轴心受压构件的整体稳定性
实腹式轴心受压构件例题
实腹式轴心受压构件例题例题1 验算图示轴心受压的整体稳定性。
柱两端为铰接,柱长为5m ,焊接工字型截面,火焰切割边翼缘,承受轴心压力设计值N=1200KN,采用Q235钢材,在柱中央有一个侧向(x 轴方向)支承。
解:⒈计算截面几何特性268306.00.1252cm A =⨯+⨯⨯=4235.133625.152512306.0121cm I x =⨯⨯⨯+⨯⨯= 432.26042511212cm I y =⨯⨯⨯= cm AI i x x 0.14685.13362=== cm A I i yy 2.6682.2604=== 7.3514500===x ox x i l λ3.402.6250===y oyy i l λ 翼缘厚度为10mm ,按第一组钢材查附表1.1查得f=215N/2mm根据表4.3确定截面对x 、y 轴都属于b 类截面,用898.02.4235==ϕλ得查附表y v f⒉验算整体稳定 223/5.1961068898.0101200mm N A N =⨯⨯⨯=⋅ϕ<f=215N/2mm 3.验算局部稳定翼缘外伸部分:95.14235)1.010(5.1215.12=+<==yf t b λ 腹板的局部稳定:75.49235)5.025(7.416.0250=+<==yw f t h λ 满足!例2 图示为一管道支架,其支柱的设计压力为N=1600KN(设计值),柱两端铰接,钢材为Q235,截面无孔眼削弱。
试设计此支柱的截面:①用普通轧制工字钢;②用热轧H 型钢;③用焊接工字型截面,翼缘为焰切边。
解:支柱在两个方向的计算长度不相等,故取如图4.21(b )所示的截面朝向,将强轴顺x 轴方向,弱轴顺y 轴方向,这样,柱在两个方向的计算长度分别为:cm l cm l oy ox 300,600==⒈轧制工字钢[])b 图(⑴试选截面假设90=λ,对于轧制工字钢,当绕x 轴失稳时属于a 类截面,由附表 4.1查得741.0=x ϕ,绕y 轴失稳时属于b 类截面,由附表4.2查得621.0=y ϕ,需要的截面几何量为:223m i n 8.11910215621.0101600cm f NA =⨯⨯⨯==ϕ cm l i oxx 67.690600===λcm l i oy y 33.390300===λ 由附表7.1中不可能选出同时满足A 、x i 和y i 的型号,可适当照顾到A 和y i 进行选择,现试选I56a ,cm i cm i cm A y x 18.3,0.22,1352===⑵截面验算因截面无孔眼削弱,可不验算强度,又因轧制工字钢的翼缘和腹板均较厚,可不验算局部稳定,只需进行整体稳定和刚度验算。
西工大2020年4月《钢结构》作业机考参考答案
西工大2020年4月《钢结构》作业机考参考答案试卷总分:100 得分:96要答案:wangjiaofudao一、单选题 (共 50 道试题,共 100 分)1.钢材的设计强度主要是依据()确定的。
A.屈服点B.弹性极限C.比例极限D.极限强度正确答案:A2.轴心受力杆件刚度较好的标志是杆件()。
A.较短B.截面较宽C.截面较大D.长细比较小正确答案:D3.高强钢丝的主要力学性能指标为()。
A.屈服点B.剪切强度C.抗拉强度D.抗压强度正确答案:C4.型钢分为()。
A.角钢和工字钢两种B.角钢、工字钢和槽钢三种C.热轧和冷成型两种D.角钢、H型钢和槽钢三种正确答案:C5.在下列因素中,影响结构抗力R大小的是()。
A.作用于结构的可变荷载B.结构的不均匀沉降C.结构材料性能和构件尺寸的变异性D.温度变化正确答案:6.D.不能确定正确答案:7.为防止受弯构件中的腹板失稳常设置加劲肋,此举是为了()。
A.改变板件的宽厚比B.增大截面面积C.改变截面上的应力分布状态D.增加截面的惯性矩正确答案:8.钢材牌号Q235,Q345,Q390是根据材料()命名的。
A.设计强度B.屈服点C.标准强度D.含碳量正确答案:9.在普通碳素钢中,随着含碳量的增加,钢材的屈服点和极限强度()。
A.不变B.提高C.下降D.可能提高可能降低正确答案:10.双肢格构式轴心受压柱,实轴x-x,虚轴y-y,宜根据()确定肢件间的距离。
A.<img ">B.<img .jpg">C.<img .jpg">D.强度条件正确答案:钢的保证项目中,()是作为必要的保证条件的。
A.屈服点B.含碳量C.冷弯试验合格D.冲击韧性值正确答案:12.要满足两主轴方向等稳定性的要求,()。
A.选取两主轴惯性矩相等的截面即可B.选取圆管截面即可C.依据两主轴的计算长度选取截面即可D.选取等边角钢的截面即可正确答案:13.()是钢材内部有害元素。
钢结构课件 轴心受压构件的整体稳定性
4.2.6 轴心受压构件扭转和弯扭屈曲
1、扭转屈曲
根据弹性稳定理论,两端铰支且翘曲无约束的杆件,其扭 转屈曲临界力,可由下式计算:
《钢结构稳定理论与设计》 陈骥 著
NE
fy
弹塑性阶段
N A
Nv0
W 1 N
NE
fy
相对初弯曲 ε0 = v0 / ρ = v0 / (W/A)
N [1 A 1
0
N
] NE
fy
N A
1
1000
i
1
1 N
N
E
fy
上式的解即为Perry-Robertson公式(柏利公式)
i0—截面关于剪心的极回转半径。i02
e02
ix2
i
2 y
引进扭转屈曲换算长细比z :
1、扭转屈曲
满足
I 0
z =5.07b/t
x (y) ≥ z =5.07b/t
z2
25.7
Ai02 It
25.7
Ix
Iy It
2t 2b3 12
25.7 4bt3 3
选择计算 §4.6 板件的稳定和屈曲后强度的利用
§4.3 实腹式柱和格构式柱的截面选择计算
4.3.1 实腹式柱的截面选择计算
1、实腹式轴心压杆的截面形式 ①考虑原则 ②常用截面
2、实腹式轴心压杆计算步骤
§4.3 实腹式柱和格构式柱的截面选择计算
B94-实际轴心受压构件整体稳定计算公式
x
x
x
x
格构式
y
x
y
x
y
x
x
x
x 焊接,翼缘为 轧制或剪切边
b类
c类
y
y
y
y
焊接,翼缘为轧
y 焊接,板件
x
制或剪切边 x
宽厚比≤20
c类
c类
轴心受压构件截面分类(板厚t≥40mm)
截面形式
对x轴
b x
y
h
轧制工字形 或H形截面
t<80mm
b类
t≥80mm
c类
y
x
x
y
焊接工字 形形截面
翼缘为焰切边
b类
y
边
轧制等 边角钢
对x轴
y x
y
xx
x
y
x
x
y
y
y
y
y
b类
y 轧制、焊接
x
x
轧制或 焊接
x
板件宽厚比
大于20
y x
y
x 轧制截面和翼 缘为焰切边的 焊接截面
y
x
y
x 焊接,板件 边缘焰切
对y轴 b类
轴心受压构件截面分类(板厚t<40mm)
截面形式
对x轴 对y轴
y
y
y
y
y
x
x
x
x
x
焊接
y
y
y
y
b类 b类
计算 l0
i
据
截面类型
查表
得到
代入公 式验算
N f
A
如何提高轴心受压构件整体稳定性 ?
由公式 N f 及 l0
课件轴心受压构件的整体稳定性.
二、工字形组合截面板件的局部屈曲
对于局部屈曲问题,通常有两种考虑方法: 方法1:不允许板件屈曲先于构件整体屈曲,目前一般钢结构就是不允许局部屈曲先于整体屈曲来限制板件宽厚比。 方法2:允许板件先于整体屈曲,采用有效截面的概念来考虑局部屈曲对构件承载力的不利影响,冷弯薄壁型钢结构,轻型门式刚架结构的腹板就是这样考虑的。
残余应力对压杆临界荷载的影响
对x-x轴屈曲时: 对y-y轴屈曲时:
残余应力对弱轴的影响比对强轴严重得多!
4、杆端约束对轴心受压构件整体稳定性的影响
杆件临界力: - 计算长度系数
四、压杆曲线的确定
焊接工字形截面轴心受压柱稳定系数
12种不同截面尺寸,不同残余应力和分布以及不同钢材牌号轴心压构件曲线。
板的挠度为: 板的屈曲力为: 式中 a、b 受压方向板的长度和板的宽度; m、n 板屈曲后纵向和横向的半波数。 当n =1时,
K为板的屈曲系数:
四边简支均匀受压板的屈曲系数
当a>b时,减小板的非加载边a的长度不能提高板的临界承载力。 不同的边界约束条件取不同的屈曲系数;
4、缀板构件:
为防止单肢件失稳先于整体失稳,规范规定: 缀板构件:单肢长细比小于等于40且不大于两方向长细比较大值0.5倍;
二、杆件的截面选择
肢件:对实轴的稳定计算同实腹式压杆那样计算确定截面尺寸; 肢件距离:对实轴和虚轴的等稳定条件所决定;
缀条构件:
预先估计缀条面积A1y
缀板构件:
三、缀件计算 1、剪力计算 当格构式压杆绕虚轴弯曲时,因变形而产生剪力(由缀材承受)。假设其初始挠曲线为y0=v0sin∏x/l,则任意截面处的总挠度为: 在杆的任意截面的弯矩: 任意截面的剪力:
3.塔架
钢结构轴心受压构件稳定性分析
建材发展导&!"构轴%受压构件*定性分.袁业宏摘要:阐述了钢结构体系中的稳定性的概念、分类和基本原理,介绍了钢结构轴心受压构件局部失稳的原理、形式和在钢结构设计中相的解s关键词:钢结构体稳定性;局部稳定性钢构具有度高构震性具有良好的塑性和韧性等特点,随着社会的展,钢结构不断得到了广泛的应用,在钢构设计中,受构件占50%以上,轴受压构件的工作也占50%以上,其中,受压构件稳定性成了钢构设计的一突,钢构体系中的受构件稳定性验算已变成了中。
1钢结构轴心受压构件整体稳定性的概念钢结构轴心受压构件是指轴心方向受到压力等构件,钢结构轴心受压构件体稳定性是指构或者构件处于稳定的平衡状态,处平衡位置的构或构件,在任微小界扰动下,将偏离其平衡位置。
当界扰动去除,仍自动回复到初始平衡位置。
这是一种理想状态,可以说构整体处稳定状态。
2失稳的概念及引起钢结构轴心受压构件失稳的主要原因处平衡位置的构或构件,在当界扰动去除,不回复到初始平衡位置,初始平衡状态就是稳定的平衡状态:随遇平衡状态是从稳定状态向稳定状态渡的一中间状态。
构或构件由平衡形的稳定性.从初始平衡位置转变到另一平衡位置,即称屈曲,或称失稳。
引起钢构轴受压构件失稳的主要原因一般有如下几点:2.1构度不构件面度以引起构件失稳。
度这一,解所具有的…钢结构轴心受构件面度,的塑性变形而失去。
轴受构件度验算公:!!#=N/A(!几是指构或者构件在稳定平衡状态下由所引起的应力(或内力)没有超的极限度,因此是一应。
极限度的取取决的特性,钢常取的屈点作极限度。
而,有极的,或者有的轴受,会因面的平应到设计度而失,是度计算起作用。
2.2构度不构件面度以引起构件失稳。
度这一,解所具有变形的o轴受构件的度是用构件"来度的,考虑到轴受构件的截面2个轴向,取面2轴线方向中一方用"咖表示,由此得到构件长细比计算公式仏)碍!["],由上式可知:长细比愈小,表示I构件的度愈大,反之刚度愈小。
钢结构稳定性例题
Iy
=
2 × tb3 12
=
2× 1 × 2× 503 12
=
41667cm4
ix =
Ix = A
145683 = 24.14cm 250
iy =
Iy = A
41667 = 12.91cm 250
4.2 轴心受压构件的整体稳定性
第4章 单个构件的承载力-稳定性
二、截面验算:
1.强度:σ
=
N An
=
1
y
z0
一个斜缀条的长度为:l
=
l1
sin θ
=
41 sin 450
= 58cm
角钢的最小回转半径为:imin = 0.89cm
x
x
1
y
b
λ = l = 58 = 65.1
imin 0.89
4.2 轴心受压构件的整体稳定性
第4章 单个构件的承载力-稳定性
λ = 65.1 属b类截面,查得ϕ=0.78
I x = 2× 50× 2.2× 24.12 +1.6× 463 /12 = 140756cm4 I y = 2× 2.2× 503 /12 = 45833cm4
ix =
Ix = A
140756 = 21.9cm; 293.6
iy =
Iy = A
45833 = 12.5cm 293.6
4.2 轴心受压构件的整体稳定性
z0 = 2.49cm,I1 = 592cm4
Iy
=
2×
592 +
75×
46 2
−
2.49
2
=
64222cm4
iy =
Iy = A
钢筋混凝土轴心受压构件的稳定系数表
钢筋混凝土轴心受压构件的稳定系数是一个重要的参数,用于评估构件在受压状态下的稳定性。
在钢筋混凝土结构设计中,轴心受压构件承受的压力会引起构件的变形和破坏,因此需要通过稳定系数来考虑构件的稳定性,确保结构的安全性和可靠性。
在本文中,我将深入探讨钢筋混凝土轴心受压构件的稳定系数表,并分享一些关于这个主题的观点和理解。
1. 稳定系数的定义和意义稳定系数是指构件在受压状态下的稳定性与材料强度之间的比值。
它的值代表了构件抵抗稳定性失效的能力,是判断结构是否满足稳定性要求的关键指标。
稳定系数的计算通常基于一定的假设和理论模型,考虑到材料的弹性模量、几何形状、截面特性以及加载方式等因素。
通过建立稳定系数表,我们可以根据构件的几何形状和受力情况,查找相应的稳定系数值,从而进行结构设计和评估。
2. 稳定系数表的结构和内容稳定系数表包括了各种不同构件和截面形状的稳定系数数值,供工程师和设计人员参考使用。
它通常按照构件的类型和截面形状进行分类,提供了一系列的稳定系数数值。
稳定系数表的结构可以按照以下方式进行组织:2.1 构件类型分类:比如梁、柱、墙等,每种构件类型都有独立的稳定系数表。
2.2 截面形状分类:对于每种构件类型,按照不同的截面形状建立子表,比如矩形截面、圆形截面、T形截面等。
2.3 参数分类:在每个子表中,根据构件的尺寸、材料强度和约束条件等参数,列出相应的稳定系数数值。
3. 稳定系数表的应用和设计原则稳定系数表是钢筋混凝土结构设计中的重要工具,为设计人员提供了参考数值,帮助他们评估和选择合适的构件尺寸和截面形状。
在使用稳定系数表时,设计人员应该遵循以下几个原则:3.1 参考适用范围:稳定系数表通常针对一定的材料强度、构件尺寸范围和约束条件进行编制,设计人员需要根据实际情况选择合适的表格进行参考。
3.2 综合考虑各因素:稳定系数的数值取决于材料的强度、构件的几何形状和加载方式等因素,设计人员需要对这些因素进行综合考虑,以确保稳定系数的准确性和适用性。
钢结构试题1答案
5、钢材的设计强度是根据极限强度来确定的。(X)
1、在对焊缝进行质量验收时,对于三级焊缝,只进行外观检查即可。
2、压弯构件正常使用极限状态是通过限制构件的长细比不超过容许值来保证的。
3、钢材随时间进展,其屈服强度提高,伸长率下降,称为时效硬化。钢材在超过弹性范围内重复加载、卸载,使钢材弹性范围增加塑性降低,称为冷作硬化。
解:(1)角钢肢背承载力计算:
角钢肢背分担荷载计算:
;
;所以肢背连接安全;
(2)角钢肢尖承载力计算:
角钢肢背分担荷载计算:
;
;所以肢尖连接安全;
所以此连接是安全的。
3、下图牛腿用2L100X20(由大角钢截得)及M22摩擦型连接高强度螺栓(10.9S)和柱相连,构件钢材为Q235B,接触面喷砂处理,计算假定螺栓为五排;间距为80mm。试验算该连接是否安全。(已知: ; ; ; ; )(10分)
(A)平焊(B)立焊(C)横焊(D)仰焊
17.钢材的塑性性能受很多因素的影响,在下列结论中正确的是(C)。
(A)温度降低对钢材塑性性能影响不大
(B)二(三)向拉应力导致钢材塑性增加
(C)加荷速度越快,钢材塑性越差
(D)应力集中对钢材的塑性性能无显著影响
18.钢结构发生脆性破坏是由于(C)
(A)钢材是塑性较差的材料(B)钢材的强度较高
1、钢材疲劳强度不会受到构件的钢材种类变化的影响。(O)
2、普通螺栓的承压强度和抗剪强度一样,只与螺栓的材料和孔的质量有关。(X)
3、与沸腾钢相比,镇静钢冲击韧性和可焊性较好、冷脆和时效敏感性较小、强度和塑性也略高,但由于沸腾钢生产工艺简单、价格便宜、质量也能满足一般重钢结构的要求,因而其应用较多。(O)
3.轴心受压构件稳定
在任一截面处为
外力矩为 平衡方程为
EIy -M M P(e y)
EIy P(e y) 0
2 k P / EI 令
方程的全解为 引入边界条件: 得到
y k 2 y -k 2 e y C1sinkx C 2 coskx - e
y 0 0
P x 1 x y y y 1 a sin a sin Y 0 PE - P l 1 - P / PE l
当 x l / 2 时,杆件中点的总挠度为
a 1 - P / PE
相应的荷载—挠度曲线见图。图中实线表示构 件是完全弹性的,以 P PE 时的水平线为其渐 近线,当杆件中点挠度 时,P才逼近临 界荷载PE,与初始挠度值无关。 实际材料不是无限弹性的,对于有初始弯曲的
实际轴心受压构件,当截面承受较大弯矩时就
开始屈服而进入弹塑性状态,荷载—挠度曲线 如图中虚线所示,从图中可知,有初始弯曲的
轴心受压柱实际上是极值点失稳问题,其极限
荷载并不是PE而是Pu。
构件初弯曲(初挠度)的影响
P PE
1.0
cr
对 x轴
a=0
B B’
fy a=3mm
对 y轴
y
欧拉临界曲线
0.5
轴心受压构件的三种整体失稳状态
无缺陷的轴心受压构件(双轴对称的工型截面)通常发生弯曲失稳, 构件的变形发生了性质上的变化,即构件由直线形式改变为弯曲形式, 且这种变化带有突然性。 对某些抗扭刚度较差的轴心受压构件(十字形截面),当轴心压力 达到临界值时,稳定平衡状态不再保持而发生微扭转。当轴心力在稍 微增加,则扭转变形迅速增大而使构件丧失承载能力,这种现象称为 扭转失稳。 截面为单轴对称(T形截面)的轴心受压构件绕对称轴失稳时,由于 截面形心和剪切中心不重合,在发生弯曲变形的同时必然伴随有扭转 变形,这种现象称为弯扭失稳。
钢结构的稳定性验算
第七章 稳定性验算整体稳定问题的实质:由稳定状态到不能保持整体的不稳定状态;有一个很小的干扰力,结构的变形即迅速增大,结构中出现很大的偏心力,产生很大的弯矩,截面应力增加很多,最终使结构丧失承载能力。
注意:截面中存在压应力,就有稳定问题存在!如:轴心受压构件(全截面压应力)、梁(部分压应力)、偏心受压构件(部分压应力)。
局部稳定问题的实质:组成截面的板件尺寸很大,厚度又相对很薄,可能在构件发生整体失稳前,各自先发生屈曲,即板件偏离原来的平衡位置发生波状鼓曲,部分板件因局部屈曲退出受力,使其他板件受力增加,截面可能变为不对称,导致构件较早地丧失承载力。
注意:热轧型钢不必验算局部稳定!第一节 轴心受压构件的整体稳定和局部稳定一、轴心受压构件的整体稳定注意:轴心受拉构件不用计算整体稳定和局部稳定!轴心受压构件往往发生整体失稳现象,而且是突然地发生,危害较大。
构件由直杆的稳定状态到不能保持整体的不稳定状态;有一个很小的干扰力,结构的弯曲变形即迅速增大,结构中出现很大的偏心力,产生很大的弯矩,截面应力增加很多,最终使结构丧失承载能力。
这种现象就叫做构件的弯曲失稳或弯曲屈曲。
不同的截面形式,会发生不同的屈曲形式:工字形、箱形可能发生弯曲屈曲,十字形可能发生扭转屈曲;单轴对称的截面如T 形、Π形、角钢可能发生弯曲扭转屈曲;工程上认为构件的截面尺寸较厚,主要发生弯曲屈曲。
弹性理想轴心受压构件两端铰接的临界力叫做欧拉临界力:2222//λππEA l EI N cr == (7-1)推导如下:临界状态下:微弯时截面C 处的内外力矩平衡方程为:/22=+Ny dz y EId(7-2) 令EI N k/2=,则: 0/222=+y k dz y d (7-3)解得:kz B kz A y cos sin += (7-4)边界条件为:z=0和l 处y=0;则B=0,Asinkl=0,微弯时πn kl kl A ==∴≠,0sin 0 最小临界力时取n=1,l k /π=,故 2222//λππEA l EI N cr == (7-5)其它支承情况时欧拉临界力为:2222/)/(λπμπEA l EI N cr ==(7-6)欧拉临界应力为:22/λπσE cr =(7-7)实际上轴心受压杆件存在着各种缺陷:残余应力、初始弯曲、初始偏心等。
轴心受压构件整体稳定性
式中: 表示单位剪力引起的剪切角:
d2y M d2y N 2 总曲率: 2 dx EI dx
NE N cr 1 NE
d2y N 1 N y0 2 dx EI
绕实轴: 0 绕虚轴:
N cr N E
几何缺陷:初始弯曲+初始偏心 三、实际构件的整体稳定 力学缺陷:残余应力
1、初始弯曲的影响
d2y πx EI 2 N ( y v0 sin ) 0 dx l
vm v0 v v0 1 N / N cr
(1)当N 趋于NE时,挠度无穷大; (2)不管初弯曲多小,承载力总是小于NE (3)初弯曲越大,最终挠度也越大;
截面屈服:
Nv0 N fy A W 1 N N E
3、残余应力的影响 产生原因;
影响: 分布规律: 1)短柱试验法: 2)应力释放法:将短柱锯割成条以释放应力,然后测量
每条在应力释放后前长度以确定应变;
残余应力对压杆临界荷载的影响
图4.7残余应力对短柱段的影响
N cr
2 EI e
l2
2 EI
l2
I e I
2E Ie cr 2 (4.8) I
第四章
轴心受力构件
第一节 轴心受力构件强度和刚度
第二节 实腹式轴心受压构件的弯曲屈曲
第三节 实腹式轴心受压构件的局部屈曲 第四节 实腹式轴心压杆设计
第五节 格构式轴心受压构件设计
第六节 柱头和柱脚 第七节 钢索简介
第一节
轴心受力构件强度和刚度
1、概念:二力杆 2、分类
力沿轴线方向
约束:两端铰接
强度
(4.16)
取v0为L/1000,令0=v0/(W/A)= v0/=
4.3轴心受力构件的整体稳定性
N cr
2k
N w N Ey
N
w
N Ey 4kN w N Ey
式中 N Ey -截面对对称轴的欧拉临界力 N w -截面扭转屈曲时的临界力
y0 k 1 i 0
2
4.3 轴心受压构件的整体稳定性
4.3.4
初始缺陷对轴心压杆稳定性的影响 Nhomakorabea4.3 轴心受压构件的整体稳定性
(2) 理想轴心压杆整体稳定临界力的确定 1) 理想轴心受压构件弯曲屈曲时的临界力 欧拉公式:
2 E 2
式中
NE
2
2 l0
E-材料弹性模量; I-截面对应方向的惯性矩; L0-对应方向的杆件计算长度。
香莱理论
2 t cr 2
4.3
轴心受压构件的整体 稳定性
4.3 轴心受压构件的整体稳定性
4.3.1
概述
在荷载作用下,钢结构的外力与内力必须保持平衡。但这种 平衡状态有持久的稳定平衡状态和极限平衡状态,当结构或构
件处于极限平衡状态时,外界轻微的挠动就会使结构或构件产
生很大的变形而丧失稳定性。失稳破坏是钢结构工程的一种重 要破坏形式。
(4)无初始应力影响。
4.3 轴心受压构件的整体稳定性
实际工程中,轴心压杆并不完全符合以上条件,且它们都存在初 始缺陷(初始应力、初偏心、初弯曲等)的影响。因此把符合以上条件 的轴心受压构件称为理想轴心受压杆件。这种构件的失稳也称为屈曲。 根据构件的变形情况,屈曲有以下三种形式: 弯曲屈曲——构件只绕一个截面主轴旋转而纵轴由直线变为曲线的一种失 稳形式。这是双轴对称截面构件最基本的屈曲形式。 扭转屈曲——失稳时,构件各截面均绕其纵轴旋转的一种失稳形式。当双 轴对称截面构件的轴力较大而构件较短时或开口薄壁杆件,可能发生此 种失稳屈曲。 弯扭屈曲——构件发生弯曲变形的同时伴随着截面的扭转。这是单轴对称 截面构件或无对称轴截面构件失稳的基本形式。
轴心受压构件的稳定性计算
轴心受压构件的稳定性计算7.2.1 除可考虑屈服后强度的实腹式构件外,轴心受压构件的稳定性计算应符合下式要求:式中:φ——轴心受压构件的稳定系数(取截面两主轴稳定系数中的较小者),根据构件的长细比(或换算长细比)、钢材屈服强度和表7.2.1-1、表7.2.1-2的截面分类,按本标准附录D采用。
表7.2.1-1 轴心受压构件的截面分类(板厚t<40mm)注:1 a*类含义为Q235钢取b类,Q345、Q390、Q420和Q460钢取a类;b*类含义为Q235钢取c类,Q345、Q390、Q420和Q460钢取b类;2 无对称轴且剪心和形心不重合的截面,其截面分类可按有对称轴的类似截面确定,如不等边角钢采用等边角钢的类别;当无类似截面时,可取c类。
表7.2.1-2 轴心受压构件的截面分类(板厚t≥40mm)7.2.2 实腹式构件的长细比λ应根据其失稳模式,由下列公式确定:1 截面形心与剪心重合的构件:1) 当计算弯曲屈曲时,长细比按下列公式计算:式中:l0x、l0y——分别为构件对截面主轴x和y的计算长度,根据本标准第7.4节的规定采用(mm);i x、i y——分别为构件截面对主轴x和y的回转半径(mm)。
2) 当计算扭转屈曲时,长细比应按下式计算,双轴对称十字形截面板件宽厚比不超过15εk者,可不计算扭转屈曲。
式中:I0、I t、I w——分别为构件毛截面对剪心的极惯性矩(m m4)、自由扭转常数(m m4)和扇性惯性矩(m m6),对十字形截面可近似取I w=0;I w——扭转屈曲的计算长度,两端铰支且端截面可自由翘曲者,取几何长度l;两端嵌固且端部截面的翘曲完全受到约束者,取0.5l(mm)。
2 截面为单轴对称的构件:1) 计算绕非对称主轴的弯曲屈曲时,长细比应由式(7.2.2-1)、式(7.2.2-2)计算确定。
计算绕对称主轴的弯扭屈曲时,长细比应按下式计算确定:式中:y s——截面形心至剪心的距离(mm);i0——截面对剪心的极回转半径,单轴对称截面i20=y2s+i2x+i2y(mm);λz——扭转屈曲换算长细比,由式(7.2.2-3)确定。
轴心受压构件的稳定系数(纵向弯曲系数)
轴心受压构件的稳定系数,即纵向弯曲系数,在结构设计和分析中扮演着非常重要的角色。
它是用来描述构件在受压状态下的稳定性能,并在设计中扮演着至关重要的作用。
在本篇文章中,我将从深度和广度两方面对轴心受压构件的稳定系数进行全面评估,并据此撰写一篇有价值的文章。
让我们来了解一下轴心受压构件的基本概念。
轴心受压构件是指在受压状态下轴心受力的构件,例如混凝土柱、钢柱等。
在设计和分析中,我们需要考虑构件在受压状态下的稳定性能,以确保结构的安全可靠。
而轴心受压构件的稳定系数,即纵向弯曲系数,就是用来描述构件在受压状态下的稳定性能的重要参数之一。
在实际的设计和分析中,我们需要根据构件的几何形状、材料性质、受力条件等因素来计算轴心受压构件的稳定系数。
稳定系数的大小直接影响着构件在受压状态下的稳定性能,因此在设计中需要进行综合考虑并进行合理设计。
在计算稳定系数时,我们需要考虑构件的截面形状、长细比、材料的本构关系等因素。
在满足构件受压强度的前提下,稳定系数的大小应该尽可能大,以确保构件在受压状态下的稳定性能。
我们需要通过合理的截面设计、优化材料选用等方式来提高稳定系数,以满足结构的设计要求。
除了计算稳定系数外,我们还需要对轴心受压构件在受力状态下的稳定性进行全面的评估。
在实际的设计和分析中,我们需要考虑构件在受压状态下的整体稳定性、局部稳定性以及稳定性的失效模式等因素,以确保结构的安全可靠。
轴心受压构件的稳定系数在结构设计和分析中扮演着非常重要的角色。
在设计过程中,我们需要综合考虑构件的几何形状、材料性质、受力条件等因素,通过合理的计算和优化设计来提高稳定系数,以确保构件在受压状态下的稳定性能。
我们还需要对构件在受力状态下的整体稳定性、局部稳定性等进行全面的评估,以保证结构的安全可靠。
希望通过本篇文章的阐述,能够帮助你更深入地理解轴心受压构件的稳定系数这一重要概念。
个人观点和理解方面,在实际的工程实践中,轴心受压构件的稳定系数的计算和优化设计是非常复杂的,需要全面考虑构件的各项参数。
注册一级结构工程师考试:2021专业基础知识真题及答案(3)
注册一级结构工程师考试:2021专业基础知识真题及答案(3)共394道题1、钢材中的含碳量降低,会降低钢材的()。
(单选题)A. 强度B. 塑性C. 可焊性D. 韧性试题答案:A2、某工程基础部分使用大体积混凝土浇筑,为降低水泥水化温升,针对水泥可以用如下措施()(单选题)A. 加大水泥用量B. 掺入活性混合材料C. 提高水泥细度D. 减少碱含量试题答案:B3、衡量钢材的塑性高低的技术指标为()。
(单选题)A. 屈服强度B. 抗拉强度C. 断后伸长率D. 冲击韧性试题答案:C4、计算普通钢结构轴心受压构件的整体稳定性时应计算()。
(单选题)A. 构件的长细比B. 板件的宽厚比C. 钢材的冷弯效应D. 构件的净截面处应力试题答案:A5、作用在过梁上的荷载有砌体自重和过梁计算高度范围内的梁板荷载,对于砖砌体,可以不考虑高于l n/3(l n为过梁净跨)的墙体自重以及高度大于l n上的梁板荷载,这是由于考虑了()。
(单选题)A. 起拱产生的卸荷B. 应力重分布C. 应力扩散D. 梁墙间的相互作用试题答案:A6、无重饱和粘土地基受宽度为B的地表均布荷载q,饱和粘土的不排水抗剪强度为50kPa,那么该地基的承载力为()。
(单选题)A. 105kPaB. 50kPaC. 157kPaD. 257kPa试题答案:B7、图示结构用力矩分配法计算时,分配系数μA4为()。
题45图(单选题)A. 1/4B. 4/7C. 1/2D. 6/11试题答案:B8、图示体系的几何组成为()。
题34图(单选题)A. 几何不变,无多余的约束B. 几何不变,有多余的约束C. 瞬变体系D. 常变体系试题答案:A9、在结构试验室进行混凝土构件的最大承载能力试验,需在试验前计算最大加载值和相应变形值,应选取下列哪一项材料参数值进行计算()。
(单选题)A. 材料的设计值B. 实际材料性能指标C. 材料的标准值D. 试件最大荷载值试题答案:B10、硬化的水泥浆体中,位于水化硅酸钙凝胶的层间孔隙与凝胶有很强的结合作用,这些空隙一旦失去,水泥浆体将会()。
学习-格构式轴压构件整体稳定性设计
临界力可表达为:
N 2 EI
cr
l2
1
1 2 EI
l2 GA
y yM yQ
N M=N·y
临界应力
cr
2E 2
x
1
1
2 EA
2 x
GA
2E 2
ox
x
式中: 2 2 EA
ox
x
N
为格构柱绕虚轴的稳定临界荷载换算为 按实腹柱计算时的换算长细比。
N
N’ N
V
V
V
y
柱
V肢θl1缀 Nhomakorabea条
N
N
实腹柱
缀板柱
缀条柱
格构式轴心受压构件绕虚轴整体失稳时,因肢件之间并不是连 续的板而只是每隔一定距离用缀条或缀板联系起来。除弯曲变形 外,柱的剪切变形较大,剪力造成的附加挠曲影响就不能忽略。 稳 定承载力有所降低。
根据弹性稳定理论,当考虑剪切变形影响后,轴压构件
2、格构式轴压构件整体稳定性设计
格构式柱截面具有对称轴,当轴心受压丧失整体稳定时,不 大可能会发生扭转和弯扭屈曲,往往发生绕截面主轴的弯曲屈曲 , 应分别计算绕实轴和虚轴抵抗弯曲屈曲的能力。
(1)格构式轴心受压构件绕实轴的整体稳定性
格构式双肢轴心受压构件绕实轴丧
失整体稳定性时,相当于两个并列的实
x
腹式构件,其稳定承载力的计算方法与
实腹式轴心受压构件相同。
y
x
y
确定分 肢截面
(2)格构式轴心受压构件绕虚轴的整体稳定性
1)格构式轴心受压构件绕虚轴的整体稳定性计算方法 轴心受压构 件弯曲屈曲时,实际挠曲变形由弯曲变形和剪切
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。