2019年北京市中考数学压轴试题(一)及答案
北京市各区2019届中考数学一模试卷精选汇编压轴题专题
压轴题专题东城区28.给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点 P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的示意图.在平面直角坐标系xOy中,⊙O的半径为1.(1)如图2,22M⎛⎫⎪⎪⎝⎭,22N⎛-⎝⎭.在A(1,0),B(1,1),)C三点中, 是线段MN关于点O的关联点的是;(2)如图3, M(0,1),N122⎛⎫-⎪⎪⎝⎭,点D是线段MN关于点O的关联点.①∠MDN的大小为°;②在第一象限内有一点E),m,点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;③点F在直线23y x=-+上,当∠MFN≥∠MDN时,求点F的横坐标Fx的取值范围.28. 解:(1)C ; --------------2分 (2)① 60°;② △MNE 是等边三角形,点E 的坐标为);--------------5分③ 直线2y =+交 y 轴于点K (0,2),交x 轴于点()T 0.∴2OK =,OT =∴60OKT ∠=︒.作OG ⊥KT 于点G ,连接MG .∵()M 0,1, ∴OM =1.∴M 为OK 中点 . ∴ MG =MK =OM =1.∴∠MGO =∠MOG =30°,OG ∴3.2G ⎫⎪⎪⎝⎭, ∵120MON ∠=︒, ∴ 90GON ∠=︒.又OG ,1ON =, ∴30OGN ∠=︒. ∴60MGN ∠=︒.∴G 是线段MN 关于点O 的关联点.经验证,点)E在直线2y x =+上. 结合图象可知, 当点F 在线段GE 上时 ,符合题意. ∵G F E x x x ≤≤,∴F x 分 西城区28.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQk CQ+=,则称点A (或点B )是⊙C 的“k 相关依附点”,特别地,当点A 和点B 重合时,规定AQ BQ =,2AQ k CQ =(或2BQCQ). 已知在平面直角坐标系xOy 中,(1,0)Q -,(1,0)C ,⊙C 的半径为r .(1)如图,当r①若1(0,1)A 是⊙C 的“k 相关依附点”,则k 的值为__________.②2(1A +是否为⊙C 的“2相关依附点”.答:__________(填“是”或“否”). (2)若⊙C 上存在“k 相关依附点”点M , ①当1r =,直线QM 与⊙C 相切时,求k 的值.②当k =r 的取值范围.(3)若存在r的值使得直线y b =+与⊙C 有公共点,且公共点时⊙C依附点”,直接写出b 的取值范围.x【解析】(1(2)①如图,当1r =时,不妨设直线QM 与⊙C 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM CM ⊥,x∵(1,0)Q -,(1,0)C ,1r =, ∴2CQ =,1CM =, ∴MQ =此时2MQk CQ== ②如图,若直线QM 与⊙C 不相切,设直线QM 与⊙C 的另一个交点为N (不妨设QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,x∴()222MQ NQ MN NQ NQ ND NQ DQ +=++=+=, ∵2CQ =, ∴2MQ NQ DQk DQ CQ CQ+===,∴当k =DQ =此时1CD =, 假设⊙C 经过点Q ,此时2r =, ∵点Q 早⊙C 外,∴r 的取值范围是12r <≤. (3)b <<. 海淀区28.在平面直角坐标系xOy 中,对于点P 和C ,给出如下定义:若C 上存在一点T 不与O 重合,使点P 关于直线OT 的对称点'P 在C 上,则称P 为C 的反射点.下图为C 的反射点P 的示意图.(1)已知点A 的坐标为(1,0),A 的半径为2,①在点(0,0)O ,(1,2)M ,(0,3)N -中,A 的反射点是____________;②点P 在直线y x =-上,若P 为A 的反射点,求点P 的横坐标的取值范围;(2)C 的圆心在x 轴上,半径为2,y 轴上存在点P 是C 的反射点,直接写出圆心C 的横坐标x 的取值范围.28.解(1)①A 的反射点是M ,N . ………………1分②设直线y x =-与以原点为圆心,半径为1和3的两个圆的交点从左至右依次为D ,E ,F ,G ,过点D作⊥DH x 轴于点H ,如图.可求得点D的横坐标为. 同理可求得点E ,F ,G的横坐标分别为2,2,2. 点P 是A 的反射点,则A 上存在一点T ,使点P 关于直线OT 的对称点'P 在A 上,则'OP OP =.∵1'3≤≤OP ,∴13≤≤OP . 反之,若13≤≤OP ,A 上存在点Q ,使得OP OQ =,故线段PQ 的垂直平分线经过原点,且与A 相交.因此点P 是A 的反射点.∴点P 的横坐标x的取值范围是≤x -x 4分(2)圆心C 的横坐标x 的取值范围是44≤≤x -. ………………7分 丰台区28.对于平面直角坐标系xOy 中的点M 和图形1W ,2W 给出如下定义:点P 为图形1W 上一点,点Q 为图形2W 上一点,当点M 是线段PQ 的中点时,称点M 是图形1W ,2W 的“中立点”.如果点P (x 1,y 1),Q (x 2,y 2),那么“中立点”M 的坐标为⎪⎭⎫⎝⎛++2,22121y y x x . 已知,点A (-3,0),B (0,4),C (4,0). (1)连接BC ,在点D (12,0),E (0,1),F (0,12)中,可以成为点A 和线段BC 的“中立点”的是____________;(2)已知点G (3,0),⊙G 的半径为2.如果直线y = - x + 1上存在点K 可以成为点A 和⊙G 的“中立点”,求点K 的坐标;(3)以点C 为圆心,半径为2作圆.点N 为直线y = 2x + 4上的一点,如果存在点N ,使得y 轴上的一点可以成为点N 与⊙C 的“中立点”,直接写出点N 的横坐标的取值范围.28.解:2分(2)点A 和⊙G 的“中立点”在以点O 为圆心、半径为1的圆上运动. 因为点K 在直线y =- x +1上, 设点K 的坐标为(x ,- x +1),则x 2+(- x +1)2=12,解得x 1=0,x 2=1.所以点K 的坐标为(0,1)或(1,0). ………5分(3)(说明:点N 与⊙C 的“中立点”在以线段NC 的中点P 为圆心、半径为1的圆上运动.圆P 与y 轴相切时,符合题意.) 所以点N 的横坐标的取值范围为-6≤x N ≤-2. ………8分石景山区28.对于平面上两点A ,B ,给出如下定义:以点A 或B 为圆心,AB 长为半径的圆称为点A ,B 的“确定圆”.如图为点A ,B 的“确定圆”的示意图....(1)已知点A 的坐标为(1,0)-,点B 的坐标为(3,3), 则点A ,B 的“确定圆”的面积为_________;(2)已知点A 的坐标为(0,0),若直线y x b =+上只存在一个点B ,使得点A ,B 的“确定圆”的面积为9π,求点B 的坐标;(3)已知点A 在以(0)P m ,为圆心,以1为半径的圆上,点B 在直线y = 若要使所有点A ,B 的“确定圆”的面积都不小于9π,直接写出m 的取值范围.28.解:(1)25π; ………………… 2分 (2)∵直线y x b =+上只存在一个点B ,使得点,A B 的“确定圆”的面积 为9π,∴⊙A 的半径3AB =且直线y x b =+与⊙A 相切于点B ,如图,xy xy∴AB CD ⊥,45DCA ∠=°.①当0b >时,则点B 在第二象限. 过点B 作BE x ⊥轴于点E ,∵在Rt BEA ∆中,45BAE ∠=°,3AB =,∴2BE AE ==.∴22B-(,. ②当0b <时,则点'B 在第四象限.同理可得'22B -().综上所述,点B的坐标为22-(,或22-(. ………………… 6分(3)5m -≤或11m ≥. ………………… 8分 朝阳区28. 对于平面直角坐标系xOy 中的点P 和线段AB ,其中A (t ,0)、B (t +2,0)两点,给出如下定义:若在线段AB 上存在一点Q ,使得P ,Q 两点间的距离小于或等于1,则称P 为线段AB 的伴随点.(1)当t =-3时,①在点P 1(1,1),P 2(0,0),P 3(-2,-1)中,线段AB 的伴随点是 ; ②在直线y =2x +b 上存在线段AB 的伴随点M 、N , 且MN =求b 的取值范围;(2)线段AB 的中点关于点(2,0)的对称点是C ,将射线CO 以点C 为中心,顺时针旋转30°得到射线l ,若射线l 上存在线段AB 的伴随点,直接写出t 的取值范围.28. 解:(1)①线段AB 的伴随点是: 23,P P . …………………2分②如图1,当直线y =2x +b 经过点(-3,-1)时,b =5,此时b 取得最大值.…………………………………………4分如图2,当直线y =2x +b 经过点(-1,1)时,b =3,此时b 取得最小值.……………………………………………5分∴ b 的取值范围是3≤b ≤5. ……………………………………6分(2)t 的取值范围是-12.2t ≤≤…………………………………………8分燕山区28.在Rt △ABC 中, ∠ACB =90°,CD 是AB 边的中线,DE ⊥BC 于E , 连结CD ,点P 在射线图1图2CB 上(与B ,C 不重合).(1)如果∠A =30°①如图1,∠DCB = °②如图2,点P 在线段CB 上,连结DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连结BF ,补全图2猜想CP 、BF 之间的数量关系,并证明你的结论;( 2 )如图3,若点P 在线段CB 的延长线上,且∠A =α (0°<α<90°) ,连结DP , 将线段DP 绕点逆时针旋转 α2得到线段DF ,连结BF , 请直接写出DE 、BF 、BP 三者的数量关系(不需证明).28.解:(1) ①∠DCB=60°…………………………………1′②补全图形CP=BF …………………………………3′△ DCP ≌△ DBF …………………………………6′(2)BF-BP=2DE ⋅tan α…………………………………8′门头沟区28. 在平面直角坐标系xOy 中,点M 的坐标为11(,)x y ,点N 的坐标为22(,)x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使MNP ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的 “和谐点”. (1)已知点A 的坐标为)3,1(,①若点B 的坐标为)3,3(,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标;②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式. (2)⊙O 的半径为r ,点D (1,4)为点E (1,2)、F ),(n m 的“和谐点”,若使得△DEF 与⊙O有交点,画出示意图直接.....写出半径r 的取值范围.28.(本小题满分8分)解: (1)①)5,3()5,1(21C C 或. ……………………………………………2分 ②由图可知,B )3,5( ∵A (1,3) ∴AB =4∵ABC ∆为等腰直角三角形 ∴BC =4∴)1,5()7,5(21-C C 或设直线AC 的表达式为(0)y kx b k =+≠ 当)7,5(1C 时,⎩⎨⎧=+=+753b k b k ⎩⎨⎧==∴21b k2+=∴x y …………………………………3分 当)1,5(2-C 时,⎩⎨⎧-=+=+153b k b k ⎩⎨⎧=-=∴41b k 4+-=∴x y …………………………………4分 ∴综上所述,直线AC 的表达式是2+=x y 或4+-=x y(2)当点F 在点E 左侧时:大兴区28.在平面直角坐标系xOy 中,过y 轴上一点A 作平行于x 轴的直线交某函数图象于点D ,点P 是x 轴上一动点,连接D P ,过点P 作DP 的垂线交y 轴于点E (E 在线段OA 上,E 不与点O 重合),则称∠DPE 为点D ,P ,E 的“平横纵直角”.图1为点D ,P ,E 的“平横纵直角”的示意图.图图2如图2,在平面直角坐标系xOy 中,已知二次函数图象与y 轴交于点(0,)F m ,与x 轴分别交于点B (3-,0),C (12,0). 若过点F 作平行于x 轴的直线交抛物线于点N .(1)点N 的横坐标为 ;(2)已知一直角为点,,N M K 的“平横纵直角”, 若在线段OC 上存在不同的两点1M 、2M ,使相应的点1K 、2K 都与点F 重合,试求m 的取值范围;(3)设抛物线的顶点为点Q ,连接BQ 与FN 交于点H ,当4560QHN ︒≤≤︒∠时,求m 的取值范围.28.(1)9 ………………………………………………………………… 1分 (2)方法一:MK ⊥MN ,∴要使线段OC 上存在不同的两点M 1、M 2,使相应的点K 1、K 2都与点F 重合,也就是使以FN 为直径的圆与OC 有两个交点,即m r >.29=r ,29<∴m . 又0>m , 290<<∴m . ………………………………………………4分 方法二:0>m ,∴点K 在x 轴的上方.过N 作NW ⊥OC 于点W ,设OM x =,OK y =, 则 CW =OC -OW =3,WM =9x -. 由△MOK ∽△NWM , 得,∴9y x x m=-. ∴x m x m y 912+-=.当m y =时,219m x x m m=-+, 化为0922=+-m x x . 当△=0,即22940m -=, 解得92m =时, 线段OC 上有且只有一点M ,使相应的点K 与点F 重合.0>m ,∴ 线段OC 上存在不同的两点M 1、M 2,使相应的点K 1、K 2都与点F 重合时,m 的取值范围为290<<m . (4)分(3)设抛物线的表达式为:)12)(3(-+=x x a y (a ≠0),又 抛物线过点F (0,m ),a m 36-=∴.m a 361-=∴.m x m x x m y 1625)29(361)12)(3(3612+--=-+-=∴. …………………………………5分过点Q 做QG ⊥x 轴与FN 交于点RFN ∥x 轴 ∴∠QRH =90°tan BG BQG QG∠=,2516QG m =,152BG =∴,又4560QHN ︒≤∠≤︒,∴3045BQG ︒≤∠≤︒∴当30BQG ∠=︒时,可求出3524=m ,………………………………… 6分 当45BQG ∠=︒时,可求出524=m . ……………………………………7分m ∴的取值范围为245m ≤≤. …………………………………8分 平谷区28. 在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y ≠,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”.(1)已知点A (2,0),B (),则以AB 为边的“坐标菱形”的最小内角为_______; (2)若点C (1,2),点D 在直线y =5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O ,点P 的坐标为(3,m ) .若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m 的取值范围.28.解:(1)60; ····························· 1 (2)∵以CD 为边的“坐标菱形”为正方形,∴直线CD 与直线y =5的夹角是45°. 过点C 作CE ⊥DE 于E .∴D (4,5)或()2,5-. ············ 3 ∴直线CD 的表达式为1y x =+或3y x =-+. ·· 5(3)15m ≤≤或51m -≤≤-. (7)怀柔区28. P 是⊙C 外一点,若射线..PC 交⊙C 于点A ,B 两点,则给出如下定义:若0<PAPB ≤3,则点P 为⊙C 的“特征点”. (1)当⊙O 的半径为1时.①在点P 1(2,0)、P 2(0,2)、P 3(4,0)中,⊙O 的“特征点”是 ; ②点P 在直线y=x+b 上,若点P 为⊙O 的“特征点”.求b 的取值范围;(2)⊙C 的圆心在x 轴上,半径为1,直线y=x+1与x 轴,y 轴分别交于点M ,N ,若线段MN 上的所有点都不是...⊙C 的“特征点”,直接写出点C 的横坐标的取值范围.yx–1–2–3–4–512345–1–2–3–4–512345O28.(1)①P 1(2,0)、P 2(0,2)…………………………………………………………………2分②如图, 在y=x+b 上,若存在⊙O 的“特征点”点P ,点O 到直线y=x+b 的距离m ≤2. 直线y=x+b 1交y 轴于点E ,过O 作OH ⊥直线y=x+b 1于点H. 因为OH=2,在Rt △DOE 中,可知OE=22. 可得b 1=22.同理可得b 2=-22.∴b 的取值范围是:22 ≤b ≤22. …………………………………………………6分(2)x>3或 3-<x . …………………………………………………………………………8分延庆区28.平面直角坐标系xOy 中,点1(A x ,1)y 与2(B x ,2)y ,如果满足120x x +=,120y y -=,其中12x x ≠,则称点A 与点B 互为反等点. 已知:点C (3,4)(1)下列各点中, 与点C 互为反等点; D (-3,-4),E (3,4),F (-3,4)(2)已知点G (-5,4),连接线段CG ,若在线段CG 上存在两点P ,Q 互为反等点,求点P 的横坐标p x 的取值范围;(3)已知⊙O 的半径为r ,若⊙O 与(2)中线段CG 的两个交点互为反等点,求r 的取值范围.28.(1)F ……1分(2) -3≤p x ≤3 且p x ≠0 ……4分(3)4 < r ≤5 ……7分顺义区点P 任意引出一条射线分别与1L 、2L 交于1Q 、2Q ,总有12PQ PQ 是定值,我们称曲线1L 与2L “曲似”,定值12PQ PQ 为“曲似比”,点P 为“曲心”. 例如:如图2,以点O'为圆心,半径分别为1r 、2r (都是常数)的两个同心圆1C 、2C ,从点O'任意引出一条射线分别与两圆交于点M 、N ,因为总有12''r O M O N r =是定值,所以同心圆1C 与2C 曲似,曲似比为12r r ,“曲心”为O'.(1)在平面直角坐标系xOy 中,直线y kx =与抛物线2y x =、212y x =分别交于点A 、B ,如图3所示,试判断两抛物线是否曲似,并说明理由;(2)在(1)的条件下,以O 为圆心,OA 为半径作圆,过点B 作x 轴的垂线,垂足为C ,是否存在k 值,使⊙O 与直线BC 相切?若存在,求出k 的值;若不存在,说明理由;(3)在(1)、(2)的条件下,若将“212y x =”改为“21y x m=”,其他条件不变,当存在⊙O 与直线BC 相切时,直接写出m 的取值范围及k 与m 之间的关系式.28.(1)是.图2∴两抛物线曲似,曲似比是12.………… 3分(2)假设存在k值,使⊙O与直线BC相切.则OA=OC=2k,又∵OD=k,AD=k2,并且OD2+AD2= OA2,∴k2+(k 2)2=(2k)2.∴k=(舍负)由对称性可取k=综上,k=………………………… 6分(3)m的取值范围是m>1,k与m之间的关系式为k 2=m2-1 .……… 8分。
2019年中考数学压轴题 (1)
2019中考数学压轴题38.(2015三明)如图,已知点A 是双曲线2y x =在第一象限的分支上的一个动点,连接AO 并延长交另一分支于点B ,过点A 作y 轴的垂线,过点B 作x 轴的垂线,两垂线交于点C ,随着点A 的运动,点C 的位置也随之变化.设点C 的坐标为(m ,n ),则m ,n 满足的关系式为( )A .2n m =-B .2n m =-C .4n m =-D .4n m =-【答案】B . 【解析】试题分析:∵点C 的坐标为(m ,n ),∴点A 的纵坐标是n ,横坐标是:2n ,∴点A 的坐标为(2n ,n ),∵点C 的坐标为(m ,n ),∴点B 的横坐标是m ,纵坐标是:2m ,∴点B 的坐标为(m ,2m ),又∵22n m mn =,∴22mn m n =⋅,∴224m n =,又∵m <0,n >0,∴2mn =-,∴2n m =-,故选B .考点:反比例函数图象上点的坐标特征.39.(2015乌鲁木齐)如图,在直角坐标系xOy 中,点A ,B 分别在x 轴和y 轴,34OA OB =.∠AOB 的角平分线与OA 的垂直平分线交于点C ,与AB 交于点D ,反比例函数ky x =的图象过点C .当以CD 为边的正方形的面积为27时,k 的值是( )A.2 B.3 C.5 D.7【答案】D.考点:1.反比例函数综合题;2.综合题;3.压轴题.40.(2015重庆市)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数3yx=的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C.22.42【答案】D.【解析】试题分析:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数3yx=的图象上且纵坐标分别为3,1,∴A ,B 横坐标分别为1,3,∴AE=2,BE=2,∴AB=22,S 菱形ABCD=底×高=22×2=42,故选D .考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题. 41.(2015临沂)在平面直角坐标系中,直线2y x =-+与反比例函数1y x =的图象有唯一公共点,若直线y x b =-+与反比例函数1y x =的图象有2个公共点,则b 的取值范围是( )A .b >2B .﹣2<b <2C .b >2或b <﹣2D .b <﹣2 【答案】C .考点:反比例函数与一次函数的交点问题. 42.(2015滨州)如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转,若∠BOA 的两边分别与函数1y x =-、2y x =的图象交于B 、A 两点,则∠OAB 的大小的变化趋势为( )A.逐渐变小 B.逐渐变大 C.时大时小 D.保持不变【答案】D.考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征;3.综合题.二、填空题43.(2017云南省,第6题,3分)已知点A(a,b)在双曲线5yx=上,若a、b都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为.【答案】y=﹣5x+5或y=﹣15x+1.【分析】先根据反比例函数图象上点的坐标特征得出ab=5,由a、b都是正整数,得到a=1,b=5或a=5,b=1.再分两种情况进行讨论:当a=1,b=5;②a=5,b=1,利用待定系数法即可求解.【解析】∵点A(a,b)在双曲线5yx=上,∴ab=5,∵a、b都是正整数,∴a=1,b=5或a=5,b=1.设经过B(a,0)、C(0,b)两点的一次函数的解析式为y=mx+n.①当a=1,b=5时,由题意,得:5m nn+=⎧⎨=⎩,解得:55mn=-⎧⎨=⎩,∴y=﹣5x+5;②当a=5,b=1时,由题意,得:501m nn+=⎧⎨=⎩,解得:151mn⎧=-⎪⎨⎪=⎩,∴y=﹣15x+1.则所求解析式为y=﹣5x+5或y=﹣15x+1.故答案为:y=﹣5x+5或y=﹣15x+1.点睛:本题考查了反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式.正确求出a、b 的值是解题的关键.考点:反比例函数图象上点的坐标特征;分类讨论.44.(2017内蒙古通辽市,第17题,3分)如图,直线333--=xy与x,y轴分别交于点A,B,与反比例函数xky=的图象在第二象限交于点C,过点A作x轴的垂线交该反比例函数图象于点D.若AD=AC,则点D的坐标为.【答案】(﹣3,3.【分析】过C作CE⊥x轴于E,求得A(﹣3,0),B(0,﹣3),解直角三角形得到∠OAB=30°,求得∠CAE=30°,设D(﹣3,3k-),得到AD=3k-,AC=3k-,于是得到C(33k-,6k-),列方程即可得到结论.【解析】过C作CE⊥x轴于E,∵直线333--=xy与x,y轴分别交于点A,B,∴A(﹣3,0),B (03,∴tan∠OAB=OBOA=3,∴∠OAB=30°,∴∠CAE=30°,设D(﹣3,3k-),∵AD⊥x轴,∴AD=3k-,∵AD=AC,∴AC=3k-,∴CE=6k-,AE=3k,∴C(33k,6k-),∵C在反比例函数x k y =的图象上,∴(336k -+)•(6k-)=k ,∴k=63-,∴D (﹣3,23),故答案为:(﹣3,23).点睛:本题考查了反比例函数与一次函数的交点问题,解直角三角形,反比例函数图象上点的坐标特征,正确的点A 、B 、C 的坐标解题的关键. 考点:反比例函数与一次函数的交点问题. 45.(2017四川省成都市,第24题,4分)在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点P (x ,y ),我们把点P (1x ,1y ),称为点P 的“倒影点”,直线1y x =-+ 上有两点A 、B ,它们的倒影点A ′,B ′均在反比例函数ky x =的图象上,若AB=22,则k= .【答案】43-.【分析】设点A (a ,﹣a+1),B (b ,﹣b+1)(a <b ),则A′(1a ,11a -),B′(1b ,11b -),由AB=22可得出b=a+2,再根据反比例函数图象上点的坐标特征即可得出关于k 、a 、b 的方程组,解之即可得出k 值.【解析】设点A (a ,﹣a+1),B (b ,﹣b+1)(a <b ),则A′(1a ,11a -),B′(1b ,11b -),∵AB=22,∴b ﹣a=2,即b=a+2.∵点A′,B′均在反比例函数k y x =的图象上,∴211(1)(1)b a k a a b b =+⎧⎪⎨==⎪--⎩,解得:k=43-.故答案为:43-.点睛:本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及两点间的距离公式,根据反比例函数图象上点的坐标特征列出关于k 、a 、b 的方程组是解题的关键. 考点:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征.46.(2017山东省日照市,第16题,4分)如图,在平面直角坐标系中,经过点A 的双曲线ky x =(x>0)同时经过点B ,且点A 在点B 的左侧,点A 2,∠AOB=∠OBA =45°,则k 的值为 ..【答案】15【分析】过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定与性质得出OA=BA,∠OAB=90°,证出∠AOM=∠BAN,由AAS证明△AOM≌△BAN,得出AM=BN=2,OM=AN=2,求出B(2+2,2﹣2),得出方程(2+2)•(2﹣2)=k,解方程即可.点睛:本题考查了坐标与图形性质,全等三角形的判定与性质,等腰三角形的判定与性质等知识;本题综合性强,有一定难度.考点:反比例函数图象上点的坐标特征;综合题.47.(2017江苏省南通市,第18题,3分)如图,四边形OABC是平行四边形,点C在x轴上,反比例函数kyx=(x>0)的图象经过点A(5,12),且与边BC交于点D.若AB=BD,则点D的坐标为.【答案】(8,15 2).【分析】先根据点A(5,12),求得反比例函数的解析式为60yx=,可设D(m,60m),BC的解析式为y=125x+b,把D(m,60m)代入,可得b=60m﹣125m,进而得到BC的解析式为y=125x+60m﹣125m,据此可得OC=m﹣25m=AB,过D作DE⊥AB于E,过A作AF⊥OC于F,根据△DEB∽△AFO,可得DB=13﹣65m,最后根据AB=BD,得到方程m﹣25m=13﹣65m,进而求得D的坐标.【解析】∵反比例函数kyx=(x>0)的图象经过点A(5,12),∴k=12×5=60,∴反比例函数的解析式为60yx=,设D(m,60m),由题可得OA的解析式为y=125x,AO∥BC,∴可设BC的解析式为y=125x+b,把D(m,60m)代入,可得125m+b=60m,∴b=60m﹣125m,∴BC的解析式为y=125x+60m﹣125m,令y=0,则x=m﹣25m,即OC=m﹣25m,∴平行四边形ABCO中,AB=m﹣25m,如图所示,过D作DE⊥AB于E,过A作AF⊥OC于F,则△DEB∽△AFO,∴DB AODE AF=,而AF=12,DE=12﹣60m,22512+ =13,∴DB=13﹣65m,∵AB=DB,∴m﹣25m=13﹣65m,解得m1=5,m2=8,又∵D在A的右侧,即m>5,∴m=8,∴D的坐标为(8,152).故答案为:(8,152).点睛:本题主要考查了反比例函数图象上点的坐标特征以及平行四边形的性质的运用,解决问题的关键是作辅助线构造相似三角形,依据平行四边形的对边相等以及相似三角形的对应边成比例进行计算,解题时注意方程思想的运用.考点:反比例函数图象上点的坐标特征;平行四边形的性质;方程思想;综合题. 48.(2017江苏省宿迁市,第16题,3分)如图,矩形ABOC 的顶点O 在坐标原点,顶点B ,C 分别在x ,y 轴的正半轴上,顶点A 在反比例函数ky x =(k 为常数,k >0,x >0)的图象上,将矩形ABOC 绕点A 按逆时针方向旋转90°得到矩形AB′O′C′,若点O 的对应点O′恰好落在此反比例函数图象上,则C OBO 的值是 .【答案】51-.【分析】设A (m ,n ),则OB=m ,OC=n ,根据旋转的性质得到O′C′=n,B′O′=m,于是得到O′(m+n ,n ﹣m ),于是得到方程(m+n )(n ﹣m )=mn ,求得512m n =,(负值舍去),即可得到结论.【解析】设A (m ,n ),则OB=m ,OC=n ,∵矩形ABOC 绕点A 按逆时针反向旋转90°得到矩形AB′O′C′,∴O′C′=n,B′O′=m,∴O′(m+n ,n ﹣m ),∵A ,O′在此反比例函数图象上,∴(m+n )(n ﹣m )=mn ,∴m2+mn ﹣n2=0,∴m=152-n ,∴512m n =,(负值舍去),∴C OBO 的值是512,故答案为:512.点睛:本题考查了坐标与图形变化﹣旋转,反比例函数图象上点的坐标特征,正确的理解题意是解题的关键.考点:坐标与图形变化﹣旋转;反比例函数图象上点的坐标特征;矩形的性质. 49.(2017江苏省常州市,第18题,2分)如图,已知点A 是一次函数12y x=(x ≥0)图象上一点,过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数kyx=(x>0)的图象过点B,C,若△OAB的面积为6,则△ABC的面积是.【答案】3.【分析】作辅助线,构建直角三角形,设AB=2a,根据直角三角形斜边中线是斜边一半得:BE=AE=CE=a,设A(x,12x),则B(x,kx),C(x+a,kx a+),因为B、C都在反比例函数的图象上,列方程组可得结论.【解析】如图,过C作CD⊥y轴于D,交AB于E,∵AB⊥x轴,∴CD⊥AB,∵△ABC是等腰直角三角形,∴BE=AE=CE,设AB=2a,则BE=AE=CE=a,设A(x,12x),则B B(x,kx),C(x+a,kx a+),∴11262212212OABS AB DE a xka xxka xa x∆⎧=⋅=⨯⨯=⎪⎪⎪=+⎨⎪⎪=+⎪+⎩①②③,由①得:ax=6,由②得:2k=4ax+x2,由③得:2k=2a(a+x)+x (a+x),2a2+2ax+ax+x2=4ax+x2,2a2=ax=6,a2=3,∵S△ABC=12AB•CE=12•2a•a=a2=3.故答案为:3.点睛:本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.考点:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;等腰直角三角形;反比例函数综合题.50.(2017江苏省盐城市,第16题,3分)如图,曲线l是由函数6yx=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(42-,42),B(22,22)的直线与曲线l相交于点M、N,则△OMN的面积为.【答案】8.【分析】由题意A(42-,42),B(22,22),可知OA⊥OB,建立如图新的坐标系(OB为x′轴,OA为y′轴,利用方程组求出M、N的坐标,根据S△OMN=S△OBM﹣S△OBN计算即可.【解析】∵A(42-,42),B(22,22),∴OA⊥OB,建立如图新的坐标系(OB为x′轴,OA 为y′轴.在新的坐标系中,A(0,8),B(4,0),∴直线AB解析式为y′=﹣2x′+8,由'2'86''y xyx=-+⎧⎪⎨=⎪⎩,解得'1'6xy=⎧⎨=⎩或'3'2xy=⎧⎨=⎩,∴M(1.6),N(3,2),∴S△OMN=S△OBM﹣S△OBN=12×46﹣12×42=8,故答案为:8.点睛:本题考查坐标与图形的性质、反比例函数的性质等知识,解题的关键是学会建立新的坐标系解决问题,属于中考填空题中的压轴题.考点:坐标与图形变化﹣旋转;反比例函数系数k的几何意义.51.(2017江苏省连云港市,第15题,3分)设函数3yx=与y=﹣2x﹣6的图象的交点坐标为(a,b),则12a b+的值是.【答案】﹣2.【分析】由两函数的交点坐标为(a,b),将x=a,y=b代入反比例解析式,求出ab的值,代入一次函数解析式,得出2a+b的值,将所求式子通分并利用同分母分式的加法法则计算后,把ab及2a+b 的值代入即可求出值.点睛:此题考查了反比例函数与一次函数的交点问题,其中将x=a,y=b代入两函数解析式得出关于a 与b的关系式是解本题的关键.考点:反比例函数与一次函数的交点问题.52.(2017江苏省连云港市,第16题,3分)如图,已知等边三角形OAB与反比例函数kyx=(k>0,x>0)的图象交于A、B两点,将△OAB沿直线OB翻折,得到△OCB,点A的对应点为点C,线段CB交x轴于点D,则BDDC的值为.(已知sin15°=62-)【答案】31 2.【分析】作辅助线,构建直角三角形,根据反比例函数的对称性可知:直线y=x,求出∠BOF=15°,根据15°的正弦列式可以表示BF的长,证明△BDF∽△CDN,可得结论.【解析】如图,过O作OM⊥x轴于M,∵△AOB是等边三角形,∴AM=BM,∠AOM=∠BOM=30°,∴A、B关于直线OM对称,∵A、B两点在反比例函数kyx=(k>0,x>0)的图象上,且反比例函数关于直线y=x对称,∴直线OM的解析式为:y=x,∴∠BOD=45°﹣30°=15°,过B作BF⊥x轴于F,过C作CN⊥x轴于N,sin∠BOD=sin15°=BFOB=62-,∵∠BOC=60°,∠BOD=15°,∴∠CON=45°,∴△CNO是等腰直角三角形,∴CN=ON,设CN=x,则OC=2x,∴OB=2x,∴2x =62-,∴BF=(31)2x-,∵BF⊥x轴,CN⊥x轴,∴BF∥CN,∴△BDF∽△CDN,∴BD BFCD CN==(31)2xx-=312-,故答案为:312-.点睛:本题考查了反比例函数与一次函数的交点问题、等边三角形的性质、等腰直角三角形的性质和判定、三角函数、三角形相似的性质和判定、翻折的性质,明确反比例函数关于直线y=x对称是关键,在数学题中常设等腰直角三角形的直角边为未知数x,2倍表示斜边的长,从而解决问题.考点:反比例函数与一次函数的交点问题;等边三角形的性质;翻折变换(折叠问题);解直角三角形.53.(2017浙江省宁波市,第17题,4分)已知△ABC的三个顶点为A(﹣1,﹣1),B(﹣1,3),C(﹣3,﹣3),将△ABC向右平移m(m>0)个单位后,△ABC某一边的中点恰好落在反比例函数3 yx =的图象上,则m的值为.【答案】4或1 2.【分析】求得三角形三边中点的坐标,然后根据平移规律可得AB边的中点(﹣1,1),BC边的中点(﹣2,0),AC边的中点(﹣2,﹣2),然后分两种情况进行讨论:一是AB边的中点在反比例函数3yx=的图象上,二是AC边的中点在反比例函数3yx=的图象上,进而算出m的值.【解析】∵△ABC的三个顶点为A(﹣1,﹣1),B(﹣1,3),C(﹣3,﹣3),∴AB边的中点(﹣1,1),BC边的中点(﹣2,0),AC边的中点(﹣2,﹣2),∵将△ABC向右平移m(m>0)个单位后,∴AB边的中点平移后的坐标为(﹣1+m,1),AC边的中点平移后的坐标为(﹣2+m,﹣2).∵△ABC某一边的中点恰好落在反比例函数3yx=的图象上,∴﹣1+m=3或﹣2×(﹣2+m)=3,∴m=4或m=12.故答案为:4或12.点睛:此题主要考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.考点:反比例函数图象上点的坐标特征;坐标与图形变化﹣平移;分类讨论.54.(2017浙江省温州市,第15题,5分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B 在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数kyx=(k≠0)的图象恰好经过点A′,B,则k的值为.【答案】43.【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(12m,32m),列方程即可得到结论.【解析】∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD 关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=12m,A′E=3m,∴A′(12m,3m),∵反比例函数kyx=(k≠0)的图象恰好经过点A′,B,∴12m•3m=m,∴m=43,∴k=43.故答案为:43.点睛:本题考查了反比例函数图象上点的坐标特征,矩形的性质,轴对称的性质,解直角三角形,正确的作出辅助线是解题的关键.考点:反比例函数图象上点的坐标特征;矩形的性质;轴对称的性质;综合题.55.(2017浙江省湖州市,第16题,4分)如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数1yx=和9yx=在第一象限的图象于点A,B,过点B作 BD⊥x轴于点D,交1yx=的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是.【答案】k=377或155.【分析】根据一次函数和反比例函数的解析式,即可求得点A、B、C的坐标(用k表示),再讨论①AB=BC,②AC=BC,即可解题.点睛:本题考查了点的坐标的计算,考查了一次函数和反比例函数交点的计算,本题中用k表示点A、B、C坐标是解题的关键.考点:反比例函数与一次函数的交点问题;等腰三角形的性质;分类讨论;综合题.56.(2017金华,第15题,4分)如图,已知点A (2,3)和点B (0,2),点A 在反比例函数ky x =的图象上,做射线AB ,再将射线AB 绕点A 按逆时针方向旋转45°,交反比例函数图象于点C ,则点C 的坐标为 .【答案】(﹣1,﹣6).【分析】先过A 作AE ⊥x 轴于E ,以AE 为边在AE 的左侧作正方形AEFG ,交AB 于P ,根据直线AB 的解析式为122y x =+,可得PF=32,将△AGP 绕点A 逆时针旋转90°得△AEH ,构造△ADP ≌△ADH ,再设DE=x ,则DH=DP=x+32,FD=1+2﹣x=3﹣x ,在Rt △PDF 中,根据PF2+DF2=PD2,可得方程22233()(3)()22x x +-=+,进而得到D (1,0),即可得出直线AD 的解析式为y=3x ﹣3,最后解方程组即可得到D 点坐标.【解析】如图所示,过A 作AE ⊥x 轴于E ,以AE 为边在AE 的左侧作正方形AEFG ,交AB 于P ,根据点A (2,3)和点B (0,2),可得直线AB 的解析式为122y x =+,由A (2,3),可得OF=1,当x=﹣1时,y=﹣12+2=32,即P (﹣1,32),∴PF=32,将△AGP 绕点A 逆时针旋转90°得△AEH ,则△ADP ≌△ADH ,∴PD=HD ,PG=EH=32,设DE=x ,则DH=DP=x+32,FD=1+2﹣x=3﹣x ,Rt △PDF 中,PF2+DF2=PD2,即22233()(3)()22x x +-=+,解得x=1,∴OD=2﹣1=1,即D (1,0),根据点A (2,3)和点D (1,0),可得直线AD 的解析式为y=3x ﹣3,解方程组:336y x y x =-⎧⎪⎨=⎪⎩,可得:23x y =⎧⎨=⎩或16x y =-⎧⎨=-⎩,∴C (﹣1,﹣6),故答案为:(﹣1,﹣6).点睛:本题主要考查了反比例函数与一次函数图象交点问题,以及反比例函数图象上点的坐标特征的运用,解决问题的关键是作辅助线构造正方形以及全等三角形,依据勾股定理列方程进行求解.考点:坐标与图形变化﹣旋转;反比例函数图象上点的坐标特征;反比例函数与一次函数的交点问题;综合题.57.(2017湖北省孝感市,第16题,3分)如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数kyx=(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为.【答案】512-.【分析】作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,则AG⊥BC,先求得△AOE≌△BAG,得出AG=OE=n,BG=AE=1,从而求得B(n+1,1﹣n),根据k=n×1=(n+1)(1﹣n)得出方程,解方程即可.【解析】作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB,在△AOE 和△BAG中,∵∠AOE=∠GAB,∠AOE=∠AGB,AO=AB,∴△AOE≌△BAG(AAS),∴OE=AG,AE=BG,∵点A(n,1),∴AG=OE=n,BG=AE=1,∴B(n+1,1﹣n),∴k=n×1=(n+1)(1﹣n),整理得:n2+n﹣1=0,解得:n=152-±(负值舍去),∴n=512-,∴k=512-;故答案为:512-.点睛:本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.考点:反比例函数图象上点的坐标特征;全等三角形的判定与性质.58.(2017湖北省荆州市,第18题,3分)如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数kyx=(x<0)的图象交AB于点N,S矩形OABC=32,tan∠DOE=12,则BN的长为.【答案】3.【分析】利用矩形的面积公式得到AB•BC=32,再根据旋转的性质得AB=DE,OD=OA,接着利用正切的定义得到an∠DOE=DEOD=12,所以DE•2DE=32,解得DE=4,于是得到AB=4,OA=8,同样在Rt△OCM中利用正切定义得到MC=2,则M(﹣2,4),易得反比例函数解析式为8yx=-,然后确定N点坐标,最后计算BN的长.【解析】∵S矩形OABC=32,∴AB•BC=32,∵矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,∴AB=DE,OD=OA,在Rt△ODE中,tan∠DOE=DEOD=12,即OD=2DE,∴DE•2DE=32,解得DE=4,∴AB=4,OA=8,在Rt△OCM中,∵tan∠COM=MCOC=12,而OC=AB=4,∴MC=2,∴M(﹣2,4),把M(﹣2,4)代入kyx=得k=﹣2×4=﹣8,∴反比例函数解析式为8yx=-,当x=﹣8时,88y=--=1,则N(﹣8,1),∴BN=4﹣1=3.故答案为:3.点睛:本题考查了旋转图形的坐标:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了反比例函数图象上点的坐标特征和解直角三角形.考点:坐标与图形变化﹣旋转;反比例函数系数k的几何意义;解直角三角形;综合题.59.(2017湖北省鄂州市,第15题,3分)如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=3D为AC与反比例函数kyx=的图象的交点.若直线BD将△ABC的面积分成1:2的两部分,则k的值为.【答案】﹣4或﹣8.【分析】过C作CE⊥AB于E,根据∠ABC=60°,AB=4,BC=23,可求得△ABC的面积,再根据点D将线段AC分成1:2的两部分,分两种情况进行讨论,根据反比例函数系数k的几何意义即可得到k 的值.点睛:本题主要考查了反比例函数与一次函数交点问题,以及反比例函数系数k的几何意义的运用.过反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12 |k|,且保持不变.解题时注意分类思想的运用.考点:反比例函数与一次函数的交点问题;数形结合;分类讨论.60.(2017湖南省株洲市,第17题,3分)如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数11kyx=(x>0)的图象上,顶点B在函数22kyx=(x>0)的图象上,∠ABO=30°,则12kk= .【答案】13-.【分析】设AC=a ,则OA=2a ,OC=3a ,根据直角三角形30°角的性质和勾股定理分别计算点A 和B 的坐标,写出A 和B 两点的坐标,代入解析式求出k1和k2的值,相比即可.【解析】如图,Rt △AOB 中,∠B=30°,∠AOB=90°,∴∠OAC=60°,∵AB ⊥OC ,∴∠ACO=90°,∴∠AOC=30°,设AC=a ,则OA=2a ,OC=3a ,∴A (3a ,a ),∵A 在函数11k y x =(x >0)的图象上,∴k1=3a•a=23a ,Rt △BOC 中,OB=2OC=23a ,∴BC=22OB OC -=3a ,∴B (3a ,﹣3a ),∵B在函数22k y x =(x >0)的图象上,∴k2=﹣3a 3a=233a -,∴12k k =13-;故答案为:13-.点睛:本题考查了反比例函数图象上点的特征、直角三角形30°的性质,熟练掌握直角三角形30°角所对的直角边是斜边的一半,正确写出A 、B 两点的坐标是关键. 考点:反比例函数图象上点的坐标特征;综合题.61.(2017贵州省遵义市,第18题,4分)如图,点E ,F 在函数2y x =的图象上,直线EF 分别与x轴、y 轴交于点A 、B ,且BE :BF=1:3,则△EOF 的面积是 .【答案】8 3.【分析】证明△BPE∽△BHF,利用相似比可得HF=4PE,根据反比例函数图象上点的坐标特征,设E点坐标为(t,2t),则F点的坐标为(3t,23t),由于S△OEF+S△OFD=S△OEC+S梯形ECDF,S△OFD=S△OEC=1,所以S△OEF=S梯形ECDF,然后根据梯形面积公式计算即可.【解析】作EP⊥y轴于P,EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,如图所示:∵EP⊥y轴,FH⊥y轴,∴EP∥FH,∴△BPE∽△BHF,∴13PE BEHF BF==,即HF=3PE,设E点坐标为(t,2t),则F点的坐标为(3t,23t),∵S△OEF+S△OFD=S△OEC+S梯形ECDF,而S△OFD=S△OEC=12×2=1,∴S△OEF=S梯形ECDF=12(23t+2t)(3t﹣t)=83;故答案为:83.点睛:本题考查了反比例函数的几何意义、相似三角形的判定与性质;掌握反比例函数图象上点的坐标特征、反比例函数的比例系数的几何意义,证明三角形相似是解决问题的关键.考点:反比例函数系数k的几何意义.62.(2017辽宁省盘锦市,第16题,3分)在平面直角坐标系中,点P的坐标为(0,﹣5),以P为圆心的圆与x轴相切,⊙P的弦AB(B点在A点右侧)垂直于y轴,且AB=8,反比例函数kyx=(k≠0)经过点B,则k= .【答案】﹣8或﹣32.【分析】设AB交y轴于点C,利用垂径定理可求得PC的长,则可求得B点坐标,代入反比例函数解析式可求得k的值.【解析】设线段AB 交y 轴于点C ,当点C 在点P 的上方时,连接PB ,如图,∵⊙P 与x 轴相切,且P (0,﹣5),∴PB=PO=5,∵AB=8,∴BC=4,在Rt △PBC 中,由勾股定理可得PC=22PB BC - =3,∴OC=OP ﹣PC=5﹣3=2,∴B 点坐标为(4,﹣2),∵反比例函数ky x =(k ≠0)经过点B ,∴k=4×(﹣2)=﹣8;当点C 在点P 下方时,同理可求得PC=3,则OC=OP+PC=8,∴B (4,﹣8),∴k=4×(﹣8)=﹣32; 综上可知k 的值为﹣8或﹣32,故答案为:﹣8或﹣32.点睛:本题主要考查切线的性质及反比例函数图象上点的坐标特征,利用垂径定理和切线的性质求得PC 的长是解题的关键,注意分两种情况.考点:反比例函数图象上点的坐标特征;切线的性质;分类讨论. 63.(2017黑龙江省齐齐哈尔市,第18题,3分)如图,菱形OABC 的一边OA 在x 轴的负半轴上,O是坐标原点,tan ∠AOC=43,反比例函数ky x =的图象经过点C ,与AB 交于点D ,若△COD 的面积为20,则k 的值等于 .【答案】﹣24.【分析】易证S 菱形ABCO=2S △CDO ,再根据tan ∠AOC 的值即可求得菱形的边长,即可求得点C 的坐标,代入反比例函数即可解题.【解析】作DE ∥AO ,CF ⊥AO ,设CF=4x ,∵四边形OABC 为菱形,∴AB ∥CO ,AO ∥BC ,∵DE ∥AO ,∴S △ADO=S △DEO ,同理S △BCD=S △CDE ,∵S 菱形ABCO=S △ADO+S △DEO+S △BCD+S △CDE ,∴S 菱形ABCO=2(S △DEO+S △CDE )=2S △CDO=40,∵tan ∠AOC=43,∴OF=3x ,∴22OF CF +,∴OA=OC=5x ,∵S 菱形ABCO=AO•CF=20x2,解得:2,∴OF=32CF=42C 坐标为(﹣3242),∵反比例函数ky x =的图象经过点C ,∴代入点C 得:k=﹣24,故答案为:﹣24.点睛:本题考查了菱形的性质,考查了菱形面积的计算,本题中求得S菱形ABCO=2S△CDO是解题的关键.考点:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;菱形的性质;解直角三角形;综合题.64.(2017山东省济南市,第20题,3分)如图,过点O的直线AB与反比例函数kyx=的图象交于A,B两点,A(2,1),直线BC∥y轴,与反比例函数3kyx-=(x<0)的图象交于点C,连接AC,则△ABC的面积为.【答案】8.【分析】由A(2,1)求得两个反比例函数分别为2yx=,6yx-=,与AB的解析式y=12x,解方程组求得B的坐标,进而求得C点的纵坐标,即可求得BC,根据三角形的面积公式即可求得结论.点睛:本题主要考查了反比例函数于一次函数的交点问题,三角形的面积,正确的理解题意是解题的关键.考点:反比例函数与一次函数的交点问题;反比例函数及其应用.65.(2017山东省莱芜市,第15题,4分)直线y=kx+b与双曲线6 yx =-交于A(﹣3,m),B(n,﹣6)两点,将直线y=kx+b向上平移8个单位长度后,与双曲线交于D,E两点,则S△ADE= .【答案】16.【分析】利用待定系数法求出平移后的直线的解析式,求出点D、E的左边,再利用分割法求出三角形的面积即可.【解析】由题意A(﹣3,2),B(1,﹣6),∵直线y=kx+b经过点A(﹣3,2),B(1,﹣6),∴326k bk b-+=⎧⎨+=-⎩,解得:24kb=-⎧⎨=-⎩,∴y=﹣2x﹣4,向上平移8个单位得到直线y=﹣2x+4,由624yxy x⎧=-⎪⎨⎪=-+⎩,解得:32xy=⎧⎨=-⎩和16xy=-⎧⎨=⎩,不妨设D(3,﹣2),E(﹣1,6),∴S△ADE=6×8﹣12×4×2﹣12×6×4﹣12×8×4=16,故答案为:16.点睛:本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,学会利用分割法求三角形的面积.考点:反比例函数与一次函数的交点问题;一次函数图象与几何变换.66.(2016云南省昆明市)如图,反比例函数kyx=(k≠0)的图象经过A,B两点,过点A作AC⊥x 轴,垂足为C,过点B作BD⊥x轴,垂足为D,连接AO,连接BO交AC于点E,若OC=CD,四边形BDCE 的面积为2,则k的值为.【答案】163-.【分析】先设点B坐标为(a,b),根据平行线分线段成比例定理,求得梯形BDCE的上下底边长与高,再根据四边形BDCE的面积求得ab的值,最后计算k的值.【解析】设点B坐标为(a,b),则DO=﹣a,BD=b.∵AC⊥x轴,BD⊥x轴,∴BD∥AC.∵OC=CD,∴CE=12BD=12b,CD=12DO=12-a.∵四边形BDCE的面积为2,∴12(BD+CE)×CD=2,即12(b+12b)×(12-a)=2,∴ab=163-.将B(a,b)代入反比例函数kyx=(k≠0),得:k=ab=163-.故答案为:163-.考点:反比例函数系数k 的几何意义;平行线分线段成比例. 67.(2016内蒙古包头市)如图,在平面直角坐标系中,点A 在第二象限内,点B 在x 轴上,∠AOB=30°,AB=BO ,反比例函数ky x =(x <0)的图象经过点A ,若S △ABO=3,则k 的值为 .【答案】33-.【分析】过点A 作AD ⊥x 轴于点D ,由∠AOB=30°可得出3AD OD=,由此可是点A 的坐标为(﹣3a ,3 a ),根据S △ABO=3结合三角形的面积公式可用a 表示出线段OB 的长,再由勾股定理可用含a的代数式表示出线段BD 的长,由此即可得出关于a 的无理方程,解方程即可得出结论.【解析】过点A 作AD ⊥x 轴于点D ,如图所示.∵∠AOB=30°,AD ⊥OD ,∴ADOD =tan ∠AOB=3,∴设点A 的坐标为(﹣3a 3).∵S △ABO=123OB=2a .在Rt △ADB 中,∠ADB=90°,AD=3a ,AB=OB=2a ,∴222BD AB AD =-=2243a a -,BD=2243a a -.∵OD=OB+BD=3a ,即222433a a a a =+-,解得:a=1或a=﹣1(舍去),∴点A 的坐标为(﹣3,3),∴k=﹣3×3=33-.故答案为:33-. 考点:反比例函数系数k 的几何意义. 68.(2016内蒙古呼和浩特市)已知函数1y x =-,当自变量的取值为﹣1<x <0或x≥2,函数值y 的取值 .【答案】y >1或12-≤y<0.【分析】画出图形,先计算当x=﹣1和x=2时的对应点的坐标,并描出这两点,根据图象写出y 的取值.【解析】当x=﹣1时,y=11--=1,当x=2时,y=12-,由图象得:当﹣1<x <0时,y >1,当x≥2时,12-≤y<0,故答案为:y >1或12-≤y<0.考点:反比例函数的性质.69.(2016四川省内江市)如图,点A 在双曲线5y x =上,点B 在双曲线8y x =上,且AB ∥x 轴,则△OAB 的面积等于 .【答案】32.【分析】延长AB交y轴于点C,根据反比例函数系数的几何意义求出△BOC的面积与△AOC的面积,然后相减即可得解.【解析】延长AB交y轴于点C.S△OAC=12×5=52,S△OCB=12×8=4,则S△OAB=S△OCB﹣S△OAC=4﹣52=32.故答案为:32.考点:反比例函数系数k的几何意义.70.(2016四川省眉山市)如图,已知点A是双曲线6yx=在第三象限分支上的一个动点,连结AO 并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限内,且随着点A的运动,点C的位置也在不断变化,但点C始终在双曲线kyx=上运动,则k的值是.【答案】36-【分析】根据反比例函数的性质得出OA=OB,连接OC,过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,根据等边三角形的性质和解直角三角形求出3,求出△OFC∽△AEO,相似比OCOA3ΔOFCΔAEOSS=3,求出△OFC的面积,即可得出答案.。
2019年北京市中考数学试卷附分析答案
万
美元;(结果保留一位小数)
(4)下列推断合理的是
.
①相比于点 A,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加
快建设创新型国家”的战略任务,进一步提高国家综合创新能力;
②相比于点 B,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决
胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.
位长度,得到点 C,若 CO=BO,则 a 的值为( )
A.﹣3
B.﹣2
C.﹣1
D.1
5.(2 分)已知锐角∠AOB,如图,
(1)在射线 OA 上取一点 C,以点 O 为圆心,OC 长为半径作 ,交射线 OB 于点 D,
连接 CD;
(2)分别以点 C,D 为圆心,CD 长为半径作弧,交 于点 M,N;
26.(6 分)在平面直角坐标系 xOy 中,抛物线 y=ax2+bx 与 y 轴交于点 A,将点 A 向右 平移 2 个单位长度,得到点 B,点 B 在抛物线上. (1)求点 B 的坐标(用含 a 的式子表示); (2)求抛物线的对称轴;
(3)已知点 P( , ),Q(2,2).若抛物线与线段 PQ 恰有一个公共点,结合函数 图象,求 a 的取值范围. 27.(7 分)已知∠AOB=30°,H 为射线 OA 上一定点,OH h1,P 为射线 OB 上一点, M 为线段 OH 上一动点,连接 PM,满足∠OMP 为钝角,以点 P 为中心,将线段 PM 顺 时针旋转 150°,得到线段 PN,连接 ON. (1)依题意补全图 1;
组值,如下表:
位置 1 位置 2 位置 3 位置 4 位置 5 位置 6 位置 7 位置 8
PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83
北京市2019年中考数学试题(解析版)
北京市2019年中考数学试题(解析版)2019年北京市⾼级中等学校招⽣考试数学试卷⼀、选择题(本题共30分,每⼩题3分)第1-10题均有四个选项,符合题意的选项只.有.⼀个。
1. 如图所⽰,⽤量⾓器度量∠AOB,可以读出∠AOB的度数为(A) 45°(B) 55°(C) 125°(D) 135°答案:B考点:⽤量⾓器度量⾓。
解析:由⽣活知识可知这个⾓⼩于90度,排除C、D,⼜OB边在50与60之间,所以,度数应为55°。
2. 神⾈⼗号飞船是我国“神⾈”系列飞船之⼀,每⼩时飞⾏约28 000公⾥。
将28 000⽤科学计数法表⽰应为(A)(B) 28(C)(D)答案:C考点:本题考查科学记数法。
解析:科学记数的表⽰形式为10na?形式,其中1||10≤<,n为整数,28000=。
故选C。
a3. 实数a,b在数轴上的对应点的位置如图所⽰,则正确的结论是(A)a(B)(C)(D)答案:D考点:数轴,由数轴⽐较数的⼤⼩。
解析:由数轴可知,-3<a<-2,故A、B错误;1<b<2,-2<-b<-1,即-b在-2与-1之间,所以,。
4. 内⾓和为540的多边形是答案:c考点:多边形的内⾓和。
n-??,当n=5时,内⾓和为540°,所以,选C。
解析:多边形的内⾓和为(2)1805. 右图是某个⼏何体的三视图,该⼏何体是(A)圆锥(B)三棱锥(C)圆柱(D)三棱柱答案:D考点:三视图,由三视图还原⼏何体。
解析:该三视图的俯视为三⾓形,正视图和侧视图都是矩形,所以,这个⼏何体是三棱柱。
6. 如果,那么代数2()b aaa a b--g的值是(A) 2 (B)-2 (C)(D)答案:A考点:分式的运算,平⽅差公式。
解析:2()b aaa a b--g=22a b aa a b--g=()()a b a b aa a b-+-+=2。
7. 甲⾻⽂是我国的⼀种古代⽂字,是汉字的早期形式,下列甲⾻⽂中,不是轴对称的是答案:D考点:轴对称图形的辨别。
2019年北京市中考数学试卷及答案解析
2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)1.4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×1032.下列倡导节约的图案中,是轴对称图形的是()A .B .C .D .3.正十边形的外角和为()A.180°B.360°C.720°D.1440°4.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.15.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC 长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD 长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD6.如果m+n=1,那么代数式(+)•(m2﹣n2)的值为()A.﹣3B.﹣1C.1D.37.用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳时间t0≤t<1010≤t<2020≤t<3030≤t<40t≥40人数学生类型性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5﹣25.5之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④二、填空题(本题共16分,每小题2分)9.分式的值为0,则x的值是.10.如图,已知△ABC,通过测量、计算得△ABC的面积约为cm2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则∠P AB+∠PBA=°(点A,B,P是网格线交点).13.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为.15.小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12s02(填“>”,“=”或”<”)16.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是.二、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.18.(5分)解不等式组:19.(5分)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.20.(5分)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.21.(5分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为万美元;(结果保留一位小数)(4)下列推断合理的是.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.22.(6分)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.23.(6分)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为;(3)7天后,小云背诵的诗词最多为首.24.(6分)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为cm.25.(5分)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k 分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.26.(6分)在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.27.(7分)已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M 总有ON=QP,并证明.28.(7分)在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=,D,E分别是AB,AC的中点,画出△ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC 中,D,E分别是AB,AC的中点.①若t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.2019年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)1.4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×103【答案】C2.下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.【答案】C3.正十边形的外角和为()A.180°B.360°C.720°D.1440°【分析】根据多边的外角和定理进行选择.【解答】解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选:B.【点评】本题考查了多边形外角和定理,关键是熟记:多边形的外角和等于360度.4.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1【分析】根据CO=BO可得点C表示的数为﹣2,据此可得a=﹣2﹣1=﹣3.【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.5.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【解答】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON=20°,∴∠OCD=∠OCM=80°,∴∠MCD=160°,又∠CMN=∠AON=20°,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.6.如果m+n=1,那么代数式(+)•(m2﹣n2)的值为()A.﹣3B.﹣1C.1D.3【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=•(m+n)(m﹣n)=•(m+n)(m﹣n)=3(m+n),当m+n=1时,原式=3.故选:D.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.7.用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.3【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【解答】解:①若a>b,ab>0,则<,真命题;②若ab>0,<,则a>b,真命题;③若a>b,<,则ab>0,真命题;∴组成真命题的个数为3个;故选:D.【点评】本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳时间t人数学生类型0≤t<1010≤t<2020≤t<3030≤t<40t≥40性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5﹣25.5之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5﹣25.5之间,正确;②这200名学生参加公益劳动时间的中位数在20﹣30之间,正确;③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间,正确;④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间,错误.故选:C.【点评】本题考查了中位数与平均数,正确理解中位数与平均数的意义是解题的关键.二、填空题(本题共16分,每小题2分)9.分式的值为0,则x的值是1.【分析】根据分式的值为零的条件得到x﹣1=0且x≠0,易得x=1.【解答】解:∵分式的值为0,∴x﹣1=0且x≠0,∴x=1.故答案为1.【点评】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.10.如图,已知△ABC,通过测量、计算得△ABC的面积约为 1.9cm2.(结果保留一位小数)【分析】过点C作CD⊥AB的延长线于点D,测量出AB,CD的长,再利用三角形的面积公式即可求出△ABC的面积.【解答】解:过点C作CD⊥AB的延长线于点D,如图所示.经过测量,AB=2.2cm,CD=1.7cm,∴S△ABC=AB•CD=×2.2×1.7≈1.9(cm2).故答案为:1.9.【点评】本题考查了三角形的面积,牢记三角形的面积等于底边长与高线乘积的一半是解题的关键.11.在如图所示的几何体中,其三视图中有矩形的是①②.(写出所有正确答案的序号)【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此作答.【解答】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.【点评】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.12.如图所示的网格是正方形网格,则∠P AB+∠PBA=45°(点A,B,P是网格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠P AB+∠PBA=45°,故答案为:45.【点评】本题考查了勾股定理的逆定理,勾股定理,三角形的外角的性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.13.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为0.【分析】由点A(a,b)(a>0,b>0)在双曲线y=上,可得k1=ab,由点A与点B关于x轴的对称,可得到点B的坐标,进而表示出k2,然后得出答案.【解答】解:∵点A(a,b)(a>0,b>0)在双曲线y=上,∴k1=ab;又∵点A与点B关于x轴的对称,∴B(a,﹣b)∵点B在双曲线y=上,∴k2=﹣ab;∴k1+k2=ab+(﹣ab)=0;故答案为:0.【点评】考查反比例函数图象上的点坐标的特征,关于x轴对称的点的坐标的特征以及互为相反数的和为0的性质.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为12.【分析】由菱形的性质得出OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,得出AC=2OA=6,BD=2OB=4,即可得出菱形的面积.【解答】解:如图1所示:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,∴AC=2OA=6,BD=2OB=4,∴菱形ABCD的面积=AC×BD=×6×4=12;故答案为:12.【点评】本题考查了菱形的性质、正方形的性质、二元一次方程组的应用;熟练掌握正方形和菱形的性质,由题意列出方程组是解题的关键.15.小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12=s02(填“>”,“=”或”<”)【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【解答】解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,∴则s12=S02.故答案为=.【点评】本题考查方差的意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变.16.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是①②③.【分析】根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【解答】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故当MQ∥PN,PQ∥MN,四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是菱形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形与任意矩形ABCD矛盾,故错误;故答案为:①②③.【点评】本题考查了矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理,熟记各定理是解题的关键.二、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.【分析】直接利用绝对值的性质以及零指数幂的性质、特殊角的三角函数值、负指数幂的性质分别化简得出答案【解答】解:原式=﹣1+2×+4=﹣1++4=3+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(5分)解不等式组:【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x<2,解②得x<,则不等式组的解集为2<x<.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(5分)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.【分析】直接利用根的判别式得出m的取值范围进而解方程得出答案.【解答】解:∵关于x的方程x2﹣2x+2m﹣1=0有实数根,∴b2﹣4ac=4﹣4(2m﹣1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.【点评】此题主要考查了根的判别式,正确得出m的值是解题关键.20.(5分)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.【分析】(1)由菱形的性质得出AB=AD,AC⊥BD,OB=OD,得出AB:BE=AD:DF,证出EF∥BD即可得出结论;(2)由平行线的性质得出∠G=∠ADO,由三角函数得出tan G=tan∠ADO==,得出OA=OD,由BD=4,得出OD=2,得出OA=1.【解答】(1)证明:连接BD,如图1所示:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,OB=OD,∵BE=DF,∴AB:BE=AD:DF,∴EF∥BD,∴AC⊥EF;(2)解:如图2所示:∵由(1)得:EF∥BD,∴∠G=∠ADO,∴tan G=tan∠ADO==,∴OA=OD,∵BD=4,∴OD=2,∴OA=1.【点评】本题考查了菱形的性质、平行线的判定与性质、解直角三角形等知识;熟练掌握菱形的性质是解题的关键.21.(5分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第17;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为 2.8万美元;(结果保留一位小数)(4)下列推断合理的是①②.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.【分析】(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.【解答】解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,故答案为:17;(2)如图所示:(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.8万美元;故答案为:2.8;(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值;合理;故答案为:①②.【点评】本题考查了频数分布直方图、统计图、样本估计总体、近似数和有效数字等知识;读懂频数分布直方图和统计图是解题的关键.22.(6分)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.【分析】(1)利用圆的定义得到图象G为△ABC的外接圆⊙O,由∠ABD=∠CBD得到=,从而圆周角、弧、弦的关系得到AD=CD;(2)如图,证明CD=CM,则可得到BC垂直平分DM,利用垂径定理得到BC为直径,再证明OD⊥DE,从而可判断DE为⊙O的切线,于是得到直线DE与图形G的公共点个数.【解答】(1)证明:∵到点O的距离等于a的所有点组成图形G,∴图象G为△ABC的外接圆⊙O,∵AD平分∠ABC,∴∠ABD=∠CBD,∴=,∴AD=CD;(2)如图,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC垂直平分DM,∴BC为直径,∴∠BAC=90°,∵=,∴OD⊥AC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE为⊙O的切线,∴直线DE与图形G的公共点个数为1.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理和圆周角定理、切线的判定.23.(6分)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为4,5,6;(3)7天后,小云背诵的诗词最多为23首.【分析】(1)根据表中的规律即可得到结论;(2)根据题意列不等式即可得到结论;(3)根据题意列不等式,即可得到结论.第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组x3x3x3第4组x4x4x4∴x1≥4,x3≥4,x4≥4,∴x1+x3≥8①,∵x1+x3+x4≤14②,把①代入②得,x4≤6,∴4≤x4≤6,∴x4的所有可能取值为4,5,6,故答案为:4,5,6;(3)∵每天最多背诵14首,最少背诵4首,∴由第2天,第3天,第4天,第5天得,x1+x2≤14①,x2+x3≤14②,x1+x3+x4≤14③,x2+x4≤14④,①+②+④﹣③得,3x2≤28,∴x2≤,∴x1+x2+x3+x4≤+14=,∴x1+x2+x3+x4≤23,∴7天后,小云背诵的诗词最多为23首,故答案为:23.【点评】本题考查了规律型:数字的变化类,不等式的应用,正确的理解题意是解题的关键.24.(6分)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几位置1位置2位置3位置4位置5位置6位置7位置8 PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83 PD/cm 3.44 2.69 2.00 1.360.96 1.13 2.00 2.83 AD/cm0.000.78 1.54 2.30 3.01 4.00 5.11 6.00确定PC的长度是自变量,PD的长度和AD 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为 1.59(答案不唯一)cm.【分析】(1)按照变量的定义,PC是自变量,而PD、AD随PC的变化而变化,故PD、AD都是因变量,即可求解;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值为所求,即可求解.【解答】解:(1)按照变量的定义,PC是自变量,而PD、AD随PC的变化而变化,故PD、AD都是因变量,故答案为:PC、PD、AD;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值约为1.59,故答案为1.59(答案不唯一).【点评】本题考查的是动点的函数图象,此类问题主要是通过描点画出函数图象,根据函数关系,在图象上查出相应的近似数值.25.(5分)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k 分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;。
2019年北京中考数学试题及答案(解析版)
2019年北京市中考数学试卷考试时间:120分钟满分:100分{题型:1-选择题}一、选择题:本大题共8小题,每小题2分,合计16分.{题目}1.(2019年北京)4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方紅一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道距地球最近点439000米,将439 000用科学记数法表示应为A.0.439×106B.4.39×106C.4.39×105D.439 ×103{答案}C{解析}本题考查了用科学记数法表示较大的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.439 000=4.39×100000=4.39×105,故本题答案为C.{分值}2{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}2.(2019年北京)下列但导节约的图案中,是轴对称图形的是()A B C D{答案}C{解析}本题考查了轴对称图形的识.如果一个图形沿某直线对折后,这线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.根据轴对称图形的定义可知选项C 中的图形是轴对称图形.{分值}2{章节:[1-13-1-1]轴对称}{考点:轴对称图形}{类别:常考题}{难度:1-最简单}{题目}3.(2019年北京)正十边形的外角和为()A.180° B.360° C.720° D.1440°{答案}B{解析}本题考查了多边形的外角和,根据多边形的外角和都等于360°可知答案为B.{分值}2{章节:[1-11-3]多边形及其内角和}{考点:多边形的外角和}{类别:常考题}{难度:1-最简单}{题目}4.(2019年北京)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为()A.-3 B.-2 C.-1 D.1{答案}A{解析}本题考查了数轴及平移的性质.∵点A,B在原点O的两侧,∴a<0.∵CO=BO,点B表示数2,∴点C表示数-2.∵点A向右平移1个单位长度得到点C,∴点A表示的数a=-2-1=-3.{分值}2{章节:[1-1-2-2]数轴}{考点:数轴表示数}{类别:常考题}{难度:2-简单}{题目}5.(2019年北京)已知锐角∠AOB.如图(1)在射线OA上取一点C,以点O为圆心,OC长为半径作PQ,交射线OB于点D.连接CD;(2)分别以点C、D为圆心,CD长为半径作弧,交PQ于点M、N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是A.∠COM=∠CODB.若OM=MN,则∠AOB=20°C.MN∥CDD.MN=3CD{答案}D{解析}本题是一道尺规作图题,综合考查了等腰三角形、全等三角形、平行线的判定等知识.如图,连接ON,根据作图过程可知∠COM=∠COD=∠DON,故选项A正确;若OM=MN,则△OMN是等边三角形,∴∠AOB=13×60°=20°,故选项B正确;设MN与OA交于点E,与OB交于点F.易证△MOE≌△NOF,∴OE=OF.∵OC=OD,∴∠OEF=∠OFE=∠OCD=∠ODC,∴MN∥CD,故选项C正确;连接MC,DN,则MC=CD=DN,根据“两点之间线段最短”可知MC+CD+DN<MN,即3CD<MN,故选项D不正确.O{分值}2{章节:[1-13-2-2]等边三角形} {考点:全等三角形的判定ASA,AAS} {考点:等边三角形的判定与性质} {考点:等边对等角}{考点:同位角相等两直线平行} {考点:线段公理} {类别:常考题}{难度:3-中等难度}{题目}6.(2019年北京)如果m +n =1,那么代数式22221()()m n m n m mn m++⋅--的值为 ( )A .-3B .-1C .1D .3{答案}D{解析}本题考查了分式的化简求值.原式=()()()23()()()()m n m n mm n m n m n m n m m n m m n m m n ⎡⎤+-=+⋅+-=⋅+-⎢⎥---⎢⎥⎣⎦=3(m+n ).当m+n=1时,原式=3×1=3. {分值}2{章节:[1-15-2-2]分式的加减} {考点:分式的混合运算} {类别:常考题} {难度:3-中等难度}{题目}7.(2019年北京)用不等式a >b ,ab >0,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( ) A .0 B .1 C .2 D .3{答案}D{解析}本题考查了不等式的基本性质及真命题的判定.根据题意,可知组成的命题有3个,分别为①若ab >0,11a b <,则a >b ;②若a >b ,ab >0,则11a b <;③若a >b ,11a b<,则ab >0. 对于命题①,∵ab >0,11a b <,∴b <a ,故该命题正确;对于命题②,∵a >b ,ab >0,∴11b a<,故该命题正确;对于命题③,∵11a b<,∴110b aa b ab --=<.∵a >b ,∴b-a <0,∴ab >0,故该命题正确; {分值}2{章节:[1-9-1]不等式} {考点:不等式的性质} {考点:命题} {类别:易错题} {难度:3-中等难度}{题目}8.(2019年北京)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是A.①③B.①④C.①②③D.①②③④ {答案}C{解析}本题是一道与统计图有关的题目,综合考查了平均数、中位数等知识.根据题意,补全统计名女生人均参加公益劳动的时间为25.5,故这200名学生参加公益劳动时间的平均数x -=24.597+25.5103200⨯⨯,故24.5<x -<25.5,故①正确;这200名学生参加公益劳动的时间的中位数是第100个数据和第101个数据的平均数,根据上面统计表可知,第100个数据和第101个数据都在20≤t <30这一组内,即中位数在20-30之间,故②正确;由统计表可知x+y=15,故初中生参加公益劳动时间的中位数一定在20≤t <30这一组内,高中生参加公益劳动时间的中位数一定在10≤t <20这一组内,故③正确,④不正确.{分值}2{章节:[1-20-1-2]中位数和众数}{考点:频数(率)分布表}{考点:算术平均数}{考点:中位数}{考点:条形统计图}{类别:高度原创}{难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共8小题,每小题2分,合计16分.{题目}9.(2019年北京)若分式1xx-的值为0,则x的值为= .{答案}1{解析}本题考查了分式的值为0的条件.∵分式1xx-的值为0,∴分子x-1=0,解得x=1.{分值}2{章节:[1-15-1]分式}{考点:分式的值}{类别:常考题}{难度:1-最简单}{题目}10.(2019年北京)如图,已知△ABC,通过测量、计算得△ABC的面积约为=cm.(结果保留一位小数){答案}{解析}本题考查了三角形面积的计算,解题的关键正确作出三角形的高.如图,过点C作CD⊥AB,交AB的延长线于点D,则S△ABC=12 AB·CD.{分值}2{章节:[1-11-1]与三角形有关的线段}{考点:三角形的面积}{考点:准确数与近似数}{类别:常考题}{难度:2-简单}{题目}11.(2019年北京)在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号){答案}①②{解析}本题考查了几何体的三视图. ①中长方体的主视图、俯视图和左视图都是矩形,②中圆柱的主视图和左视图都是矩形,③中圆锥的三视图都不是矩形. {分值}2{章节:[1-29-2]三视图} {考点:同底数幂的乘法} {考点:简单几何体的三视图} {类别:常考题} {难度:1-最简单}{题目}12.(2019年北京)如图所示的网格是正方形网格,则∠PAB +∠PBA = °.{答案}45{解析}本题是一道网格题,利用全等三角形实现角的转化是解题的关键. 如图,∵△APC ≌△BED ,∴∠PAB=∠DBE.∵△EPB 是等腰直角三角形,∴∠EBP=45°,∴∠DBE+∠PBA=90°-45°=45°,即∠PAB+∠PBA=45°.{分值}2{章节:[1-13-2-1]等腰三角形} {考点:全等三角形的性质} {考点:等腰直角三角形} {类别:发现探究} {难度:3-中等难度}{题目}13.(2019年北京)在平面直角坐标系xOy 中,点A (a ,b )(a >0,b >0)在双曲线1k y x=上,点A 关于x 轴的对称点B 在双曲线2k y x=上,则k 1+k 2的值为 .{答案}0{解析}本题考查了反比例函数表达式的求法,确定关于x 轴的对称点的坐标是解题的关键. ∵点A (a ,b )在双曲线1k y x =上,∴k 1=ab.∵点A 与点B 关于x 轴对称,∴B (a,-b ).∵ 点B 在双曲线2ky x=上,∴k 2=-ab.∴k 1+k 2 =0. {分值}2{章节:[1-26-1]反比例函数的图像和性质} {考点:反比例函数的解析式} {考点:点的坐标}{考点:坐标系中的轴对称} {类别:常考题}{难度:3-中等难度}{题目}14.(2019年北京)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为 .图1 图2 图3 {答案}12{解析}本题考查了正方形和菱形的性质,根据所拼图形得到直角三角形两直角边的关系是解题的关键. 设每个直角三角形较长直角边为a ,较短直角边为b ,则5,1a b a b +=⎧⎨-=⎩,解得=3,2a b ⎧⎨=⎩,∴菱形的面积为12ab ×4=12.{分值}2{章节:[1-18-2-2]菱形} {考点:菱形的性质}{考点:二元一次方程组的应用} {类别:常考题} {难度:3-中等难度}{题目}15.(2019年北京)小天想要计算一组数据92,90,94,86,99,85的方差20s ,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则20s 21s .(填“>”,“=”或“<”) {答案}={解析}本题考查了方差的计算,根据方差公式计算即可.原数据的平均数()1=92+90+94+86+99+85=916x -,()()()()()()22222221=9291909194918691999185916S ⎡⎤-+-+-+-+-+-⎣⎦0=68=3;新数据的平均数()1=2+04495=16x +-+--,()()()()()()22222221=2101414191516S ⎡⎤-+-+-+--+-+--⎣⎦168=3,∴22=S S 01.{分值}2{章节:[1-20-2-1]方差} {考点:同底数幂的乘法} {考点:方差} {类别:常考题} {难度:2-简单}{题目}16.(2019年北京)在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合).对于任意矩形ABCD ,下面四个结论中, ①存在无数个四边形MNPQ 是平行四边形; ②存在无数个四边形MNPQ 是矩形; ③存在无数个四边形MNPQ 是菱形; ④至少存在一个四边形MNPQ 是正方形.所有正确结论的序号是 .{答案}①②③{解析}本题是一道四边形压轴题,综合考查了平行四边形的性质、矩形、菱形和正方形的判定.在矩形ABCD 中,对角线AC,BD 相交于点O ,过点O 作直线PM 和NQ 交BC ,易证MNPQ 为平行四边形;当PM=QN 时,四边形MNPQ 为矩形;当PM ⊥QN 时,四边形MNPQ 为菱形;由于PM=QN 与PM ⊥QN 不一定能同时成立,故四边形MNPQ 不一定是正方形.故正确的结论是①②③.{分值}2{章节:[1-18-2-3] 正方形} {考点:平行四边形边的性质} {考点:平行四边形对角线的性质} {考点:矩形的判定} {考点:菱形的判定} {考点:正方形的判定}{类别:高度原创}{类别:易错题} {难度:4-较高难度}{题型:4-解答题}三、解答题:本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分.{题目}17.(2019年北京)计算:011(4)2sin 60()4π---+︒+.{解析}本题考查了实数的运算,掌握绝对值的性质、零指数幂、特殊角的三角函数值及负指数幂是解题才能正确解答.{答案}解:原式{分值}5{章节:[1-28-3]锐角三角函数} {考点:实数与绝对值、相反数} {考点:零次幂}{考点:负指数参与的运算} {考点:特殊角的三角函数值} {考点:简单的实数运算} {类别:常考题} {难度:2-简单}{题目}18.(2019年北京)解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩{解析}本题考查了不等组的解法和不等式组的整数解,解不等式组的步骤为:先解出不等式组中每个不等式的解集,然后得出不等式组的解集. {答案}解:解不等式4(x-1)<x+2,得x <2;解不等式73x x +>,得x <72. 所以,这个不等式组的解集为x <2. {分值}5{章节:[1-9-3]一元一次不等式组}{难度:2-简单}{类别:常考题}{考点:解一元一次不等式组}{题目}19.(2019年北京)关于x的方程22+210x x m--=有实数根,且m为正整数,求m的值及此时方程的根.{解析}本题考查了一元二次方程根的判别式,由于原方程有实数根可知b2-4ac≥0,由此确定出m取值范围,又有m为正整数,从而可确定m的值.{答案}解:∵方程x2-2x+2m-1=0有实数根,∴(-2)2-4(2m-1)≥0,解得m≤1.∵m为正整数,∴m=1.∴原方程为x2-2x+1=0.解得x1=x2=1.{分值}5{章节:[1-21-2-2]公式法}{考点:根的判别式}{考点:完全平方式}{类别:常考题}{难度:3-中等难度}{题目}20.(2019年北京)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE= DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O,若BD=4,tanG=12,求AO的长.{解析}本题考查了菱形的性质、等腰三角形的性质、平行四边形的判定、锐角三角函数等知识.(1)先根据菱形边和对角线的性质得到AB=AD,AC平分∠BAD,再根据等腰三角形三线合一的性质证得AC⊥EF;(2)根据菱形对角线的性质可得BO的长度及AC⊥BD,又有AC⊥EF,故BD∥EF,由此可知四边形EBDG是平行四边形,从而得到tan∠ABD= tanG=12.在Rt△ABD中由tan∠ABD=12即可求得AO的长度.{答案}解:(1)证明:∵四边形ABCD是菱形,∴AB=AD,AC平分∠BAD. ∵BE=DF,即AE=AF.∴AC⊥EF.(2)∵四边形ABCD是菱形,∴AC⊥BD,CG∥AB,BO=12BD=2.∵AC⊥EF,∴BD∥EF.∴四边形EBDG是平行四边形. ∴∠ABD =∠G.∵tan∠ABD=tanG=12,D BC∴2AO =12,解得AO=1.{分值}5{章节:[1-28-3]锐角三角函数} {考点:正切}{考点:菱形的性质} {考点:等腰直角三角形} {考点:平行四边形边的性质}{考点:两组对边分别平行的四边形是平行四边形} {类别:常考题} {难度:3-中等难度}{题目}21.(2019年北京)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数,对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析,下图给出了部分信息.a .国家创新指数得分的频数分布直方图(数据分成7组:30≤x < 40,40≤x <50,50≤x <60,60 ≤x <70,70≤x <80,80≤x <90,90 ≤x ≤100);b .国家创新指数得分在60≤x <70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c .40个国家的人均国内生产总值和国家创新指数得分情况统计图国家创新指数得分d .中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》 根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第 ;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l 1的上方,请在图中用“○”画出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为 万美元;(结果保留一位小数)(4)下列推断合理的是 .①相比于点A ,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出"加快建设创新型国家"的战略任务,进一步提高国家综合创新能力;②相比于点B ,C 所代表的国家,中国的人均国内生产品值还有一定差距,中国提出"决胜全国建成小集社会"的奋斗目标,进一步提高人均国内生产总值.{解析}本题考查了统计图及数据的分析. (1)得分在60 ≤x <70这一组的9个国家中,中国得分最高,故70 ≤x <80这一组有12个国家,80 ≤x <90这一组有2个国家,90 ≤x <100这一组有2个国家,故中国的得分排名为1+12+2+2=17. (2)由中国的国家创新指数得分为69.5及“包括中国在内的少数几个国家所对应的点位于虚线l 1的上方”可以代表中国的点.(3)观察《40个国家的人均国内生产总值和国家创新指数得分情况统计图》可知有在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.7万美元.(4)因为中国的国家创新指数得分比A,B 所代表的国家低得多,所以中国需进一步提高国家综合创新能力;因为中国的人均国内生产品值比B,C 所代表的国家低得多,所以中国需要进一步提高人均国内生产总值,故推断①②都是合理的.{答案}解:(1)17; (2)如图:(3)2.7. (4)①②. {分值}5{章节:[1-20-3]课题学习 体质健康测试中的数据分析} {考点:数据分析综合题}/万美元30405060708090{考点:频数(率)分布直方图} {类别:高度原创} {难度:3-中等难度}{题目}22.(2019年北京)在平面内,给定不在同一条直线上的点A ,B ,C .如图所示,点O 到点A ,B ,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD .(1)求证:AD = CD(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD = CM ,求直线DE 与图形G 的公共点个数.{解析}解析:(1)由BD 平分∠ABCA 可得∠ABD=∠CBD ,根据相等的圆周角、等弧、等弦之间的关系可得AD CD =和AD=CD.(2)通过证明Rt △CDF ≌Rt △CMF 得到DF=MF ,连接OD ,由∠ABC=2∠CBD=∠COD 可得OD ∥BE ,进而由DE ⊥AB 得到OD ⊥DE ,即DE 为⊙O 的切线. {答案}解:(1)∵BD 平分∠ABCA,∴∠ABD=∠CBD , ∴AD CD =,∴AD=CD.(2)∵DF ⊥BC ,∴∠DFC=∠CFM=90°. 又∵CD=AD=CM.∴Rt △CDF ≌Rt △CMF.∴DF=MF ,∴BC 为⊙O 的直径. 连接OD.∵∠COD=2∠CBD ,∠ABC=2∠CBD , ∴∠ABC=∠OCD. ∴OD ∥BE. ∵DE ⊥AB , ∴OD ⊥DE.∴DE 为⊙O 的切线,即直线DE 与图形G 的公共点个数为1.{分值}6{章节:[1-24-2-2]直线和圆的位置关系} {考点:垂径定理}{考点:圆心角、弧、弦的关系} {考点:圆周角定理} {考点:切线的判定}{考点:全等三角形的判定HL}ABC{考点:同位角相等两直线平行} {考点:两直线平行同旁内角互补} {类别:高度原创} {类别:发现探究} {难度:4-较高难度}{题目}23.(2019年北京)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i 组有x i 首,i =1,2,3,4;②对于第i 组诗词,第i 天背诵第一遍,第(i +1)天背诵第二遍,第(i +3)天背调第三遍,三解答下列问题:(1)填入x 3,补全上表;(2)若x 1=4,x 2=3,x 3=4,则x 4的所有可能取值为 ; (3)7天后,小云背诵的诗词最多为 首.{解析}本题是一道与不等式组有关的实际应用题.(1)由题意,得对于第3组诗词,第3天背诵第一遍,第4天背诵第二遍,第6天背调第三遍,三遍后完成背诵,其它天无需背诵.(2)由“每天最多背诵14首,最少背诵4首”可得134244414414414x x x x x x ≤++≤⎧⎪≤+≤⎨⎪≤≤⎩,解得4≤x 4≤6.(3)当第4天背诵的诗词数为14首时,x 1+x 3+x 4=14.由题意,得122324414414414x x x x x x ≤+≤⎧⎪≤+≤⎨⎪≤+≤⎩①②③,∴123412242x x x x ≤+++≤,解得222833x -≤≤,∴x 2的最大值为9,∴(x 1+x 3+x 4)+x 2=23.{答案}解: ((2)4,5,6. (3)23. {分值}6{章节:[1-9-3]一元一次不等式组} {考点:一元一次不等式组的应用} {类别:高度原创}{类别:易错题} {难度:4-较高难度}{题目}24.(2019年北京)如图,P 是AB 与弦AB 所围成的图形的外部的一定点,C 是AB 上一动点连接PC 交弦AB 于点D .小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了程究. 下面是小腾的探究过程,请补充完整:(1)对于点C 在AB 的不同位置,画图,测量,得到了线段PC ,PD ,AD 的长度的几组值,如的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC =2PD 时,AD 的长度约为 cm .{解析}本题是一道与函数图像有关的实际应用题.(1)观察表格可知,PC 在位置5和位置6时长度都等于2.25,PD 在位置3和位置7时长度都等于2.00,而AD 在不同位置时的长度各不相等,故AD 的长度是自变量,PC 的长度和PD 的长度都是这个自变量的函数.(2)根据(1)表格中的数值描点、连线,注意平面坐标系的x 轴表示AD 的长度,纵轴表示PC 或PD 的长度;(3)观察(2)中函数图像,并结合(1)表格求解即可. {答案}解: (1)AD PC PD ; (2)如图A(3)2.29或3.98.{分值}6{章节:[1-19-1-2] 函数的图象}{考点:函数的概念}{考点:函数的图象}{类别:高度原创}{难度:4-较高难度}{题目}25.(2019年北京)在平面直角坐标系xOy中,直线l:1(0)y kx k=+≠与直线x=k,直线y=-k分别交于点A,B,直线x=k与直线y =-k交于点C.(1)求直线1与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区城W内没有整点,直接写出k的取值范围.{解析}本题是考查了一次函数的图像,解题时要画出函数图像并结合图像分析求解.(1)将x=0代入l的解析式即可;(2)画出k=2时三条直线并求出点A,B,C的坐标,从而确定出区域W及其内部整点的个数;(3)当-1≤k<0或k=-2时,区域W内没有整点.{答案}解:(1)将x=0代入y=kx+1,得y=1,∴直线l与y轴的交点坐标为(0,1).(2)①将x=2代入y=2x+1,得y=5,∴A(2,5).将y=-2代入y=2x+1,得2x+1=-2,解得y=-32,∴点B(-32,-2).又∵直线x=2和y=-2的交点C(2,-2),∴W内的整点为(1,2)(1,1)(1,0)(1,-1)(0,0)(0,-1),共6个.②k=-2或-1≤k<0.{分值}5{章节:[1-19-3]一次函数与方程、不等式}{考点:一次函数的图象}{考点:一次函数与几何图形综合}{类别:高度原创}{类别:发现探究}{类别:新定义}{难度:5-高难度}{题目}26.(2019年北京)在平面直角坐标系xOy中,抛物线21y ax bxa=+-与y轴交于点A,将点A向右平称2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴:(3)已知点P11(,)2a-,Q(2.2),若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.{解析}本题是一道与二次函数图像有关的压轴题,解题时要画图分析.(1)先将x=0代入抛物线的解析式求得点A的坐标,再根据平移规律求得点B的坐标;(2)根据抛物线的对称性求解;(3)画出函数图像求解,注意由于点A和P的纵坐标相等,点B和点Q的纵坐标相等,故抛物线不能同时经过点A和P,也不能同时经过点B和Q.{答案}解:(1)将x=0代入y=ax2+bx-1a,得y=-1a,∴点A的坐标为(0,-1a).∵点B的坐标为(2,-1a).(2)∵抛物线经过点A(0,-1a)和点B(2,-1a),∴抛物线的对称轴为x=1.(2)①当a>0时,-1a<0.根据抛物线的对称性,可知抛物线不能同时经过点A和点P,也不能同时经过点B和点Q,所以此时抛物线与线段PQ没有交点;②当a<0时,-1a>0.根据抛物线的对称性,可知抛物线不能同时经过点A和点P;当点Q在点B上方或与点B重合时,抛物线与线段PQ恰有一个公共点,此时-1a≤2,即a≤-12.综上可知,当a≤-12时,抛物线与线段PQ恰有一个公共点.{分值}6{章节:[1-22-1-4]二次函数y=ax2+bx+c的图象和性质}{考点:算术平均数}{考点:含参系数的二次函数问题}{类别:思想方法}{类别:高度原创}{类别:发现探究}{难度:5-高难度}{题目}27.(2019年北京)已知∠AOB=30°,H为射线OA上一定点,OH,P为射线OB上一点,M为线段OH上一动点,连接PM.满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1:(2)求证:∠OMP = ∠OPN:(3)点M关于点H的对称点为Q,连接QP,写出一个OP的值,使得对于任意的点M总有ON= QP,并证明.{解析}本题是考查了图形的旋转与中心对称、三角形内角和定理、全等三角形的判定和性质、解直角三角形等知识.(1)根据题意画图即可;(2)在△OMP 中根据三角形内角和定理可知∠OMP=150°-∠OPM ,而∠OPN=1 50°-∠OPM ,故∠OMP=∠OPM ;(3)求出当ON=PQ 时x 的值即可. {答案}解:(1)如图所示:(2)在△OMP 中,∵∠AOB=30°,∴∠OMP=150°-∠OPM. ∵∠MON=150°,∴∠OPN=150°-∠OPM ,∴∠OMP=∠OPM.(3)如图,过点P 作PK ⊥OA ,过点N 作NF ⊥OB ,垂足分别为K,F. ∴∠PKM=∠NFP=90°.∵∠OMP=∠OPM ,∴∠PMK=∠NPF. ∴△PMK ≌△NPF.∴MK=PF,∠MPK=∠PNF ,PK=NF. 假设ON=PQ ,∴Rt △NOF ≌Rt △PQK. ∴KQ=OF.设MK=y ,PK=x.在Rt △OPK 中,∵∠AOB=30°,∴OP=2x ,x.∴,∵点M 与Q 关于H 对称,∴MH=HQ ,∴∵KQ=OF ,∴,解得x=1. ∴OP=2x=2.{分值}7{章节:[1-28-1-2]解直角三角形} {考点:三角形内角和定理} {考点:全等三角形的判定HL}{考点:全等三角形的判定ASA,AAS} {考点:全等三角形的性质}OAOA{考点:含30度角的直角三角形} {考点:解直角三角形} {类别:高度原创} {类别:发现探究} {难度:5-高难度}{题目}28.(2019年北京)在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE 上的所有点都在△ABC 的内部或边上,则称DE 为△ABC 的中内弧,例如,下图中DE 是△ABC 的一条中内弧(1)如图,在Rt △ABC 中,AB =AC=D ,E 外别是AB ,AC 的中点,画出△ABC 的最长的中内弧DE ,并直接写出此时DE 的长;(2)在平而直角坐标系中,已知点A (0,2),B (0,0),C (4t ,0)(t >0). 在△ABC 中,D ,E 分别是AB ,AC 的中点①若t =12,求△ABC 的中内弧DE 所在圆的圆心P 的纵坐标的取值范围;②若在△ABC 中存在一条中内弧DE ,使得DE 所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.{解析}本题是一道新定义题,综合考查了等腰直角三角性的性质、弧长的计算、切线的性质、相似三角形的判定和性质等知识.(1)设DE 所在圆的圆心为P ,当⊙P 与BC 相切于F 时,中内弧DE最长,易证点P 是DE 的中点,∴PD=12DE=1. 1122122DE l r πππ=⨯=⨯⨯=.(2)分别求出⊙P 与AB相切和⊙P 与AC 相切时y p 的值,即可求出y p 的取值范围;(3)求出⊙P 分别与AC ,BC 相切时t 的值即可.{答案}解:(1)如图所示:BCCABDE的长为π.(2)①当t=12时,C(2,0),D(0,1),E(1,1).如图,当⊙P与AB相切于点D,y p=1;如图,当⊙P与AC相切于点E,y p=12,∴y p≤12.∴y p≥1或y p≤1 2 .(3)0<t.{分值}7{章节:[1-27-1-3]相似三角形应用举例}{考点:等腰直角三角形}{考点:勾股定理}{考点:切线的性质}{考点:弧长的计算}{考点:相似三角形的性质}{考点:相似三角形的判定(两角相等)}{类别:思想方法}{类别:高度原创}{类别:发现探究}{类别:新定义} {难度:5-高难度}。
2019年北京市中考数学试题及答案解析
2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为 (A )60.43910(B )64.3910(C )54.3910(D )3439102.下列倡导节约的图案中,是轴对称图形的是(A ) (B ) (C ) (D )3.正十边形的外角和为(A )180 (B )360 (C )720 (D )14404.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为(A )3(B )2 (C )1 (D )15.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是 (A )∠COM=∠COD (B )若OM=MN ,则∠AOB=20°(C )MN∠CD(D )MN=3CDB6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为(A )3-(B )1-(C )1 (D )37.用三个不等式a b >,0ab >,11a b <中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为(A )0 (B )1 (C )2 (D )38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:∠这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ∠这200名学生参加公益劳动时间的中位数在20-30之间∠这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间学生类别5∠这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是 (A )∠∠(B )∠∠(C )∠∠∠ (D )∠∠∠∠二、填空题(本题共16分,每小题2分)9.若分式1x x -的值为0,则x 的值为______.10.如图,已知ABC ,通过测量、计算得ABC 的面积约为______cm2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).13.在平面直角坐标系xOy 中,点A()a b ,()00a b >>,在双曲线1k y x =上.点A 关于x 轴的对称点B 在双曲线2k y x =上,则12k k +的值为______.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.第10题图CBA第11题图③圆锥②圆柱①长方体第12题图BA15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合). 对于任意矩形ABCD ,下面四个结论中, ∠存在无数个四边形MNPQ 是平行四边形; ∠存在无数个四边形MNPQ 是矩形; ∠存在无数个四边形MNPQ 是菱形; ∠至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是______.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分) 解答应写出文字说明、演算步骤或证明过程.17.计算:()01142604sin π----++().18.解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩19.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.图3图2图120.如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE=DF ,连接EF .(1)求证:AC∠EF ;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O ,若BD=4,tanG=12,求AO 的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息: a .国家创新指数得分的频数分布直方图(数据分成7组:30≤x <40,40≤x <50,50≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x≤100);b .国家创新指数得分在60≤x <70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5 c .40个国家的人均国内生产总值和国家创新指数得分情况统计图:d .中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》) 根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l的上方.请在图中用“”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数) (4)下列推断合理的是______.∠相比于点A ,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;∠相比于点B ,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.在平面内,给定不在同一直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD . (1)求证:AD=CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD=CM ,求直线DE 与图形G 的公共点个数./万元23.小云想用7天的时间背诵若干首诗词,背诵计划如下: ∠将诗词分成4组,第i 组有i x 首,i =1,2,3,4;∠对于第i 组诗词,第i 天背诵第一遍,第(1i )天背诵第二遍,第(3i )天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;∠每天最多背诵14首,最少背诵4首.解答下列问题: (1)填入3x 补全上表;(2)若14x =,23x =,34x =,则4x 的所有可能取值为_________;(3)7天后,小云背诵的诗词最多为______首.24.如图,P 是与弦AB 所围成的图形的外部的一定点,C 是上一动点,连接PCCBA交弦AB 于点D .小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了探究. 下面是小腾的探究过程,请补充完整: (1)对于点C 在上的不同位置,画图、测量,得到了线段PC ,PD ,AD 的长度 的几组值,如下表:在PC ,PD ,AD 的长度这三个量中,确定的长度是自变量,的长度和______的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;AB(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为______cm.25. 在平面直角坐标系xOy中,直线l:()10y kx k=+≠与直线x k=,直线y k=-分别交于点A,B,直线x k=与直线y k=-交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB BC CA,,围成的区域(不含边界)为W.∠当2k=时,结合函数图象,求区域W内的整点个数;∠若区域W内没有整点,直接写出k的取值范围.26.在平面直角坐标系xOy中,抛物线21y ax bxa与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点11(,)2Pa,(2,2)Q.若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.27.已知30AOB ∠=︒,H 为射线OA上一定点,1OH=+,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON . (1)依题意补全图1;(2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON=QP ,并证明.28.在∠ABC 中,D ,E 分别是ABC 两边的中点,如果上的所有点都在∠ABC 的内部或边上,则称为∠ABC 的中内弧.例如,下图中是∠ABC 的一条中内弧.(1)如图,在Rt∠ABC中,AB AC D E ==,分别是AB AC ,的中点.画出备用图图1BAOB ABCDE∠ABC 的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t >,,,在∠ABC 中,D E ,分别是AB AC ,的中点.∠若12t =,求∠ABC 的中内弧所在圆的圆心P 的纵坐标的取值范围; ∠若在∠ABC 中存在一条中内弧,使得所在圆的圆心P 在∠ABC 的内部或边上,直接写出t 的取值范围.AED CB2019年北京市中考数学答案参考答案与试题解析一. 选择题.二. 填空题.9. 1 10. 测量可知11. ∠∠ 12. 45°13. 0 14. 12 15. =16. ∠∠∠三. 解答题.17.【答案】18.【答案】2 x<19.【答案】m=1,此方程的根为121x x== 20.【答案】(1)证明:∠四边形ABCD为菱形∠AB=AD,AC平分∠BAD∠BE=DF∠AB BE AD DF-=-∠AE=AF∠∠AEF是等腰三角形∠AC平分∠BAD∠AC∠EF(2)AO =1.21. 【答案】 (1)17 (2)(3)2.7 (4)∠∠ 22. 【答案】 (1)∠BD 平分∠ABC ∠∠=∠ABD CBD∠AD=CD(2)直线DE 与图形G 的公共点个数为1. 23. 【答案】 (1)如下图 第1天 第2天 第3天 第4天 第5天 第6天 第7天 第1组 第2组第3组3x 3x3x(2)4,5,6 (3)23 24. 【答案】(1)AD , PC ,PD ; (2)(3)2.29或者3.98 25. 【答案】 (1)()0,1(2)∠6个 ∠10k -≤<或2k =-26. 【答案】(1)1(2,)B a ; (2)直线1x;(3)1a ≤2.27. 【答案】 (1)见图(2) 在∠OPM中,=180150OMP POM OPM OPM ∠︒-∠-∠=︒-∠150OPN MPN OPM OPM ∠=∠-∠=︒-∠ OMP OPN ∴∠=∠(3)OP=2. 28. 【答案】 (1)如图:1801180180n r l πππ===(2)∠1P y ≥或12P y ≤; ∠02t<≤BCD E。
2019年北京市中考数学试卷
2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)1.(2分)(2019•北京)4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()×106×106×105D.439×1032.(2分)(2019•北京)下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.3.(2分)(2019•北京)正十边形的外角和为()A.180°B.360°C.720°D.1440°4.(2分)(2019•北京)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A 向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.15.(2分)(2019•北京)已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD6.(2分)(2019•北京)如果m+n=1,那么代数式(+)•(m2﹣n2)的值为()A.﹣3B.﹣1C.1D.37.(2分)(2019•北京)用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.38.(2分)(2019•北京)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分0≤t<1010≤t<2020≤t<3030≤t<40t≥40时间t人数学生类型性别男73125304女82926328学段初中25364411高中下面有四个推断:①﹣②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④二、填空题(本题共16分,每小题2分)9.(2分)(2019•北京)分式的值为0,则x的值是.10.(2分)(2019•北京)如图,已知△ABC,通过测量、计算得△ABC的面积约为cm2.(结果保留一位小数)11.(2分)(2019•北京)在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)12.(2分)(2019•北京)如图所示的网格是正方形网格,则∠P AB+∠PBA=°(点A,B,P是网格线交点).13.(2分)(2019•北京)在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为.14.(2分)(2019•北京)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为.15.(2分)(2019•北京)小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12s02(填“>”,“=”或”<”)16.(2分)(2019•北京)在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)(2019•北京)计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.18.(5分)(2019•北京)解不等式组:19.(5分)(2019•北京)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m 的值及此时方程的根.20.(5分)(2019•北京)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD 上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.21.(5分)(2019•北京)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为万美元;(结果保留一位小数)(4)下列推断合理的是.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.22.(6分)(2019•北京)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.23.(6分)(2019•北京)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组第4组x4x4x4③每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为;(3)7天后,小云背诵的诗词最多为首.24.(6分)(2019•北京)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8 PC/cmPD/cmAD/cm在PC,PD,AD的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为cm.25.(5分)(2019•北京)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.26.(6分)(2019•北京)在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.27.(7分)(2019•北京)已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M 总有ON=QP,并证明.28.(7分)(2019•北京)在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=,D,E分别是AB,AC的中点,画出△ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC 中,D,E分别是AB,AC的中点.①若t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.2019年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)1.(2分)(2019•北京)4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()×106×106×105D.439×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将439000用科学记数法表示×105.故选:C.2.(2分)(2019•北京)下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.3.(2分)(2019•北京)正十边形的外角和为()A.180°B.360°C.720°D.1440°【考点】多边形内角与外角.【分析】根据多边的外角和定理进行选择.【解答】解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选:B.4.(2分)(2019•北京)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A 向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1【考点】数轴.【分析】根据CO=BO可得点C表示的数为﹣2,据此可得a=﹣2﹣1=﹣3.【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.5.(2分)(2019•北京)已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD【考点】全等三角形的判定与性质;等腰三角形的性质;作图—复杂作图.【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【解答】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON=20°,∴∠OCD=∠OCM=80°,∴∠MCD=160°,又∠CMN=∠AON=20°,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.6.(2分)(2019•北京)如果m+n=1,那么代数式(+)•(m2﹣n2)的值为()A.﹣3B.﹣1C.1D.3【考点】分式的化简求值.【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=•(m+n)(m﹣n)=•(m+n)(m﹣n)=3(m+n),当m+n=1时,原式=3.故选:D.7.(2分)(2019•北京)用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.3【考点】命题与定理.【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【解答】解:①若a>b,ab>0,则<,真命题;②若ab>0,<,则a>b,真命题;③若a>b,<,则ab>0,真命题;∴组成真命题的个数为3个;故选:D.8.(2分)(2019•北京)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分0≤t<1010≤t<2020≤t<3030≤t<40t≥40时间t人数学生类型性别男73125304女82926328学段初中25364411高中下面有四个推断:①﹣②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【考点】频数(率)分布表;频数(率)分布直方图;算术平均数;中位数.【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:①解这200名学生参加公益劳动时间的平均数:①××103)÷﹣②这200名学生参加公益劳动时间的中位数在20﹣30之间,正确;③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间,正确;④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间,错误.故选:C.二、填空题(本题共16分,每小题2分)9.(2分)(2019•北京)分式的值为0,则x的值是1.【考点】63:分式的值为零的条件.【分析】根据分式的值为零的条件得到x﹣1=0且x≠0,易得x=1.【解答】解:∵分式的值为0,∴x﹣1=0且x≠0,∴x=1.故答案为1.10.(2分)(2019•北京)如图,已知△ABC,通过测量、计算得△ABC的面积约为cm2.(结果保留一位小数)【考点】三角形的面积.【分析】过点C作CD⊥AB的延长线于点D,测量出AB,CD的长,再利用三角形的面积公式即可求出△ABC的面积.【解答】解:过点C作CD⊥AB的延长线于点D,如图所示.经过测量,ABcm,CDcm,∴S△ABC=AB•CD=××≈cm2).11.(2分)(2019•北京)在如图所示的几何体中,其三视图中有矩形的是①②.(写出所有正确答案的序号)【考点】简单几何体的三视图.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此作答.【解答】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.12.(2分)(2019•北京)如图所示的网格是正方形网格,则∠P AB+∠PBA=45°(点A,B,P是网格线交点).【考点】勾股定理;勾股定理的逆定理.【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠P AB+∠PBA=45°,故答案为:45.13.(2分)(2019•北京)在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为0.【考点】反比例函数的性质;反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【分析】由点A(a,b)(a>0,b>0)在双曲线y=上,可得k1=ab,由点A与点B 关于x轴的对称,可得到点B的坐标,进而表示出k2,然后得出答案.【解答】解:∵点A(a,b)(a>0,b>0)在双曲线y=上,∴k1=ab;又∵点A与点B关于x轴的对称,∴B(a,﹣b)∵点B在双曲线y=上,∴k2=﹣ab;∴k1+k2=ab+(﹣ab)=0;故答案为:0.14.(2分)(2019•北京)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为12.【考点】菱形的性质;正方形的性质.【分析】由菱形的性质得出OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,得出AC=2OA=6,BD=2OB=4,即可得出菱形的面积.【解答】解:如图1所示:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,∴AC=2OA=6,BD=2OB=4,∴菱形ABCD的面积=AC×BD=×6×4=12;故答案为:12.15.(2分)(2019•北京)小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12=s02(填“>”,“=”或”<”)【考点】算术平均数;方差.【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【解答】解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,∴则s12=S02.故答案为=.16.(2分)(2019•北京)在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是①②③.【考点】平行四边形的判定与性质;菱形的判定与性质;矩形的判定与性质;正方形的判定.【分析】根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【解答】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故当MQ∥PN,PQ∥MN,四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形与任意矩形ABCD矛盾,故错误;故答案为:①②③.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)(2019•北京)计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及零指数幂的性质、特殊角的三角函数值、负指数幂的性质分别化简得出答案【解答】解:原式=﹣1+2×+4=﹣1++4=3+.18.(5分)(2019•北京)解不等式组:【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x<2,解②得x<,则不等式组的解集为x<2.19.(5分)(2019•北京)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m 的值及此时方程的根.【考点】根的判别式.【分析】直接利用根的判别式得出m的取值范围进而解方程得出答案.【解答】解:∵关于x的方程x2﹣2x+2m﹣1=0有实数根,∴b2﹣4ac=4﹣4(2m﹣1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.20.(5分)(2019•北京)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD 上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.【考点】全等三角形的判定与性质;菱形的性质;解直角三角形.【分析】(1)由菱形的性质得出AB=AD,AC⊥BD,OB=OD,得出AB:BE=AD:DF,证出EF∥BD即可得出结论;(2)由平行线的性质得出∠G=∠ADO,由三角函数得出tan G=tan∠ADO==,得出OA=OD,由BD=4,得出OD=2,得出OA=1.【解答】(1)证明:连接BD,如图1所示:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,OB=OD,∵BE=DF,∴AB:BE=AD:DF,∴EF∥BD,∴AC⊥EF;(2)解:如图2所示:∵由(1)得:EF∥BD,∴∠G=∠ADO,∴tan G=tan∠ADO==,∴OA=OD,∵BD=4,∴OD=2,∴OA=1.21.(5分)(2019•北京)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第17;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为万美元;(结果保留一位小数)(4)下列推断合理的是①②.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.【考点】近似数和有效数字;用样本估计总体;频数(率)分布直方图.【分析】(2)根据中国在虚线l1(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.【解答】解:(1)∵∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,故答案为:17;(2)如图所示:(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值;合理;故答案为:①②.22.(6分)(2019•北京)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.【考点】角平分线的性质;圆周角定理;三角形的外接圆与外心.【分析】(1)利用圆的定义得到图形G为△ABC的外接圆⊙O,由∠ABD=∠CBD得到=,从而圆周角、弧、弦的关系得到AD=CD;(2)如图,证明CD=CM,则可得到BC垂直平分DM,利用垂径定理得到BC为直径,再证明OD⊥DE,从而可判断DE为⊙O的切线,于是得到直线DE与图形G的公共点个数.【解答】(1)证明:∵到点O的距离等于a的所有点组成图形G,∴图形G为△ABC的外接圆⊙O,∵AD平分∠ABC,∴∠ABD=∠CBD,∴=,∴AD=CD;(2)如图,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC垂直平分DM,∴BC为直径,∴∠BAC=90°,∵=,∴OD⊥AC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE为⊙O的切线,∴直线DE与图形G的公共点个数为1.23.(6分)(2019•北京)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组第4组x4x4x4③每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为4,5,6;(3)7天后,小云背诵的诗词最多为23首.【考点】规律型:数字的变化类.【分析】(1)根据表中的规律即可得到结论;(2)根据题意列不等式即可得到结论;(3)根据题意列不等式,即可得到结论.【解答】解:(1)第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组x3x3x3第4组x4x4x4(2)∵每天最多背诵14首,最少背诵4首,∴x1≥4,x3≥4,x4≥4,∴x1+x3≥8①,∵x1+x3+x4≤14②,把①代入②得,x4≤6,∴4≤x4≤6,∴x4的所有可能取值为4,5,6,故答案为:4,5,6;(3)∵每天最多背诵14首,最少背诵4首,∴由第2天,第3天,第4天,第5天得,x1+x2≤14①,x2+x3≤14②,x1+x3+x4≤14③,x2+x4≤14④,①+②+④﹣③得,3x2≤28,∴x2≤,∴x1+x2+x3+x4≤+14=,∴x1+x2+x3+x4≤23,∴7天后,小云背诵的诗词最多为23首,故答案为:23.24.(6分)(2019•北京)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8 PC/cmPD/cmAD/cm在PC,PD,AD的长度这三个量中,确定AD的长度是自变量,PD的长度和PC 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为cm.【考点】动点问题的函数图象.【分析】(1)按照变量的定义,根据函数的定义,PC、PD不可能为自变量,只能是AD 为自变量,即可求解;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值为所求,即可求解.【解答】解:(1)根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量故答案为:AD、PC、PD;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD25.(5分)(2019•北京)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.【考点】一次函数图象上点的坐标特征.【分析】(1)令x=0,y=1,直线l与y轴的交点坐标(0,1);(2)①当k=2时,A(2,5),B(﹣,﹣2),C(2,﹣2),在W区域内有6个整数点;②当x=k+1时,y=﹣k+1,则有k2+2k=0,k=﹣2,当0>k≥﹣1时,W内没有整数点;【解答】解:(1)令x=0,y=1,∴直线l与y轴的交点坐标(0,1);(2)由题意,A(k,k2+1),B(,﹣k),C(k,﹣k),①当k=2时,A(2,5),B(﹣,﹣2),C(2,﹣2),在W区域内有6个整数点:(0,0),(0,﹣1),(1,0),(1,﹣1),(1,1),(1,2);②直线AB的解析式为y=kx+1,当x=k+1时,y=﹣k+1,则有k2+2k=0,∴k=﹣2,当0>k≥﹣1时,W内没有整数点,∴当0>k≥﹣1或k=﹣2时W内没有整数点;26.(6分)(2019•北京)在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;。
2019年北京市中考数学试卷(带解析)
(2)求证:∠OMP=∠OPN; (3)点 M 关于点 H 的对称点为 Q,连接 QP.写出一个 OP 的值,使得对于任意的点 M 总有 ON=QP,并证明.
28.(7 分)在△ABC 中,D,E 分别是△ABC 两边的中点,如果 上的所有点都在△ABC 的内部或边上,则称 为△ABC 的中内弧.例如,图 1 中 是△ABC 的一条中内弧.
b.国家创新指数得分在 60≤x<70 这一组的是: 61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5 c.40 个国家的人均国内生产总值和国家创新指数得分情况统计图:
第 5页(共 34页)
d.中国的国家创新指数得分为 69.5.
(以上数据来源于《国家创新指数报告(2018)》)
2019 年北京市中考数学试卷
一、选择题(本题共 16 分,每小题 2 分) 1.(2 分)4 月 24 日是中国航天日.1970 年的这一天,我国自行设计、制造的第一颗人造地
球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距
地球最近点 439000 米,将 439000 用科学记数法表示应为(
D.3
7.(2 分)用三个不等式 a>b,ab>0, < 中的两个不等式作为题设,余下的一个不等式
作为结论组成一个命题,组成真命题的个数为( )
A.0
B.1
C.2
D.3
8.(2 分)某校共有 200 名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加
公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分
③这 200 名学生中的初中生参加公益劳动时间的中位数一定在 20~30 之间
2019年北京市中考数学试卷含答案
2019年北京市中考数学试卷含答案--(总31页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)1.(2分)4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()A.×106B.×106C.×105D.439×1032.(2分)下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.3.(2分)正十边形的外角和为()A.180°B.360°C.720°D.1440°4.(2分)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.15.(2分)已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD6.(2分)如果m+n=1,那么代数式(+)•(m2﹣n2)的值为()A.﹣3B.﹣1C.1D.37.(2分)用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.38.(2分)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分0≤t<1010≤t<2020≤t<3030≤t<40t≥40时间t人数学生类型性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在﹣之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④二、填空题(本题共16分,每小题2分)9.(2分)分式的值为0,则x的值是.10.(2分)如图,已知△ABC,通过测量、计算得△ABC的面积约为cm2.(结果保留一位小数)11.(2分)在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)12.(2分)如图所示的网格是正方形网格,则∠PAB+∠PBA=°(点A,B,P是网格线交点).13.(2分)在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为.14.(2分)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为.15.(2分)小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12s02(填“>”,“=”或”<”)16.(2分)在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是.二、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.18.(5分)解不等式组:19.(5分)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.20.(5分)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO 的长.21.(5分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为万美元;(结果保留一位小数)(4)下列推断合理的是.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.22.(6分)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.23.(6分)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;第1天第2天第3天第4天第5天第6天第7天第1组xx1x11第2组xx2x22第3组第4组xx4x44③每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为;(3)7天后,小云背诵的诗词最多为首.24.(6分)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8 PC/cmPD/cmAD/cm在PC,PD,AD的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为cm.25.(5分)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.26.(6分)在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.27.(7分)已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.28.(7分)在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=,D,E分别是AB,AC的中点,画出△ABC 的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC中,D,E分别是AB,AC的中点.①若t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.2019年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)1.(2分)4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()A.×106B.×106C.×105D.439×103【解答】解:将439000用科学记数法表示为×105.故选:C.2.(2分)下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.3.(2分)正十边形的外角和为()A.180°B.360°C.720°D.1440°【解答】解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选:B.4.(2分)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.5.(2分)已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD【解答】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON=20°,∴∠OCD=∠OCM=80°,∴∠MCD=160°,又∠CMN=∠AON=20°,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.6.(2分)如果m+n=1,那么代数式(+)•(m2﹣n2)的值为()A.﹣3B.﹣1C.1D.3【解答】解:原式=•(m+n)(m﹣n)=•(m+n)(m﹣n)=3(m+n),当m+n=1时,原式=3.故选:D.7.(2分)用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.3【解答】解:①若a>b,ab>0,则<,真命题;②若ab>0,<,则a>b,真命题;③若a>b,<,则ab>0,真命题;∴组成真命题的个数为3个;故选:D.8.(2分)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分0≤t<1010≤t<2020≤t<3030≤t<40t≥40时间t人数学生类型性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在﹣之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【解答】解:①解这200名学生参加公益劳动时间的平均数:①(×97+×103)÷200=,一定在﹣之间,正确;②这200名学生参加公益劳动时间的中位数在20﹣30之间,正确;③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间,正确;④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间,错误.故选:C.二、填空题(本题共16分,每小题2分)9.(2分)分式的值为0,则x的值是 1 .【解答】解:∵分式的值为0,∴x﹣1=0且x≠0,∴x=1.故答案为1.10.(2分)如图,已知△ABC,通过测量、计算得△ABC的面积约为cm2.(结果保留一位小数)【解答】解:过点C作CD⊥AB的延长线于点D,如图所示.经过测量,AB=,CD=,∴S△ABC=AB•CD=××≈(cm2).故答案为:.11.(2分)在如图所示的几何体中,其三视图中有矩形的是①②.(写出所有正确答案的序号)【解答】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.12.(2分)如图所示的网格是正方形网格,则∠PAB+∠PBA=45 °(点A,B,P是网格线交点).【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.13.(2分)在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为0 .【解答】解:∵点A(a,b)(a>0,b>0)在双曲线y=上,∴k1=ab;又∵点A与点B关于x轴的对称,∴B(a,﹣b)∵点B在双曲线y=上,∴k2=﹣ab;∴k1+k2=ab+(﹣ab)=0;故答案为:0.14.(2分)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为12 .【解答】解:如图1所示:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,∴AC=2OA=6,BD=2OB=4,∴菱形ABCD的面积=AC×BD=×6×4=12;故答案为:12.15.(2分)小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12=s02(填“>”,“=”或”<”)【解答】解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,∴则s12=S02.故答案为=.16.(2分)在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是①②③.【解答】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故当MQ∥PN,PQ∥MN,四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是菱形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形与任意矩形ABCD矛盾,故错误;故答案为:①②③.二、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.【解答】解:原式=﹣1+2×+4=﹣1++4=3+.18.(5分)解不等式组:【解答】解:,解①得:x<2,解②得x<,则不等式组的解集为2<x<.19.(5分)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.【解答】解:∵关于x的方程x2﹣2x+2m﹣1=0有实数根,∴b2﹣4ac=4﹣4(2m﹣1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.20.(5分)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO 的长.【解答】(1)证明:连接BD,如图1所示:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,OB=OD,∵BE=DF,∴AB:BE=AD:DF,∴EF∥BD,∴AC⊥EF;(2)解:如图2所示:∵由(1)得:EF∥BD,∴∠G=∠ADO,∴tan G=tan∠ADO==,∴OA=OD,∵BD=4,∴OD=2,∴OA=1.21.(5分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第17 ;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为万美元;(结果保留一位小数)(4)下列推断合理的是①②.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.【解答】解:(1)∵国家创新指数得分为以上(含)的国家有17个,∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,故答案为:17;(2)如图所示:(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为万美元;故答案为:;(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值;合理;故答案为:①②.22.(6分)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.【解答】(1)证明:∵到点O的距离等于a的所有点组成图形G,∴图象G为△ABC的外接圆⊙O,∵AD平分∠ABC,∴∠ABD=∠CBD,∴=,∴AD=CD;(2)如图,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC垂直平分DM,∴BC为直径,∴∠BAC=90°,∵=,∴OD⊥AC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE为⊙O的切线,∴直线DE与图形G的公共点个数为1.23.(6分)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;第1天第2天第3天第4天第5天第6天第7天第1组xx1x11第2组xx2x22第3组第4组xx4x44③每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为4,5,6 ;(3)7天后,小云背诵的诗词最多为23 首.【解答】解:(1)第1天第2天第3天第4天第5天第6天第7天第1组xx1x11第2组xx2x22第3组xx3x33第4组xx4x44(2)∵每天最多背诵14首,最少背诵4首,∴x1≥4,x3≥4,x4≥4,∴x1+x3≥8①,∵x1+x3+x4≤14②,把①代入②得,x4≤6,∴4≤x4≤6,∴x4的所有可能取值为4,5,6,故答案为:4,5,6;(3)∵每天最多背诵14首,最少背诵4首,∴由第2天,第3天,第4天,第5天得,x1+x2≤14①,x2+x3≤14②,x1+x3+x4≤14③,x2+x4≤14④,①+②+④﹣③得,3x2≤28,∴x2≤,∴x1+x2+x3+x4≤+14=,∴x1+x2+x3+x4≤23,∴7天后,小云背诵的诗词最多为23首,故答案为:23.24.(6分)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8 PC/cmPD/cmAD/cm在PC,PD,AD的长度这三个量中,确定PC的长度是自变量,PD的长度和AD 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为(答案不唯一)cm.【解答】解:(1)按照变量的定义,PC是自变量,而PD、AD随PC的变化而变化,故PD、AD都是因变量,故答案为:PC、PD、AD;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值约为,故答案为(答案不唯一).25.(5分)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.【解答】解:(1)令x=0,y=1,∴直线l与y轴的交点坐标(0,1);(2)由题意,A(k,k2+1),B(,﹣k),C(k,﹣k),①当k=2时,A(2,5),B(﹣,﹣2),C(2,﹣2),在W区域内有6个整数点:(0,0),(0,﹣1),(1,0),(1,﹣1),(1,1),(1,2);②直线AB的解析式为y=kx+1,当x=k+1时,y=﹣k+1,则有k2+2k=0,∴k=﹣2,当0>k≥﹣1时,W内没有整数点,∴当0>k≥﹣1或k=﹣2时W内没有整数点;26.(6分)在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.【解答】解:(1)A(0,﹣)点A向右平移2个单位长度,得到点B(2,﹣);(2)A与B关于对称轴x=1对称,∴抛物线对称轴x=1;(3)∵对称轴x=1,∴b﹣2a,∴y=ax2﹣2ax﹣,①a>0时,当x=2时,y=﹣<2,当y=﹣时,x=0或x=2,∴函数与AB无交点;②a<0时,当y=2时,ax2﹣2ax﹣=2,x=或x=当≤2时,a≤﹣;∴当a≤﹣时,抛物线与线段PQ恰有一个公共点;27.(7分)已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.【解答】解:(1)如图1所示为所求.(2)设∠OPM=α,∵线段PM绕点P顺时针旋转150°得到线段PN∴∠MPN=150°,PM=PN∴∠OPN=∠MPN﹣∠OPM=150°﹣α∵∠AOB=30°∴∠OMP=180°﹣∠AOB﹣∠OPM=180°﹣30°﹣α=150°﹣α∴∠OMP=∠OPN(3)OP=2时,总有ON=QP,证明如下:过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,如图2∴∠NCP=∠PDM=∠PDQ=90°∵∠AOB=30°,OP=2∴PD=OP=1∴OD=∵OH=+1∴DH=OH﹣OD=1∵∠OMP=∠OPN∴180°﹣∠OMP=180°﹣∠OPN即∠PMD=∠NPC在△PDM与△NCP中∴△PDM≌△NCP(AAS)∴PD=NC,DM=CP设DM=CP=x,则OC=OP+PC=2+x,MH=MD+DH=x+1∵点M关于点H的对称点为Q∴HQ=MH=x+1∴DQ=DH+HQ=1+x+1=2+x∴OC=DQ在△OCN与△QDP中∴△OCN≌△QDP(SAS)∴ON=QP28.(7分)在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=,D,E分别是AB,AC的中点,画出△ABC 的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC中,D,E分别是AB,AC的中点.①若t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.【解答】解:(1)如图2,以DE为直径的半圆弧,就是△ABC的最长的中内弧,连接DE,∵∠A=90°,AB=AC=,D,E分别是AB,AC的中点,∴BC===4,DE=BC=×4=2,∴弧=×2π=π;(2)如图3,由垂径定理可知,圆心一定在线段DE的垂直平分线上,连接DE,作DE 垂直平分线FP,作EG⊥AC交FP于G,①当t=时,C(2,0),∴D(0,1),E(1,1),F(,1),设P(,m)由三角形中内弧定义可知,圆心线段DE上方射线FP上均可,∴m≥1,∵OA=OC,∠AOC=90°∴∠ACO=45°,∵DE∥OC∴∠AED=∠ACO=45°作EG⊥AC交直线FP于G,FG=EF=根据三角形中内弧的定义可知,圆心在点G的下方(含点G)直线FP上时也符合要求;∴m≤综上所述,m≤或m≥1.②如图4,设圆心P在AC上,∵P在DE中垂线上,∴P为AE中点,作PM⊥OC于M,则PM=,∴P(t,),∵DE∥BC∴∠ADE=∠AOB=90°∴AE===,∵PD=PE,∴∠AED=∠PDE∵∠AED+∠DAE=∠PDE+∠ADP=90°,∴∠DAE=∠ADP∴AP=PD=PE=AE由三角形中内弧定义知,PD≤PM∴AE≤,AE≤3,即≤3,解得:t≤,∵t>0∴0<t≤.。
2019-2019北京中考数学压轴题7页word文档
2019-2019北京中考数学综合题汇编2019北京08.将如右图所示的圆心角为90°的扇形纸片AOB 围成圆锥形纸帽,使扇形的两条半径OA 与OB 重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是 12.如图,在△ABC 中,AB =AC ,M 、N 分别是AB 、AC 的中点,D 、E 为BC 上的点,连结DN 、EM 。
若AB =13cm ,BC =10cm ,DE =5cm ,则图中阴影部分的面积为 cm 2。
22.请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图①画出分割线并在正方形网格图(图中每个小正方形的边长均为1) 小东同学的做法是:设新正方形的边长为x (x >0)。
依题意,割补前后图形的面积相等,有x 2=5,解得x =5。
由此可知新正方形得边长等于两个小正方形组成得矩形对角线得长。
于是,画出如图②所示的分割线,拼出如图③所示的新正方形。
请你参考小东同学的做法,解决如下问题:现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的正方形。
要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形。
说明:直接画出图形,不要求写分析过程。
23.如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形。
请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F 。
请你判断并写出FE 与FD 之间的数量关系;(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。
24.已知抛物线y =ax 2+bx +c 与y 轴交于点A (0,3),与x 轴分别交于B (1,0)、C (5,0)两点。
2019-2019北京中考数学压轴题7页word文档
2019-2019北京中考数学综合题汇编2019北京08.将如右图所示的圆心角为90°的扇形纸片AOB 围成圆锥形纸帽,使扇形的两条半径OA 与OB 重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是 12.如图,在△ABC 中,AB =AC ,M 、N 分别是AB 、AC 的中点,D 、E 为BC 上的点,连结DN 、EM 。
若AB =13cm ,BC =10cm ,DE =5cm ,则图中阴影部分的面积为 cm 2。
22.请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图①画出分割线并在正方形网格图(图中每个小正方形的边长均为1) 小东同学的做法是:设新正方形的边长为x (x >0)。
依题意,割补前后图形的面积相等,有x 2=5,解得x =5。
由此可知新正方形得边长等于两个小正方形组成得矩形对角线得长。
于是,画出如图②所示的分割线,拼出如图③所示的新正方形。
请你参考小东同学的做法,解决如下问题:现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的正方形。
要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形。
说明:直接画出图形,不要求写分析过程。
23.如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形。
请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F 。
请你判断并写出FE 与FD 之间的数量关系;(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。
24.已知抛物线y =ax 2+bx +c 与y 轴交于点A (0,3),与x 轴分别交于B (1,0)、C (5,0)两点。
中考数学压轴题考点训练数与式问题试题及答案解析
中考数学压轴题考点训练数与式问题实数与数轴问题【例1】(2019 年大庆)实数m,n在数轴上的对应点如图所示,则下列各式子正确的是()A.m>n B.﹣n>|m|C.﹣m>|n|D.|m|<|n|【分析】从数轴上可以看出m、n都是负数,且m<n,由此逐项分析得出结论即可.【解析】因为m、n都是负数,且m<n,|m|<|n|,A、m>n是错误的;B、﹣n>|m|是错误的;C、﹣m>|n|是正确的;D、|m|<|n|是错误的.故选:C.【变式1-1】(2019 年徐州)如图,数轴上有O、A、B三点,O为原点,O A、O B分别表示仙女座星系、M87 黑洞与地球的距离(单位:光年).下列选项中,与点B表示的数最为接近的是()A.5×106 B.107 C.5×107 D.108【分析】先化简2.5×106=0.25×107,再从选项中分析即可;【解析】2.5×106=0.25×107,(5×107)÷(0.25×107)=20,从数轴看比较接近;故选:C.【变式1-2】(2019 年枣庄)点O,A,B,C在数轴上的位置如图所示,O为原点,A C=1,O A=O B.若点C所表示的数为a,则点B所表示的数为()A.﹣(a+1)B.﹣(a﹣1)C.a+1 D.a﹣1【分析】根据题意和数轴可以用含a的式子表示出点B表示的数,本题得以解决.【解析】∵O为原点,A C=1,O A=O B,点C所表示的数为a,∴点A表示的数为a﹣1,∴点B表示的数为:﹣(a﹣1),故选:B.【点拨】本题考查数轴,解答本题的关键是明确题意,利用数形结合的思想解答.【考点 2】整式的求值问题【例2】(2019 年泰州)若 2a﹣3b=﹣1,则代数式 4a2﹣6a b+3b的值为()A.﹣1 B.1 C.2 D.3【分析】将代数式 4a2﹣6a b+3b变形后,整体代入可得结论.【解析】4a2﹣6a b+3b,=2a(2a﹣3b)+3b,=﹣2a+3b,=﹣(2a﹣3b),=1,故选:B.【点拨】本题考查代数式求值;熟练掌握整体代入法求代数式的值是解题的关键.【变式2-1】(2019 年常州)如果a﹣b﹣2=0,那么代数式 1+2a﹣2b的值是 5 .【分析】将所求式子化简后再将已知条件中a﹣b=2 整体代入即可求值;【解析】∵a﹣b﹣2=0,∴a﹣b=2,∴1+2a﹣2b=1+2(a﹣b)=1+4=5;故答案为 5.【变式2-2】(2019•济宁)已知x﹣2y=3,那么代数式 3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.9【分析】将 3﹣2x+4y变形为 3﹣2(x﹣2y),然后代入数值进行计算即可.【解析】∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选:A.【考点 3】分式的求值问题【例3】(2019 年内江)若2,则分式的值为﹣4 .【分析】由2,可得m+n=2m n;化简,即可求解;’【解析】2,可得m+n=2m n,=﹣4;故答案为﹣4;【点拨】本题考查分式的值;能够通过已知条件得到m+n=2m n,整体代入的思想是解题的关键;【变式3-1】(2019 年绥化)当a=2018 时,代数式()的值是2019 .【分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解析】()=a+1,当a=2018 时,原式=2018+1=2019,故答案为:2019.【变式3-2】(2019 年北京)如果m+n=1,那么代数式()•(m2﹣n2)的值为()A.﹣3 B.﹣1 C.1 D.3【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.【解析】原式•(m+n)(m﹣n)•(m+n)(m﹣n)=3(m+n),当m+n=1 时,原式=3.故选:D.【考点 4】二次根式的性质与化简【例4】(2019 年绵阳)已知x是整数,当|x|取最小值时,x的值是()A.5 B.6 C.7 D.8【分析】根据绝对值的意义,由与最接近的整数是 5,可得结论.【解析】∵,∴5,且与最接近的整数是 5,∴当|x |取最小值时,x的值是 5,故选:A.【点拨】本题考查了算术平方根的估算和绝对值的意义,熟练掌握平方数是关键.【变式4-1】(2019 年菏泽)已知x,那么x2﹣2x的值是 4 .【分析】根据二次根式的运算以及完全平方公式即可求出答案.【解析】∵x ,∴x2﹣2x+2=6,∴x2﹣2x=4,故答案为:4【变式4-2】(2019 年内江)若|1001﹣a|a,则a﹣10012=1002 .【分析】由二次根式有意义的条件得到a≥1002,据此去绝对值并求得a的值,代入求值即可.【解析】∵a﹣1002≥0,∴a≥1002.由|1001﹣a|a,得﹣1001+a a,∴1001,∴a﹣1002=10012.∴a﹣10012=1002.故答案是:1002.【考点 5】数字的变化规律【例5】(2019 年河池)a1,a2,a3,a4,a5,a6,…,是一列数,已知第 1 个数a1=4,第5 个数a5=5,且任意三个相邻的数之和为 15,则第 2019 个数a2019 的值是 6 .【分析】由任意三个相邻数之和都是 15,可知a1、a4、a7、…a3n+1 相等,a2、a5、a8、…a3n+2 相等,a3、a6、a9、…a3n相等,可以得出a5=a2=5,根据a1+a2+a3=15 得 4+5+a3=15,求得a3,进而按循环规律求得结果.【解析】由任意三个相邻数之和都是 15 可知:a1+a2+a3=15,a2+a3+a4=15,a3+a4+a5=15,…a n+a n+1+a n+2=15,可以推出:a1=a4=a7=…=a3n+1,a2=a5=a8=…=a3n+2,a3=a6=a9=…=a3n,所以a5=a2=5,则4+5+a3=15,解得a3=6,∵2019÷3=673,因此a2019=a3=6.故答案为:6.【变式5-1】(2019 年益阳)观察下列等式:①3﹣2(1)2,②5﹣2()2,③7﹣2()2,…请你根据以上规律,写出第 6 个等式.【分析】第n个等式左边的第 1 个数为 2n+1,根号下的数为n(n+1),利用完全平方公式得到第n个等式右边的式子为()2(n≥1的整数).【解析】写出第 6 个等式为 13﹣2()2.故答案为()2.【点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.【变式5-2】(2019 年铜仁市)按一定规律排列的一列数依次为:,,,,…(a ≠0),按此规律排列下去,这列数中的第n个数是.(n为正整数)【分析】先确定正负号与序号数的关系,再确定分母与序号数的关系,然后确定a的指数与序号数的关系.【解析】第 1 个数为(﹣1)1•,第 2 个数为(﹣1)2•,第 3 ,第 4 ,…,所以这列数中的第n个数是(﹣1)n•.故答案为(﹣1)n•.【点拨】本题考查了规律型:数字的变化类:寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法.【考点 6】图形的变化规律【例6】(2019 年大庆)归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为.【分析】根据题意和图形,可以发现图形中棋子的变化规律,从而可以求得第n个“T”字形需要的棋子个数.【解析】由图可得,图①中棋子的个数为:3+2=5,图②中棋子的个数为:5+3=8,图③中棋子的个数为:7+4=11,……则第n个“T”字形需要的棋子个数为:(2n+1)+(n+1)=3n+2,故答案为:3n+2.【点拨】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中棋子的变化规律,利用数形结合的思想解答.【变式6-1】(2019 年天水)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第 2019 个图形中共有6058 个〇.【分析】根据题目中的图形,可以发现〇的变化规律,从而可以得到第 2019 个图形中〇的个数.【解析】由图可得,第 1 个图象中〇的个数为:1+3×1=4,第 2 个图象中〇的个数为:1+3×2=7,第 3 个图象中〇的个数为:1+3×3=10,第 4 个图象中〇的个数为:1+3×4=13,……∴第 2019 个图形中共有:1+3×2019=1+6057=6058 个〇,故答案为:6058.【点拨】本题考查图形的变化类,解答本题的关键是明确题意,发现图形中〇的变化规律,利用数形结合的思想解答.【变式6-2】(2019 年甘肃)如图,每一图中有若干个大小不同的菱形,第 1 幅图中有 1 个菱形,第 2 幅图中有 3 个菱形,第 3 幅图中有 5 个菱形,如果第n幅图中有 2019 个菱形,则n=1010 .【分析】根据题意分析可得:第 1 幅图中有 1 个,第 2 幅图中有2×2﹣1=3 个,第 3 幅图中有2×3﹣1=5 个,…,可以发现,每个图形都比前一个图形多 2 个,继而即可得出答案.【解析】根据题意分析可得:第 1 幅图中有 1个.第 2 幅图中有2×2﹣1=3 个.第 3 幅图中有2×3﹣1=5个.第 4 幅图中有2×4﹣1=7个.….可以发现,每个图形都比前一个图形多 2个.故第n幅图中共有(2n﹣1)个.当图中有 2019 个菱形时,2n﹣1=2019,n=1010,故答案为:1010.【点拨】本题考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律.1.(2019 年北京)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移 1 个单位长度,得到点C,若C O=B O,则a的值为()A.﹣3 B.﹣2 C.﹣1 D.1【分析】根据C O=B O可得点C表示的数为﹣2,据此可得a=﹣2﹣1=﹣3.【解析】∵点C在原点的左侧,且C O=B O,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.2.(2019 ,中,绝对值最大的数是() A.﹣3 B.﹣0.5 D.【分析】根据绝对值的性质以及正实数都大于 0,负实数都小于 0,正实数大于一切负实数,两个负实数绝对值大的反而小判断即可.【解析】∵|﹣3|=3,|﹣0.5|=0.5,||,| | 且3,∴所给的几个数中,绝对值最大的数是﹣3.故选:A.3.(2019 年云南)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1 B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1 D.(﹣1)n x2n+1【分析】观察指数规律与符号规律,进行解答便可.【解析】∵x3=(﹣1)1﹣1x2×1+1,﹣x5=(﹣1)2﹣1x2×2+1,x7=(﹣1)3﹣1x2×3+1,﹣x9=(﹣1)4﹣1x2×4+1,x11=(﹣1)5﹣1x2×5+1,……由上可知,第n个单项式是:(﹣1)n﹣1x2n+1,故选:C.4.(2019 年黔东南州)如果 3a b2m﹣1 与 9a b m+1 是同类项,那么m等于()A.2 B.1 C.﹣1 D.0【分析】根据同类项的定义,含有相同的字母,并且相同字母的指数也相同,列出等式,直接计算即可.【解析】根据题意,得:2m﹣1=m+1,解得:m=2.故选:A.5.(2019 年常德)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得 70+71+72+…+72019 的结果的个位数字是()A.0 B.1 C.7 D.8【分析】首先得出尾数变化规律,进而得出 70+71+72+…+72019 的结果的个位数字.【解析】∵70=1,71=7,72=49,73=343,74=2401,75=16807,…,∴个位数 4 个数一循环,∴(2019+1)÷4=505,∴1+7+9+3=20,∴70+71+72+…+72019 的结果的个位数字是:0.故选:A.6.(2019 年深圳)定义一种新运算n•x n﹣1d x=a n﹣b n,例如2x d x=k2﹣n2,若x﹣2d x=﹣2,则m=()A.﹣2 C.2 D.【分析】根据新运算列等式为m﹣1﹣(5m)﹣1=﹣2,解出即可.【解析】由题意得:m﹣1﹣(5m)﹣1=﹣2,2,5﹣1=﹣10m,m,故选:B.7.(2019 年攀枝花)一辆货车送货上山,并按原路下山.上山速度为a千米/时,下山速度为b千米/时.则货车上、下山的平均速度为()千米/时.A.(a+b)C.D.【分析】平均速度=总路程÷总时间,设单程的路程为x,表示出上山下山的总时间,把相关数值代入化简即可.【解答】设上山的路程为x千米,则上山的时间小时,下山的时间为小时,则上、下山的平均速度千米/时.故选:D.8.(2019 年临沂)计算a﹣1 的正确结果是()A.B.C.D.【分析】先将后两项结合起来,然后再化成同分母分式,按照同分母分式加减的法则计算就可以了.【解析】原式,,.9.(2019 年舟山)数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为b<﹣a<a<﹣b(用“<”号连接).【分析】根据两个负数比较大小,其绝对值大的反而小和负数都小于 0,即可得出答案.【解析】∵a>0,b<0,a+b<0,∴|b|>a,∴﹣b>a,b<﹣a,∴四个数a,b,﹣a,﹣b的大小关系为b<﹣a<a<﹣b.故答案为:b<﹣a<a<﹣b10.(2019 年咸宁)有一列数,按一定规律排列成 1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是 412,则这三个数的和是﹣384 .【分析】根据题目中的数字,可以发现它们的变化规律,再根据其中某三个相邻数的积是412,可以求得这三个数,从而可以求得这三个数的和.【解析】∵一列数为 1,﹣2,4,﹣8,16,﹣32,…,∴这列数的第n个数可以表示为(﹣2)n﹣1,∵其中某三个相邻数的积是 412,∴设这三个相邻的数为(﹣2)n﹣1、(﹣2)n、(﹣2)n+1,则(﹣2)n﹣1•(﹣2)n•(﹣2)n+1=412,即(﹣2)3n=(22)12,∴(﹣2)3n=224,∴3n=24,解得,n=8,∴这三个数的和是:(﹣2)7+(﹣2)8+(﹣2)9=(﹣2)7×(1﹣2+4)=(﹣128)×3=﹣384,故答案为:﹣384.11.(2019 年湘潭)若a+b=5,a﹣b=3,则a2﹣b2=15 .【分析】先根据平方差公式分解因式,再代入求出即可.【解析】∵a+b=5,a﹣b=3,∴a2﹣b2=(a+b)(a﹣b)=5×3=15,故答案为:15.12.(2019 年徐州)若a=b+2,则代数式a2﹣2a b+b2 的值为 4 .【分析】由a=b+2,可得a﹣b=2,代入所求代数式即可.【解析】∵a=b+2,∴a﹣b=2,∴a2﹣2a b+b2=(a﹣b)2=22=4.故答案为:413.(2019 年桂林)若x2+a x+4=(x﹣2)2,则a=﹣4 .【分析】直接利用完全平方公式得出a的值.【解析】∵x2+a x+4=(x﹣2)2,∴a=﹣4.故答案为:﹣4.【点拨】此题主要考查了公式法分解因式,正确应用公式是解题关键.14.(2019 年咸宁)若整式x2+m y2(m为常数,且m≠0)能在有理数范围内分解因式,则m的值可以是﹣1 (写一个即可).【分析】令m=﹣1,使其能利用平方差公式分解即可.【解析】令m=﹣1,整式为x2﹣y2=(x+y)(x﹣y).故答案为:﹣1(答案不唯一).15.(2019 年广州)代数式有意义时,x应满足的条件是x>8 .【分析】直接利用分式、二次根式的定义求出x的取值范围.【解析】代数式有意义时,x﹣8>0,解得:x>8.故答案为:x>8.16.(2019 年枣庄)观察下列各式:11+(1),11+(),11+(),…请利用你发现的规律,计算:,其结果为2018 .【分析】根据题意找出规律,根据二次根式的性质计算即可.【解析】=1+(1)+1+()+…+1+()=2018+1=2018,故答案为:2018.17.(2019 年西藏)观察下列式子第 1 个式子:2×4+1=9=32第 2 个式子:6×8+1=49=72第 3 个式子:14×16+1=225=152……请写出第n个式子:(2n+1﹣2)×2n+1+1=(2n+1﹣1)2 .【分析】由题意可知:①等号左边是两个连续偶数的积(其中第二个因数比第一个因数大 2)与 1 的和;右边是比左边第一个因数大 1 的数的平方;②第 1 个式子的第一个因数是 22﹣2,第 2 个式子的第一个因数是 23﹣2,第 3 个式子的第一个因数是 24﹣2,以此类推,得出第n个式子的第一个因数是 2n+1﹣2,从而能写出第n个式子.【解析】∵第 1 个式子:2×4+1=9=32,即(22﹣2)×22+1=(22﹣1)2,第 2 个式子:6×8+1=49=72,即(23﹣2)×23+1=(23﹣1)2,第 3 个式子:14×16+1=225=152,即(24﹣2)×24+1=(24﹣1)2,……∴第n个等式为:(2n+1﹣2)×2n+1+1=(2n+1﹣1)2.故答案为:(2n+1﹣2)×2n+1+1=(2n+1﹣1)2.18.(2019 年海南)有 2019 个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是 0,第二个数是 1,那么前 6 个数的和是0 ,这 2019 个数的和是 2 .【分析】根据题意可以写出这组数据的前几个数,从而可以数字的变化规律,本题得以解决.【解析】由题意可得,这列数为:0,1,1,0,﹣1,﹣1,0,1,1,…,∴前 6 个数的和是:0+1+1+0+(﹣1)+(﹣1)=0,∵2019÷6=336…3,∴这 2019 个数的和是:0×336+(0+1+1)=2,故答案为:0,2.19.(2019 年安顺)如图,将从 1 开始的自然数按以下规律排列,例如位于第 3 行、第 4 列的数是 12,则位于第 45 行、第 7 列的数是2019 .【分析】观察图表可知:第n行第一个数是n2,可得第 45 行第一个数是 2025,推出第 45行、第 7 列的数是 2025﹣6=2019【解析】观察图表可知:第n行第一个数是n2,∴第 45 行第一个数是 2025,∴第 45 行、第 7 列的数是 2025﹣6=2019,故答案为 2019。
2019年北京市中考数学真题卷(含答案)解析版
12019年北京市中考数学试卷【精品】一.选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为( )A.0.439×106B.4.39×106C.4.39×105D.139×1032.下列倡导节约的图案中,是轴对称图形的是( )A. B. C. D.3.正十边形的外角和为( )A.180°B.360°C.720°D.1440°4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A.-3B.-2C.-1D.15.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作»PQ,交射线OB 于点D ,连接CD ; (2)分别以点C ,D 为圆心,CD 长为半径作弧,交»PQ于点M ,N ; (3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( )A.∠COM=∠CODB.若OM=MN ,则∠AOB=20°BC.MN∠CDD.MN=3CD6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为()A.-3B.-1C.1D.37.用三个不等式a b >,0ab >,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A.0B.1C.2D.38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.3下面有四个推断:∠这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ∠这200名学生参加公益劳动时间的中位数在20-30之间∠这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ∠这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是( )A.∠∠B.∠∠C.∠∠∠D.∠∠∠∠二、填空题(本题共16分,每小题2分)9.若分式1x x的值为0,则x 的值为______.10.如图,已知∠ABC ,通过测量、计算得∠ABC 的面积约为 cm 2.(结果保留一位小数) 11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)学生类别512.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).13.在平面直角坐标系xOy 中,点A()a b ,()00a b >>,在双曲线1k y x=上.点A 关于x 轴的对称点B 在双曲线2k y x=上,则12k k +的值为______. 14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.第10题图CBA第11题图③圆锥②圆柱①长方体第12题图515.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合). 对于任意矩形ABCD ,下面四个结论中, ∠存在无数个四边形MNPQ 是平行四边形; ∠存在无数个四边形MNPQ 是矩形; ∠存在无数个四边形MNPQ 是菱形; ∠至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是______.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分) 解答应写出文字说明、演算步骤或证明过程.17.计算:()1142604sin π----++o().图3图2图118.解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩19.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.20.如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE=DF ,连接EF .(1)求证:AC∠EF ;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O ,若BD=4,tanG=12,求AO 的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息: a .国家创新指数得分的频数分布直方图(数据分成7组:30≤x <40,40≤x <50,50≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x≤100);7b .国家创新指数得分在60≤x <70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5 c .40个国家的人均国内生产总值和国家创新指数得分情况统计图:d .中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》) 根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l的上方.请在图中用“d ”圈出代表中国的点; (3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数) (4)下列推断合理的是______.∠相比于点A ,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;/万元∠相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离∠的平分线交图形均等于a(a为常数),到点O的距离等于a的所有点组成图形G,ABCG于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.ABC923.小云想用7天的时间背诵若干首诗词,背诵计划如下:∠将诗词分成4组,第i 组有i x 首,i =1,2,3,4;∠对于第i 组诗词,第i 天背诵第一遍,第(1i +)天背诵第二遍,第(3i +)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;∠每天最多背诵14首,最少背诵4首. 解答下列问题: (1)填入3x 补全上表; (2)若14x =,23x =,34x =,则4x 的所有可能取值为_________;(3)7天后,小云背诵的诗词最多为______首.24.如图,P 是»AB 与弦AB 所围成的图形的外部的一定点,C 是»AB 上一动点,连接PC 交弦AB 于点D .小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在»AB上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:在PC,PD,AD的长度这三个量中,确定的长度是自变量,的长度和______的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;AB11(3)结合函数图象,解决问题:当PC=2PD 时,AD 的长度约为______cm .25. 在平面直角坐标系xOy 中,直线l :()10y kx k =+≠与直线x k =,直线y k =-分别交于点A ,B ,直线x k =与直线yk =-交于点C .(1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB BC CA ,,围成的区域(不含边界)为W . ∠当2k=时,结合函数图象,求区域W 内的整点个数;∠若区域W 内没有整点,直接写出k 的取值范围.26.在平面直角坐标系xOy 中,抛物线21y axbx a=+-与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上. (1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点11(,)2P a-,(2,2)Q .若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.27.已知30AOB ∠=︒,H 为射线OA上一定点,1OH=+,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON . (1)依题意补全图1;(2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON=QP ,并证明.28.在∠ABC 中,D ,E 分别是ABC !两边的中点,如果上的所有点都在∠ABC 的内部或边上,则称为∠ABC 的中内弧.例如,下图中是∠ABC 的一条中内弧.备用图图1BAOABCDE13(1)如图,在Rt∠ABC 中,22AB AC D E ==,,分别是AB AC ,的中点.画出∠ABC 的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点()()()()0,20,04,00AB C t t >,,,在∠ABC 中,D E ,分别是AB AC ,的中点.∠若12t=,求∠ABC 的中内弧所在圆的圆心P 的纵坐标的取值范围;∠若在∠ABC 中存在一条中内弧,使得所在圆的圆心P 在∠ABC 的内部或边上,直接写出t 的取值范围.AED CB2019年北京市中考数学试卷一.选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为( )A.0.439×106B.4.39×106C.4.39×105D.139×103【解析】本题考察科学记数法较大数,Na 10⨯中要求10||1<≤a ,此题中5,39.4==N a ,故选C2.下列倡导节约的图案中,是轴对称图形的是( )B. B.C.D. 【解析】本题考察轴对称图形的概念,故选C3.正十边形的外角和为( )A.180°B.360°C.720°D.1440°【解析】多边形的外角和是一个定值360°,故选B4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A.-3B.-2C.-1D.1【解析】本题考察数轴上的点的平移及绝对值的几何意义.点A 表示数为a ,点B 表示数为2,点C 表示数为a+1,由题意可知,a <0,∠CO=BO ,∠2|1|=+a ,解得1=a15(舍)或3-=a ,故选A5.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作»PQ,交射线OB 于点D ,连接CD ; (2)分别以点C ,D 为圆心,CD 长为半径作弧,交»PQ于点M ,N ; (3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( ) A.∠COM=∠COD B.若OM=MN ,则∠AOB=20°C.MN∠CDD.MN=3CD【解析】连接ON ,由作图可知∠COM∠∠DON. A. 由∠COM∠∠DON.,可得∠COM=∠COD ,故A 正确.B. 若OM=MN ,则∠OMN 为等边三角形,由全等可知∠COM=∠COD=∠DON=20°,故B 正确C.由题意,OC=OD ,∠∠OCD=2COD180∠-︒.设OC 与OD 与MN 分别交于R ,S ,易证∠MOR∠∠NOS ,则OR=OS ,∠∠ORS=2COD180∠-︒,∠∠OCD=∠ORS.∠MN∠CD ,故C正确.D.由题意,易证MC=CD=DN ,∠MC+CD+DN=3CD.∠两点之间线段最短.∠MN <MC+CD+DN=3CD ,故选D6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( )A.-3B.-1C.1D.3【解析】:()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭B))(()()(2n m n m n m m n m n m m n m -+⋅⎥⎦⎤⎢⎣⎡--+-+=)(3))(()(3n m n m n m n m m m+=-+⋅-=1=+n m Θ∠原式=3,故选D7.用三个不等式a b >,0ab >,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A.0B.1C.2D.3【解析】本题共有3种命题: 命题∠,如果0,>>ab b a ,那么ba 11<. ∠b a >,∠0>-b a ,∠0>ab ,∠0>-ab b a ,整理得ab 11>,∠该命题是真命题. 命题∠,如果,11,ba b a <>那么0>ab . ∠,11b a <∠.0,011<-<-aba b b a ∠b a >,∠0<-a b ,∠0>ab . ∠该命题为真命题. 命题∠,如果ba ab 11,0<>,那么b a >. ∠,11b a <∠.0,011<-<-aba b b a ∠0>ab ,∠0<-a b ,∠a b < ∠该命题为真命题. 故,选D179.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:∠这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ∠这200名学生参加公益劳动时间的中位数在20-30之间∠这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间学生类别5∠这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是()A.∠∠B.∠∠C.∠∠∠D.∠∠∠∠【解析】∠由条形统计图可得男生人均参加公益劳动时间为24.5h,女生为25.5h,则平均数一定在24.5~25.5之间,故∠正确∠由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故∠正确.∠由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故∠正确.∠由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故∠错误故,选C二、填空题(本题共16分,每小题2分)9.若分式1xx-的值为0,则x的值为______.【解析】本题考查分式值为0,则分子01=-x,且分母0≠x,故答案为110.如图,已知∠ABC,通过测量、计算得∠ABC的面积约为cm2.(结果保留一位小数)【解析】本题考查三角形面积,直接动手操作测量即可,故答案为“测量可知”11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)【解析】本题考查对三视图的认识.∠长方体的主视图,俯视图,左视图均为矩形;∠圆柱的主视图,左视图均为矩形,俯视图为圆;∠圆锥的主视图和左视图为三角形,19俯视图为圆.故答案为∠∠12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).【解析】本题考查三角形的外角,可延长AP 交正方形网格于点Q ,连接BQ ,如图所示,经计算105===PB BQ PQ ,,∠222PB BQ PQ =+,即∠PBQ 为等腰直角三角形,∠∠BPQ=45°,∠∠PAB+∠PBA=∠BPQ=45°,故答案为4513.在平面直角坐标系xOy 中,点A()a b ,()00a b >>,在双曲线1k y x=上.点A 关第10题图CBA第11题图③圆锥②圆柱①长方体第12题图BA于x 轴的对称点B 在双曲线2k y x=上,则12k k +的值为______. 【解析】本题考查反比例函数的性质,A (a ,b )在反比例xk y 1=上,则ab k =1,A 关于x 轴的对称点B 的坐标为),(b a -,又因为B 在xk y 2=上,则ab k -=2,∠021=+k k 故答案为014.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.【解析】设图1中小直角三角形的两直角边分别为a ,b (b >a ),则由图2,图3可列方程组,15⎩⎨⎧=-=+a b b a 解得⎩⎨⎧==32b a ,所以菱形的面积.126421=⨯⨯=S 故答案为12. 15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)【解析】本题考查方差的性质。
2019年北京市中考数学试卷(含答案与解析)
数学试卷 第1页(共22数学试卷 第2页(共22页)绝密★启用前2019年北京市高级中等学校招生考试数 学一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为( ) A .60.43910⨯B .64.3910⨯C .54.3910⨯D .343910⨯ 2.下列倡导节约的图案中,是轴对称图形的是( )AB CD3.正十边形的外角和为( )A .180︒B .360︒C .720︒D .1440︒4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO BO =,则a 的值为( )A .3-B .2-C .1-D .15.已知锐角AOB ∠如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交PQ 于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( )A .COM COD ∠=∠B .若OM MN =,则20AOB ︒∠=C .MN CD ∥D .3MN CD =6.如果1m n +=,那么代数式()22221m nm n m m mn +⎛⎫+⋅- ⎪-⎝⎭的值为( )A .3-B .1-C .1D .37.用三个不等式a b >,0ab >,11a b <中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A .0B .1C .2D .38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公下面有四个推断:学生类别5毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是( )A .①③B .②④C .①②③D .①②③④二、填空题(本题共16分,每小题2分)9.若分式1x x-的值为0,则x 的值为 .10.如图,已知ABC △,通过测量、计算得ABC △的面积约为 2cm .(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是 .(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则PAB PBA ∠∠=+ 。
北京市2019年中考数学押题卷1(含解析)
北京市中考数学押题卷1学校姓名准考据号1.本试卷共 8 页,共三道大题, 28道小题.满分 100 分,考试时间 120 分钟.考在试卷和答题卡上正确填写学校名称、姓名和准考据号.2.生3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选须知择题、作图题用2B 铅笔作答,其余试题用黑色笔迹署名笔作答.4.考试结束,将本试卷和答题卡一并交回.评卷人得分一、选择题 ( 本题共 16分,每题2分)下边各题均有四个选项,此中只有一个是切合题意的..1.以下几何体中,其面既有平面又有曲面的有()A. 1 个B. 2个C.3个D.4 个【分析】依据立体图形的特点,可得答案.【解答】解:球只有1个曲面;圆锥既有曲面又有平面;正方体只有平面;圆柱既有平面又有曲面;应选: B.【说明】本题考察了认识立体图形,熟记立体图形的特点是解题重点.2.已知实数 a, b在数轴上的地点以下图,以下结论中正确的选项是()A.>B. |a | < |b|C.>0D.﹣a>ba b ab【分析】依据数轴能够判断a、b 的正负,从而能够判断各个选项中的结论能否正确,从而能够解答本题.【解答】解:由数轴可得,﹣ 2<a<﹣ 1< 0<b< 1,∴ a<b,应选项 A错误,| a| >| b| ,应选项B错误,ab<0,应选项 C 错误,﹣a>b,应选项 D 正确,应选: D.【说明】本题考察实数与数轴、绝对值,解答本题的重点是明确题意,利用数形联合的思想解答.3.二元一次方程组的解是()A.B.C.D.【分析】依据方程组的解法解答判断即可.【解答】解:解方程组,可得:,应选: B.【说明】本题主要考察二元一次方程组的解,知道二元一次方程组的解是两个方程的公共解是解题的重点,别的,本题还能够逐项解方程组.4. 2018 年我国在人工智能领域获得明显成就,自主研发的人工智能“绝艺”获取全世界最前沿的人工智能赛事冠军,这受益于所成立的大数据中心的规模和数据储存量,它们决定着人工智能深度学习的质量和速度,此中的一个大数据中心能储存 58000000000 本书本.将58000000000 用科学记数法表示应为()A.58×10 9B.5.8 ×10 10C.5.8 ×10 11D.0.58 ×10 11【分析】科学记数法的表示形式为a×10n的形式,此中1≤|a| < 10,n为整数.确立n的值时,要看把原数变为a时,小数点挪动了多少位,n的绝对值与小数点挪动的位数同样.当原数绝对值> 1 时,n是正数;当原数的绝对值< 1 时,n是负数.580 0000 0000 5.8 ×10 10.应选: B.【说明】本题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,此中1≤|a| < 10,n为整数,表示时重点要正确确立a的值以及n的值.5.一个正多边形的每一个外角都等于45°,则这个多边形的边数为()A. 4B. 6C. 8D. 10【分析】依据多边形的外角和是360 度即可求得外角的个数,即多边形的边数.【解答】解:多边形的边数为:360÷45=8.应选:C.【说明】本题主要考察了多边形的外角和定理,理解多边形外角和中外角的个数与正多边形的边数之间的关系,是解题重点.6.化简的结果是()A.B.C.a﹣b D.b﹣a【分析】先将分母分解因式,再约分即可.【解答】解:原式==.应选: B.【说明】本题考察了分式的化简,正确将分母分解因式是解题的重点.7.如图,排球运动员站在点 O处练习发球,将球从 O点正上方2 m的 A处发出,把球当作点,其运转的高度y( m)与运转的水平距离x( m)知足关系式y= a( x﹣ k)2+h.已知球与D点的水平距离为6 m时,达到最高 2.6 m,球网与D点的水平距离为9 m.高度为 2.43 m,球场的界限距O 点的水平距离为18 m,则以下判断正确的选项是()A.球不会过网B.球会过球网但不会出界C.球会过球网并会出界D.没法确立【分析】利用球与 O点的水平距离为6m时,达到最高 2.6 m,可得k=6,h= 2.6 ,球从O点正上方 2m的A处发出,将点(0,2)代入分析式求出函数分析式;利用当x=9时,y=﹣( x﹣6)2+2.6=2.45,当 y=0时,﹣( x﹣6)2+2.6=0,分别得出即可.【解答】解:( 1)∵球与O点的水平距离为 6m时,达到最高 2.6 m,∴抛物线为y=a( x﹣6)2+2.6过点,∵抛物线 y= a( x﹣6)2+2.6过点(0,2),∴2=a( 0﹣ 6 )2+2.6 ,解得: a=﹣,故 y与x的关系式为: y=﹣( x﹣6)2+2.6,当x=9时, y=﹣(x﹣6)2+2.6=2.45>2.43,因此球能过球网;当 y=0时,﹣(x﹣6)2+2.6=0,解得: x1=6+2> 18,x2=6﹣2(舍去)故会出界.应选: C.【说明】本题主要考察了二次函数的应用题,依据题意求出函数分析式是解题重点.8.第六届北京农业嘉年光在昌平区兴寿镇草莓博览园举办,某校数学兴趣小组的同学依据数学知识将草莓博览园的旅行线路进行了精简.如图,分别以正东、正北方向为 x轴、 y 轴成立平面直角坐标系,假如表示国际特点农产品馆的坐标为(﹣ 5, 0),表示科技生活馆的点的坐标为( 6, 2),则表示多彩农业馆所在的点的坐标为()A.(3, 5)B.(5,﹣ 4)C.(﹣ 2, 5)D.(﹣ 3,3)【分析】依据国际特点农产品馆的坐标为(﹣5, 0),科技生活馆的点的坐标为(6, 2)成立平面直角坐标系,据此可得.【解答】解:∵国际特点农产品馆的坐标为(﹣5,0),科技生活馆的点的坐标为(6,2),∴可成立以下图的平面直角坐标系:由坐标系可知表示多彩农业馆所在的点的坐标为(﹣2, 5),应选: C.【说明】本题主要考察了坐标确立地点,正确利用已知点坐标得出原点地点是解题重点.二、填空题( 本题共16分,每题2分)9.以下图的网格是正方形网格,∠AOB∠ COD.(填“>“,“=”或“<“)【分析】连结 CD,则 CD⊥OD,过 B 作 BE⊥ OA 于 E,在Rt△ OBE与Rt△ OCD中,分别求∠AOB、∠ COD的正切,依据锐角的正切值跟着角度的增大而增大作判断即可.【解答】解:连结 CD,则 CD⊥ OD,过 B 作 BE⊥ OA 于 E,在Rt△OBE中, tan ∠AOB=2,=== 1,在Rt△OCD中, tan ∠COD=∵锐角的正切值跟着角度的增大而增大,∴∠ AOB>∠ COD,故答案为:>.【说明】本题考察了锐角三角函数的增减性,建立直角三角形求角的三角函数值进行判断,娴熟掌握锐角三角函数的增减性是重点.10. a b都是实数,b+﹣ 2,则ab的值为.若,=【分析】直接利用二次根式存心义的条件得出 a 的值,从而利用负指数幂的性质得出答案.【解答】解:∵ b=+﹣ 2,∴1﹣ 2a= 0,解得: a=,则=﹣2,b故 a b=()﹣2=4.故答案为: 4.【说明】本题主要考察了二次根式存心义的条件以及负指数幂的性质,正确得出 a 的值是解题重点.11.我们已经学习了一些定理,比如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③线段垂直均分线上的点到线段两头的距离相等;④等腰三角形的两个底角相等上述定理中存在逆定理的是(只填序号)【分析】依据勾股定理的逆定理、线段的垂直均分线的判断、等腰三角形的判断即可判断;【解答】解:①直角三角形两条直角边的平方和等于斜边的平方;有逆定理;②全等三角形的对应角相等;没有逆定理;③线段垂直均分线上的点到线段两头的距离相等;有逆定理;④等腰三角形的两个底角相等;有逆定理;故答案为①③④【说明】本题考察勾股定理以及逆定理、线段的垂直均分线的性质和判断、等腰三角形的性质和判断等知识,解题的重点是娴熟掌握基本知识,属于中考常考题型.12.如图,点A、B、C、D、E在⊙ O上,且的度数为50°,则∠B+∠D的度数为.【分析】连结 AB、DE,先求得∠ ABE=∠ ADE=25°,依据圆内接四边形的性质得出∠ABE+∠ EBC+∠ADC=180°,即可求得∠B+∠ D=155°.【解答】解:连结AB、 DE,则∠ ABE=∠ ADE,∵为50°,∴∠ ABE=∠ ADE=25°,∵点A、 B、 C、D 在⊙ O 上,∴四边形ABCD是圆内接四边形,∴∠ ABC+∠ ADC=180°,∴∠ ABE+∠ EBC+∠ ADC=180°,∴∠ B+∠D=180°﹣∠ ABE=180°﹣25°=155°.故答案为:155°【说明】本题考察了圆周角定理和圆内接四边形的性质,作出协助线建立内接四边形是解题的重点.13.如图,在矩形 ABCD中, E是边 AB的中点,连结 DE 交对角线 AC于点 F.若 AB=8, AD=6,则CF的长为.【分析】在 Rt△ABC中,利用勾股定理可求出AC的长,由 AB∥CD可得出∠ DCF=∠EAF,∠ CDF=∠ AEF,从而可得出△ AEF∽△ CDF,利用相像三角形的性质联合CD= AB=2AE,即可得出CF= 2AF,再联合AC=AF+CF=10,即可得出CF=AC=,本题得解.【解答】解:在Rt△ABC中,AB= 8,BC=AD= 6,∠B=90°,∴ AC==10.∵AB∥CD,∴∠ DCF=∠ EAF,∠ CDF=∠ AEF,∴△ AEF∽△ CDF,∴=.又∵ E 是边AB 的中点,∴CD=AB=2AE,∴= 2,∴CF=2AF.∵AC=AF+CD=10,∴ CF= AC=.故答案为:.【说明】本题考察了相像三角形的判断与性质、勾股定理以及矩形的性质,利用相像三角形的性质联合AC= AF+CF,找出 CF=AC是解题的重点.14. 以下图,有一电路连着三个开关,每个开封闭合的可能性均为,若不考虑元件的故障要素,则电灯点亮的可能性为.【分析】用列举法列举出可能出现的状况,在依据概率公式求解即可.【解答】解:因为每个开封闭合的可能性均为,则共有8种状况;1、K1关、K2关、K3开;2、K1关、K2关、K3关;3、K1关、K2开、K3开;4、K1关、K2开、K3关;5、K1开、K2开、关K3;6、K1开、K2关、K3关;7、K1开、K2开、K3开;8、K1开、K2开、K3关.只有 5、 7、8电灯可点亮,可能性为.【说明】本题考察的是可能性大小的判断,用到的知识点为:可能性等于所讨状况数与总状况数之比.15.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则以下:购物每满 100元,返购物券 50元,此购物券在本商场通用,且用购物券购置商品不再返券.小明只购置了单价分别为 60元、 80元和 120元的书包、T恤、运动鞋,在使用购物券参加购置的状况下,他的实质花销为元.【分析】分四种状况议论:①先付 60元, 80元,获取 50 元优惠券,再去买120 元的运动鞋;②先付 60元, 120元,获取 50 元的优惠券,再去买80 元的恤;T③先付 120 元,获取 50 元的优惠券,再去付60元, 80元的书包和T 恤;④先付 120 元, 80 元,获取 100 元的优惠券,再去付 60元的书包;分别计算出实质花销即可.【解答】解:①先付 60 元, 80元,获取 50元优惠券,再去买 120 元的运动鞋;实质花销为: 60+80﹣50+120 =210 元;②先付 60元, 120 元,获取 50元的优惠券,再去买 80 元的T恤;实质花销为: 60+120﹣50+80= 210 元;③先付 120元,获取50元的优惠券,再去付60元,80元的书包和T恤;实质花销为:120﹣ 50+60+80= 210 元;④先付 120元,80元,获取100元的优惠券,再去付60元的书包;实质花销为:120+80=200 元;综上可得:他的实质花销为210 元或 200 元.【说明】本题旨在学生养成认真读题的习惯.16. 在平面直角坐标系中,对于点P( x,y),若点 Q的坐标为( ax+y,x+ay),此中 a为常数,则称点 Q是点 P的“ a级关系点”,比如,点 P(1,4)的3级关系点”为 Q(3×1+4,1+3×4)即Q( 7,13),若点B的“ 2级关系点” 是B('3 ,3),则点B的坐标为;已知点 M( m﹣1,2m)的“﹣3级关系点” M′位于 y轴上,则 M′的坐标为.【分析】由点 B的“2级关系点”是B'(3,3)得出,解之求得x、y的值即可得;由点 M( m﹣1,2m)的“﹣3级关系点” M′的坐标为(﹣ m+3,﹣5m﹣1),且点M′在 y 轴上知﹣ m+3=0,据此求得m 的值,再进一步求解可得.【解答】解:∵点 B的“2级关系点”是 B'(3,3),则点 B的坐标为(1,1),∵点 M( m﹣1,2m)的“﹣3级关系点” M′的坐标为(﹣ m+3,﹣5m﹣1),且点 M′在y 轴上,∴﹣ m+3=0,解得m=3,则﹣ 5m﹣ 1=﹣ 16,∴点 M′坐标为(0,﹣16),故答案为:( 1, 1),( 0,﹣ 16).【说明】本题主要考察点的坐标,解题的重点是理解题并掌握“ a 级关系点”的定义,并娴熟运用.三、解答题 ( 本题共 68 分,第 17-22 题,每题 5 分,第 23-26 题,每题 6 分,第 27 、 28题,每题7分)解答应写出文字说明、验算步骤或证明过程。