)n)(n为自然数).∴A2017的坐标为((﹣2)1008,2(﹣2)1008)=(21008,21009).故答案是:(21008,21009)【点睛】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及规律型中点的坐标,根据坐标的变化找出变化规律是解题的关键.三.解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(8分)求下列各式中的x:(1)1(x−1)3=−4;2(2)(2x+1)2=9.题的关键.18.(8分)计算(2)(3+÷19.(8分)平面直角坐标系中,△ABC各顶点坐标分别为A0,1、B2,0、C4,3.(1)若△A′B′C′与△ABC关于y轴对称,请在平面直角坐标系中画△A′B′C′;(2)△A′B′C′的面积是________;(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.【答案】(1)见解析(2)4(3)P10,0或−6,0【分析】本题考查了作轴对称图形、三角形的面积、坐标与图形,熟练掌握以上知识点并灵活运用,采用数形结合的思想是解此题的关键.(1)根据轴对称的性质得出点A、B、C的对应点A′、B′、C′,再顺次连接即可;(2)利用割补法求三角形面积即可;(3)根据三角形的面积求出BP=8,进而即可得出点P的坐标.【详解】(1)解:△A′B′C′如图所示:;20.(8分)如图,直线y=−3x+6交x轴和y轴于点A和点B,点C(0,−3)在y轴上,连接AC.(1)求点A和点B的坐标;(2)若点P是直线AB上一点,若△BCP的面积为18,求点P的坐标;【答案】(1)点A坐标为(2,0),点B坐标为(0,6)(2)点P的坐标为(4,−6)或(−4,18)【分析】本题考查一次函数图像上点的坐标特征,熟知一次函数的图像和性质是解题的关键.(1)根据坐标轴上的点的坐标特征即可解决问题.(2)由△BCP的面积为18可求出点P的横坐标,据此可解决问题.【详解】(1)将y=0代入y=−3x+6得,−3x+6=0,解得x=2,∴点A坐标为(2,0).将x=0代入y=−3x+6得,21.(8分)如图,在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H,(A,H,B在一条直线上),并修一条路CH.测得CB=2千米,CH=1.6千米,HB=1.2千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明.(2)求原来的路线AC的长.22.(10分)2022年春节,某地连续14天进行了3次全员核酸检测.某次,甲乙两家医院对A、B两个小区居民进行检测,在整个检测过程中,检测的人数y(人)与检测时间x(分)的对应关系如图所示:(1)两家医院共检测______人,甲乙两家医院检测的速度差是______.(2)求出两家医院的y与x的函数关系式;(3)甲医院开始检测多长时间两家医院检测人数相差200人?【答案】(1)6000,8人/分(2)y甲=20x−1000;y乙=12x(3)甲医院开始检查后50分钟或100分钟,两家医院检测人数相差200人.【分析】(1)由图象直接可得答案;(2)在图象上找两点或一点,利用待定系数法可得答案;(3)有甲检测人数比乙多200和乙检测人数比甲多200两种情况,列出含绝对值的方程即可解得答案.【详解】(1)解:两家医院共检测3000+3000=6000(人),甲医院速度是3000÷(200−50)=20(人/分),乙医院速度是3000÷250=12(人/分),∴甲乙两家医院检测的速度差是8(人/分),故答案为:6000,8人/分;(2)解:设y 甲=kx +b ,将(50,0),(200,3000)代入得:50k +b =0200k +b =3000 ,解得k =20b =−1000,∴y 甲=20x−1000;设y 乙=k′x ,将(250,3000)代入得:250k ′=3000,解得k ′=12,∴y 乙=12x ;所以甲医院的y 与x 的函数关系式为:y =20x−1000;乙医院的y 与x 的函数关系式为:y =12x ;(3)解:根据题意得:|20x−1000−12x |=200,解得x =100或x =150,∴x−50=50或x−50=100,答:甲医院开始检查后50分钟或100分钟,两家医院检测人数相差200人.【点睛】本题考查一次函数的应用,解题的关键是正确识图,熟练应用待定系数法列出函数关系式.23.(10简:2−12=以上这种化简的步骤叫做分母有理化.也可以用如下方法化简.(1)请化简:2;(2)选择合适的方法化简1(n 为正整数);(3)++++⋯+24.(12分)如图,在平面直角坐标系中,直线l1:y=kx+b(k≠0)与直线l2:y=x交于点A(a,2),与y轴交于点B(0,5),与x轴交于点C.(1)求直线l1的函数表达式;(2)在y轴上存在一点P,使得S△AOP=S△AOC,求出点P的坐标;(3)点E为直线l1上的动点,过点E作x轴的垂线,交于l2点F,点H为y轴上一动点,且△EFH为等腰直角三角形,求满足条件的点E的坐标.。

人教版八年级数学上册期中考试卷(附答案)

人教版八年级数学上册期中考试卷(附答案)

人教版八年级数学上册期中考试卷(附答案)学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、选择题(本大题共8小题,共24.0分。

在每小题列出的选项中,选出符合题目的一项)1.下列四个实数中,最小的是( )A. −√ 3B. −2C. 2D. 32.下列各数中,无理数是( )A. √ 9B. √−83C. π2D. 533.与数轴上的点一一对应的是( )A. 有理数B. 无理数C. 整数D. 实数4.估计√ 7+1的值在( )A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5.√ 16的算术平方根是( )A. 4B. 2C. ±4D. ±26.下列运算正确的是( )A. x 3÷x 2=xB. x 3⋅x 2=x 6C. x 3−x 2=xD. x 3+x 2=x 5 7.若(y +3)(y −2)=y 2+my +n ,则m 、n 的值分别为( )A. 5;6B. 5;−6C. 1;6D. 1;−68.已知a =255,b =344,c =433则a 、b 、c 的大小关系是( )A. b >c >aB. a >b >cC. c >a >bD. a <b <c第II 卷(非选择题)二、填空题(本大题共6小题,共18.0分)9.计算:−√ 36= ______ ,√−273= ______ ,√ 16= ______ .10.已知|a +2|+√ b −6=0,则a +b = ______ .11.√ 2−1的相反数是______ ,|√ 2−√ 3|= ______ ,√(−8)33= ______ .12.已知2n =a ,3n =b 则6n = ______ .13.已知x 2−y 2=8,且x +y =4,则x −y =______.14.已知x 2−(m −1)x +16是一个完全平方式,则m 的值等于______.三、解答题(本大题共10小题,共78.0分。

期中测试题(八年级上册数学)

期中测试题(八年级上册数学)

期中自我评估(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分)1.下列交通标志图案是轴对称图形的是()A B C D2.(2022年金华)已知三角形的两边长分别为5 cm和8 cm,则第三边的长可以是()A. 2 cmB. 3 cmC. 6 cmD. 13 cm3. 如图1,已知△ABC≌△DEC,点E在AB边上,∠B=70°,则∠BCE的度数为()A. 30°B. 40°C. 45°D. 50°图14.若一个正多边形的各个内角都是140°,则这个正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形5. 根据图2中给定的条件,全等的三角形是()A.①和②B.②和③C.①和④D.②和④①②③④图26.若点A(a-2,3)和点B(-1,b+5)关于y轴对称,则点C(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限7. 如图3,在△ABC中,AB=AC,以点B为圆心,BC的长为半径画弧交AC于点C,E,再分别以点C,E为圆心,大于12CE的长为半径画弧,两弧交于点F,连接BF交AC于点D.若∠A=50°,则∠CBD的度数是()A. 25°B. 40°C. 50°D. 65°图3 图4 图5 图68.(2022年海南)如图4,直线m∥n,△ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若∠1=140°,则∠2的度数是()A. 80°B. 100°C. 120°D. 140°9. 如图5,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC成轴对称且以格点为顶点的三角形共有()A. 3个B. 4个C. 5个D. 6个10.如图6,在△ABC中,P,Q分别是BC,AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R,S.若AQ=PQ,PR=PS,有下列结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确的是()A.仅①②B.仅①②③C.仅①②④D.①②③④二、填空题(本大题共6小题,每小题4分,共24分)11. 如图7是某一水塘边的警示牌,牌面是五边形,这个五边形的内角和是.图7 图8 图912. 如图8,已知BE=DC,请添加一个条件:,使得△ABE≌△ACD.13.如图9,AD是△ABC的中线,G是AD上的一点,且AG=2GD,连接BG.若S△ABC=6,则图中阴影部分的面积是.14. 如图10,把长方形纸片ABCD沿对角线折叠,若∠BDE =25°,那么∠BED =__________.图10 图11 图1215. 如图11,OP平分∠AOB,PM⊥OA于点M,点D在OB上,DH⊥OP于点H.若OD=4,OP=7,PM=3,则DH的长为.16. 如图12,点E在等边三角形ABC的边BC上,BE=12,DC⊥BC于点C,P是射线CD上一动点,F 是线段AB上一动点,当EP+PF的值最小时,BF=14,则AC的长为__________.三、解答题(本大题共7小题,共66分)17.(6分)如图13,在平面直角坐标系中,形如英文字母“V”的图形三个端点的坐标分别是A(2,3),B(1,0),C(0,3).(1)画出字母“V”的图形关于x轴对称的图形;(2)所得图形与原图形结合起来,你能从中看出什么英文字母?图1318.(6分)如图14,在四边形ABCD中,∠A=100°,∠D=140°,∠BCD的平分线CE交AB于点E.(1)若∠B=∠BCD,则∠B= °;(2)若CE∥AD,求∠B的度数.图1419.(8分)如图15,点B,E,C,F在同一条直线上,AB=DE,AB∥DE.老师说:再添加一个条件就可以使△ABC≌△DEF.下面是课堂上三个同学的发言,甲说:添加AC=DF;乙说:添加AC∥DF;丙说:添加BE=CF.(1)甲、乙、丙三个同学说法正确的是 .(2)请你从正确的说法中选择一种,并给出证明.图1520.(10分)如图16,在△ABC中,∠A=90°,BC的垂直平分线DE交BC于点E,交AC于点D.(1)若∠C=35°,求∠DBA的度数;(2)若△ABD的周长为30,AC=18,求AB的长.图1621.(10分)如图17,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE.求证:(1)△ADB≌△AEC;(2)DB⊥EC.图1722.(12分)如图18,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.(1)AD与CE相等吗?为什么;(2)若∠BCD=75°,求∠ACE的度数;(3)若∠BCE=α,∠ACE=β,则α,β之间满足一定的数量关系,试说明这个结论.图1823.(14分)如图19,在△ABC中,AB=AC=10 cm,BC=8 cm,D为AB的中点,点P在线段BC上以3 cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向A点运动,并且点Q的运动速度与点P的运动速度不相等,设点Q的运动时间是t s.(1)用含有t的式子表示PC=cm;(2)当△BPD与△CQP全等时,求点Q的运动速度;(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求:经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?图19期中自我评估一、1. A 2. C 3. B 4. D 5. C 6. D 7. A 8. B 9. C 10. C二、11. 540°12.∠B=∠C或∠AEB=∠ADC13.2 14.130°15. 12 716. 20 解析:如图1,作点E关于直线CD的对称点G,过G作GF⊥AB于点F,交CD 于点P,此时EP+PF的值最小.因为△ABC是等边三角形,所以AC=BC,∠B=60°.又∠BFG=90°,所以∠G=30°.所以BG=2BF=28.因为BE=12,所以CE=12EG=12×(28-12)=8.所以AC=BC=BE+EC=12+8=20.三、17. 解:(1)如图所示.(2)字母x.18.解:(1)60(2)因为CE∥AD,所以∠DCE+∠D=180°.所以∠DCE=180°-∠D=180°-140°=40°.因为CE平分∠BCD,所以∠BCD=2∠DCE=80°.所以∠B=360°-(100°+140°+80°)=40°.19. 解:(1)乙、丙(2)选择乙(答案不唯一).证明如下:因为AB∥DE,AC∥DF,所以∠B=∠DEC,∠F=∠ACB.在△ABC和△DEF中,∠ACB=∠F,∠B=∠DEF,AB=DE,所以△ABC≌△DEF(AAS).20.解:(1)因为DE是BC的垂直平分线,所以CD=BD.所以∠CBD=∠C=35°.因为∠A=90°,所以∠C+∠CBD+∠DBA=90°.所以∠DBA=90°-35°-35°=20°.(2)因为△ABD的周长为30,所以AB+AD+BD=AB+AD+CD=AB+AC=30.因为AC=18,所以AB=30-18=12.21.证明:(1)因为AB⊥AC,AD⊥AE,所以∠BAC=∠DAE=90°.所以∠BAC+∠BAE=∠DAE+∠BAE,即∠BAD=∠CAE.在△BAD与△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,所以△ADB≌△AEC(SAS).(2)设BD和CE交于点F.因为△ADB≌△AEC,所以∠ACE=∠ABD.图1所以∠BFC=∠BAC=90°.所以DB⊥EC.22.(1)证明:AD=CE.理由如下:因为BD为△ABC的角平分线,所以∠ABD=∠CBE.在△ABD和△EBC中,BA=BE,∠ABD=∠CBE,BD=BC,所以△ABD≌△EBC(SAS).所以AD=CE.(2)解:因为BD=BC,所以∠BDC=∠BCD=75°.所以∠ADB=180°-75°=105°.由(1)知∠BCE=∠ADB=105°.所以∠ACE=105°-75°=30°.(3)解:同(2)可得∠BDC=∠BCD=α-β.因为△ABD≌△EBC,所以∠BAD=∠BEC.所以∠EBC=∠ABD=∠ACE=β.因为∠DBC+∠BDC+∠BCD=180°,所以β+(α-β)+(α-β)=180°.所以2α-β=180°.23.解:(1)(8-3t)(2)因为D为AB的中点,所以BD=12AB=5.因为点Q的运动速度与点P的运动速度不相等,所以BP≠CQ.又∠B=∠C,所以△BPD≌△CPQ.所以BP=PC=4 cm,CQ=BD=5 cm.所以3t=4,解得t=4 3 .所以点Q的运动速度为5÷43=154cm/s.(3)设经过x秒后点P与点Q第一次相遇.根据题意,得154x=3x+2×10.解得x=803.所以点P共运动了803×3=80 cm.△ABC周长为10+10+8=28 cm.因为80=28×2+8+10+6,所以点P,Q在AB边上相遇.所以经过803s点P与点Q第一次在AB边上相遇.。

八年级上册数学期中考试试卷【含答案】

八年级上册数学期中考试试卷【含答案】

八年级上册数学期中考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 下列哪一个数是质数?A. 21B. 29C. 35D. 393. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的对角线长度为多少cm?A. 5cmB. 6cmC. 7cmD. 9cm4. 若一个等差数列的首项为2,公差为3,则第10项为多少?A. 29B. 30C. 31D. 325. 若一个圆的半径为5cm,则这个圆的面积为多少平方厘米?A. 25πcm²B. 50πcm²C. 75πcm²D. 100πcm²二、判断题(每题1分,共5分)1. 两个等腰三角形的底边相等,则这两个三角形全等。

()2. 任何两个奇数之和都是偶数。

()3. 一个数的平方和它的立方一定相等。

()4. 任何两个负数相乘的结果都是正数。

()5. 若一个数的平方是36,则这个数一定是6。

()三、填空题(每题1分,共5分)1. 若一个等边三角形的边长为6cm,则它的面积是______平方厘米。

2. 若一个等差数列的首项为3,公差为2,则第5项是______。

3. 一个圆的直径是10cm,则这个圆的周长是______厘米。

4. 若一个数的立方是64,则这个数的平方根是______。

5. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的体积是______立方厘米。

四、简答题(每题2分,共10分)1. 简述勾股定理的内容。

2. 什么是等差数列?给出一个等差数列的例子。

3. 简述圆的周长和面积的计算公式。

4. 什么是质数?给出5个质数的例子。

5. 什么是因式分解?给出一个多项式因式分解的例子。

五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长为8cm,腰长为5cm,求这个三角形的周长。

八年级期中测试卷数学上册

八年级期中测试卷数学上册

一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √2B. πC. -3/4D. 0.1010010001……2. 下列各式中,同类项是()A. 3x^2和4x^3B. 5xy和-3xyC. 2x^2和-2x^2yD. 4a^2b和-4ab^23. 下列各式中,正确的是()A. (a+b)^2 = a^2 + b^2B. (a-b)^2 = a^2 - b^2C. (a+b)^2 = a^2 + 2ab + b^2D. (a-b)^2 = a^2 - 2ab + b^24. 下列各式中,分式有意义的是()A. 1/(x-2)B. 1/(x^2 - 4)C. 1/(x^2 + 1)D. 1/(x^2 - x)5. 下列各函数中,是二次函数的是()A. y = x^2 + 2x + 1B. y = x^2 - 4x + 3C. y = x^3 + 2x^2 + 1D. y = 2x + 3二、填空题(每题4分,共20分)6. 若a,b是方程2x^2 - 5x + 2 = 0的两个根,则a+b的值为______。

7. 已知x^2 - 2x + 1 = 0,则x的值为______。

8. 若a,b,c成等差数列,且a+b+c=21,则b的值为______。

9. 若|a|=3,|b|=5,则|a+b|的最大值为______。

10. 若sinα = 1/2,则α的度数为______。

三、解答题(每题10分,共40分)11. (1)化简:2(3x-4) - 5(x+2) + 4x - 3(2)解方程:3x^2 - 5x + 2 = 012. (1)已知a,b是方程2x^2 - 5x + 2 = 0的两个根,求a^2 + b^2的值。

(2)已知a,b,c成等差数列,且a+b+c=21,求b+c的值。

13. (1)已知y = 2x^2 - 5x + 2,求y的顶点坐标。

(2)已知函数y = ax^2 + bx + c(a≠0)的顶点坐标为(1,-2),求函数的表达式。

八年级上册数学期中考试卷及答案参考

八年级上册数学期中考试卷及答案参考

数学家和哲学家对数学的确切范围和定义有一系列的看法。

【篇一】一、选择题每小题3分,共45分1.下列各数是无理数的是....04142.点-2,1在平面直角坐标系中所在的象限是第一象限第二象限第三象限第四象限3.直线经过的象限是.第一、二、三象限.第一、二、四象限.第二、三、四象限.第一、三、四象限4.下列计算正确的是5.△中,∠,∠,∠的对边分别记为,,,由下列条件不能判定△为直角三角形的是.∠+∠=∠.∠∶∠∶∠=1∶2∶3..∶∶=3∶4∶66.下列说法中,错误的是.64的立方根是4.立方根.的立方根是2.125的立方根是±57.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为元,每副乒乓球拍为元,列二元一次方程组得....8在△中,∠=90°,=9,=12,则点到斜边的距离是...9.69在平面直角坐标系中,点,5关于轴的对称点的坐标为.,.3,5.3..5,10.若点,在函数=2+1的图象上,则2﹣的值是11.在同一平面直角坐标系中,若一次函数图象交于点,则点的坐标为.-1,4.-1,2.2,-1.2,112.下面四条直线,其中直线上每个点的坐标都是二元一次方程–2=2的解的是13.已知是二元一次方程组的解,则2-的算术平方根为2414.若与|--3|互为相反数,则+的值为.3.9.12.2715.如图2,点是等边△的边上的一个作匀速运动的动点,其由点开始沿边运动到再沿边运动到为止,设运动时间为,△的面积为,与的大致图象是第Ⅱ卷非选择题共90分二、填空题每小题3分,共18分16.已知直角三角形的两边长为3和4,则第三边的长是___________17.=_____________.18.如图,一次函数=+的图象与正比例函数=2的图象平行且经过点1,﹣2,则=.19.是的整数部分,是的整数部分,则3+2=______20.如图,长方体的底面边长分别为2和4,高为5.若一只蚂蚁从点开始经过4个侧面爬行一圈到达点,则蚂蚁爬行的最短路径长为.21.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中→方向排列,如1,0,2,02,1,1,11,22,2,……,根据这个规律,第2012个点的横坐标为三、解答题本大题共7小题,共57分.22.计算每小题2分,共8分1245-1255+323每小题3分,共12分1解方程①②2解方程组①②24.6分如图所示的一块草坪,已知=12,=9,∠=90°,=39,=36,求这块草坪的面积.25.6分如图,在平面直角坐标系中,1描出-4,3、-1,0、-2,3三点2△的面积是多少?3作出△关于轴的对称图形268分如图,直线=-6经过点4,0,直线=-3+3与轴交于点,且两直线交于点1求的值;2求点的坐标;3求△的面积27.8分青岛和大连相距360千米,一轮船往返于两地之间,顺水行船用18小时,逆水行船用24小时,那么船在静水中的速度是多少?水流速度是多少?289分如图,若=,△是直角三角形,∠=90°,是斜边的中点,,分别是,边上的点,且⊥.1试说明;2=12,=5,求△的面积.答案一、选择题题号123456789101112131415答案二、填空题1651718-8193120132145三、解答题22计算每小题2分,共8分152113-14231解方程①②2解方程组①②24解连接∵∠=90°256分1如图所示,2△的面积是33如图所示26解1∵直线=-6经过点4,0,∴4-6=0,即=;2∵直线=-3+3与轴交于点,根据在轴上的点纵坐标=0,在轴上的点横坐标=0∴-3+3=0,解得=1点坐标为1,0由于两直线交于点,所以有,解得∴点坐标为2,-33△面积为=答△的面积为27解设船在静水中的速度是,水流速度是,则解之得答船在静水中的速度是175,水流速度是25 【篇二】一、选择题每小题3分,共30分1、在,-22,,中,分式共有2个3个4个5个2、下列各组中的三条线段能组成三角形的是3,4,55,6,116,3,104,4,83、下列各题中,所求的最简公分母,错误的是与最简公分母是62与最简公分母是323与的最简公分母是+-与的最简公分母是--4、不改变的值,把它的分子和分母中的各项系数都化为整数,所得的结果为5、若分式,则的值是3或-3-3396、如图,将三角尺的直角顶点放在直线上,‖,∠1=50°,∠2=60°,则∠3的度数为50°60°70°80°7、下列式子①-2-2=;②错误!未找到引用源。

24-2025学年八年级数学上学期期中模拟卷(江苏通用,测试范围:苏科版八上第1章-第3章)考试版

24-2025学年八年级数学上学期期中模拟卷(江苏通用,测试范围:苏科版八上第1章-第3章)考试版

2024-2025学年八年级数学上学期期中模拟卷(苏科版)(考试时间:120分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:苏科版八年级上册第1章-第3章。

5.难度系数:0.85。

第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.垃圾分类是将垃圾分门别类地投放,并通过分类清运和回收,使之重新变成资源,下面四个图形分别是可回收垃圾、不可回收垃圾、易腐垃圾和有害垃圾标志,在这四个图形中,轴对称图形的是( )A .B .C .D .2.下列四组线段中,不能组成直角三角形的是( )A .5a =,12b =,13c =B .30a =,40b =,50c =C .7a =,14b =,15c =D .8a =,15b =,=17c 3.如图AB DE =,B E Ð=Ð,添加下列条件仍不能判定ABC DEF ≌△△的是( )A .A D Ð=ÐB .ACB DFE Ð=ÐC .AC DF ∥D .AC DF =4.如图用尺规作“与已知角相等的角”的过程中,作出A O B AOB '''Ð=Ð的依据是( )A .SASB .ASAC .AASD .SSS5.如图,在Rt ABC △中,90C Ð=°,30B Ð=°,AD 平分BAC Ð,若12BC =,则点D 到AB 的距离是()A .2B .3C .3.5D .46.如图,在Rt ABC △中,90ABC Ð=°,若9cm AB =,则正方形ACDE 和正方形BCGF 的面积差为( )A .290cmB .281cmC .2100cmD .无法计算7.如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带( )A .带③去B .带②去C .带①去D .带①②去8.有一个面积为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形(如图1),其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,生出了4个正方形(如图2),如果按此规律继续“生长”下去,它将变得“枝繁叶茂”;在“生长”了2023次后形成的图形中所有正方形的面积和是( )A .2021B .2022C .2023D .2024第Ⅱ卷二、填空题:本题共10小题,每小题2分,共20分。

初中数学八年级上册期中测试题含答案

初中数学八年级上册期中测试题含答案

八年级上数学期中测试题(全卷满分100分,考试时间120分钟)一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,共24分)1、若等腰三角形的一边长等于5,另一边长等于3,则它的周长等于( ). A .10 B .11 C .13 D .11或132、下列各项中是轴对称图形,而且对称轴最多的是( ). A . 等腰梯形 B .等腰直角三角形 C .等边三角形 D .直角三角形3、算术平方根等于3的数是( ).A . 9B .C .3 D4 ).A .9B .9±C .3D .3±5、下列各组字母(大写)都是轴对称图形的是( ).A .A 、D 、EB .F 、E 、C C .P 、R 、WD .H 、K 、L 6、若MNP MNQ ∆≅∆,且8MN =,7NP =,6PM =,则MQ 的长为( ). A .8 B .7 C .6 D .57、在0.16、3π0.010010001…中无理数有( ).A .1个B .2个C .3个D .4个8、小芳有两根长度为4cm 和9cm 的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为( )的木条. A .5cm B .3 cm C .17cm D .12 cm二、填空题(每题2分,共24分)9的相反数是 的平方根是10、4- ,绝对值是11 3.604≈≈12、比较大小: , 0 113、= ;= 14、7的平方根是 ,算术平方根是15、若P(m 、2m-3)在x 轴上,则点P 的坐标为 ,其关于y 轴对称的点的坐标为16、点P (5、4)关于x 轴的对称点的坐标是 ,关于原点的对称点的坐标是 .17、在Rt ABC ∆中,已知∠C=90°,∠B=60°,BC=2.3,那么∠A= ,AB=18、等腰三角形是 图形,其对称轴是 .19、下列各数中:0.33π-、3.14、1.51511511…,有理数有 个,无理数有 个.20、14的平方根是 ,算术平方根的相反数是三、解答题(本题共9个小题,满分52分)21、(本小题5分)30y -=的值.22、(本题5分) 如图1,两条公路AB ,AC 相交于点A ,现要建个车站D ,使得D 到A 村和B 村的距离相等,并且到公路AB 、AC 的距离也相等,请在图中画出车站的位置.(图1)23、(本题5分) 如图2,AC 和BD 相交于点O ,OA=OC ,OB=OD . 求证:D C ∥AB .24、(本题5分) 如图3,点B 、F 、C 、E 在一条直线上,FB=CE ,AB ∥ED ,AC ∥FD ,求证:AB=DE ,AC=DF .(图3)25、(本题6分) 如图4,∠A=∠B ,CE ∥DA ,CE 交AB 于E ,求证:△CEB 是等腰三角形.26、(本题6分)如图5,△ABC 求证:DB=DE .(图5)27、(本题6分) 如图6,AB=AC ,∠A=40∠DBC 的度数.(图628、(本题4分) 观察下列等式: 222211⨯= ,333322⨯= ,444433⨯=,555544⨯= ,666655⨯= ,777766⨯= ,…,你发现了什么规律?用代数式表示. 29、(本题10分) 如图7,在等边△ABC 中,点D 、E 分别在边BC ,AB 上,且BD=AE ,AD 与CE 交于点F . (1) 求证:AD=CE (2) 求∠DFC 的度数.(图7)参考答案分)二、填空题(每题2分,共24分)9、 ;2±10、4 ;4 11、36.04 12、> ;>13、25-;10±14、15、3(,0)2;3(,0)2-16、(5,4)-;(5,4)--17、30°;4.618、轴对称;顶角平分线(或底边上的高线;或者底边上的中线) 19、3;320、12±;12三、解答题(本题共9个小题,满分52分;要求写出必要的解答过程和步骤) 21、(本题5分)0≥ ,30y -≥30y -= 1分0=,30y -= 2分 ∴20x += ,30y -= 3分 ∴2x =- ,3y = 4分当2x =- ,3y =4== 5分22、(本题5分)解:车站D 在∠BAC 的平分线AE和AB 的垂直平分线的交点上 1分 (要求保留作图痕迹) 5分23、(本题5分)证明:在△ODC 和△OBA 中 OD=OB (已知)∵ ∠DOC=∠BOA (对顶角) OC=OA (已知)∴△ODC ≌△OBA (SAS ) 3分 ∴∠C=∠A (或者∠D=∠B )(全等三角形 对应边相等)∴DC∥AB(内错角相等,两直线平行) 5分(图2)24、(本题5分) 证明:∵FB=CE∴FB+FC=FC+CE∴BC=FE 1分 又∵AB ∥ED ,AC ∥FD∴∠B=∠E ,∠ACB=∠DFE 2分在△ABC 和△DEF 中∠B=∠E (已证) ∵ BC=FE (已证) ∠ACB=∠DFE ∴△ABC ≌△DEF (ASA ) 4分∴AB=DE ,AC=DF (全等三角形对应边相等) 5分 (图3) 25、(本题6分) 证明:∵CE ∥DA∴∠CEB=∠A (两直线平行,同位角相等) 2分 又∵∠A=∠B∴∠CEB=∠B (等量代换) 4分 ∴ CE=CB (等角对等边) 5分 ∴△CEB 是等腰三角形 6分26、(本题6分)证明:∵△ABC 是等边三角形,BD 是中线 1分∴∠DBC=12∠ABC ,∠ABC=∠ACB=60° 2∴∠DBC=30° 3分又∵CE=CD且∠ACB=∠CDE+∠E ∴∠CDE=∠E ∴∠ACB=2∠E∴∠E=30° 4分 ∴∠DBC=∠E=30° 5分∴DB=DE (等角对等边) 6分 27、(本题6分)解:∵AB=AC ,∠A=40° ∴∠ABC=∠C=70° 2又∵MN 是AB 的垂直平分线∴AD=BD 的距离相等) 4∴∠ABD=∠A=40° 5∴∠DBC=∠ABC-∠ABD=70°-40° =30 28、 解:11n n n n n n ⨯=-- ()或者 11(1)(1)n n n n n n+++⨯=+ (1n ≥) 29、(本题10分)(1)证明:∵△ABC 是等边三角形∴AB=AC ,∠B=∠EAC 1在△ABD 和△CAE 中 AB=AC (已证) ∵ ∠B=∠EAC (已证) BD=AE (已知)∴△ABD ≌△CAE (SAS ) 4∴AD=CE (全等三角形对应边相等)5(2)∵△ABD ≌△CAE ∴∠BAD=∠ACE 又∵∠DFC=∠DAC+∠ACE∠BAC=∠BAD+∠DAC=60°(等边三角形的每个 内角等于60°) 3分∴∠DFC=∠DAC+∠BAD=60° 4分。

八年级上册数学期中考试卷及答案参考

八年级上册数学期中考试卷及答案参考

八年级上册数学期中考试卷及答案参考一、选择题:(每小题3分,共45分)1.下列各数是无理数的是()A.B.C.D.0.4142.点(-2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.直线经过的象限是()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限4.下列计算正确的是()A.B.C.D.5.△ABC中,∠A,∠B,∠C的对边分别记为,,,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠CB.∠A∶∠B∶∠C=1∶2∶3C.D.∶∶=3∶4∶66.下列说法中,错误的是()A.64的立方根是4B.立方根C.的立方根是2D.125的立方根是±57.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得()A.B.C.D.8.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到斜边AB的距离是()A.B.C.9D.69.在平面直角坐标系中,点P(,5)关于y轴的对称点的坐标为()A.(,)B.(3,5)C.(3.)D.(5,)10.若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是()A.B.C.D.11.在同一平面直角坐标系中,若一次函数图象交于点,则点的坐标为()A.(-1,4)B.(-1,2)C.(2,-1)D.(2,1)12.下面四条直线,其中直线上每个点的坐标都是二元一次方程x–2y=2的解的是()13.已知是二元一次方程组的解,则2m-n的算术平方根为()A.2B.C.D.414.若与|x-y-3|互为相反数,则x+y的值为()A.3B.9C.12D.2715.如图2,点P是等边△ABC的边上的一个作匀速运动的动点,其由点A开始沿AB边运动到B再沿BC边运动到C为止,设运动时间为t,△ACP的面积为S,S与t的大致图象是()第Ⅱ卷(非选择题共90分)二、填空题:(每小题3分,共18分)16.已知直角三角形的两边长为3cm和4cm,则第三边的长是___________.17.=_____________.18.如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行且经过点A(1,﹣2),则kb=.19.a是的整数部分,b是的整数部分,则a3+b2=______.20.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为?cm.21.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0)(2,1),(1,1)(1,2)(2,2),。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

白水第一中学八年级上册数学期中测试

班级:姓名:得分:________
一、选择题:(每小题3分,共36分)
1、能与数轴上的点一一对应的是()
A 整数
B 有理数
C 无理数
D 实数
2、下列图案是轴对称图形的有()
A.1个B.2个C.3个D.4个
3、81 的平方根是()
A.9
B.±9
C.±3
D.3
4、下列说法正确的是()
A.-0.064的立方根是0.4
B.0.36的算术平方根是±0.6
C.8
27的平方根是±
2
3
D. 1 的算术平方根是1
5、如图,已知△ABC≌△EFD,∠C=∠D,AB=EF,则下列说法错误的是()
A.BC=FD
B.AC=EF
C.∠A=∠DEF
D.AE=BF
(第5题图)(第6题图)
6、如图,OA=OB,OC=OD,∠O=60°,∠C=25°,∠BED的度数是()
A.60°
B.55°
C.70°
D.50°
7、下列说法:①用一张像底冲洗出来的2张1寸相片是全等形;②
所有的正五边形是全等形;③全等形的周长相等;④面积相等的图
形一定是全等形.其中正确的是()
A.①②③ B.①③④ C.①③ D.③
8、如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配
一块完全一样的玻璃,那么最省事的办法是()
A、带①去
B、带②去
C、带③去
D、带①和②去
9、算术平方根等于本身的数有()
A,1 和0 B,-1和0 C,正数和0 D,负数和0。

10、三角形一个外角平分线与它的一边平行,此三角形是()
A.钝角三角形 B,锐角三角形 C,等腰三角形 D,斜三角形。

11、如图(第11题图),△ABC中,BC=10,
边BC的垂直平分线DE分别交AB、BC于点E、
D,BE=6,则△BCE的周长是()
A.16
B.22
C.26
D.21 (第11题图)
12、下列条件中,不能得到等边三角形的是( )
A.有两个内角是60°的三角形
B.有两边相等且是轴对称的三角形
C.有一个角是60°且是轴对称的三角形
D.三边都相等的三角形 二、填空题:(每小题3分,共18分)
13、 -27的立方根是__________;0.49的算术平方根是_______;
81的平方根是_______。

14、已知点A (a ,-2)与点B (3,b )关于X 轴对称,则a=_______b=_______ 15、给 _________ 起个名叫“无理数”如——(填一个数)。

16、如图,⊿ABC ≌⊿D
E C ,则CA 和__________是对应边; =
∠ACD _________=∠B _________
(第16题图) 17、
-______,绝对值是_______
18、已知
2
+a +|b-1|=0,那么(a+b )2012的值是________
三、解答题:(共66分) 19、求下列各式中的x 。

(每小题4分,共8分)
⑴ 4x 2 = 49 (2)(x+2)2=81
A
B
C
D
E
20、作图题:(不写作法,但必须保留作图痕迹,6分)
如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,且到∠AOB 的两边的距离相等.
21、(共9分)已知:如图所示, (1)写出△ABC 三个顶点的坐标;
(2)作出△ABC 关于x 轴对称的△并写出△C B A '''三个顶点的坐标。

y
(3)作出△ABC 关于y 轴对称的△C B A '''''',并写出△C B A ''''''三个顶点的坐标。

22、(9分)如图,在△ABC 中,AB=AD=DC,∠BAD=26°, 求∠B 和∠C 的度数。

A
B
D C
23、(11分)已知:点D 是△ABC 的边BC 的中点,DE ⊥AC, DF ⊥AB,垂足分别为E,F,且BF=CE 。

求证: △ABC 是等腰三角形。

24、(11分)如图,在四边形ABCD 中,AB=AD ,∠ABC=∠ADC 。

求证:BC=DC
B
C
D
A
B
C
D
25、(12分)如图,在四边形ABCD中,点E是BC的中点,点F是CD
的中点,且AE⊥BC,AF⊥CD。

(1)求证:AB=AD。

[提示:连接AC]
(2)请你探究∠EAF,∠BAE,∠DAF 之间有什么数量关系?并证明你的结论。

A
C
D E
F。

相关文档
最新文档