2018中考数学专题复习――探索规律

合集下载

中考数学专题复习——规律探索(详细答案)

中考数学专题复习——规律探索(详细答案)

中考数学复习专题——规律探索一.选择题1. (2018·湖北随州·3 分)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如 1,3, 6,10…)和“正方形数”(如 1,4,9,1,在小于 200 的数中,设最大的“三角形数”为 m ,最大的 “正方形数”为 n ,则 m +n 的值为( )A .33B .301C .386D .5712.(2018•山东烟台市•3 分)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆 下去,第 n 个图形中有 120 朵玫瑰花,则 n 的值为( )3.(2018•山东济宁市•3 分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片, 适合填补图中空白处的是( )A .B . B.C .D .4. (2018 湖南张家界 3.00 分)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…, 则 2+22+23+24+25+…+21018 的末位数字是( )A .8B .6C .4D .0二、填空题 1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·3 分)如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2, △P3A2A3,…都是等2.(2018•江苏淮安•3 分)如图,在平面直角坐标系中,直线l为正比例函数y=x 的图象,点A1的坐标为(1,,过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x 轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x 轴的垂线,垂足为A3,交直线l 于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n C n D n的面积是(92)n﹣1 .3.(2018•山东东营市•3分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=15x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,那么点A2018的纵坐标是20173()2.4.(2018•临安•3 分.)已知:2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…,若10+ba=102×ba符合前面式子的规律,则a+b= .5. (2018•广西桂林•3分)将从1开始的连续自然数按如图规律排列:规定位于第m行,第n列的自然记为6. (2018•广西南宁•3 分)观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可 得 30+31+32+…+32018 的结果的个位数字是 .7. (2018·黑龙江龙东地区·3 分)如图,已知等边△A BC 的边长是 2,以 B C 边上的高 AB 1 为边作等边三角 形,得到第一个等边△AB 1C 1;再以等边△AB 1C 1 的 B 1C 1边上的高 AB 2 为边作等边三角形,得到第二个等边△AB 2C 2;再以等边△A B 2C 2 的B 2C 2边上的高 A B 3 为边作等边三角形,得到第三个等边△AB 3C 3;…,记△B 1CB 2 的面积为 S 1,△B 2C 1B 3 的面积为 S 2,△B 3C 2B 4 的面积为 S 3,如此下去,则 S n = .8.(2018·黑龙江齐齐哈尔·3 分)在平面直角坐标系中,点 A (3,1)在射线 O M 上,点 B (3,3)在 射线 ON 上,以 AB 为直角边作 Rt △A BA 1,以 BA 1 为直角边作第二个 Rt △BA 1B 1,以A 1B 1 为直角边作第三个 Rt△A 1B 1A 2,…,依次规律,得到 R t △B 2017A 2018B 2018,则点 B 2018 的纵坐标为 . 9.(2018•广东•3 分)如图,已B 1 作 B 1A 2∥OA 1 交双曲线于点 A 2,过 A 2 作 A 2B 2∥A 1B 1 交 x 轴于点 B 2,得到第二个等边△B 1A 2B 2;过 B 2 作 B 2A 3∥B 1A 2 交双曲线于点 A 3,过 A 3 作 A 3B 3∥A 2B 2 交 x 轴于点 B 3,得到第三个等边△B 2A 3B 3;以此类推,…,则点 B 6 的坐标 为 ( ) .nn201810. (2018•广西北海•3 分)观察下列等式: 30 = 1, 31 = 3, 32 = 9 , 33 = 27 , 34 = 81, 35= 243,…,根据其中规律可得 01220183+3+3+...3+的结果的个位数字是 。

2018年河北中考数学总复习之规律探索专题(无答案)

2018年河北中考数学总复习之规律探索专题(无答案)

河北中考复习之规律探索1、观察图4给出的四个点阵,s 表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n 个点阵中的点的个数s 为 A .3n -2 B .3n -1C .4n +1D .4n -32、观察下面的点阵图形和与之相对应的等式,探究其中的规律: (1)请你在④和⑤后面的横线上分别写出相对应的等式:(2)通过猜想,写出与第n 个图形相对应的等式.3、古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( ) A .13=3+10 B .25=9+16 C .36=15+21 D .49=18+314、将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是( ) A .6 B .5 C .3 D .2 5、如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”. 如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.……① ② ③ ⑤④ 4×0+1=4×1-3; 4×1+1=4×2-3; 4×2+1=4×3-3;___________________; ___________________; …… 图4 第2个 s =5 第1个 s=1第3个 s =9 …… 第4个 s =136、如图,∠BOC=9°,点A 在OB 上,且OA=1,按下列要求画图: 以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1; 再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2;再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;…这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n= .7、观察下列各式及其验证过程:验证322322+=:()()3221221221222223232222233+=-+-=-+-==验证833833+=:()()8331331331333338383322233=-+-=-+-== (1)按照上述两个等式及其验证过程的基本思路,猜想1544的变形结果并进行验证; (2)针对上述各式反映的规律,写出用n (n 为任意自然数,且n ≥2)表示的等式,并给出证明。

2018年中考数学重庆专版专题突破课件专题一 规律探索问题

2018年中考数学重庆专版专题突破课件专题一 规律探索问题

A.64
B.77
C .80
图 Z1 -1 D.85
专题一丨规律探索问题
[解析] 通过观察,得到小圆圈的个数分别是: (1+2)×(1+1) 2 第一个图形为: +1 =4 , 2 (2+2)×(2+1) 2 第二个图形为: +2 =10, 2 (3+2)×(3+1) 2 第三个图形为: +3 =19, 2 (4+2)×(4+1) 第四个图形为: +42=31,…, 2 (n+2)(n+1) 2 所以第 n 个图形为: +n , 2 (7+2)×(7+1) 当 n=7 时, +72=85,故选 D. 2
2
专题一丨规律探索问题
3.如图 Z1-4,分别用火柴棍连续搭建正三角形和正六边 形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共 用了 2016 根火柴棍, 并且正三角形的个数比正六边形的个数多 6 个,那么能连续搭建正三角形的个数是( D ) 图 Z1-4 C.286 D.292
A.222
专题一丨规律探索问题
|针对训练|
1. 【2017·随州】在公园内,牡丹按正方形种植,在它 的周围种植芍药,如图 Z1-2 反映了牡丹的列数(n)和芍药 的数量规律,那么当 n =11 时,芍药的数量为( B )
A.84 株
图 Z1 -2 B.88 株 C.92 株 D.121 株
专题一丨规律探索问题
专题一丨规律探索问题
6. 【2016·内江】将一些半径相同的小圆按如图 Z1-7 所示 2 (n + n+4) 个小 的规律摆放,请仔细观察,第 n 个图形有____________ 圆.(用含 n 的代数式表示)
图 Z1-7
专题一丨规律探索问题
[解析] 每个图形由两部分构成,外围的四个小圆数量固 定, 而中间“矩形”的长和宽和序号是保持了一定的数量 关系. 每个图由外围的 4 个小圆和中间的“矩形”组成, 矩 形的面积等于长乘宽.由此可知 第 1 个图中小圆的个数=1×2+4, 第 2 个图中小圆的个数=2×3+4, 第 3 个图中小圆的个数=3×4+4, …… 2 第 n 个图中小圆的个数=n(n+1) +4=n +n+ 4. 故答案为:n2+n+4.

2018年中考数学真题分类汇编第一期专题36规律探索试题含解析

2018年中考数学真题分类汇编第一期专题36规律探索试题含解析

规律探索一、选择题1.(2018·重庆(A)·4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A.12 B.14 C.16 D.18【考点】图形的变化规律【解析】∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。

比较简单。

2(2018·台湾·分)若小舒从1~50的整数中挑选4个数,使其由小到大排序后形成一等差数列,且4个数中最小的是7,则下列哪一个数不可能出现在小舒挑选的数之中?()A.20 B.25 C.30 D.35【分析】A、找出7,20、33、46为等差数列,进而可得出20可以出现,选项A不符合题意;B、找出7、16、25、34为等差数列,进而可得出25可以出现,选项B不符合题意;C、由30﹣7=23,23为质数,30+23>50,进而可得出30不可能出现,选项C符合题意;D、找出7、21、35、49为等差数列,进而可得出35可以出现,选项D不符合题意.【解答】解:A、∵7,20、33、46为等差数列,∴20可以出现,选项A不符合题意;B、∵7、16、25、34为等差数列,∴25可以出现,选项B不符合题意;C、∵30﹣7=23,23为质数,30+23>50,∴30不可能出现,选项C符合题意;D、∵7、21、35、49为等差数列,∴35可以出现,选项D不符合题意.故选:C.【点评】本题考查了规律型中数字的变化类,根据等差数列的定义结合四个选项中的数字,找出符合题意得等差数列是解题的关键.3(2018·广东广州·3分)在平面直角坐标系中,一个智能机器人接到如下指令,从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到,第2次移动到……,第n次移动到,则△的面积是()A.504B.C.D.【答案】A【考点】探索图形规律【解析】【解答】解:依题可得:A2(1,1),A4(2,0),A8(4,0),A12(6,0)……∴A4n(2n,0),∴A2016=A4×504(1008,0),∴A2018(1009,1),∴A2A2018=1009-1=1008,∴S= ×1×1008=504().故答案为:A.【分析】根据图中规律可得A4n(2n,0),即A2016=A4×504(1008,0),从而得A2018(1009,1),再根据坐标性质可得A2A2018=1008,由三角形面积公式即可得出答案.4 (2018四川省绵阳市)将全体正奇数排成一个三角形数阵13 57 9 1113 15 17 1921 23 25 27 29… … … … … …根据以上排列规律,数阵中第25行的第20个数是()A.639B.637C.635D.633【答案】A【考点】探索数与式的规律【解析】【解答】解:依题可得:第25行的第一个数为:1+2+4+6+8+……+2×24=1+2× =601,∴第25行的第第20个数为:601+2×19=639.故答案为:A.【分析】根据规律可得第25行的第一个数为,再由规律得第25行的第第20个数.5.(2018年湖北省宜昌市3分)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为()A.a=1,b=6,c=15 B.a=6,b=15,c=20C.a=15,b=20,c=15 D.a=20,b=15,c=6【分析】根据图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a、b、c 的值.【解答】解:根据图形得:每个数字等于上一行的左右两个数字之和,∴a=1+5=6,b=5=10=15,c=10+10=20,故选:B.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二.填空题1(2018年四川省内江市)如图,直线y=﹣x+1与两坐标轴分别交于A,B两点,将线段OA 分成n等份,分点分别为P1,P2,P3,…,P n﹣1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,T n﹣1,用S1,S2,S3,…,S n﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n﹣1P n﹣2P n﹣1的面积,则S1+S2+S3+…+S n﹣1= ﹣.【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标.【分析】如图,作T1M⊥OB于M,T2N⊥P1T1.由题意可知:△BT1M≌△T1T2N≌△T n﹣1A,四边形OMT1P1是矩形,四边形P1NT2P2是矩形,推出=××=,S1=,S2=,可得S1+S2+S3+…+S n﹣1=(S△AOB﹣n).【解答】解:如图,作T1M⊥OB于M,T2N⊥P1T1.由题意可知:△BT1M≌△T1T2N≌△T n﹣1A,四边形OMT1P1是矩形,四边形P1NT2P2是矩形,∴=××=,S 1=,S 2=,∴S 1+S 2+S 3+…+S n ﹣1=(S △AOB ﹣n )=×(﹣n ×)=﹣.故答案为﹣.【点评】本题考查一次函数的应用,规律型﹣点的坐标、三角形的面积、矩形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分割法求阴影部分面积.2(2018•广西桂林•3分)将从1开始的连续自然数按右图规律排列:规定位于第m 行,第n 列的自然数10记为(3,2),自然数15记为(4,2)......按此规律,自然数2018记为__________【答案】(505,2)【解析】分析:由表格数据排列可知,4个数一组,奇数行从左向右数字逐渐增大,偶数行从右向左数字逐渐增大,用2018除以4,商确定所在的行数,余数确定所在行的序数,然后解答即可.详解:2018÷4=504⋯⋯2. ∴2018在第505行,第2列, ∴自然数2018记为(505,2). 故答案为:(505,2).点睛:本题是对数字变化规律的考查,观察出实际有4列,但每行数字的排列顺序是解题的关键,还要注意奇数行与偶数行的排列顺序正好相反.3(2018•河北•6分)如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .4(2018·广东·3分)如图,已知等边△OA 1B 1,顶点A 1在双曲线y=(x >0)上,点B 1的坐标为(2,0).过B 1作B 1A 2∥OA 1交双曲线于点A 2,过A 2作A 2B 2∥A 1B 1交x 轴于点B 2,得到第二个等边△B 1A 2B 2;过B 2作B 2A 3∥B 1A 2交双曲线于点A 3,过A 3作A 3B 3∥A 2B 2交x 轴于点B 3,得到第三个等边△B 2A 3B 3;以此类推,…,则点B 6的坐标为 (2,0) .【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B 2、B 3、B 4的坐标,得出规律,进而求出点B 6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点B n的规律是解题的关键.5(2018·浙江临安·3分)已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b= 109 .【考点】等式的变化规律【分析】要求a+b的值,首先应该认真仔细地观察题目给出的4个等式,找到它们的规律,即中,b=n+1,a=(n+1)2﹣1.【解答】解:根据题中材料可知=,∵10+=102×,∴b=10,a=99,a+b=109.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出式子的规律.6(2018·浙江衢州·4分)定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……△A n﹣1B n﹣1C n﹣1经γ(n,180°)变换后得△A n B n C n,则点A1的坐标是(﹣,﹣),点A2018的坐标是(﹣,).【考点】坐标的变化规律.【分析】分析图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.向右平移n个单位变换就是横坐标加n,纵坐标不变,关于原点作中心对称变换就是横纵坐标都变为相反数.写出几次变换后的坐标可以发现其中规律.【解答】解:根据图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.△ABC经γ(1,180°)变换后得△A1B1C1,A1 坐标(﹣,﹣)△A1B1C1经γ(2,180°)变换后得△A2B2C2,A2坐标(﹣,)△A2B2C2经γ(3,180°)变换后得△A3B3C3,A3坐标(﹣,﹣)△A3B3C3经γ(3,180°)变换后得△A4B4C4,A4坐标(﹣,)依此类推……可以发现规律:A n横坐标存在周期性,每3次变换为一个周期,纵坐标为当n=2018时,有2018÷3=672余2所以,A2018横坐标是﹣,纵坐标为故答案为:(﹣,﹣),(﹣,).【点评】本题是规律探究题,又是材料阅读理解题,关键是能正确理解图形的γ(a,θ)变换的定义后运用,关键是能发现连续变换后出现的规律,该题难点在于点的横纵坐标各自存在不同的规律,需要分别来研究.7(2018·四川自贡·4分)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055 个○.【分析】每个图形的最下面一排都是1,另外三面随着图形的增加,每面的个数也增加,据此可得出规律,则可求得答案.【解答】解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.【点评】本题为规律型题目,找出图形的变化规律是解题的关键,注意观察图形的变化.8(2018•湖北荆门•3分)将数1个1,2个,3个,…,n个(n为正整数)顺次排成一列:1,,…,记a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,S n=a1+a2+…+a n,则S2018= 63.【分析】由1+2+3+…+n=结合+2=2018,可得出前2018个数里面包含:1个1,2个,3个,…,63个,2个,进而可得出S2018=1×1+2×+3×+…+63×+2×=63,此题得解.【解答】解:∵1+2+3+…+n=,+2=2018,∴前2018个数里面包含:1个1,2个,3个,…,63个,2个,∴S2018=1×1+2×+3×+…+63×+2×=1+1+…+1+=63.故答案为:63.【点评】本题考查了规律型中数字的变化类,根据数列中数的排列规律找出“前2018个数里面包含:1个1,2个,3个,…,63个,2个”是解题的关键.9(2018•甘肃白银,定西,武威•3分)如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【答案】1【解析】【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】当x=625时,当x=125时,=25,当x=25时,=5,当x=5时,=1,当x=1时,x+4=5,当x=5时,=1,当x=1时,x+4=5,当x=5时,=1,…(2018−3)÷2=1007…1,即输出的结果是1,故答案为:1.【点评】考查代数式的求值,找出其中的规律是解题的关键.10. (2018•山东滨州•5分)观察下列各式:=1+,=1+,=1+,……请利用你所发现的规律,计算+++…+,其结果为9.【分析】直接根据已知数据变化规律进而将原式变形求出答案.【解答】解:由题意可得:+++…+=1++1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.【点评】此题主要考查了数字变化规律,正确将原式变形是解题关键.11.(2018·山东泰安·3分)观察“田”字中各数之间的关系:则c的值为270或28+14 .【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【解答】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8 数为28.观察左下和右上角,每个“田”字的右上角数字依次比左下角大0,2,4,6等,到第8个图多14.则c=28+14=270故应填:270或28+14【点评】本题以探究数字规律为背景,考查学生的数感.解题时注意同等位置的数字变化规律,用代数式表示出来.12.(2018·山东威海·3分)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为(22018,22017).【分析】根据题意可以求得点B1的坐标,点A2的坐标,点B2的坐标,然后即可发现坐标变化的规律,从而可以求得点B2018的坐标.【解答】解:由题意可得,点A1的坐标为(1,2),设点B1的坐标为(a, a),,解得,a=2,∴点B1的坐标为(2,1),同理可得,点A2的坐标为(2,4),点B2的坐标为(4,2),点A3的坐标为(4,8),点B3的坐标为(8,4),……∴点B2018的坐标为(22018,22017),故答案为:(22018,22017).【点评】本题考查一次函数图象上点的坐标特征、点的坐标,解答本题的关键是明确题意,发现题目中坐标的变化规律,求出相应的点的坐标.13.(2018·山东潍坊·3分)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x 轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是.【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,.【解答】解:直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2==4,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是=.故答案为:.【点评】本题主要考查了一次函数图象上点的坐标特征,做题时要注意数形结合思想的运用,是各地的中考热点,学生在平常要多加训练,属于中档题.14. (2018•山东枣庄•4分)将从1开始的连续自然数按以下规律排列:则2018在第45 行.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.15. (2018•山东淄博•4分)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是2018 .【考点】37:规律型:数字的变化类.【分析】观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;【解答】解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.【点评】本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.16(2018•四川成都•3分)已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,________.【答案】【考点】探索数与式的规律【解析】【解答】解:∵,∴S2=- -1=∵,∴S3=1÷()=∵,∴S4=-()-1=∴S5=-a-1、S6=a、S7= 、S8= …∴2018÷4=54 (2)∴S2018=故答案为:【分析】根据已知求出S2= ,S3= ,S4= 、S5=-a-1、S6=a、S7= 、S8= …可得出规律,按此规律可求出答案。

2018年中考第2篇数学考点聚焦《第2讲:规律探索问题》课件

2018年中考第2篇数学考点聚焦《第2讲:规律探索问题》课件
n n+1 请按上述规律,写出第 n 个式子的计算结果(n 为正整数)______________ .(写出最简计
容.
3.图形规律型:图形规律问题主要是观察图形的组成、分拆等过 程中的特点,分析其联系和区别,用相应的算式描述其中的规律 ,
要注意对应思想和数形结合.
4.数形结合猜想型:数形结合猜想型问题首先要观察图形 ,从中
发现图形的变化方式 ,再将图形的变化以数或式的形式反映出来 ,
从而得出图形与数或式的对应关系 ,数形结合总结出图形的变化规 律,进而解决相关问题.
3 5 7 9 11 4.(2017· 郴州)已知 a1=-2,a2=5,a3=-10,a4=17,a5=-26,…,
17 则 a8=_________ . 65
5.(导学号:65244043)(2017· 营口)如图,点 A1(1, 3)在直线 l1:y= 3x 上,过点 A1 作 3 A1B1⊥l1 交直线 l2:y= 3 x 于点 B1,以 A1B1 为边在△OA1B1 外侧作等边三角形 A1B1C1, 再过点 C1 作 A2B2⊥l1, 分别交直线 l1 和 l2 于 A2, B2 两点, 以 A2B2 为边在△OA2B2 外侧作等边三角形 A2B2C2,…按此规律进行下去,则第 n 个等边三角形 AnBnCn 的面积为
1.解数字或数式规律探索题的方法: 第一步:标序号; 第二步:找规律,分别比较各部分与序号数(1,2,3,4,…,n)之间的关系,把其蕴 含的规律用含序号数的式子表示出来; 第三步:根据找出的规律表示出第 n 个数式. 需要熟记的规律有: n(n+1) (1)正整数和:1+2+3+4+…+n= (n≥1); 2 (2)正奇数和:1+3+5+7+…+2n-1=n2(n≥1); (3)正偶数和:2+4+6+8+…+2n=n(n+1)(n≥1).

河南省2018年中考数学总复习课件:专题一 探索规律题(共24张PPT)

河南省2018年中考数学总复习课件:专题一 探索规律题(共24张PPT)
第三个图形为10+32=
+22=10,
+32=19,
第四个图形为15+42=
… 所以第n个图形为
+42=31,
+n2 . +72=85,故
当n=7时,图中小圆圈的个数为 选D.
5.(2017·随州)在公园内,牡丹按正方形种植,在它的周 围种植芍药,如图反映了牡丹的列数(n)和芍药的数量规律,
那么当n=11时,芍药的数量为(
3 ,5 ,7 ,9 , 1, 例1 (2017·信阳一模)观察下列一组数: 4 9 16 25 36 ….它们是按一定规律排列的,那么这一组数的第n个数


【分析】 把分数的分子、分母看作两个个体,分别观察分
子、分母间的变化规律,进而写出答案. 【自主解答】 观察这组数据的分子,得第n个数的分子为
n n 2 n 1 n 2
4.(2017·黄石)观察下列等式:
请按上述规律,写出第n个式子的计算结果 (n为正整数)______.(写出最简计算结果即可) n n1
类型二 图形变化规律
这类题目通常是给出一组图形的排列(或通过操作得到
一系列的图形),探求图形的变化规律,以图形为载体考查 图形所蕴含的数量关系.解决此类问题:先观察图案的变 化趋势是增加还是减少,然后从第一个图形进行分析,运 用从特殊到一般的探索方式,分析归纳找出增加或减少的
均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲 线.点P从原点O出发,沿这条曲线向右运动,速度为每秒 个单位长度,则2 015秒时,点P的坐标是( ) Nhomakorabea 2
A.(2 014,0)
C.(2 015,1)
B.(2 015,-1)
D.(2 016,0)
【分析】 根据点P的运动速度,找出点P完成一个循环需要

2018年浙江中考数学复习难题突破专题一:规律归纳探索问题.doc

2018年浙江中考数学复习难题突破专题一:规律归纳探索问题.doc

则2017在第行.(2)可知第/?行中最大的数是,〃=44时,最大数为;77=45 时,•因此2017在第g)难题突破专题一规律归纳探索问题近年来有关规律探索性题H 在浙江省初中数学考试题中频繁出现,这类题H 要求学生能根据给出的一组具有某种 特定关系的数、式、图形或与图形有关的操作、变化过程,通过观察、分析、推理,探究其中所蕴含的规律,进而归 纳或猜想出■•般性的结论.有利于促进学生对数学知识和数学方法的巩固和掌握,也有利于学生思维能力的提高和自 主探索、创新精神的培养.规律探究题一般分为数字规律题、数式规律题、图形规律题等.类型1数字规律熨1 2017 -淮安将从1开始的连续自然数按以下规律排列:®例题分层分析(1)观察发现,前5行中最大的数分别为®解题方法点析解决数字规律问题的突破口在于寻找隐含在图形或式子中的规律,数的规律主要有倍数关系、等差关系、等比关 系等.类型2数式规律最2我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是…例.如图Z1-2,这个三角形的构造 法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了 3+5)〃(〃为正整数)的展开式(按a 的次数 由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1, 2, 1,恰好对应(打+〃2=疽+2》力+£展开式 中的系数;第四行的四个数1, 3, 3, 1,恰好对应S+Q3展开式中的系数等.(1)根据上面的规律,写出3+力尸的展开式;(2) 利用上面的规律计算:25-5X24+10X23-10X22+5X2-l.®例题分层分析⑴你能写出(a+/^, 3+/沪,(3+^)3, 3+力)4的展开式吗?⑵25-5X24+10X23-10X22+5X2-1和(a+力尸,(a+矿,(a+»,(》+力)\ (a+矿中哪个的展开式比较类似?此时a 等于什么?力等于什么?第一行 第二行 21 34 第三行 9 8 7 65 第四行 111 12 13 14 15 16 第五行25 2423 222120 19 18图勿一 1173(白+如(a+b)2A O务A O 图 Z1-3ABy图勿一4第1个图形 第2个图第3个图®解题方法点析数式规律要关注中学阶段所学的一些重要公式,此类问题主要考查学生的观察、分析、逻辑推理能力,读憧题意 并根据所给的式子寻找规律是快速解题的关键.类型3图形规律匡>3 [2017 -衢州]如图21-3,正△时。

2018年中考数学压轴题专题复习——规律探究题

2018年中考数学压轴题专题复习——规律探究题

2018年中考数学专题复习第一讲——规律探究题【专题分析】在课改以后的中考数学命题中,各地都十分重视规律探究的考查,各省市数学中考试题中基本上每年都有这样的题目,这类试题通常有数字变化类规律探究、图形变化类规律探究、数形结合变化类规律探究等,它的选材不只限于教材上的代数知识或几何知识(材料涉及的知识点并不是考查的重点,而只是考查考生分析归纳能力的载体),所以解答此类问题,相关的知识和技能只是基础,重要的是具备对问题观察、分析、归纳、解决的能力.【知识归纳】新课标核心要求用代数式表示数量关系及所反映的规律,考查考生的抽象思维能力,根据一列数或一组图形的特例进行归纳,猜想,找出一般规律,进而列出通用的代数式,称之为规律探究,一般有数字变化类规律探究、图形变化类规律探究、数形结合变化类规律探究.数字变化类规律探究,即是通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法,考查考生的分析、归纳、抽象、概括能力.一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式.数字变化类规律探究既是规律探究问题中的基础,也是规律探究的重点.图形变化类规律探究,即是给定一些结构类似、数量和位置不同的几何图案,这些图案之间有一定的规律,并且还可以由一个通用的代数式来表示.这种探索图形构成元素规律的试题,解决思路有两种:一种是数图形,将图形转化为数字规律,再用函数法、观察法解决问题;另一种是通过图形的直观性,从图形中直接寻找规律,常用“拆图法”解决问题.数形结合变化类规律探究,其实质是数字规律探究和图形规律探究的结合,其特点就是二者兼而有之.【题型解析】题型1:数字变化类规律探究例题:(2017年江苏扬州)在一列数:a1,a2,a3,…,an中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是()A.1 B.3 C.7 D.9【考点】37:规律型:数字的变化类.【分析】本题可分别求出n=3、4、5…时的情况,观察它是否具有周期性,再把2017代入求解即可.【解答】解:依题意得:a1=3,a2=7,a3=1,a4=7,a5=7,a6=9,a7=3,a8=7;周期为6;2017÷6=336…1,所以a2017=a1=3.故选B.方法指导:数字类规律问题一般先观察一列数字的规律,观察分析、归纳猜想得出一般性的结论,再验证,从而得到问题的答案.题型2:图形变化类规律探究例题: (2017甘肃张掖)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为8 ,第2017个图形的周长为.【考点】38:规律型:图形的变化类.【分析】根据已知图形得出每增加一个四边形其周长就增加3,据此可得答案.【解答】解:∵第1个图形的周长为2+3=5,第2个图形的周长为2+3×2=8,第3个图形的周长为2+3×3=11,…∴第2017个图形的周长为2+3×2017=6053,故答案为:8,6053.方法指导:考查探究图形的变化规律,找出图形的变化规律是解题的关键题型3数形结合变化类规律探究例题:(2017贵州安顺)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形An Bn﹣1Bn顶点Bn的横坐标为2n+1﹣2 .【考点】D2:规律型:点的坐标.【分析】先求出B1、B2、B3…的坐标,探究规律后,即可根据规律解决问题.【解答】解:由题意得OA=OA1=2,∴OB1=OA1=2,B 1B2=B1A2=4,B2A3=B2B3=8,∴B1(2,0),B2(6,0),B3(14,0)…,2=22﹣2,6=23﹣2,14=24﹣2,…∴Bn的横坐标为2n+1﹣2.故答案为 2n+1﹣2.方法指导:考查此类问题重点是结合图形进行分析研究后得到数字与图形之间的关系,利用相关知识解答即可。

中考数学专题复习探索规律

中考数学专题复习探索规律

中考数学专题复习——探索规律一、选择题1.(2018年浙江省衢州市)32,33和34分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和,36也能按此规律进行“分裂”,则36“分裂”出的奇数中最大的是( ) A、41 B、39 C、31 D、292.(2018湖南益阳)有一种石棉瓦(如图4),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为A. 60n厘米B. 50n厘米C. (50n+10)厘米D. (60n-10)厘米3.(2018江苏宿迁)用边长为1的正方形覆盖33 的正方形网格,最多覆盖边长为1的正方形网格(覆盖一部分就算覆盖)的个数是( )A.2B.4C.5D.64.(2018 四川泸州)两个完全相同的长方体的长、宽、高分别是5cm,4cm,3cm,把它们按不同方式叠放在一起分别组成新的长方体,在这些新长方体中表面积最大的是()A.2158cm B.2176cm C.2164cm D.2188cm5.(2018 湖南益阳)如图1,骰子是一个质量均匀的小正方体,它的六个面上分别刻有1~6 个点.,小明仔细观察骰子,发现任意相对两面的点数和都相等. 这枚骰子向上的一面的点数是5,它的对面的点数是( )A. 1B. 2C. 3D. 66.(2018 河北)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90,则完成一次变换.图2,图3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是()323533911 34131517197A .上B .下C .左D .右7.(2018山东德州)将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.( )将纸片展开,得到的图形是8.(2018山东德州)只用下列图形不能镶嵌的是( ) A .三角形B .四边形C .正五边形D .正六边形9.(2018黑龙江黑河)为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则搭建方案共有( ) A .8种 B .9种 C .16种 D .17种10.(2018 山东 聊城)如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是( ) A .54个 B .90个 C .102个 D .114个 11.(2018 台湾)有一长条型链子,其外型由边长为1公分的正六边形排列而成。

2018年中考数学复习专题1探索规律问题课件

2018年中考数学复习专题1探索规律问题课件

3分
专题类型突破 类型1 数式规律 一、数与数阵规律 【例1】[2017·日照中考]观察下面“品”字形中各数之间的规 律,根据观察到的规律得出a的值为( B )
A.23
B.75
C.77
D.139
【解析】 ∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为 21,22,23,„,∴b=26=64.∵上边的数与左边的数的和正好等 于右边的数,∴a=11+64=75.
B 由题意,得第n个数为(-2)n,那么(-2)n-2+(-2)n-1+ (-2)n=768.当n为偶数时,整理,得3×2n-2=768.解得n=10; 当n为奇数时,整理,得-3×2n-2=768,无解.∴n=10.
2.[2017·十堰中考]如图,10个不同的正偶数按下图排列,箭 头上方的每个数都等于其下方两数的和,如 +a3,则a1的最小值为( A.32 B.36
专题1
探索规律问题
常考类型分析
考查类型 年份 考查形式 题型 分值 数的变化规律,12年是一个整数加 一个分数得出一个与序号有关的分 2012、 式相乘,分子分母相约得出结果; 填空题 3分 2014 14年则是每段分成100份,分的过程 数式规律 用乘方表达出来 根据题意得出三角形,求出角所表 2015、 达的代数式,根据存在情况得出不 填空题 2分 2016 等式,并得出最小值 通过图形的旋转得出,几个一个循 图形变化 2017 选择题 环,每一种情况确定范围 规律 根据图象的旋转变化规律,确定坐 点的坐标 2013 填空题 标,再求出二次函数解析式 规律 2分
“正方形数”,则等式表示为 进行证明: 等式特征,可知选C.
(3)对以上结论 (4)对照图示规律或者
满分技法►探索算式或等式的规律,一般要将每个式子中相同位 置上的数字进行比较,发现其变化特征,用表示算式序号的字母 表示出来,通常以选择题或填空题的形式出现.

2018中考数学专题复习——探索规律

2018中考数学专题复习——探索规律

动到( 0,1),然后接着按图中箭头所示方向运动 [ 即( 0,0)→( 0,1)→( 1,1)→( 1,
0)→… ] ,且每秒移动一个单位,那么第 35 秒时质点所在位置的坐标是(

A. ( 4, 0) B. ( 5, 0) C. (0, 5) D. ( 5, 5)
14. ( 2018 贵州贵阳 ) 根据如图 2 所示的( 1),( 2),( 3)三个图所表示的规律,依次下
A. 1
B. 2
C. 3
D. 6
6.(2018 河北 ) 有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、
“志”、
“成”、“城”四个字牌,如图 1.若将位于上下位置的两个字牌对调,同时将位于左右位
置的两个字牌对调,再将转盘顺时针旋转 90 ,则完成一次变换.图 2,图 3 分别表示第 1
将纸片展开,得到的图形是
A.
B.
C.
D.
8.(2018 山东德州 ) 只用下列图形不能镶嵌的是 ( )
A.三角形
B.四边形
C .正五边形
D.正六边形
9.(2018 黑龙江黑河 ) 为紧急安置 100 名地震灾民,需要同时搭建可容纳 6 人和 4 人的两种
帐篷,则搭建方案共有(

A. 8 种
B. 9 种
方式串起来搭建,则串 7 顶这样的帐篷需要
D. 3
17 根钢管,这样的帐篷按图②,图③的 根钢管.
2.( 2018 年江苏省连云港市)如图所示,①中多边形(边数为
12 )是由正三角形“扩展”
而来的,②图中1多边形是由正方形“图扩展2 ”而来的,
,依此类推图,3则由正 n 边形“扩展”
而来的多边形的边数为 .

【赢在中考】-中考数学 二轮专题解读与强化训练 专题一 探索规律

【赢在中考】-中考数学 二轮专题解读与强化训练  专题一 探索规律

【2018赢在中考】数学二轮专题解读与强化训练专题01 规律探索问题规律探索问题指的是给出一组具有某种特定关系的数、式、图形,或是给出与图形有关的操作、变化过程,要求通过观察、思路点拨、推理,探究其中所蕴含的规律,进而归纳或猜想出一般性的结论。

规律探索问题是中考命题的热点之一,在全国各地的中考试卷中经常以选择、填空或解题过程题的形式出现。

常见类型有:(1)数与式规律问题:数与式规律问题涉及数的变化规律和式的变化规律。

数的变化规律问题是按一定规律排列的数之间的相互关系或大小变化规律的问题;式的变化规律问题通常给定一些代数式,等式或不等式,猜想其中蕴含的规律。

(2)图形变化规律问题:图形变化型问题涉及图形排列规律和变化蕴含的规律。

主要是观察图形变化过程中的特点,思路点拨其联系和区别,用相应的算式由特殊到一般描述其中的规律。

(3)坐标变化规律问题:坐标变化规律问题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题时解题过程问题的关键。

规律探索问题对考生的观察思路点拨能力要求较高,解题时要善于从所提供的数字或图形信息中,寻找共同之处,即存在于个例中的共性,就是规律。

其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程。

相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等,都能用到。

考向一数与式规律问题例1.(2017•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12【思路点拨】观察得出第n个数为(﹣2)n,根据最后三个数的和为768,列出方程,求解即可.【解题过程】解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数,故选B.【名师点睛】此题考查数与式的变化规律,找出数字的变化规律,得出第n个数为(-2)n 是解决问题的关键.考向二图形变化规律问题例2.(2017•重庆)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73 B.81 C.91 D.109【思路点拨】根据题意得出得出第n个图形中菱形的个数为n2+n+1;由此代入求得第⑨个图形中菱形的个数.【解题过程】解:第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑨个图形中菱形的个数92+9+1=91.故选:C.【名师点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.考向三坐标变化规律问题例3.(2017•温州)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)【思路点拨】观察图象,推出P9的位置,即可解决问题.【解题过程】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选B.【名师点睛】本题考查规律型点的坐标等知识,解题的关键是理解题意,确定P9的位置.一、选择题1.(2017•扬州)在一列数:a1,a2,a3,…,a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是()A.1 B.3 C.7 D.9【思路点拨】本题可分别求出n=3、4、5…时的情况,观察它是否具有周期性,再把2017代入求解即可.【解题过程】解:依题意得:a1=3,a2=7,a3=1,a4=7,a5=7,a6=9,a7=3,a8=7;周期为6;2017÷6=336…1,所以a2017=a1=3.故选B.2.(2017•岳阳)观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,…,根据这个规律,则21+22+23+24+…+22017的末位数字是()A.0 B.2 C.4 D.6【思路点拨】根据题目中的式子可以知道,末尾数字出现的2、4、8、6的顺序出现,从而可以求得21+22+23+24+…+22017的末位数字.本题得以解决.【解题过程】解:∵21=2,22=4,23=8,24=16,25=32,26=64,…,∴2017÷4=504…1,∵(2+4+8+6)×504+2=10082,∴21+22+23+24+…+22017的末位数字是2,故选B.3.(2017•日照)观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.139【思路点拨】由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a,b.【解题过程】解:∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=64,∵上边的数与左边的数的和正好等于右边的数,∴a=11+64=75,故选B.4.(2017•铜仁市)观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067【思路点拨】由①②③三个等式可得,减数是从1开始连续奇数的平方,被减数是从1开始连续自然数的平方的4倍,由此规律得出答案即可.【解题过程】解:4×12﹣12①4×22﹣32②4×32﹣52③…4n2﹣(2n﹣1)2=4n﹣1,所以第2017个式子的值是:4×2017﹣1=8067.故选:D.5.(2017•重庆模拟)如图,每一幅图中均含有若干个菱形,第①幅图中含有1个菱形;第②幅图中含有5个菱形;…按这样的规律下去,则第⑦幅图中含有的菱形的个数为()A.50 B.80 C.91 D.140【思路点拨】观察图形发现第一个有1个正方形,第二个有1+4=5个正方形,第三个有1+4+9=14个正方形,…第n个有:1+4+9+…+n2=n(n+1)(2n+1)个正方形,从而得到答案.【解题过程】解:观察图形发现第一个有1个菱形,第二个有1+4=5个菱形,第三个有1+4+9=14个菱形,…第n个有:1+4+9+…+n2=n(n+1)(2n+1)个菱形,第7个有1+4+9+16+25+36+49=140个菱形,故选:D.6.(2017•德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为()A.121 B.362 C.364 D.729【思路点拨】根据题意找出图形的变化规律,根据规律计算即可.【解题过程】解:图1挖去中间的1个小三角形,图2挖去中间的(1+3)个小三角形,图3挖去中间的(1+3+32)个小三角形,…则图6挖去中间的(1+3+32+33+34+35)个小三角形,即图6挖去中间的364个小三角形,故选:C.7.(2017•绵阳)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则+++…+的值为()A.B.C. D.【思路点拨】首先根据图形中“●”的个数得出数字变化规律,进而求出即可.【解题过程】解:a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+2);∴+++…+=++++…+=(1﹣+﹣+﹣+﹣+…+﹣)=(1+﹣﹣)=,故选C.8.(2017•天门模拟)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2017秒时,点P的坐标是()A.(2016,0)B.(2017,1)C.(2017,﹣1) D.(2018,0)【思路点拨】以时间为点P的下标,根据半圆的半径以及部分点P的坐标可找出规律“P4n (n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1)”,依此规律即可得出第2017秒时,点P的坐标.【解题过程】解:以时间为点P的下标.观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,﹣1),P4(4,0),P5(5,1),…,∴P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1).∵2017=504×4+1,∴第2017秒时,点P的坐标为(2017,1).故选B9.(2017•宛城区一模)如图,半径为2的正六边形ABCDEF的中心在坐标原点O,点P从点B出发,沿正六边形的边按顺时针方向以每秒2个单位长度的速度运动,则第2017秒时,点P的坐标是()A.(1,)B.(﹣1,﹣)C.(1,﹣)D.(﹣1,)【思路点拨】由于2017=6×336+1,则可判断第2017秒时,点P运动到点C,作CH⊥x轴于H,如图,根据正六边形的性质得到OB=BC=1,∠BCD=120°,所以∠BCH=30°,再通过解直角三角形求出CH和BH,然后写出C点坐标即可.【解题过程】解:∵2017=6×336+1,∴第2017秒时,点P运动到点C,作CH⊥x轴于H,如图,∵六边形ABCDEF是半径为1的正六边形,∴OB=BC=2,∠BCD=120°,∴∠BCH=30°,在Rt△BCH中,BH=BC=1,CH=BH=,∴OH=OB﹣BH=1,∴C点坐标为(1,﹣),∴第2017秒时,点P的坐标是(1,﹣).故选C.10.(2017•河南模拟)在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017D2017的边长是()A.()2016B.()2017C.()2016D.()2017【思路点拨】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解题过程】解:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2===()1,同理可得:B3C3==()2,故正方形A n B n C n D n的边长是:()n﹣1,则正方形A2017B2017C2017D2017的边长为:()2016,故选:C.二、填空题11.(2017•郴州)已知a1=﹣,a2=,a3=﹣,a4=,a5=﹣,…,则a8=________.【思路点拨】根据已给出的5个数即可求出a8的值;【解题过程】解:由题意给出的5个数可知:a n=当n=8时,a8=故答案为:12.(2017•巴中)观察下列各式:…请你将发现的规律用含自然数n(n≥1)的代数式表达出来________.【思路点拨】观察思路点拨可得:=(1+1);=(2+1)……则将此题规律用含自然数n(n≥1)的等式表示出来即可.【解题过程】∵=(1+1);=(2+1);∴=(n+1)(n≥1).故答案为:=(n+1)(n≥1).13.(2017•黑龙江)观察下列图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;….则第2017个图形中有________个三角形.【思路点拨】结合图形数出前三个图形中三角形的个数,发现规律:后一个图形中三角形的个数总比前一个三角形的个数多4.【解题过程】解:第1个图形中一共有1个三角形,第2个图形中一共有1+4=5个三角形,第3个图形中一共有1+4+4=9个三角形,…第n个图形中三角形的个数是1+4(n﹣1)=4n﹣3,当n=2017时,4n﹣3=8065,故答案为:8065.14.(2017•宁波)如图,用同样大小的黑色棋子按如图所示的规律摆放:则第⑦个图案有________个黑色棋子.【思路点拨】由题可得出①②③④的黑色棋子,从而观察出规律得出答案.【解题过程】解:由题可知:图①黑色棋子为:1=0+1+0.图②黑色棋子为:4=1+2+1.图③黑色棋子为:7=2+3+2.图④黑色棋子为:10=3+4+3.∴图⑤黑色棋子为:13=4+5+4.图⑥黑色棋子为:16=5+6+5.图⑦黑色棋子为:19=6+7+6.故答案为19.15.(2017•咸宁)如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF∥x 轴,将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°.当n=2017时,顶点A 的坐标为________.【思路点拨】将正六边形ABCDEF绕原点O顺时针旋转2017次时,点A所在的位置就是原F点所在的位置.【解题过程】解:2017×60°÷360°=336…1,即与正六边形ABCDEF绕原点O顺时针旋转1次时点A的坐标是一样的.当点A按顺时针旋转60°时,与原F点重合.连接OF,过点F作FH⊥x轴,垂足为H;由已知EF=4,∠FOE=60°(正六边形的性质),∴△OEF是等边三角形,∴OF=EF=4,∴F(2,2),即旋转2017后点A的坐标是(2,2),故答案是:(2,2).16.(2017•营口)如图,点A1(1,)在直线l1:y= x上,过点A1作A1B1⊥l1交直线l2:y= x于点B1,A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A n B n C n的面积为________.(用含n的代数式表示)【思路点拨】由点A1的坐标可得出OA1=2,根据直线l1、l2的解析式结合解直角三角形可求出A1B1的长度,由等边三角形的性质可得出A1A2的长度,进而得出OA2=3,通过解直角三角形可得出A2B2的长度,同理可求出A n B n的长度,再根据等边三角形的面积公式即可求出第n个等边三角形A n B n C n的面积.【解题过程】解:∵点A1(1,),∴OA1=2.∵直线l1:y= x,直线l2:y= x,∴∠A1OB1=30°.在Rt△OA1B1中,OA1=2,∠A1OB1=30°,∠OA1B1=90°,∴A1B1= OB1,∴A1B1=.∵△A1B1C1为等边三角形,∴A1A2= A1B1=1,∴OA2=3,A2B2=.同理,可得出:A3B3=,A4B4=,…,A n B n=,∴第n个等边三角形A n B n C n的面积为×A n B n2=.故答案为:.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学专题复习——探索规律一、选择题1.(2018年浙江省衢州市)32,33和34分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和,36也能按此规律进行“分裂”,则36“分裂”出的奇数中最大的是( ) A 、41 B 、39 C 、31 D 、292.(2018湖南益阳)有一种石棉瓦(如图4),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n 为正整数)块石棉瓦覆盖的宽度为 A. 60n 厘米 B. 50n 厘米 C. (50n+10)厘米 D. (60n-10)厘米3.(2018江苏宿迁)用边长为1的正方形覆盖33 的正方形网格,最多覆盖边长为1的正方形网格(覆盖一部分就算覆盖)的个数是( )A.2 B.4 C.5 D.64.(2018 四川 泸州)两个完全相同的长方体的长、宽、高分别是5cm ,4cm ,3cm ,把它们按不同方式叠放在一起分别组成新的长方体,在这些新长方体中表面积最大的是( )A .2158cm B .2176cm C .2164cm D .2188cm5.(2018 湖南 益阳)如图1,骰子是一个质量均匀的小正方体,它的六个面上分别刻有1~6 个点.,小明仔细观察骰子,发现任意相对两面的点数和都相等. 这枚骰子向上的一面的点数是5,它的对面的点数是( )A. 1B. 2C. 3D. 66.(2018 河北)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90,则完成一次变换.图2,图3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( )323 5339 11341315 17 197A .上B .下C .左D .右7.(2018山东德州)将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.( )将纸片展开,得到的图形是8.(2018山东德州)只用下列图形不能镶嵌的是( ) A .三角形B .四边形C .正五边形D .正六边形9.(2018黑龙江黑河)为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则搭建方案共有( ) A .8种 B .9种 C .16种 D .17种10.(2018 山东 聊城)如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是( ) A .54个 B .90个 C .102个 D .114个 11.(2018 台湾)有一长条型链子,其外型由边长为1公分的正六边形排列而成。

图表示此链之任一段花纹,其中每个黑色六边形与6个白色六边形相邻。

若链子上有35个黑色六边形,则此链子共有几个白色六边形?( )(A) 140 (B) 142 (C) 210 (D) 212 。

12.(2018 台湾) 小嘉全班在操场上围坐成一圈。

若以班长为第1人,依顺时针方向算人数,小嘉是第17人;若以班长为第1人,依逆时针方向算人数,小嘉是第21人。

求小嘉班上共有多少人?( )(A) 36 (B) 37 (C) 38 (D) 39图1 图2图3…A .B .C .D .13.(2018湖北孝感)一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒移动一个单位,那么第35秒时质点所在位置的坐标是( ) A.(4,0) B.(5,0) C.(0,5) D.(5,5)14.(2018贵州贵阳)根据如图2所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )A .3nB .3(1)n n +C .6nD .6(1)n n +15.(2018湖北鄂州)因为1sin 302=,1sin 2102=-,所以sin 210sin(18030)sin 30=+=-;因为2sin 45=,2sin 225=-,所以sin 225sin(18045)sin 45=+=-,由此猜想,推理知:一般地当α为锐角时有sin(180)sin αα+=-,由此可知:sin 240=( )A .12-B .2-C .3-D .3-二、填空题1.(2018年陕西省)搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②,图③的方式串起来搭建,则串7顶这样的帐篷需要 根钢管.2.(2018年江苏省连云港市)如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,,依此类推,则由正n 边形“扩展”而来的多边形的边数为 .(图2)……(1)(2) (3)图1 图2 图3① ② ③ ④……3. (2018年四川省宜宾市)如图,将一列数按图中的规律排列下去,那么问号处应填的数字为4.(08山东日照)将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n=(用含n的代数式表示).5、(2018淅江金华)如图,第(1)个多边形由正三角形"扩展"而来,边数记为α3, .第(2)个多边形由正方形"扩展"而来,边数记为a4,…,依此类推,由正 n边形"扩展"而来的多边形的边数记为a n(n≥3).则a5的值是 ;当的结果是600197时,n的值为。

6.(2018山东烟台)表2是从表1中截取的一部分,则_____.a=7.(2018山东威海)如图,在平面直角坐标系中,点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点;点A2是以原点O为圆心,半径为3的圆与过点(0,2)且平行于x轴的直线l2的一个交点;……按照这样的规律进行下去,点A n的坐标为.所剪次数 1 2 3 4 …n正三角形个数 4 7 10 13 …a n ①①②③④⑥⑨○19○?naaaa1111543++++8.(2018年山东省临沂市)如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,……,如此作下去,若OA =OB =1,则第n 个等腰直角三角形的面积S n =________。

9.(2018年山东省潍坊市)下面每个图是由若干个圆点组成的形如四边形的图案,当每条边(包括顶点)上有n (n ≥2)个圆点时,图案的圆点数为S n 按此规律推算S n 关于n 的关系式为:__________________.10.(2018浙江杭州)如图,一个42⨯的矩形可以用3种不同的方式分割成2或5或8个小正方形,那么一个53⨯的矩形用不同的方式分割后,小正方形的个数可以是 .11.(2018年辽宁省十二市)如图6,观察下列图案,它们都是由边长为1cm 的小正方形按一定规律拼接而成的,依此规律,则第16个图案中的小正方形有 个.图612.(2018年浙江省绍兴市)如图中的圆均为等圆,且相邻两圆外切,圆心连线构成正三角形,或或?图案1图案2图案3 图案4……B 1B 2A 1A OB(第7题)xyOA 1A 2A 3 l 2 l 1l 3 1 4 2 3记各阴影部分面积从左到右依次为1S ,2S ,3S ,…,n S ,则124:S S 的值等于 .13.(2018年沈阳市)观察下列图形的构成规律,根据此规律,第8个图形中有 个圆.14.2018年乐山市)如图(9),在直角坐标系中,一直线l 经过点(3,1)M 与x 轴,y 轴分别交于A 、B 两点,且MA =MB ,则△ABO 的内切圆1o 的半径1r = ;若2o 与1o 、l 、y 轴分别相切,3o 与2o 、l 、y 轴分别相切,…,按此规律,则20080的半径2008r =15.(2018北京)一组按规律排列的式子:2b a -,53b a ,83b a-,114b a ,…(0ab ≠),其中第7个式子是 ,第n 个式子是 (n 为正整数).16.(2018湖北咸宁)观察右表,依据表格数据排列的规律,数2 008在表格中出现的次数共有 次.17.(2018湖北鄂州)下列给出的一串数:2,5,10,17,26,?,50.仔细观察后回答:缺少的数?是 .18.(2018 湖北 十堰)观察下面两行数: 第1个 ……第2个 第3个 第4个(n +1)个图1 2 3 4 …2 4 6 8 …3 6 9 12 …4 8 12 16 … … … … … 0y AB MO OO根据你发现的规律,取每行数的第10个数,求得它们的和是(要求写出最后的计算结果) .19.(2018山东济南)数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do 、mi 、so ,研究15、12、10这三个数的倒数发现:121101151121-=-.我们称15、12.10这三个数为一组调和数.现有一组调和数:x 、5、3(x>5).则x 的值是_____________.20.(2018江苏宿迁)对于任意的两个实数对),(b a 和),(d c ,规定:当d b c a ==,时,有),(b a =),(d c ;运算“⊗”为:),(),(),(bd ac d c b a =⊗;运算“⊕”为:),(),(),(d b c a d c b a ++=⊕.设p 、q 都是实数,若)4,2(),()2,1(-=⊗q p ,则_______),()2,1(=⊕q p .21.(2018 湖北 恩施)将杨辉三角中的每一个数都换成分数 , 得到一个如图4所示的分数三角形,称莱布尼茨三角形.若 用有序实数对(m,n)表示第m行,从左到右第n个数, 如(4,3)表示分数121.那么(9,2)表示的分数 是 .22.(2018泰州市)让我们轻松一下,做一个数字游戏:第一步:取一个自然数n 1=5 ,计算n 12+1得a 1;第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2;第三步:算出a 2的各位数字之和得n 3,再计算n 23+1得a 3;…………依此类推,则a 2018=_______________.23.根据图中数字的规律,在最后一个图形中填空.24.(2018山西省)如图所示的图案是由正六边形密铺而成,黑色正六边形周围第一层有六个白色正六边形,则第n 层有 白色正六边形。

相关文档
最新文档