立体几何大练习题复习的答练习题复习规范与技巧.doc

合集下载

数学立体几何高考题答题技巧全版.doc

数学立体几何高考题答题技巧全版.doc

数学立体几何高考题答题技巧高中数学的学习对学生来讲非常重要,尤其是几何部分可以提升学生的思维能力。

下面我给高考考生带来数学立体几何答题技巧,希望对你有帮助。

高考数学立体几何答题技巧01、合理安排,保持清醒。

数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。

然后带齐用具,提前半小时到考场。

02、通览全卷,摸透题情。

刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。

这样能提醒自己先易后难,也可防止漏做题。

03、解答题规范有序。

一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。

对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言文字语言、符号语言、图形语言的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考阅卷是“分段评分”。

比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。

有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。

高考数学立体几何知识1、有关平行与垂直线线、线面及面面的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题包括论证、计算角、与距离等中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行垂直、线面平行垂直、面面平行垂直相互转化的思想,以提高逻辑思维能力和空间想象能力。

2、判定两个平面平行的方法:1根据定义--证明两平面没有公共点;2判定定理--证明一个平面内的两条相交直线都平行于另一个平面;3证明两平面同垂直于一条直线。

立体几何大题方法和技巧讲解

立体几何大题方法和技巧讲解

立体几何大题方法与技巧讲解空间向量问题基础知识:线面平行:1.线面平行的判定定理:如果平面外一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.2.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个相交那么这条直线和交线平行.3.平行平面的判定定理:如果一个平面内两条相交的直线都平行于另一平面,那么这两个平面互相平行.4.平行平面的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.5.性质:如果两个平面平行,那么其中一个平面内的直线平行于另一个平面.线面垂直:1.直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.2.直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行.3.两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.4.两平面垂直的性质定理:若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面.证明方法:如何证明线面平行常用方法①构造三角形中位线,线面位置落差大时(平移法)② 构造平行四边形, 线面位置相当时 ③ 通过面面平行,证明线面平行 ● 如何证明线面垂直 1) 题目中给出的垂直条件2) 特殊的图形(菱形,正方形,等腰三角形,等边三角形等等) 3) 勾股定理证明垂直(偶尔利用相似证明垂直) 4) 通过面面垂直证明线面垂直 ● 空间向量建系问题① 找出和底面垂直的直线 ② 找出底面相垂直的直线 ③ 建立直角坐标系 ● 三个角异面直线所成的角的范围]90,0(00 两异面直线的方向向量分别为 ,2121cos l l l l ⋅=θ直线和平面所成的角的范围]90,0[0, 直线的方向向量为,平面的法向量为nl nl ⋅==φθcos sin平面和平面所成的角的范围]180,0[00, 两个平面的法向量分别为,2121cos n n n n⋅=φθ1l 2l θl nθ1n 2n如果面面所成的角为锐角,则2121cos cos n n n n ⋅==φθ,如果面面所成的角为钝角,则2121cos cos n n n n ⋅=-=φθ是否存在一点问题线段BD 上是否存在点M ,使得直线//CE 平面AFM 即证:线CE 和法向量垂直 判断线段BE 上是否存在点Q ,使得平面CDQ ⊥平面BEF 即证:两个面的法向量垂直证明 直线FG (不在平面BCD 里面)与平面BCD 相交. 即证:线和面的法向量不垂直例子1.(本小题满分14分)如图,在多面体ABCDEF 中,平面ADEF ⊥平面ABCD .四边形ADEF 为正方形,四边形ABCD 为梯形,且//AD BC ,90BAD ∠=︒,1AB AD ==,3BC =.(Ⅰ)求证:AF CD ⊥;(Ⅱ)求直线BF 与平面CDE 所成角的正弦值;(Ⅲ)线段BD 上是否存在点M ,使得直线//CE 平面AFM ? 若存在,求BMBD的值;若不存在,请说明理由. 1.(本小题满分14分)解:(Ⅰ)证明:因为ADEF 为正方形,所以AF AD ⊥.又因为平面ADEF ⊥平面ABCD , 且平面ADEF平面ABCD AD =,所以AF ⊥平面ABCD .所以AF CD ⊥.………………4分EDCBA F(Ⅱ)由(Ⅰ)可知,AF ⊥平面ABCD ,所以AF AD ⊥,AF AB ⊥. 因为90BAD ∠=︒,所以,,AB AD AF 两两垂直.分别以,,AB AD AF 为x 轴,y 轴,z 轴建立空间直角坐标系(如图). 因为1AB AD ==,3BC =,所以(0,0,0),(1,0,0),(1,3,0),(0,1,0),(0,1,1),(0,0,1)A B C D E F , 所以(1,0,1),(1,2,0),(0,0,1)BF DC DE =-==. 设平面CDE 的一个法向量为(,,)x y z =n ,则0,0.DC DE ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,0. x y z +=⎧⎨=⎩令2x =,则1y =-, 所以(2,1,0)=-n .设直线BF 与平面CDE 所成角为θ, 则|2(1)|10sin |cos ,|552BF θ⨯-=〈〉==⨯n .……………….9分 (Ⅲ)设( (01])BMBDλλ=∈,, 设()111,,M x y z ,则()1111,,(1,1,0)x y z λ-=-, 所以1111,,0x y z λλ=-==,所以()1,,0M λλ-, 所以()1,,0AM λλ=-.设平面AFM 的一个法向量为000(,,)x y z =m ,则0,0.AM AF ⎧⋅=⎪⎨⋅=⎪⎩m m因为()0,0,1AF =,所以000(1)0,0. x y z λλ-+=⎧⎨=⎩令0x λ=,则01y λ=-,所以(,1,0)λλ=-m .在线段BD 上存在点M ,使得//CE 平面AFM 等价于存在[0,1]λ∈,使得0CE ⋅=m .z D y DxDEDCB A FM因为()1,2,1CE =--,由0CE ⋅=m , 所以2(1)0λλ---=, 解得2[0,1]3λ=∈, 所以线段BD 上存在点M ,使得//CE 平面AFM ,且23BM BD =.……………….14分2 .主要是C 点的坐标怎么表示(一是画出底面的平面图找出相应关系,二是利用向量平行BA CD 21=) (本小题14分)如图,四边形ABCD 和三角形ADE 所在平面互相垂直,AB ∥CD ,AB BC ⊥,60DAB ∠=,4AB AD ==,AE DE ⊥,AE DE =,平面ABE 与平面CDE 交于EF . (Ⅰ)求证:CDEF ;(Ⅱ)若EF CD =,求二面角--A BC F 余弦值;(Ⅲ)在线段BC 上是否存在点M 使得AM EM ⊥?若存在,求BM 的长;若不存在,说明理由. (17)(共14分)解:(Ⅰ)在四边形ABCD 中,AB ∥CD . 因为AB ⊂平面ABE ,CD ⊄平面ABE , 所以CD ∥平面ABE .因为CD ⊂平面CDE ,且平面ABE平面CDE EF =,所以CD ∥EF . ........4分(Ⅱ)如图,取AD 的中点N ,连接BN ,EN .在等腰△ADE 中,.EN AN ⊥因为平面ADE ⊥平面ABCD ,交线为AD ,又EN AD ⊥,所以EN ⊥平面ABCD .所以.EN BN ⊥ 由题意易得.AN BN ⊥如图建立空间直角坐标系N xyz -,则(0,0,0),N (2,0,0)A ,(0,23,0)B ,(3,0)C -, (2,0,0)D -,(0,0,2)E .因为EF CD =,所以(3,2)F -.设平面BCF 的法向量为(,,)x y z =,n (1,3,2),(3,3,0),BF BC =--=-- 则0,0,BF BC ⎧⋅=⎪⎨⋅=⎪⎩n n 即320,330.x y z x y ⎧--+=⎪⎨-=⎪⎩ 令3y =1,1x z =-=.于是(3,1)=-n .又平面ABCD 的法向量为(0,0,2)NE =,所以5cos ,5NE NE NE⋅〈〉==n n n 由题知二面角--A BC F 为锐角, 所以二面角--A BC F 的余弦值为5分 (Ⅲ)不存在满足条件的点M ,使AM EM ⊥,理由如下:若AM EM ⊥,则0EM AM ⋅=.因为点M 为线段BC 上的动点,设(01),CM tCB t =≤≤,(,,0)M u v .则(3,3,0)(3,3,0)u v t +-=, 解得(33,3+3,0)M t t -.所以(33,33,2)EM t t =-+-,(35,33,0)AM t t =-+. 所以(33,33,2)(35,33,0)=0EM AM t t t t ⋅=-+-⋅-+. 整理得22330t t -+=,此方程无实根.所以线段BC 上不存在点M ,使AM EM ⊥. ............................14分3.如图,在多面体ABCDEF 中,梯形ADEF 与平行四边形ABCD 所在平面互相垂直, //AF DE ,DE AD ⊥,AD BE ⊥,112AF AD DE ===,2AB =.(Ⅰ)求证://BF 平面CDE ; (Ⅱ)求二面角B EF D --的余弦值;(Ⅲ)判断线段BE 上是否存在点Q ,使得平面CDQ ⊥平面BEF ?若存在,求出BQBE的值,若不存在,说明理由. 3.(本小题满分14分)解:(Ⅰ)由底面ABCD 为平行四边形,知//AB CD ,又因为AB ⊄平面CDE ,CD ⊂平面CDE ,所以//AB 平面CDE . ……………… 2分DABCEF同理//AF 平面CDE , 又因为ABAF A =,所以平面//ABF 平面CDE . ……………… 3分又因为BF ⊂平面ABF ,所以//BF 平面CDE . ……………… 4分(Ⅱ)连接BD ,因为平面ADEF ⊥平面ABCD ,平面ADEF 平面ABCD AD =,DE AD ⊥,所以DE ⊥平面ABCD . 则DE DB ⊥. 又因为DE AD ⊥,AD BE ⊥,DEBE E =,所以AD ⊥平面BDE ,则AD BD ⊥.故,,DA DB DE 两两垂直,所以以,,DA DB DE 所在的直线分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系, ……………… 6分则(0,0,0)D ,(1,0,0)A ,(0,1,0)B ,(1,1,0)C -,(0,0,2)E ,(1,0,1)F , 所以(0,1,2)BE =-,(1,0,1)EF =-,(0,1,0)=n 为平面DEF 的一个法向量. 设平面BEF 的一个法向量为(,,)x y z =m ,由0BE ⋅=m ,0EF ⋅=m ,得20,0,y z x z -+=⎧⎨-=⎩令1z =,得(1,2,1)=m . ………………8分所以6cos ,||||3⋅<>==m n m n m n .如图可得二面角B EF D --为锐角,D A B CEyxzF所以二面角B EF D --6.………………10分(Ⅲ)结论:线段BE 上存在点Q ,使得平面CDQ ⊥平面BEF . ………………11分证明如下:设(0,,2)([0,1])BQ BE λλλλ==-∈,所以(0,1,2)DQ DB BQ λλ=+=-.设平面CDQ 的法向量为(,,)a b c =u ,又因为(1,1,0)DC =-,所以0DQ ⋅=u ,0DC ⋅=u ,即(1)20,0,b c a b λλ-+=⎧⎨-+=⎩………………12分若平面CDQ ⊥平面BEF ,则0⋅=m u ,即20a b c ++=, (13)分解得1[0,1]7λ=∈.所以线段BE 上存在点Q ,使得平面CDQ ⊥平面BEF ,且此时17BQ BE =. …… 14分4(本小题满分14分)如图,在直三棱柱111ABC A B C -中,1,2AC BC AC BC CC ⊥===,点,,D E F 分别为棱11111,,AC B C BB 的中点. (Ⅱ)求证:1AC ∥平面DEF (Ⅱ)求证:平面1ACB ⊥平面DEF ;(Ⅲ)在线段1AA 上是否存在一点P ,使得直线DP 与平面1ACB 所成的角为300?如果存在,求出线段AP 的长;如果不存在,说明理由. 4.(共14分)解:(Ⅰ)方法一:连结1BC因为,D E 分别为11A C ,11B C 中点, 所以11//DE A B 又因为11//AB A B ,所以//DE AB因为,E F 分别为11B C ,1B B 中点,所以1//EF BC 又因为DEEF E =DE ⊂平面DEF ,EF ⊂平面DEF AB ⊂平面1ABC ,1BC ⊂平面1ABC所以平面1ABC 平面DEF又1AC ⊂平面1ABC ,所以1AC 平面DEF方法二:取1AA 中点为G ,连结FG 由11AA BB 且11AA BB =又点F 为1BB 中点,所以11FG A B又因为,D E 分别为11A C ,11B C 中点,所以11DE A B所以DEFG所以,,,D E F G 共面于平面DEF 因为D ,G 分别为111,AC AA 中点, 所以1AC DG1AC ⊄平面DEFDG ⊂平面DEF所以1AC 平面DEF方法三:在直三棱柱111ABC A B C -中,1CC ⊥平面ABC 又因为AC BC ⊥以C 为原点,分别以1,,CA CB CC 为x 轴,y 轴,z 轴,建立空间直角坐标系C xyz -由题意得1(2,0,0),(0,0,2),(1,0,2)A C D ,(0,1,2),(0,2,1)E F .所以(1,1,0)DE =-,(0,1,1)EF =-设平面DEF 的法向量为111(,,)x y z =n ,则00DE EF ⎧⋅=⎪⎨⋅=⎪⎩n n ,即111100x y y z -+=⎧⎨-=⎩ 令11x =,得111,1y z ==于是(1,1,1)=n 又因为1(2,0,2)AC =-所以12020AC ⋅=-++=n 又因为1AC ⊄平面DEF ,所以1AC 平面DEF(Ⅱ)方法一:在直棱柱111ABC A B C -中,1CC ⊥平面ABC因为AC ⊂ABC ,所以1CC AC ⊥ 又因为AC BC ⊥,且1CC BC C =所以AC ⊥平面11BB C C EF ⊂平面11BB C C ,所以AC EF ⊥又1BC CC =,四边形11BB C C 为正方形所以11BC B C ⊥ 又1BC EF ,所以1B C EF ⊥又AC EF ⊥,且1AC B C C =所以EF ⊥平面1ACB又EF ⊂平面DEF所以平面1ACB ⊥平面DEF方法二:设平面1ACB 的法向量为222(,,)x y z =m ,1(2,0,0),(0,2,2)CA CB == 100CA CB ⎧⋅=⎪⎨⋅=⎪⎩m m ,即22220220x y z =⎧⎨+=⎩ 令21y =,得220,1x z ==-于是(0,1,1)=-m (1,1,1)(0,1,1)0⋅=⋅-=n m即⊥n m ,所以平面1ACB ⊥平面DEF (Ⅲ)设直线DP 与平面1ACB 所成角为θ,则30θ=︒设1(01)AP AA λλ=≤≤,则(0,0,2)AP λ=(1,0,22)DP λ=-所以1cos sin302DP DP θ⋅===︒=m m 解得12λ=或32λ=(舍) 所以点P 存在,即1AA 的中点,1AP =5.(本小题满分14分)在三棱柱111ABC A B C -中,底面ABC 是正三角形,侧棱1AA ⊥底面ABC . D ,E 分别是边BC ,AC的中点,线段1BC 与1B C 交于点G ,且4AB =,1BB =(Ⅰ) 求证://EG 平面1AB D ;(Ⅱ) 求证:1BC ⊥平面1AB D ;(Ⅲ) 求二面角1A B C B --的余弦值.5.(本小题满分14分)(I)因为E 为AC 中点,G 为1B C 中点.所以1//EG AB . 又因为EG ⊄平面1AB D ,1AB ⊂平面1AB D ,所以//EG 平面1AB D . ………….4分(Ⅱ) 取11B C 的中点1D ,连接1DD .显然DA ,DC ,1DD 两两互相垂直,如图,建立空间直角坐标系D xyz -, 则(0,0,0)D,A ,(0,2,0)B -,1(0,B -,1C, E ,(0,2,0)C .所以1(0,DB =-,(2DA =,1BC =.又因为12300400BC DA ⋅=+⨯+⨯=,1100(2)40BC DB ⋅=⨯+-⨯+=,所以111,BC DA BC DB ⊥⊥.又因为1DA DB D =,所以1BC ⊥平面1AB D . ………….9分 (Ⅲ)显然平面1B CB 的一个法向量为1(1,0,0)=n .设平面1AB C 的一个法向量为2(,,)x y z =n ,又(AC =-,1(0,4,B C =-, 由2210,0,AC BC ⎧⋅=⎪⎨⋅=⎪⎩n n 得20,40.y y⎧-+=⎪⎨-=⎪⎩设1x =,则y=,z =,则2=n.1B所以121212cos,⋅<>===n nn nn n设二面角1A B C B--的平面角为θ,由图可知此二面角为锐二面角,所以cos10θ=. ………….14分。

高考数学解题技巧及规范答题:立体几何大题

高考数学解题技巧及规范答题:立体几何大题
(2)当四棱锥 体积为 时,求二面角 的正弦值.
【分析】
(1)分别取 , 的中点 , ,证明 , 可得 平面 ,
可证 ,由等腰三角形的性质可得 ,证明三角形全等即可求证;
(2)在 上取一点O,连接 ,使 ,根据已知条件证明O为正方形 的中心,建立空间直角坐标系求出平面 和平面 的法向量,利用夹角公式即可求解.
又 ,所以 ,
故 .
【此处由三角形的面积公式和体积公式求体积,若底面面积正确但体积计算错误,减1分.】
【评分细则】
①利用三线合一证明AO⊥BD,得1分
②利用面面垂直的性质证明AO⊥平面BCD,得2分.
③利用线面垂直的性质证明AO⊥CD,得1分.
④利用(1)结论证明三线垂直,合理建系得2分.
⑤正确写出和设出点的坐标,指出一个平面的法向量,得2分.
(1)若三棱锥 体积是 ,求 的值;
(2)若直线 与平面 所成角的正弦值是 ,求 的值.
【分析】
(1)由题意知, 、 、 两两垂直,建立空间直角坐标系,设 ,由 ,求得M的坐标,过 作 于 , 于 ,再由 求解;
(2)由(1)知 ,求得平面 的一个法向量为 ,设直线 与平面 所成的角为 ,然后由 求解.

又 平面 平面 ,
平面 ,
即 ,
又 ,
平面 ,
故 为四棱锥 的高,
为直线 与平面 所成角,
又 ,
即 ,
四棱锥 的体积为 ;
(2)假设存在点 ,建立如图所示的空间直角坐标系,
设 , ,
则 ,
则 , , ,
设平面 和平面 的法向量分别为 , ,
则 ,令 ,则 ,
,令 ,
则 ,
二面角 的余弦值为 ,

数学立体几何解题技巧必看

数学立体几何解题技巧必看

数学立体几何解题技巧必看各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,运用,数学作为最烧脑的科目之一,也是一样的。

下面是小编给大家整理的一些数学立体几何解题技巧的学习资料,希望对大家有所帮助。

高考数学答题技巧:立体几何解答立体几何篇高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。

选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。

随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。

从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

知识整合1、有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2、判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。

3、两个平面平行的主要性质:(1)由定义知:“两平行平面没有公共点”。

(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。

(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。

(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

(5)夹在两个平行平面间的平行线段相等。

高中数学立体几何考点的解题技巧

高中数学立体几何考点的解题技巧

高中数学立体几何考点的解题技巧高中数学立体几何考点的解题技巧高中数学中立体几何题目是高考数学核心考点,从近几年全国及自主命题各省市高考试题分析,随着课程改革实施范围的扩大,立体几何考题侧重考查同学们的空间概念、逻辑思维能力、空间想象能力及运算能力。

高考立体几何试题在选择、填空题中侧重立体几何中的概念型、空间想象型、简单计算型问题,而解答题侧重立体几何中的逻辑推理型问题,主要考查线线关系、线面关系和面面关系,及空间角、面积与体积的计算,其解题方法一般都有两种或两种以上,并且一般都能用空间向量来求解。

下面小编为大家整理了高中数学立体几何考点的解题技巧,希望能帮到大家!1、平行、垂直位置关系的论证的策略:(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。

2、空间角的计算方法与技巧:主要步骤:一作、二证、三算;若用向量,那就是一证、二算。

(1)两条异面直线所成的角①平移法:②补形法:③向量法:(2)直线和平面所成的角①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。

②用公式计算。

(3)二面角①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。

②平面角的计算法:(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式。

3、空间距离的计算方法与技巧:(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。

(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。

在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。

(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。

(完整版)立体几何复习专题

(完整版)立体几何复习专题

(完整版)立体几何复习专题立体几何复专题
立体几何是数学中的一个重要分支,研究的是物体的形状、大小、位置及其相关性质。

本文档将为您提供立体几何的复专题,帮助您系统地回顾和巩固相关的知识。

1. 点、线、面与空间几何
首先我们从最基本的几何概念开始复,包括点、线、面以及空间几何的基本性质。

例如,点的定义、线的分类、平行线与垂直线的判定等。

2. 立体图形的表示方法
接下来,我们将研究立体图形的几种常用表示方法。

这些表示方法包括视图图、投影图、轴测图等,通过它们我们可以更直观地理解和描述立体图形的形状。

3. 立体图形的重要性质与公式
在本部分,我们将回顾立体图形的重要性质和相关公式。

例如,体积的计算公式、表面积的计算方法等。

同时,我们还将深入研究
不同立体图形的特点和相互之间的关系。

4. 空间几何的应用
最后,我们将介绍空间几何在实际生活中的应用。

例如,如何
测量不规则物体的体积、如何计算房屋的准确面积等。

这些应用案
例将帮助您更好地理解和应用空间几何的知识。

总结
本文档为您提供了立体几何的复专题,通过回顾和巩固相关知识,帮助您更好地掌握立体几何的基本概念、表示方法、重要性质
和应用。

希望这份文档能对您的研究有所帮助!。

立体几何复习练习及答案

立体几何复习练习及答案

立体几何复习练习及答案立体几何复习练习班次_____姓名_________学号______一选择题:1. 设γβα、、为平面。

l n m 、、为直线,则β⊥m 的一个充分条件是 ( )A l m l ⊥=?⊥,,βαβαB γβγαγα⊥⊥=?,,mC αγβγα⊥⊥⊥m ,,D αβα⊥⊥⊥m n n ,,2.对于不重合的两个平面α、β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使得α、β都平行于γ;③存在直线α?l ,直线β?m ,使得m l //;④存在异面直线l 、m ,使得.//,//,//,//βαβαm m l l 其中,可以判定α与β 平行的命题有几个() A .1个 B.2个C .3个D .4个3.在正方体ABCD -A 1B 1C 1D 1中,直线A 1B 与平面ABC 1D 1所成的角为()A .6π B .4π C .3πD .125π4.关于直线,m n 与平面,αβ,有以下四个命题:①若//,//m n αβ且//αβ,则//m n ;②若,m n αβ⊥⊥且αβ⊥,则m n ⊥;③若,//m n αβ⊥且//αβ,则m n ⊥;④若//,m n αβ⊥且αβ⊥,则//m n ;其中真命题的序号是()A .①②B .③④C .①④D .②③5.已知二面角l αβ--的大小为060,,m n 为异面直线,且βα⊥⊥n m ,,则,m n 所成的角为()A.030 B.060 C.090 D.0120 6.正三棱锥ABC P -内接于球O ,球心O 在底面ABC 上,且3=AB ,则球的表面积为() A .πB .π2C .π4D .π97.已知正方体外接球的体积是π332,那么正方体的棱长等于()A.22B.332 C.324 D.3348.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题...是()A.等腰四棱锥的腰与底面所成的角都相等图1示B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上9.已知球O 的半径是1,A 、B 、C 三点都在球面上,A 、B 两点和A 、C 两点的球面距离都是4π,B 、C 两点的球面距离是3π,则二面角B O A C --的大小是()A4πB3πC2πD23π10.棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图1,则图中三角形(正四面体的截面) 的面积是 ( )A.22二填空题:11.四面体P A B C -中,三条侧棱两两垂直,M 是面ABC 内一点,且点M 到三个面,,PAB PAC PBC 的距离分别是2,3,6,则M 到顶点P 的距离是_____ .12. (1)在直三棱柱111ABC A B C -中,1AA AB AC ==,90BAC ∠= ,M 是1C C 的中点,Q 是B C 的中点,P 在11A B 上,则直线PQ 与直线A M 所成的角为 ;(2)在正方体1111ABC D A B C D -中,O 为A C 与B D 的交点,则1C O 与1A D 所成的角为________ (表示为反余弦).13.A B C ?的顶点B 在平面α内,A 、C 在α的同一侧,A B 、BC 与α所成的角分别是30和45.若3,5AB BC AC ===,则A C 与α所成的角为______ _.14.(1)如图1,正方体1111ABC D A B C D -的棱长为1,O 是底面1111A B C D 的中心,则O 到平面11ABC D 的距离为_______ _;(2)如图2,正方体的棱长为1,C 、D 分别是两条棱的中点,A 、B 、M 是顶点,那么点M 到截面A B C D 的距离是.15.棱长为1的正方体ABCD —A 1B 1C 1D 1中,若E 、G 分别为C 1D 1、BB 1的中点,F 是正方形ADD 1A 1的中心,则空间四边形BGEF 在正方体的六个面内射影图形的面积的最大值为 .图216.如图,ABCD 为矩形,AB=3,BC=1,EF//BC 且AE=2EB ,G 为BC 中点,K 为△ADF的外心。

高二数学立体几何大题的八大解题技巧

高二数学立体几何大题的八大解题技巧

高二数学立体几何大题的八大解题技巧引言立体几何是高中数学中较为抽象和复杂的一个分支,对于很多学生来说,解决立体几何的大题可能会显得有些困难。

然而,只要我们掌握一些解题技巧,并进行适当的练习,就能够更加游刃有余地解决这类问题。

本文将介绍八大解题技巧,帮助高二学生在数学考试中取得好成绩。

技巧一:构造合理的立体模型对于立体几何问题,构造一个合理的三维模型是非常重要的。

通过绘制图形,我们可以更清晰地理解问题,有助于推导出解题方法。

例如,当我们遇到一个求体积的问题时,可以根据题目中的条件,构造一个与实际物体相似的模型,并确定其几何关系。

这样一来,在计算体积时,我们可以很容易地将问题转化为计算几何体的体积。

技巧二:利用平行关系简化解题在立体几何问题中,平行关系是经常出现的。

我们可以利用平行性质简化解题过程。

例如,当我们遇到一道求两条直线之间的距离的问题时,如果题目中给出的条件中存在两条平行线,我们可以通过利用平行关系,使用相似三角形等方法,直接求出距离,而不需要进一步计算。

技巧三:灵活应用平行截面法平行截面法是解决某些立体几何问题的重要方法。

它利用了不同截面的面积比例以及平行线与截面的关系,帮助我们求解立体几何问题。

当我们遇到一个立体几何问题时,可以尝试引入平行截面,通过计算各截面的面积比例、长度比例等,推导出所需的结果。

技巧四:加长或减短前提条件有时候,我们遇到的立体几何问题可能较为复杂,不容易解决。

这时,我们可以尝试通过增加或减少一些前提条件,简化问题,使其能够更容易解决。

例如,当我们遇到一个立体几何问题需要计算某个长度时,有时我们可以通过修改前提条件,使其成为一个相似三角形问题,从而更容易求解目标长度。

技巧五:利用相似关系求解相似关系在立体几何问题中有着广泛的应用。

通过找到合适的相似三角形或相似立体,我们可以快速求解问题。

当我们遇到一个立体几何问题时,可以尝试寻找相似的几何形状,并利用相似关系设置等式,求解出所需的结果。

最新高二数学立体几何大题的八大解题技巧

最新高二数学立体几何大题的八大解题技巧

最新高二数学立体几何大题的八大解题技巧立体几何大题的八大解题技巧平行、垂直位置关系的论证的策略(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。

2空间角的计算方法与技巧主要步骤:一作、二证、三算;若用向量,那就是一证、二算。

(1)两条异面直线所成的角①平移法:②补形法:③向量法:(2)直线和平面所成的角①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。

②用公式计算。

(3)二面角①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。

②平面角的计算法:(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式。

3空间距离的计算方法与技巧(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。

(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。

在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。

(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用"三棱锥体积法"直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而"转移"到另一点上去求"点到平面的距离"。

求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。

4熟记一些常用的小结论诸如:正四面体的体积公式是;面积射影公式;"立平斜关系式";最小角定理。

弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。

2019届高三理科数学立体几何解答题解题方法规律技巧详细总结版

2019届高三理科数学立体几何解答题解题方法规律技巧详细总结版

高三理科数学立体几何解题方法规律技巧详细总结版【简介】1.立体几何是高考的重要内容,为解答题的必考题型.解答题主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间向量进行空间角的计算.重在考查学生的逻辑推理能力及计算能力.热点题型主要有平面图形的翻折、探索性问题等;2.思想方法:(1)转化与化归(空间问题转化为平面问题);(2)数形结合(根据空间位置关系利用向量转化为代数运算).【3年高考试题比较】全国高考命题的一个显著变化是,由知识立意转为能力立意,往往遵循大纲又不拘泥于大纲.高考在考查空间想象能力的同时又考查空间想象能力、逻缉思维能力、推理论证能力、运算能力和分析问题以及解决问题的能力. 通过比较近三年的高考试题,可发现,立体几何一般有两问,第一问均为考查线面的位置关系,平行和垂直均有涉及;第二问主要考查角的运算,异面所成角,线面角,二面角都有考查,利用空间直角坐标系计算的需要先证明再建系,对于空间位置关系要求较高.【必备基础知识融合】1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和. 2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r 1+r 2)l3.表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥) S 表面积=S 侧+S 底 V =13Sh台体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 33.(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. (2)公理2:过不在同一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 4.空间点、直线、平面之间的位置关系直线与直线 直线与平面 平面与平面平行关系 图形 语言符号 语言 a ∥ba ∥αα∥β相交关系 图形 语言符号 语言 a ∩b =Aa ∩α=Aα∩β=l独有关系图形 语言符号 语言a ,b 是异面直线a ⊂α5.平行公理(公理4)和等角定理平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 6.异面直线所成的角(1)定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角). (2)范围:⎝⎛⎦⎤0,π2.7.直线与平面平行 (1)直线与平面平行的定义直线l 与平面α没有公共点,则称直线l 与平面α平行. (2)判定定理与性质定理文字语言图形表示符号表示 判定定理平面外一条直线与此平面内的一条直线平行,则该直线平行于此平面a ⊄α,b ⊂α, a ∥b ⇒a ∥α性质定理一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行a ∥α,a ⊂β,α∩β=b ⇒a ∥b8.(1)平面与平面平行的定义没有公共点的两个平面叫做平行平面.(2)判定定理与性质定理文字语言图形表示符号表示判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行a⊂α,b⊂α,a∩b=P,a∥β,b∥β⇒α∥β性质定理两个平面平行,则其中一个平面内的直线平行于另一个平面α∥β,a⊂α⇒a∥β如果两个平行平面同时和第三个平面相交,那么它们的交线平行α∥β,α∩γ=a,β∩γ=b⇒a∥b9.与垂直相关的平行的判定(1)a⊥α,b⊥α⇒a∥b.(2)a⊥α,a⊥β⇒α∥β.10.直线与平面垂直(1)直线和平面垂直的定义如果一条直线l与平面α内的任意直线都垂直,就说直线l与平面α互相垂直.(2)判定定理与性质定理文字语言图形表示符号表示判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫l⊥al⊥ba∩b=Oa⊂αb⊂α⇒l⊥α性质定理两直线垂直于同一个平面,那么这两条直线平行⎭⎪⎬⎪⎫a⊥αb⊥α⇒a∥b11.(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理文字语言图形表示符号表示判定定理一个平面经过另一个平面的一条垂线,则这两个平面互相垂直⎭⎪⎬⎪⎫l⊥αl⊂β⇒α⊥β性质定理如果两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面⎭⎪⎬⎪⎫α⊥βα∩β=al⊥al⊂β⇒l⊥α12.直线的方向向量和平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.13.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2l1⊥l2n1⊥n2⇔n1·n2=0直线l的方向向量为n,平面α的法向量为ml∥αn⊥m⇔n·m=0l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,mα∥βn∥m⇔n=λmα⊥βn⊥m⇔n·m=014.异面直线所成的角设a,b分别是两异面直线l1,l2的方向向量,则a与b的夹角βl1与l2所成的角θ范围(0,π)求法cos β=a·b|a||b|cosθ=|cos β|=|a·b||a||b|15.设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,则sin θ=|cos〈a,n〉|=|a·n||a||n|.16.求二面角的大小(1)如图①,AB,CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=__〈AB→,CD→〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).【解题方法规律技巧】典例1:在如图所示的几何体中,四边形ABCD 为正方形, ABE ∆为直角三角形, 90BAE ∠=,且AD AE ⊥.(1)证明:平面AEC ⊥平面BED ;(2)若AB=2AE ,求异面直线BE 与AC 所成角的余弦值. 【答案】(1)详见解析;(2)105.所以DB ⊥平面AEC ,BD a 面BED 故有平面AEC ⊥平面BED.【规律方法】(1)求异面直线所成的角常用方法是平移法,平移方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移. (2)求异面直线所成角的三个步骤①作:通过作平行线,得到相交直线的夹角. ②证:证明相交直线夹角为异面直线所成的角.③求:解三角形,求出作出的角,如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角.典例2:如图,在长方体1111ABCD A B C D -中, 1,2,,AB AD E F ==分别为1,AD AA 的中点, Q 是BC 上一个动点,且(0)BQ QC λλ=>.(1)当1λ=时,求证:平面//BEF 平面1A DQ ;(2)是否存在λ,使得BD FQ ⊥?若存在,请求出λ的值;若不存在,请说明理由. 【答案】(1)详见解析(2)13λ=(2)连接,AQ BD 与FQ ,因为1A A ⊥平面,ABCD BD ⊂平面ABCD ,所以1A A BD ⊥. 若1,,BD FQ A A FQ ⊥⊂平面1A AQ ,所以BD ⊥平面1A AQ . 因为AQ ⊂平面1A AQ ,所以AQ BD ⊥.在矩形ABCD 中,由AQ BD ⊥,得~AQB DBA ∆∆,所以, 2AB AD BQ =⋅.【规律方法】(1)判断或证明线面平行的常用方法有: ①利用反证法(线面平行的定义);②利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α); ③利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); ④利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).(2)利用判定定理判定线面平行,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线. (3)判定面面平行的主要方法 ①利用面面平行的判定定理.②线面垂直的性质(垂直于同一直线的两平面平行). (2)面面平行的性质定理①两平面平行,则一个平面内的直线平行于另一平面. ②若一平面与两平行平面相交,则交线平行. (4)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);③面面平行的性质(a ⊥α,α∥β⇒a ⊥β);④面面垂直的性质(α⊥β,α∩β=a ,l ⊥a ,l ⊂β⇒l ⊥α).典例3:如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明: (1)PA ⊥BD ;(2)平面PAD ⊥平面PAB .证明 (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),PA →=(1,-2,-3). ∵BD →·PA →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴PA →⊥BD →,∴PA ⊥BD .规律方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)用向量证明垂直的方法①线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.②线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.③面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.典例4:如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC 和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1?若存在,求出点P 的位置;若不存在,请说明理由.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设n 3⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),设n 3=(x 3,y 3,z 3),⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .【规律方法】 向量法解决与垂直、平行有关的探索性问题(1)根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,并用向量表示出来,然后再加以证明,得出结论.(2)假设所求的点或参数存在,并用相关参数表示相关点,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在.典例5:如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点.已知AB =2,AD =22,PA =2.求: (1)△PCD 的面积.(2)异面直线BC 与AE 所成的角的大小.解 (1)因为PA ⊥底面ABCD ,CD ⊂平面ABCD , 所以PA ⊥CD .又AD ⊥CD ,PA ∩AD =A , 所以CD ⊥平面PAD ,又PD ⊂平面PAD ,从而CD ⊥PD .因为PD =22+(22)2=23,CD =2, 所以△PCD 的面积为12×2×23=2 3.图1图2法二 如图2,建立空间直角坐标系,则B (2,0,0),C (2,22,0), E (1,2,1),AE →=(1, 2,1),BC →=(0,22,0). 设AE →与BC →的夹角为θ,则cos θ=AE →·BC →|AE →||BC →|=42×22=22,所以θ=π4.由此可知,异面直线BC 与AE 所成的角的大小是π4.【规律方法】(1)利用向量法求异面直线所成角的一般步骤是:①选好基底或建立空间直角坐标系;②求出两直线的方向向量v 1,v 2;③代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解. (2)两异面直线所成角的范围是θ∈⎝⎛⎦⎤0,π2,两向量的夹角α的范围是[0,π],当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.典例6:如图,三棱柱ABC -A 1B 1C 1中,底面ABC 为等腰直角三角形,AB =AC =1,BB 1=2,∠ABB 1=60°. (1)证明:AB ⊥B 1C ;(2)若B 1C =2,求AC 1与平面BCB 1所成角的正弦值.∴AB⊥平面AB1C.又B1C⊂平面AB1C,∴AB⊥B1C.【规律方法】利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.典例7:如图,在三棱柱ABC-A1B1C1中,B1B=B1A=AB=BC,∠B1BC=90°,D为AC的中点,AB⊥B1D.(1)求证:平面ABB1A1⊥平面ABC;(2)求直线B1D与平面ACC1A1所成角的正弦值;(3)求二面角B-B1D-C的余弦值.(2)解 由(1)知,OB ,OD ,OB 1两两垂直.②以O 为坐标原点,OB →的方向为x 轴的方向,|OB →|为单位长度1,建立如图所示的空间直角坐标系O -xyz . 由题设知B 1(0,0,3),D (0,1,0), A (-1,0,0),C (1,2,0),C 1(0,2,3).则B 1D →=(0,1,-3),AC →=(2,2,0),CC 1→=(-1,0,3).设平面ACC 1A 1的一个法向量为m =(x ,y ,z ),则由⎩⎪⎨⎪⎧m ·AC →=0,m ·CC 1→=0,得⎩⎨⎧x +y =0,-x +3z =0,取m =(3,-3,1).∴cos 〈B 1D →,m 〉=B 1D →·m |B 1D →||m |=0×3+1×(-3)+(-3)×102+12+(-3)2×(3)2+(-3)2+12=-217, ∴直线B 1D 与平面ACC 1A 1所成角的正弦值为217.③ (3)解 由题设知B (1,0,0),则BD →=(-1,1,0),B 1D →=(0,1,-3),DC →=(1,1,0).设平面BB 1D 的一个法向量为n 1=(x 1,y 1,z 1),则由 ⎩⎪⎨⎪⎧BD →·n 1=0,B 1D →·n 1=0,得⎩⎨⎧-x 1+y 1=0,y 1-3z 1=0,可取n 1=(3,3,1). 同理可得平面B 1DC 的一个法向量为n 2=(-3,3,1), ∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=3×(-3)+3×3+1×1(3)2+(3)2+12×(-3)2+(3)2+12=17.∴二面角B -B 1D -C 的余弦值为17.④【规律方法】(1)证明平面和平面垂直的方法:①面面垂直的定义;②面面垂直的判定定理.(2)已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.(3)利用向量计算二面角大小的常用方法:①找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.②找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.易错警示 对于①:用线面垂直的判定定理易忽视面内两直线相交; 对于②:建立空间直角坐标系,若垂直关系不明确时,应先给出证明;对于③:线面角θ的正弦sin θ=|cos 〈B 1D →,m 〉|,易误认为cos θ=|cos 〈B 1D →,m 〉|;对于④:求出法向量夹角的余弦值后,不清楚二面角的余弦值取正值还是负值,确定二面角余弦值正负有两种方法:1°通过观察二面角是锐角还是钝角来确定其余弦值的正负;2°当不易观察二面角是锐角还是钝角时可判断两半平面的法向量与二面角的位置关系来确定.典例8:如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP的值;若不存在,说明理由.(3)解 设M 是棱PA 上一点,则存在λ∈[0,1],使得AM →=λAP →. 因此点M (0,1-λ,λ),BM →=(-1,-λ,λ). 因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14.所以在棱PA 上存在点M ,使得BM ∥平面PCD ,此时AM AP =14.【规律方法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.典例9:如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,A D =2,E 是AD 的中点,O 是AC与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.所以B ⎝⎛⎭⎫22,0,0,E ⎝⎛⎭⎫-22,0,0,A 1⎝⎛⎭⎫0,0,22,C ⎝⎛⎭⎫0,22,0, 得BC →=⎝⎛⎭⎫-22,22,0,A 1C →=⎝⎛⎭⎫0,22,-22,CD →=BE →=(-2,0,0).设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎪⎨⎪⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);【规律方法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【归纳常用万能模板】如图,在△ABC 中,∠ABC =π4,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平面ABC ,2DA =2AO =PO ,且DA ∥PO.(1)求证:平面PBD ⊥平面COD ;(2)求直线PD 与平面BDC 所成角的正弦值.满分解答 (1)证明 ∵OB =OC ,又∵∠ABC =π4,∴∠OCB =π4,∴∠BOC =π2.∴CO ⊥AB.2分 又PO ⊥平面ABC ,OC ⊂平面ABC ,∴PO ⊥OC.又∵PO ,AB ⊂平面PAB ,PO ∩AB =O ,∴CO ⊥平面PAB ,即CO ⊥平面PDB.4分又CO ⊂平面COD ,∴平面PDB ⊥平面COD.6分(2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1),∴PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).8分设平面BDC 的一个法向量为n =(x ,y ,z ),∴⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,∴⎩⎪⎨⎪⎧2x -2y =0,-3y +z =0, 令y =1,则x =1,z =3,∴n =(1,1,3).10分设PD 与平面BDC 所成的角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD →·n |PD →||n | =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211.12分❶得步骤分:抓住得分点的步骤,“步步为赢”,求得满分.如第(1)问中,先证线面垂直,再证两面垂直.❷得关键分:解题过程不可忽视的关键点,有则给分,无则没分,如第(1)问中证线面垂直不可漏“CO ⊥平面PDB ”.❸得计算分:解题过程中计算准确是得满分的根本保证.如第(2)问中求法向量n ,计算线面角正弦值sin θ.利用向量求空间角的步骤第一步:建立空间直角坐标系.第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标.第四步:计算向量的夹角(或函数值).第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【易错易混温馨提醒】一、利用空间向量求解线面角时,得到是线面角的正弦值,注意不是余弦值.易错1:如图,三棱柱111ABC A B C-中,01111160,4B A AC A A AA AC∠=∠===,2AB=,,P Q分别为棱1,AA AC的中点.(1)在平面ABC内过点A作//AM平面1PQB交BC于点M,并写出作图步骤,但不要求证明.(2)若侧面11ACC A⊥侧面11ABB A,求直线11A C与平面1PQB所成角的正弦值.【答案】(1)见解析(2)39.试题解析:(1)如图,在平面11ABB A内,过点A作1//AN B P交1BB于点N,连结BQ,在1BB Q∆中,作1//NH B Q交BQ 于点H ,连结AH 并延长交BC 于点M ,则AM 为所求作直线.∵Q 为AC 的中点,∴点Q 的坐标为(0,3-,∴()(110,2,23,0,3AC PQ =-=-.∵011112,60A B AB B A A ==∠=,∴()13,1,0B ,∴()13,1,0PB =, 设平面1PQB 的法向量为(),,m x y z =,二、不能直接建立空间直角坐标系时,要利用条件先证再建系.易错2:如图,在三棱柱111ABC A B C -中, D 为BC 的中点, 00190,60BAC A AC ∠=∠=,12AB AC AA ===.(1)求证: 1//A B 平面1ADC ;(2)当14BC =时,求直线1B C 与平面1ADC 所成角的正弦值.【答案】(1)见解析;(2310.【解析】【试题分析】(1)依据题设条件运用直线与平面平行的判定定理进行分析推证;(2)依据题设条件建立空间直角坐标系,借助向量的有关知识与数量积公式分析求解:(1)证明:连结1A C 与1AC 相交于点E ,连结ED .∵,D E 为中点,∴1//A B ED ,又∵1A B ⊄平面1,ADC ED ⊂平面1ADC ,∴1//A B 平面1ADC .三、在空间中点的坐标不好确定时,可以先设出来,再根据条件列方程求解确定即可. 易错3:如图,在三棱柱111ABC A B C -中,平面11A ACC ⊥平面ABC , 2AB BC ==, 30ACB ∠=, 1120C CB ∠=, 11BC AC ⊥, E 为AC 的中点.(1)求证: 1A C ⊥平面1C EB ;(2)求二面角1A AB C --的余弦值.【答案】(1)见解析;(2)13.则由余弦定理得2221312223412AC x x x x =+-⋅=-+. 2221332323C E x x x x ⎛=+-⋅=++ ⎝⎭,设1A C 与1C E 交于点H ,则 1123A H AC =, 1123C H C E =,而1A C ⊥ 1C E ,则2221111A H C H A C +=. 于是()()(22244412232399x x x x -++++=,即260x x --=,∴3x =或2-(舍) 容易求得: 16A E =22211A E AE AA +=.故1A E AC ⊥,由面11A ACC ⊥面ABC ,则1A E ⊥面ABC ,过E 作EF AB ⊥于F ,连1A F ,则1A FE ∠为二面角1A AB C --的平面角,由平面几何知识易得3EF =, 1332A F =∴11312cos3332AEA FEA F∠===.方法二:以A点为原点,AC为y轴,过点A与平面ABC垂直的直线为z轴,建立如图所示的空间直角坐标系,设1AA x=,1A ACθ∠=,则()1,3,0B,()0,23,0C,()0,3,0E,()10,23cos,sinC x xθθ+.∴()1,3,0CB=-,()10,cos,sinCC x xθθ=.由1111cos,2CB CCCB CCCB CC⋅==-,得3cos12xθ-⋅=-,∴3cosθ=,则1360,,33A x x⎛⎫⎪⎪⎝⎭,1360,23,33C x x⎛⎫+⎪⎪⎝⎭,于是1360,23,33AC x x⎛⎫=--⎪⎪⎝⎭,1361,3,BC x⎛⎫=-+⎪⎪⎝⎭,∵11AC BC⊥,不妨设平面ABC的法向量()20,0,1n=,则121212212cos,3912n nn nn n-⋅===-⨯,故二面角1A AB C --的余弦值为13.四、建立空间直角坐标系的原则是:让尽量多的点落在坐标轴或轴面上. 易错4:如图,在正方形ABCD 中,点E ,F 分别是AB ,BC 的中点,将 AED DCF △,△分别沿DE ,DF 折起,使 A C ,两点重合于P .(Ⅰ)求证:平面PBD BFDE ⊥平面;(Ⅱ)求二面角P DE F --的余弦值.【答案】(Ⅰ)详见解析(Ⅱ)23所以 BE BF DE DF ==,,所以DEB DFB △≌△,所以在等腰DEF △中,O 是EF 的中点,且EF OD ⊥,因此在等腰PEF △中,EF OP ⊥,从而EF OPD ⊥平面,又EF BFDE ⊂平面,所以平面BFDE OPD ⊥平面,即平面PBD BFDE ⊥平面.…………………6分所以AF DE ⊥,于是,在翻折后的几何体中,PGF ∠为二面角P DE F --的平面角,在正方形ABCD 中,解得25AG =,35GF =, 所以,在PGF △中,25PG AG ==,35GF =,1PF =, 由余弦定理得2222cos 23PG GF PF PGF PG GF +-∠==⋅, 所以,二面角P DE F --的余弦值为23.………………………………12分五、求二面角余弦值时,要正确判断二面角为钝角还是锐角.易错5:四棱锥P ABCD -中,底面ABCD 为矩形, 22,AB BC PA PB ===,.侧面PAB ⊥底面ABCD .(1)证明: PC BD ⊥;(2)设BD 与平面PAD 所成的角为45︒,求二面角B PC D --的余弦值.【答案】(1)见解析(2)10【试题解析】解:(1)证法一:设AB 中点为O ,连接PO ,由已知PA PB =,所以PO AB ⊥,而平面PAB ⊥平面ABCD ,交线为AB故PO ⊥平面ABCD以O 为原点, OP 为z 轴, OB 为y 轴,如图建立空间直角坐标系,并设PO h =,则()()))0,0,,0,1,0,2,1,0,2,1,0P h B C D- 所以()()2,1,,2,2,0PC h BD =-=- 0PC BD ⋅=,所以PC BD ⊥.证法二:设AB 中点为O ,连接PO ,由已知PA PB =,所以PO AB ⊥,而平面PAB ⊥平面ABCD ,交线为AB故PO ⊥平面ABCD ,从而BD PO ⊥ ①在矩形ABCD 中,连接CO ,设CO 与BD 交于M ,则由::CD CB BC BO =知BCD OBC ∆~∆,所以BCO CDB ∠=∠所以90BCM CBM CDB CBM ∠+∠=∠+∠=︒,故BD CO ⊥ ②由①②知BD ⊥平面PCO所以PC BD ⊥.六、多解问题的取舍.易错6:如图,在棱长为2的正方体1111ABCD A B C D -中, E , F , M , N 分别是棱AB , AD , 11A B , 11A D 的中点,点P , Q 分别在棱1DD , 1BB 上移动,且(02)DP BQ λλ==<<.(1)当1λ=时,证明:直线1//BC 平面EFPQ ;(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.【答案】(1)见解析;(2)212λ=±.(2)设平面EFPQ 的一个法向量为(),,n x y z =,则由0{0FE n FP n ⋅=⋅=,得0{0.x y x z λ+=-+=,于是可取(),,1n λλ=-. 设平面MNPQ 的一个法向量为()',','m x y z =,由0{0NM m NP m ⋅=⋅=,得()''0{'2'0x y x z λ+=-+-=,于是可取()2,2,1m λλ=--.若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则()()2,2,1,,10m n λλλλ⋅=--⋅-=,即()()2210λλλλ---+=,解得21λ=±,显然满足02λ<<. 故存在212λ=±,使面EFPQ 与面PQMN 所成的二面角为直二面角.。

立体几何题型的解题技巧适合总结提高用

立体几何题型的解题技巧适合总结提高用

第六讲 立体几何新题型的解题技巧考点1 点到平面的距离例1(2007年福建卷理)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离.例2.( 2006年湖南卷)如图,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4.(Ⅰ)证明PQ ⊥平面ABCD ;(Ⅱ)求异面直线AQ 与PB 所成的角; (Ⅲ)求点P 到平面QAD 的距离.QBCPADOMABC D1A1C1B考点2 异面直线的距离例3 已知三棱锥ABC S -,底面是边长为24的正三角形,棱SC 的长为2,且垂直于底面.D E 、分别为AB BC 、的中点,求CD 与SE 间的距离.考点3 直线到平面的距离例4. 如图,在棱长为2的正方体1AC 中,G 是1AA 的中点,求BD 到平面11D GB 的距离.考点4 异面直线所成的角 例5(2007年北京卷文)如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB△以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (I )求证:平面COD ⊥平面AOB ; (II )求异面直线AO 与CD 所成角的大小.BACDOGH 1A 11D1B 1OO CADBEABCQαβ P例6.(2006年广东卷)如图所示,AF 、DE 分别是⊙O 、⊙O 1的直径.AD 与两圆所在的平面均垂直,AD =8,BC 是⊙O 的直径,AB =AC =6,OE //AD . (Ⅰ)求二面角B —AD —F 的大小; (Ⅱ)求直线BD 与EF 所成的角.考点5 直线和平面所成的角例7.(2007年全国卷Ⅰ理)四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =∠,2AB =,BC =SA SB =(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.考点6 二面角例8.(2007年湖南卷文)如图,已知直二面角PQ αβ--,A PQ ∈,B α∈,C β∈,CA CB =,45BAP ∠=,直线CA 和平面α所成的角为30.(I )证明BC PQ ⊥; (II )求二面角B AC P --的大小.DBCS例9.( 2006年重庆卷)如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,∠DAB 为直角,AB ‖CD ,AD =CD =2AB , E 、F 分别为PC 、CD 的中点.(Ⅰ)试证:CD ⊥平面BEF ;(Ⅱ)设PA =k ·AB ,且二面角E -BD -C 的平面角大于︒30,求k 的取值范围.考点7 利用空间向量求空间距离和角 例10.(2007年江苏卷)如图,已知1111ABCD A BC D -是棱长为3的正方体,点E 在1AA 上,点F 在1CC 上,且11AE FC ==. (1)求证:1E B F D ,,,四点共面;(2)若点G 在BC 上,23BG =,点M 在1BB 上,GM BF ⊥,垂足为H ,求证:EM ⊥平面11BCC B ;(3)用θ表示截面1EBFD 和侧面11BCC B 所成的锐二面角的大小,求tan θ.CAHMDE F1B1A1D C例11.(2006年全国Ⅰ卷)如图,l 1、l 2是互相垂直的两条异面直线,MN 是它们的公垂线段,点A 、B 在l 1上,C 在l 2上,AM =MB =MN (I )证明AC ⊥NB ;(II )若︒=∠60ACB ,求NB 与平面ABC 所成角的余弦值.考点8 简单多面体的有关概念及应用,主要考查多面体的概念、性质,主要以填空、选择题为主,通常结合多面体的定义、性质进行判断.例12 . 如图(1),将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器,当这个正六棱柱容器的底面边长为 时容积最大.例13 .如图左,在正三角形ABC 中,D 、E 、F 分别为各边的中点,G 、H 、I 、J 分别为AF 、AD 、BE 、DE 的中点,将△ABC 沿DE 、EF 、DF 折成三棱锥后,GH 与IJ 所成角的度数为( )A 、90°B 、60°C 、45°D 、0°例14.长方体ABCD -A 1B 1C 1D 1中,NBA CDEFGHIJ(A 、B 、C )DEFGHIJC 1D 1① 设对角线D 1B 与自D 1出发的三条棱分别成α、β、γ角 求证:cos 2α+cos 2β+cos 2γ=1② 设D 1B 与自D 1出发的三个面成α、β、γ角,求证: cos 2α+cos 2β+cos 2γ=2考点9.简单多面体的侧面积及体积和球的计算例15. 如图,在三棱柱ABC -A 1B 1C 1中,AB =2a ,BC =CA =AA 1=a ,A 1在底面△ABC 上的射影O 在AC 上 ① 求AB 与侧面AC 1所成角;② 若O 恰好是AC 的中点,求此三棱柱的侧面积.例16. 等边三角形ABC 的边长为4,M 、N 分别为AB 、AC 的中点,沿MN 将△AMN 折起,使得面AMN 与面MNCB 所成的二面角为30°,则四棱锥A —MNCB 的体积为 ( )A 、23 B 、23 C 、3 D 、3例17.如图,四棱锥P —ABCD 中,底面是一个矩形,AB =3,ADA 1B 1C 1ABCDOABCMNKLACN=1,又PA ⊥AB ,PA =4,∠PAD =60° ① 求四棱锥的体积; ② 求二面角P -BC -D 的大小.例18 .(2006年全国卷Ⅱ)已知圆O 1是半径为R 的球O 的一个小圆,且圆O 1的面积与球O 的表面积的比值为92,则线段OO 1与R 的比值为 .【专题训练与高考预测】 一、选择题1.如图,在正三棱柱ABC -A 1B 1C 1中,已知AB =1,D 在BB 1上,且BD =1,若AD 与侧面AA 1CC 1所成的角为α,则α的值为 ( ) A.3π B. 4πC. 410arctanD. 46arcsin2.直线a 与平面α成θ角,a 是平面α的斜线,b 是平面α内与a 异面的任意直线,则a 与b 所成的角( )A. 最小值θ,最大值θπ-B. 最小值θ,最大值2πC. 最小值θ,无最大值D. 无最小值,最大值4πCBA1A1B 1C DPAHED BC3.在一个︒45的二面角的一平面内有一条直线与二面角的棱成︒45角,则此直线与二面角的另一平面所成的角为( )A. ︒30B. ︒45C. ︒60D. ︒904.如图,直平行六面体ABCD -A 1B 1C 1D 1的棱长均为2,︒=∠60BAD ,则对角线A 1C 与侧面DCC 1D 1所成的角的正弦值为( ) A.21 B. 23 C.22 D. 435.已知在ABC ∆中,AB =9,AC =15,︒=∠120BAC ,它所在平面外一点P 到ABC ∆三顶点的距离都是14,那么点P 到平面ABC ∆的距离为( )A. 13B. 11C. 9D. 76.如图,在棱长为3的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱A 1B 1、A 1D 1的中点,则点B 到平面AMN 的距离是( )A. 29B. 3C. 556 D. 27.将︒=∠60QMN ,边长MN =a 的菱形MNPQ 沿对角线NQ 折成︒60的二面角,则MP 与NQ 间的距离等于( )A.a 23 B. a 43 C. a 46 D.a 438.二面角βα--l 的平面角为︒120,在α内,l AB ⊥于B ,AB =2,在β内,l CD ⊥于D ,CD =3,BD =1, M 是棱l 上的一个动点,则AM +CM 的最小值为( )A. 52B. 22C. 26D. 629.空间四点A 、B 、C 、D 中,每两点所连线段的长都等于a , 动点P 在线段AB 上, 动点Q 在线段CD 上,则P 与Q 的最短距离为( )A.a 21 B. a 22 C. a 23D.a 10.在一个正四棱锥,它的底面边长与侧棱长均为a ,现有一张正方形包装纸将其完全包住(不能裁剪纸,但可以折叠),那么包装纸的最小边长应为( )A. a )62(+B.a 262+ C. a )31(+ D. a 231+ BACD D 1C 1B 1A 1ADB AD 1C 1B 1A 1M N11.已知长方体ABCD -A 1B 1C 1D 1中,A 1A =AB =2,若棱AB 上存在点P ,使PC P D ⊥1,则棱AD 的长的取值范围是 ( )A. (]1,0B. (]2,0C. (]2,0D. (]2,112.将正方形ABCD 沿对角线AC 折起,使点D 在平面ABC 外,则DB 与平面ABC 所成的角一定不等于( )A. ︒30B. ︒45C.︒60 D. ︒90二、填空题1.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 是A 1B 1的中点,则下列四个命题:① E 到平面ABC 1D 1的距离是21; ② 直线BC 与平面ABC 1D 1所成角等于︒45; ③ 空间四边形ABCD 1在正方体六个面内的射影围成面积最小值为21; ④ BE 与CD 1所成的角为1010arcsin2.如图,在四棱柱ABCD ---A 1B 1C 1D 1中,P 是A 1C 1上的动点,E 为CD 上的动点,四边形ABCD 满 足___________时,体积AEB P V -恒为定值(写上 你认为正确的一个答案即可)3.边长为1的等边三角形ABC 中,沿BC 边高线AD折起,使得折后二面角B -AD -C 为60°,则点A 到BC 的距离为_________,点D 到平面ABC 的距离为__________.4.在水平横梁上A 、B 两点处各挂长为50cm 的细绳,AM 、BN 、AB 的长度为60cm ,在MN 处挂长为60cm 的木条,MN 平行于横梁,木条的中点为O ,若木条 绕过O 的铅垂线旋转60°,则木条比原来升高了_________.5.多面体上,位于同一条棱两端的顶点称为相邻的.如图正方体的一个顶点A 在α平面内.其余顶点在α的同侧,正方体上与顶点A 相邻的三个顶点到α的距离分别是1、2和4. P 是正方体其余四个顶点中的一个,则P 到平面α的距离可能是: ①3;②4;③5;④6;⑤7. 以上结论正确的为 . (写出所有正确结论的编号..)DCBAED 1A 1C 1B 1ABDCPEA 1D 1C 1B 1WORD 格式整理6. 如图,棱长为1m 的正方体密封容器的三个面上有三个锈蚀的小孔(不计小孔直径)O 1、O 2、O 3它们分别是所在面的中心.如果恰当放置容器,容器存水的最大容积是_______m 3. 三、解答题1. 在正三棱柱ABC —A 1B 1C 1中,底面边长为a,D 为BC 为中点,M 在BB 1上,且BM=13B 1M ,又CM ⊥AC 1;(1) 求证:CM ⊥C 1D; (2) 求AA 1的长.2. 如图,在四棱锥P-ABCD 中,底面是矩形且AD=2,AB=PA=2,PA ⊥底面ABCD ,E 是AD 的中点,F 在PC 上. (1) 求F 在何处时,EF ⊥平面PBC ;(2) 在(1)的条件下,EF 是不是PC 与AD 的公垂线段.若是,求出公垂线段的长度;若不是,说明理由;(3) 在(1)的条件下,求直线BD 与平面BEF 所成的角.∙O 1∙O 2∙O 33.如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=3.(1)求证BC⊥SC;(2)求面ASD与面BSC所成二面角的大小;(3)设棱SA的中点为M,求异面直线DM与SB所成角的1AB=a,(如图一)将△ADC 沿AC折起,使D 4.在直角梯形ABCD中,∠D=∠BAD=90︒,AD=DC=2到D'.记面AC D'为α,面ABC为β.面BC D'为γ.(1)若二面角α-AC-β为直二面角(如图二),求二面角β-BC-γ的大小;(2)若二面角α-AC-β为60︒(如图三),求三棱锥D'-ABC的体积.5.如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF(1)求证AM//平面BDE;(2)求二面角A-DF-B的大小;(3)试在线段AC上确定一点P,使得PF与BC所成的角是60︒.。

立体几何解答题最全归纳总结(解析版)

立体几何解答题最全归纳总结(解析版)

立体几何解答题最全归纳总结【题型归纳目录】题型一:非常规空间几何体为载体题型二:立体几何存在性问题题型三:立体几何折叠问题题型四:立体几何作图问题题型五:立体几何建系繁琐问题题型六:两角相等(构造全等)的立体几何问题题型七:利用传统方法找几何关系建系题型八:空间中的点不好求题型九:创新定义【典例例题】题型一:非常规空间几何体为载体例1.如图,P 为圆锥的顶点,O 为圆锥底面的圆心,圆锥的底面直径AB =4,母线PH =22,M 是PB 的中点,四边形OBCH 为正方形.(1)设平面POH ∩平面PBC =l ,证明:l ∥BC ;(2)设D 为OH 的中点,N 是线段CD 上的一个点,当MN 与平面PAB所成角最大时,求MN 的长.【解析】(1)因为四边形OBCH 为正方形,∴BC ∥OH ,∵BC ⊄平面POH ,OH ⊂平面POH ,∴BC ∥平面POH .∵BC ⊂平面PBC ,平面POH ∩平面PBC =l ,∴l ∥BC .(2)∵圆锥的母线长为22,AB =4,∴OB =2,OP =2,以O 为原点,OP 所在的直线为z 轴,建立如图所示的空间直角坐标系,则P 0,0,2 ,B 0,2,0 ,D 1,0,0 C 2,2,0 ,M 0,1,1 ,设DN =λDC =λ,2λ,0 0≤λ≤1 ,ON =OD +DN =1+λ,2λ,0 ,MN =ON -OM =1+λ,2λ-1,-1 ,OD =1,0,0 为平面PAB 的一个法向量,设MN 与平面PAB 所成的角为θ,则sin θ=1+λ,2λ-1,-1 ⋅1,0,0 1+λ 2+2λ-1 2+1 =1+λ5λ2-2λ+3,令1+λ=t ∈1,2 ,则sin θ=t 5t 2-12t +10=15-12t +101t 2=1101t -35 2+75所以当1t =35时,即λ=23时,sin θ最大,亦θ最大,此时MN =53,13,-1 ,所以MN =MN =53 2+13 2+-1 2=353.例2.如图所示,圆锥的底面半径为4,侧面积为162π,线段AB 为圆锥底面⊙O 的直径,C 在线段AB 上,且BC =3CA ,点D 是以BC 为直径的圆上一动点;(1)当CD =CO 时,证明:平面PAD ⊥平面POD(2)当三棱锥P -BCD 的体积最大时,求二面角B -PD -A 的余弦值.【解析】(1)∵PO 垂直于圆锥的底面,∴PO ⊥AD ,当CD =CO 时,CD =OC =AC ,∴AD ⊥OD ,又OD ∩PO =O ,∴AD ⊥平面POD ,又AD ⊂平面PAD ,∴平面PAD ⊥平面POD ;(2)由题可知OA =OB =4,4π⋅PB =162π,∴PB =42,∴PO =4,当三棱锥P -BCD 的体积最大时,△DBC 的面积最大,此时D 为BC的中点,如图,建立空间直角坐标系O -xyz ,则A (0,-4,0),B (0,4,0),P (0,0,4),D 3,1,0 ,∴BP =0,-4,4 ,PD =3,1,-4 ,AP =(0,4,4),设平面PAD 的法向量为n 1 =(a ,b ,c ),则n 1 ⋅AP =0n 1 ⋅PD =0 ,即4b +4c =03a +b -4c =0,令a =5,则b =-3,c =3,∴n 1 =(5,-3,3),设平面PBD 的法向量n 2 =x ,y ,z ,则n 2 ⋅BP =0n 2 ⋅PD =0 ,即-4y +4z =03x +y -4z =0,令x =1,则y =1,z =1,∴n 2 =1,1,1 ,则cos n 1 ,n 2 =n 1 ⋅n 2 n 1 n 2 =5-3+33×52+-3 2+32=5129129,∴二面角B -PD -A 的余弦值为-5129129.例3.如图,圆锥PO 的母线长为6,△ABC 是⊙O 的内接三角形,平面PAC ⊥平面PBC .BC =23,∠ABC =60°.(1)证明:PA ⊥PC ;(2)设点Q 满足OQ =λOP ,其中λ∈0,1 ,且二面角O -QB -C 的大小为60°,求λ的值.【解析】(1)∵PA =PB =PC =6,BC =23,PB 2+PC 2=BC 2,∴PB ⊥PC∵平面PAC ⊥平面PBC 且平面PAC ∩平面PBC =PC ,PB ⊂平面PBC ,PB ⊥PC ,∴PB ⊥平面PAC ,又PA ⊂平面PAC ,∴PB ⊥PA ,∴AB =PA 2+PB 2=23,∴∠ABC =60°,∴△ABC 是正三角形,AC =23,∵PA 2+PC 2=AC 2∴PA ⊥PC ;(2)在平面ABC 内作OM ⊥OB 交BC 于M ,以O 为坐标原点,OM ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz 如图所示:易知OB =OC =2,OP =PB 2-OB 2=2,所以B 2,0,0 ,P 0,0,2 ,C -1,3,0 ,Q 0,0,2λ ,QB =2,0,-2λ ,BC =-3,3,0 ,设平面OBC 的法向量n 1 =x ,y ,z ,依题意n 1 ⋅QB =0n 1 ⋅CB =0 ,即2x -2λz =0-3x +3y =0 ,不妨令y =3λ,得n 1 =λ,3λ,2 ,易知平面OQB 的法向量n 2 =0,1,0 ,由λ∈0,1 可知cos n 1 ,n 2 =n 1 ⋅n 2 n 1 ⋅n 2=cos60°,即3λλ2+(3λ)2+2 2=12,解得λ=12例4.如图,D 为圆锥的顶点,O 为圆锥底面的圆心,AB 为底面直径,C 为底面圆周上一点,DA =AC =BC =2,四边形DOAE 为矩形,点F 在BC 上,且DF ⎳平面EAC .(1)请判断点F 的位置并说明理由;(2)平面DFO 将多面体DBCAE 分成两部分,求体积较大部分几何体的体积.【解析】(1)点F 是BC 的中点,取BC 的中点F ,连接OF ,DF ,因为O 为AB 的中点,所以OF ⎳AC ,又AC ⊂平面AEC ,OF ⊄平面AEC ,所以OF ⎳平面AEC ,由四边形DOAE 为矩形,所以DO ⎳AE ,又AE ⊂平面AEC ,OD ⊄平面AEC ,所以OD ⎳平面AEC ,因为DO ∩OF =O ,DO ,OF ⊂平面DOF ,所以平面DOF ⎳平面AEC ,因为DF ⊂平面DOF ,所以DF ⎳平面AEC ,(2)由(1)知点F 是BC 的中点,因为DA =AC =BC =2,所以AB =AC 2+BC 2=22,所以OA =OC =OB =2,且OC ⊥AB ,所以OD =AD 2-OA 2=2,所以三棱锥D -BOF 的体积V D -BOF =13S △BOF ⋅DO =13×12×2×22×2=26;又三棱锥D -BOC 的体积V D -BOC =13S △BOC ⋅DO =13×12×2×2×2=23,所以四棱锥C -DOAE 的体积V C -DOAE =13S DOAE ×2=13×2 2×2=223,所以几何体DBCAE 的体积V DBCAE =V D -BCO +V C -DOAE =2,所以体积较大部分几何体的体积为V DBCAE -V D -BOF =2-26=526;例5.如图,在直角△POA 中,PO ⊥OA ,PO =2OA ,将△POA 绕边PO 旋转到△POB 的位置,使∠AOB =90°,得到圆锥的一部分,点C 为AB 的中点.(1)求证:PC ⊥AB ;(2)设直线PC 与平面PAB 所成的角为φ,求sin φ.【解析】(1)证明:由题意知:PO ⊥OA ,PO ⊥OB ,OA ∩OC =0∴PO ⊥平面AOB ,又∵AB ⊂平面AOB ,所以PO ⊥AB .又点C 为AB 的中点,所以OC ⊥AB ,PO ∩OC =0,所以AB ⊥平面POC ,又∵PC ⊂平面POC ,所以PC ⊥AB .(2)以O 为原点,OA ,OB ,OP 的方向分别作为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系,设OA =2,则A 2,0,0 ,B 0,2,0 ,P 0,0,4 ,C 2,2,0 ,所以AB =-2,2,0 ,AP =-2,0,4 ,PC =2,2,-4 .设平面PAB 的法向量为n =a ,b ,c ,则n ⋅AB =-2a +2b =0,n ⋅AP =-2a +4c =0, 取c =1,则a =b =2可得平面PAB 的一个法向量为n =2,2,1 ,所以sin φ=cos n ,PC =n ⋅PC n PC =42-465=210-5 15.例6.如图,四边形ABCD 为圆柱O 1O 2的轴截面,EF 是该圆柱的一条母线,EF =2EA ,G 是AD 的中点.(1)证明:AF ⊥平面EBG ;(2)若BE =3EA ,求二面角E -BG -A 的正弦值.【解析】(1)由已知EF ⊥平面ABE ,BE ⊂平面ABE ,所以EF ⊥BE ,因为AB 是圆O 1的直径,所以AE ⊥BE ,因为AE ∩FE =E ,所以BE ⊥平面AFE ,AF ⊂平面AFE ,故BE ⊥AF ,因为EF =2EA =2AG ,所以EA =2AG ,易知:Rt △AEG ∼Rt △EFA ,所以∠GEA +∠EAF =90°,从而AF ⊥EG ,又BE ∩EG =E ,所以AF ⊥平面EBG .(2)以E 为坐标原点,EA 为x 轴正方向,EA 为单位向量,建立如图所示的空间直角坐标系E -xyz ,则AB =2,BE =3,EF =2,从而A 1,0,0 ,B 0,3,0 ,D 1,0,2 ,F 0,0,2 ,AB =-1,3,0 ,AD =0,0,2 ,设n =x ,y ,z 位平面BGA 的法向量,则{n ⋅AB =0n ⋅AD =0⇒{-x +3y =02z =0⇒{x =3y =1z =0,所以n =3,1,0 ,由(1)知:平面BEG 的法向量为AF =-1,0,2 ,因为cos n ,AF =n ⋅AF n ⋅AF=-12,所以二面角E -BG -A 的正弦值为32.例7.例7.如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF的中点.(1)设P 是CE 上的一点,且AP ⊥BE ,求证BP ⊥BE ;(2)当AB =3,AD =2时,求二面角E -AG -C 的大小.【解析】(1)因为AP ⊥BE ,AB ⊥BE ,AB ,AP ⊂平面ABP ,AB ∩AP =A ,所以BE ⊥平面ABP ,又BP ⊂平面ABP ,所以BP ⊥BE .(2)以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,3,3),C (-1,3,0),故AE =(2,0,-3),AG =(1,3,0),CG =(2,0,3).设m =x 1,y 1,z 1 是平面AEG 的一个法向量,由m ·AE =0m ·AG =0 可得2x 1-3z 1=0,x 1+3y 1=0.取z 1=2,可得平面AEG 的一个法向量m =(3,-3,2).设n =x 2,y 2,z 2 是平面ACG 的一个法向量,由n ·AG =0n ·CG =0,可得x 2+3y 2=0,2x 2+3z 2=0. 取z 2=-2,可得平面ACG 的一个法向量n =(3,-3,-2).所以cos ‹m ,n ›=m ⋅n |m |⋅|n |=12, 因为<m ,n >∈[0,π],故所求的角为60°.例8.如图,四边形ABCD 是一个半圆柱的轴截面,E ,F 分别是弧DC ,AB 上的一点,EF ∥AD ,点H 为线段AD 的中点,且AB =AD =4,∠FAB =30°,点G 为线段CE 上一动点.(1)试确定点G 的位置,使DG ⎳平面CFH ,并给予证明;(2)求二面角C -HF -E 的大小.【解析】(1)当点G 为CE 的中点时,DG ∥平面CFH .证明:取CF 得中点M ,连接HM ,MG .∵G ,M 分别为CE 与CF 的中点,∴GM ∥EF ,且GM =12EF =12AD ,又H 为AD 的中点,且AD ∥EF ,AD =EF ,∴GM ∥DH ,GM =DH .四边形GMHD 是平行四边形,∴HM ∥DG又HM ⊂平面CFH ,DG ⊄平面CFH∴DG ∥平面CFH(2)由题意知,AB 是半圆柱底面圆的一条直径,∴AF ⊥BF .∴AF =AB cos30°=23,BF =AB sin30°=2.由EF ∥AD ,AD ⊥底面ABF ,得EF ⊥底面ABF .∴EF ⊥AF ,EF ⊥BF .以点F 为原点建立如图所示的空间直角坐标系,则F (0,0,0),B (0,2,0),C (0,2,4),H (23,0,2)FH =(23,0,2),FC =(0,2,4)设平面CFH 的一个法向量为n =(x ,y ,z )所以n ⋅FH =23x +2z =0n ⋅FC =2y +4z =0则令z =1则y =-2,x =-33即n =-33,-2,1由BF ⊥AF ,BF ⊥FE ,AF ∩FE =F .得BF ⊥平面EFH ∴平面EFH 的一个法向量为FB =(0,2,0)设二面角C -HF -E 所成的角为θ∈0,π2则cos θ=∣cos ‹n ,FB ›=|n ⋅FB ||n ||FB |=0×-33 +(-2)×2+1×02×13+4+1=32 ∴二面角C -HF -E 所成的角为π6.例9.坐落于武汉市江汉区的汉口东正教堂是中国南方唯一的拜占庭式建筑,象征着中西文化的有机融合.拜占庭建筑创造了将穹顶支承于独立方柱上的结构方法和与之相呼应的集中式建筑形制,其主体部分由一圆柱与其上方一半球所构成,如图所示.其中O 是下底面圆心,A ,B ,C 是⊙O 上三点,A 1,B 1,C 1是上底面对应的三点.且A ,O ,C 共线,AC ⊥OB ,C 1E =EC ,B 1F =13FB ,AE 与OF 所成角的余弦值为36565.(1)若E 到平面A 1BC 的距离为233,求⊙O 的半径.(2)在(1)的条件下,已知P 为半球面上的动点,且AP =210,求P 点轨迹在球面上围成的面积.【解析】(1)如图,取BB 1,CE 上的点N ,M .连接OM ,OF ,FM .过N 作NH ⊥A 1B 于H ,则OM ∥AE ,由题意知cos ∠FOM =36565,设⊙O 的半径为r ,AA 1=h ,由勾股定理知OF =r 2+916h 2,OM =r 2+116h 2,FM =2r 2+14h 2,由余弦定理知cos ∠FOM =OF 2+OM 2-FM 22×OF ×OM.代入解得h =2r ,因为EN ∥BC ,EN ⊄面A 1BC ,所以EN ∥面A 1BC ,故N 到面A 1BC 的距离是233,因为BC ⊥AB ,BC ⊥AA 1,AA 1∩AB =A ,所以BC ⊥面A 1AB ,BC ⊥NH ,因为NH ⊥BC ,NH ⊥A 1B ,A 1B ∩BC =B ,所以NH ⊥面A 1BC ,NH =233,而sin ∠A 1BB 1=NH BN =A 1B 1A 1B ,即233×h 2=2r 2r 2+h 2,解得r =2,h =4,即⊙O 的半径为2.(2)设上底面圆心为O 1,则O 1P =2,O 1O 2与O 1P 的夹角为θ,所以|AP |=|AO 1 +O 1P |=20+4+85cos θ=210,解得cos θ=255,过P 作PO 2⊥AO 1于O 2,则O 2P =O 1P ⋅sin θ=255,所以点P 的轨迹是以O 2为圆心,以255为半径的圆,因此可作出几何体被面AOA 1所截得到的截面,如图所示.设弧A 1C 1旋转一周所得到的曲面面积为S 1,弧PP 得到的为S 2,则S 2S 1=1-cos θS 1=12×4πr2 ,因此S 2=2πr 2(1-cos θ)=8π1-255 .因此P 点轨迹在球面上围成的面积为8π1-255.例10.如图,ABCD 为圆柱OO 的轴截面,EF 是圆柱上异于AD ,BC 的母线.(1)证明:BE ⊥平面DEF ;(2)若AB =BC =6,当三棱锥B -DEF 的体积最大时,求二面角B -DF -E 的正弦值.【解析】(1)证明:如图,连接AE ,由题意知AB 为⊙O 的直径,所以AE ⊥BE .因为AD ,EF 是圆柱的母线,所以AD ∥EF 且AD =EF ,所以四边形AEFD 是平行四边形.所以AE ⎳DF ,所以BE ⊥DF .因为EF 是圆柱的母线,所以EF ⊥平面ABE ,又因为BE ⊂平面ABE ,所以EF ⊥BE .又因为DF ∩EF =F ,DF 、EF ⊂平面DEF ,所以BE ⊥平面DEF .(2)由(1)知BE 是三棱锥B -DEF 底面DEF 上的高,由(1)知EF ⊥AE ,AE ∥DF ,所以EF ⊥DF ,即底面三角形DEF 是直角三角形.设DF =AE =x ,BE =y ,则在Rt △ABE 中有:x 2+y 2=6,所以V B -DEF =13S △DEF ⋅BE =13⋅12x ⋅6⋅y =66xy ≤66⋅x 2+y 22=62,当且仅当x =y =3时等号成立,即点E ,F 分别是AB ,CD的中点时,三棱锥B -DEF 的体积最大,(另等积转化法:V B -DEF =V D -BEF =V D -BCF =V B -CDF =13S △CDF⋅BC 易得当F 与CD 距离最远时取到最大值,此时E 、F 分别为AB 、CD 中点)下面求二面角B -DF -E 的正弦值:法一:由(1)得BE ⊥平面DEF ,因为DF ⊂平面DEF ,所以BE ⊥DF .又因为EF ⊥DF ,EF ∩BE =E ,所以DF ⊥平面BEF .因为BF ⊂平面BEF ,所以BF ⊥DF ,所以∠BFE 是二面角B -DF -E 的平面角,由(1)知△BEF 为直角三角形,则BF =(3)2+(6)2=3.故sin ∠BFE =BE BF=33,所以二面角B -DF -E 的正弦值为33.法二:由(1)知EA ,EB ,EF 两两相互垂直,如图,以点E 为原点,EA ,EB ,EF 所在直线为x ,y ,z 轴建立空间直角坐标系E -xyz ,则B (0,3,0),D (3,0,6),E (0,0,0),F (0,0,6).由(1)知BE ⊥平面DEF ,故平面DEF 的法向量可取为EB =(0,3,0).设平面BDF 的法向量为n =(x ,y ,z ),由DF =(-3,0,0),BF =(0,-3,6),得n ⋅DF =0n ⋅BF =0 ,即-3x =0-3y +6z =0,即x =0y =2z ,取z =1,得n =(0,2,1).设二面角B -DF -E 的平面角为θ,|cos θ|=∣cos n ,EB =|n ⋅EB ||n |⋅|EB |=2×33×3=63,所以二面角B -DF -E 的正弦值为33例11.如图,O 1,O 分别是圆台上、下底的圆心,AB 为圆O 的直径,以OB 为直径在底面内作圆E ,C 为圆O 的直径AB 所对弧的中点,连接BC 交圆E 于点D ,AA 1,BB 1,CC 1为圆台的母线,AB =2A 1B 1=8.(1)证明;C 1D ⎳平面OBB 1O 1;(2)若二面角C 1-BC -O 为π3,求O 1D 与平面AC 1D 所成角的正弦值.【解析】(1)连接DE ,O1E ,C 为圆O 的直径AB 所对弧的中点,所以△BOC 为等腰直角三角形,即∠OBD =45°,又D 在圆E 上,故△BED 为等腰直角三角形,所以DE ⎳OC 且DE =12OC ,又CC 1是母线且O 1C 1=12OC ,则O 1C 1⎳OC ,故DE ⎳O 1C 1且DE =O 1C 1,则DEO 1C 1为平行四边形,所以EO 1⎳DC 1,而EO 1⊂面OBB 1O 1,DC 1⊄面OBB 1O 1,故C 1D ⎳平面OBB 1O 1.(2)由题设及(1)知:O 1O 、OB 、OC 两两垂直,构建如下图示的空间直角坐标系,过C 1作C 1F ⎳O 1O ,则F 为OC 的中点,再过F 作FG ⎳OD ,连接C 1G ,由O 1O ⊥圆O ,即C 1F ⊥圆O ,BC ⊂圆O ,则C 1F ⊥BC ,又OD⊥BC ,则FG ⊥BC ,故二面角C 1-BC -O 的平面角为∠FGC 1=π3,而FG =12OD =24OB =2,所以O 1O =C 1F =FG tan π3=6.则A (0,-4,0),D (2,2,0),C 1(2,0,6),O 1(0,0,6),所以AD =(2,6,0),C 1D =(0,2,-6),O 1D =(2,2,-6),若m =(x ,y ,z )为面AC 1D 的一个法向量,则m ⋅AD =2x +6y =0m ⋅C 1D =2y -6z =0,令y =6,则m =(-36,6,2),|cos <m ,O 1D >|=6614×8=32128,故O 1D 与平面AC 1D 所成角的正弦值32128.例12.某市在滨海文化中心有滨海科技馆,其建筑有鲜明的后工业风格,如图所示,截取其中一部分抽象出长方体和圆台组合,如图所示,长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =AA 1=2,圆台下底圆心O 为AB 的中点,直径为2,圆与直线AB 交于E ,F ,圆台上底的圆心O 1在A 1B 1上,直径为1.(1)求A 1C 与平面A 1ED 所成角的正弦值;(2)圆台上底圆周上是否存在一点P 使得FP ⊥AC 1,若存在,求点P 到直线A 1B 1的距离,若不存在则说明理由.【解析】(1)(1)由长方体ABCD -A 1B 1C 1D 1可知,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系如图所示,则A 12,0,2 ,C 0,4,0 ,E 2,1,0 ,D 0,0,0 .所以A 1C =(-2,4,-2),DA 1 =(2,0,2),DE =(2,1,0).设平面A 1ED 的一个法向量为n=(x ,y ,z ),则有n .DA=0n .DE =0 ,即2x +2z =02x +y =0 ,令x =1,则y =-2,z =-1,故n=(1,-2,-1),所以|cos <A 1C ,n >|=|AC ⋅n||AC ||n |=|-2-8+2|4+16+4⋅1+4+1=23,故A 1C 与平面A 1ED 所成角的正弦值为23;(2)由(1)可知,A 2,0,0 ,C 10,4,2 ,所以AC 1=(-2,4,2),假设存在这样的点P ,设P x ,y ,2 ,由题意可知(x -2)2+(y -2)2=14,所以FP =(x -2,y -3,2),因为FP ⊥AC 1,则有FP ⋅AC 1 =-2(x -2)+4(y-3)+4=0,所以x =2y -2,又(x -2)2+(y -2)2=14,所以5y 2-20y +794=0,解得x =2-55y =2-510(舍),x =2+55y =2+510,所以当P 2+55,2+510,2 时,FP ⊥AC 1,此时点P 到直线A 1B 1的距离为55.题型二:立体几何存在性问题例13.如图,三棱锥P -ABC 中,PA ⊥平面ABC ,PA =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥A -PBC 的体积;(2)在线段PC 上是否存在一点M ,使得BM ⊥AC ?若存在,求MCPM的值,若不存在,请说明理由.【解析】(1)因为AB =1,AC =2,∠BAC =60°,所以S △ABC =12⋅AB ⋅AC ⋅sin60°=32.由PA ⊥平面ABC 知:PA 是三棱锥P -ABC 的高,又PA =1,所以三棱锥A -PBC 的体积V A -PBC =V P -ABC =13⋅S △ABC ⋅PA =36.(2)在线段PC 上存在一点M ,使得BM ⊥AC ,此时MCPM =3.如图,在平面PAC 内,过M 作MN ⎳PA 交AC 于N,连接BN ,BM .由PA ⊥平面ABC ,AC ⊂平面ABC ,故PA ⊥AC ,所以MN ⊥AC .由MN ⎳PA 知:AN NC =PM MC=13,则AN =12,在△ABN 中,BN 2=AB 2+AN 2-2AB ⋅AN cos ∠BAC =12+12 2-2×1×12×12=34,所以AN 2+BN 2=AB 2,即AC ⊥BN .由于BN ∩MN =N 且BN ,MN ⊂面MB N ,故AC ⊥平面MB N .又BM ⊂平面MB N ,所以AC ⊥BM .例14.已知四棱锥P -ABCD 中,底面ABCD 是矩形,且AD =2AB ,△PAD 是正三角形,CD ⊥平面PAD ,E 、F 、G 、O 分别是PC 、PD 、BC 、AD 的中点.(1)求平面EFG 与平面ABCD 所成的锐二面角的大小;(2)线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角的大小为π6,若存在,求出PMPA的值;若不存在,说明理由.【解析】(1)因为△PAD 是正三角形,O 为AD 的中点,所以,PO ⊥AD ,因为CD ⊥平面PAD ,PO ⊂平面PAD ,∴PO ⊥CD ,∵AD ∩CD =D ,∴PO ⊥平面ABCD ,因为AD ⎳BC 且AD =BC ,O 、G 分别为AD 、BC 的中点,所以,AO ⎳BG 且AO =BG ,所以,四边形ABGO 为平行四边形,所以,OG ⎳AB ,∵AB ⊥AD ,则OG ⊥AD ,以点O 为坐标原点,OA 、OG 、OP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设AB =2,则AD =4,A 2,0,0 、G 0,2,0 、D -2,0,0 、C -2,2,0 、P 0,0,23 、E -1,1,3 、F -1,0,3 ,EF=0,-1,0 ,EG =1,1,-3 ,设平面EFG 的法向量为n=x ,y ,z ,则n ⋅EF=-y =0n ⋅EG=x +y -3z =0 ,取x =3,可得n =3,0,1 ,易知平面ABCD 的一个法向量为m=0,0,1 ,所以,cos <m ,n >=m ⋅nm ⋅n=12,因此,平面EFG 与平面ABCD 所成的锐二面角为π3.(2)假设线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角的大小为π6,设PM=λPA =λ2,0,-23 =2λ,0,-23λ ,其中0≤λ≤1,GM =GP +PM=0,-2,23 +2λ,0,-23λ =2λ,-2,23-23λ ,由题意可得cos <n ,GM > =n ⋅GM n ⋅GM =2324λ2+4+121-λ 2=12,整理可得4λ2-6λ+1=0,因为0≤λ≤1,解得λ=3-54.因此,在线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角的大小为π6,且PM PA=3-54.例15.已知三棱柱ABC -A 1B 1C 1中,∠ACB =90°,A 1B ⊥AC 1,AC =AA 1=4,BC =2.(1)求证:平面A 1ACC 1⊥平面ABC ;(2)若∠A 1AC =60°,在线段AC 上是否存在一点P ,使二面角B -A 1P -C 的平面角的余弦值为34若存在,确定点P 的位置;若不存在,说明理由.【解析】(1)由AC =AA 1知:四边形AA 1C 1C 为菱形.连接A 1C ,则A 1C ⊥AC 1,又A 1B ⊥AC 1且A 1C ∩A 1B =A 1,∴AC 1⊥平面A 1CB ,BC ⊂平面A 1CB ,则AC 1⊥BC ;又∠ACB =90°,即BC ⊥AC ,而AC ∩AC 1=A ,∴BC ⊥平面A 1ACC 1,而BC ⊂平面ABC ,∴平面A 1ACC 1⊥平面ABC .(2)以C 为坐标原点,射线CA 、CB 为x 、y 轴的正向,平面A 1ACC 1上过C 且垂直于AC 的直线为z 轴,建立如图所示的空间直角坐标系.∵AC =AA 1=4,BC =2,∠A 1AC =60°,∴C 0,0,0 ,B 0,2,0 ,A 4,0,0 ,A 12,0,23 .设在线段AC 上存在一点P ,满足AP =λAC0≤λ≤1 ,使二面角B -A 1P -C 的余弦值为34,则AP =-4λ,0,0 ,所以BP =BA +AP=4,-2,0 +-4λ,0,0 =4-4λ,-2,0 ,A 1P =A 1A +AP=2-4λ,0,-23 .设平面BA 1P 的一个法向量为m=x 1,y 1,z 1 ,由m ⋅BP=4-4λ x 1-2y 1=0m ⋅A 1P =2-4λ x 1-23z 1=0,取x 1=1,得m=1,2-2λ,1-2λ3;平面A 1PC 的一个法向量为n=0,1,0 .由cos m ,n =m ⋅n m ⋅n =2-2λ 1+2-2λ 2+1-2λ23×1=34,解得λ=43或λ=34.因为0≤λ≤1,则λ=34.故在线段AC 上存在一点P ,满足AP =34AC ,使二面角B -A 1P -C 的平面角的余弦值为34.例16.如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AD ⎳BC ,AD ⊥CD ,且AD =CD ,BC =2CD ,PA =2AD .(1)证明:AB ⊥PC ;(2)在线段PD 上是否存在一点M ,使得二面角M -AC -D 的余弦值为1717,若存在,求BM 与PC 所成角的余弦值;若不存在,请说明理由.【解析】(1)证明:连接AC ,设AD =CD =1,因为AD ⊥CD ,则AC =AD 2+CD 2=2,且△ACD 为等腰直角三角形,因为AD ⎳BC ,则∠ACB =∠CAD =45∘,因为BC =2CD =2,由余弦定理可得AB 2=AC 2+BC 2-2AC ⋅BC cos45∘=2,所以,AC 2+AB 2=BC 2,则AB ⊥AC ,∵PA ⊥平面ABCD ,AB ⊂平面ABCD ,∴AB ⊥PA ,∵PA ∩AC =A ,∴AB ⊥平面PAC ,∵PC ⊂平面PAC ,∴AB ⊥PC .(2)因为PA ⊥平面ABCD ,AB ⊥AC ,以点A 为坐标原点,AB 、AC 、AP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设AD =CD =1,则A 0,0,0 、B 2,0,0 、C 0,2,0 、D -22,22,0 、P 0,0,2 ,设PM =λPD =-22λ,22λ,-2λ ,其中0≤λ≤1,则AM =AP +PM=-22λ,22λ,2-2λ ,AC =0,2,0 ,设平面ACM 的法向量为m=x ,y ,z ,则m ⋅AC=2y =0m ⋅AM =-22λx +22y +2-2λ z =0,取x =2-2λ,可得m =2-2λ,0,λ ,易知平面ACD 的一个法向量为n=0,0,1 ,由题意可得cos <m ,n > =m ⋅n m ⋅n =λ41-λ 2+λ2=1717,因为0≤λ≤1,解得λ=13,此时,AM =-26,26,223 ,BM =BA +AM =-726,26,223 ,PC =0,2,-2 ,所以,cos <BM ,PC >=BM ⋅PCBM ⋅PC =-1333×2=-3322,因此,在线段PD 上是否存在一点M ,使得二面角M -AC -D 的余弦值为1717,且BM 与PC 所成角的余弦值为3322.例17.如图,△ABC 是边长为6的正三角形,点E ,F ,N 分别在边AB ,AC ,BC 上,且AE =AF =BN =4,M 为BC 边的中点,AM 交EF 于点O ,沿EF 将三角形AEF 折到DEF 的位置,使DM =15.(1)证明:平面DEF ⊥平面BEFC ;(2)试探究在线段DM 上是否存在点P ,使二面角P -EN -B 的大小为60°?若存在,求出DPPM的值;若不存在,请说明理由.【解析】(1)在△DOM 中,易得DO =23,OM =3,DM =15,由DM 2=DO 2+OM 2,得DO ⊥OM ,又∵AE =AF =4,AB =AC =6,∴EF ⎳BC ,又M 为BC 中点,∴AM ⊥BC ,∴DO ⊥EF ,因为EF ∩OM =O ,EF ,OM ⊂平面EBCF ,∴DO ⊥平面EBCF ,又DO ⊂平面DEF ,所以平面DEF ⊥平面BEFC ;(2)由(1)DO ⊥平面EBCF ,以O 为原点,以OE ,OM ,OD为x ,y ,z 的正方向建立空间直角坐标系O -xyz ,D (0,0,23),M (0,3,0),E (2,0,0),N (-1,3,0)∴DM =(0,3,-23),ED =(-2,0,23),由(1)得平面ENB 的法向量为n=(0,0,1),设平面ENP 的法向量为m=(x ,y ,z ),DP =λDM (0≤λ≤1),所以DP =(0,3λ,-23λ),所以EP =ED +DP =(-2,3λ,23-23λ).由题得,所以EN =(-3,3,0),所以m ⋅EN=-3x +3y =0m ⋅EP =-2x +3λy +(23-23λ)z =0,所以m =1,3,2-3λ23-23λ,因为二面角P -EN -B 的大小为60°,所以12=2-3λ23-23λ1+3+2-3λ23-23λ2,解之得λ=2(舍去)或λ=67.此时DP =67DM ,所以DP PM=6.例18.图1是直角梯形ABCD ,AB ⎳CD ,∠D =90∘,AB =2,DC =3,AD =3,CE =2ED,以BE 为折痕将△BCE 折起,使点C 到达C 1的位置,且AC 1=6,如图2.(1)求证:平面BC 1E ⊥平面ABED ;(2)在棱DC 1上是否存在点P ,使得C 1到平面PBE 的距离为62?若存在,求出二面角P -BE -A 的大小;若不存在,说明理由.【解析】(1)在图1中取CE 中点F ,连接BF ,AE ,∵CE =2ED ,CD =3,AB =2,∴CF =1,EF =1,∵DF =AB =2,DF ⎳AB ,∠D =90∘,∴四边形ABFD 为矩形,∴BF ⊥CD ,∴BE =BC =3+1=2,又CE =2,∴△BCE 为等边三角形;又AE =3+1=2,∴△ABE 为等边三角形;在图2中,取BE 中点G ,连接AG ,C 1G ,∵△C 1BE ,△ABE 为等边三角形,∴C 1G ⊥BE ,AG ⊥BE ,∴C 1G =AG =3,又AC 1=6,∴AG 2+C 1G 2=AC 21,∴C 1G ⊥AG ,又AG ∩BE =G ,AG ,BE ⊂平面ABED ,∴C 1G ⊥平面ABED ,∵C 1G ⊂平面BC 1E ,∴平面BC 1E ⊥平面ABED .(2)以G 为坐标原点,GA ,GB ,GC 1正方向为x ,y ,z 轴,可建立如图所示空间直角坐标系,则B 0,1,0 ,E 0,-1,0 ,A 3,0,0 ,C 10,0,3 ,D 32,-32,0,∴DC 1 =-32,32,3 ,EB =0,2,0 ,EC 1 =0,1,3 ,设棱DC 1上存在点P x ,y ,z 且DP=λDC 1 0≤λ≤1 满足题意,即x -32=-32λy +32=32λz =3λ,解得:x =32-32λy =32λ-32z =3λ,即P 32-32λ,32λ-32,3λ,则EP =32-32λ,32λ+12,3λ ,设平面PBE 的法向量n=a ,b ,c ,则EP ⋅n =32-32λ a +32λ+12 b +3λc =0EB ⋅n =2b =0,令a =2,则b =0c =1-λλ,∴n =2,0,1-λλ,∴C 1到平面PBE 的距离为d =EC 1 ⋅nn=3-3λλ4+1-λλ2=62,解得:λ=13,∴n=2,0,2 ,又平面ABE 的一个法向量m=0,0,1 ,∴cos <m ,n >=m ⋅nm ⋅n=222=22,又二面角P -BE -A 为锐二面角,∴二面角P -BE -A 的大小为π4.例19.如图所示,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,E 为棱AA 1上的点,且AE =12.(1)求证:BE ⊥平面ACB 1;(2)求二面角D 1-AC -B 1的余弦值;(3)在棱A 1B 1上是否存在点F ,使得直线DF ∥平面ACB 1?若存在,求A 1F 的长;若不存在,请说明理由.【解析】(1)∵A 1A ⊥底面ABCD ,AC ⊂平面ABCD ∴A 1A ⊥AC又AB ⊥AC ,A 1A ∩AB =A ,AA 1,AB ⊂平面ABB 1A 1,∴AC ⊥平面ABB 1A 1∵BE ⊂平面ABB 1A 1,∴AC ⊥BE ∵AE AB =12=ABBB 1,∠EAB =∠ABB 1=90∘,∴∠ABE =∠AB 1B∵∠BAB 1+∠AB 1B =90∘,∴∠BAB 1+∠ABE =90∘,∴BE ⊥AB 1,又AC ∩AB 1=A ,AC ,AB 1⊂平面ACB 1,∴BE ⊥平面ACB 1(2)如图,以A 为原点建立空间直角坐标系A -xyz ,依题意可得A (0,0,0),B (0,1,0),C (2,0,0),D (1,-2,0),D1(1,-2,2),E 0,0,12,由(1)知,EB =0,1,-12为平面ACB 1的一个法向量.设n=x ,y ,z 为平面ACD 1的一个法向量.因为AD 1 =(1,-2,2),AC =(2,0,0),所以n ⋅AD 1=0n ⋅AC =0 ,即:x -2y +2z =02x =0 ,不妨设z =1,可得n=(0,1,1).因此cos n ,EB =n ⋅EB n ⋅EB =1010由图可知二面角D 1-AC -B 1为锐角,所以二面角D 1-AC -B 1的余弦值为1010.(3)假设存在满足题意的点F ,设A 1F =a (a >0),则由(2)得F (0,a ,2),DF=(-1,a +2,2).由题意可知DF ⋅EB=a +2-1=0,解得a =-1(舍去),即直线DF 的方向向量与平面ACB 1的法向量不可能垂直.所以,在棱A 1B 1上不存在点F ,使得直线DF ∥平面ACB 1.例20.如图,在五面体ABCDE 中,已知AC ⊥BD ,AC ⊥BC ,ED ⎳AC ,且AC =BC =2ED =2,DC =DB =3.(1)求证:平面ABE ⊥与平面ABC ;(2)线段BC 上是否存在一点F ,使得平面AEF 与平面ABE 夹角余弦值的绝对值等于54343,若存在,求BFBC的值;若不存在,说明理由.【解析】(1)证明:∵AC ⊥BD ,AC ⊥BC ,BC ∩BD =B ,∴AC ⊥平面BCD ,∵AC ⊂平面ABC ,∴平面ABC ⊥平面BCD ,取BC 的中点O ,AB 的中点H ,连接OD 、OH 、EH ,∵BD =CD ,∴DO ⊥BC ,又DO ⊂平面BCD ,平面ABC ⊥平面BCD ,平面BCD ∩平面ABC =BC ,∴DO ⊥平面ABC ,又OH ⎳AC ,OH =12AC ,DE ⎳AC ,DE =12AC ,所以,OH ⎳DE 且OH =DE ,∴四边形OHED 为平行四边形,∴EH ⎳OD ,∵DO ⊥面ABC ,则EH ⊥平面ABC ,又∵EH ⊂面ABE ,所以,平面ABE ⊥平面ABC .(2)因为AC ⊥BC ,OH ⎳AC ,则OH ⊥BC ,因为OD ⊥平面ABC ,以点O 为坐标原点,OH 、OB 、OD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则A 2,-1,0 、B 0,1,0 、C 0,-1,0 、E 1,0,2 、H 1,0,0 ,HE=0,0,2 ,AB =-2,2,0 ,设平面ABE 的法向量为m=x 1,y 1,z 1 ,则m ⋅HE=2z 1=0m ⋅AB=-2x 1+2y 1=0 ,取x 1=1,可得m=1,1,0 ,设在线段BC 上存在点F 0,t ,0 -1≤t ≤1 ,使得平面AEF 与平面ABE 夹角的余弦值等于54343,设平面AEF 的法向量为n=x 2,y 2,z 2 ,AF =-2,t +1,0 ,AE =-1,1,2 ,由n ⋅AF=-2x 2+t +1 y 2=0n ⋅AE =-x 2+y 2+2z 2=0 ,取x 2=2t +1 ,可得n =2t +1 ,22,t -1 ,由题意可得cos <m ,n> =m ⋅n m ⋅n =2t +32⋅3t 2+2t +11=54343,整理可得2t 2-13t -7=0,解得:t =-12或t =7(舍),∴F 0,-12,0 ,则BF =32,∴BF BC =34,综上所述:在线段BC 上存在点F ,满足BF BC=34,使得平面AEF 与平面ABE 夹角的余弦值等于54343.题型三:立体几何折叠问题例21.如图1,在边上为4的菱形ABCD 中,∠DAB =60°,点M ,N 分别是边BC ,CD 的中点,AC ∩BD =O 1,AC ∩MN =G .沿MN 将△CMN 翻折到△PMN 的位置,连接PA ,PB ,PD ,得到如图2所示的五棱锥P -ABMND .(1)在翻折过程中是否总有平面PBD ⊥平面PAG ?证明你的结论;(2)当四棱锥P -MNDB 体积最大时,求直线PB 和平面MNDB 所成角的正弦值;(3)在(2)的条件下,在线段PA 上是否存在一点Q ,使得二面角Q -MN -P 余弦值的绝对值为1010若存在,试确定点Q 的位置;若不存在,请说明理由.【解析】(1)在翻折过程中总有平面PBD ⊥平面PAG ,证明如下:∵点M ,N 分别是边CD ,CB 的中点,又∠DAB =60°,∴BD ∥MN ,且△PMN 是等边三角形,∵G 是MN 的中点,∴MN ⊥PG ,∵菱形ABCD 的对角线互相垂直,∴BD ⊥AC ,∴MN ⊥AC ,∵AC ∩PG =G ,AC ⊂平面PAG ,PG ⊂平面PAG ,∴MN ⊥平面PAG ,∴BD ⊥平面PAG ,∵BD ⊂平面PBD ,∴平面PBD ⊥平面PAG .(2)由题意知,四边形MNDB 为等腰梯形,且DB =4,MN =2,O 1G =3,所以等腰梯形MNDB 的面积S =2+4 ×32=33,要使得四棱锥P -MNDB 体积最大,只要点P 到平面MNDB 的距离最大即可,∴当PG ⊥平面MNDB 时,点P 到平面MNDB 的距离的最大值为3,此时四棱锥P -MNDB 体积的最大值为V =13×33×3=3,直线PB 和平面MNDB 所成角的为∠PBG ,连接BG ,在直角三角形△PBG 中,PG =3,BG =7,由勾股定理得:PB =PG 2+BG 2=10.sin ∠PBG =PGPB=310=3010.(3)假设符合题意的点Q 存在.以G 为坐标原点,GA ,GM ,GP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系,则A 33,0,0 ,M 0,1,0 ,N 0,-1,0 ,P 0,0,3 ,由(2)知,AG ⊥PG ,又AG ⊥MN ,且MN ∩PG =G ,MN ⊂平面PMN ,PG ⊂平面PMN ,AG ⊥平面PMN ,故平面PMN 的一个法向量为n 1=1,0,0 ,设AQ =λAP(0≤λ≤1),∵AP=-33,0,3 ,AQ=-33λ,0,3λ ,故331-λ ,0,3λ ,∴NM=0,2,0 ,QM =33λ-1 ,1,-3λ ,平面QMN 的一个法向量为n 2=x 2,y 2,z 2 ,则n 2 ⋅NM =0,n 2 ⋅QM=0,即2y 2=0,33λ-1 x 2+y 2-3λz 2=0,令z 2=1,所以y 2=0,x 2=λ3λ-1n 2 =13λ-1 ,0,1=13λ-1λ,0,3λ-1 ,则平面QMN 的一个法向量n=λ,0,3λ-1 ,设二面角Q -MN -P 的平面角为θ,则cos θ =n ⋅n 1 n n 1 =λλ2+9λ-1 2=1010,解得:λ=12,故符合题意的点Q 存在且Q 为线段PA 的中点.例22.如图,在等腰直角三角形PAD 中,∠A =90°,AD =8,AB =3,B 、C 分别是PA 、PD 上的点,且AD ⎳BC ,M 、N 分别为BP 、CD 的中点,现将△BCP 沿BC 折起,得到四棱锥P -ABCD ,连接MN .(1)证明:MN ⎳平面PAD ;(2)在翻折的过程中,当PA =4时,求二面角B -PC -D 的余弦值.【解析】(1)在四棱锥P -ABCD 中,取AB 的中点E ,连接EM ,EN .因为M ,N 分别为BP ,CD 的中点,AD ⎳BC ,所以ME ⎳PA ,EN ⎳AD ,又PA ⊂平面PAD ,ME ⊄平面PAD ,所以ME ⎳平面PAD ,同理可得,EN ⎳平面PAD ,又ME ∩EN =E ,ME ,EN ⊂平面MNE ,所以平面MNE ⎳平面PAD ,因为MN ⊂MNC 平面MNE ,所以MN ⎳平面PAD .(2)因为在等腰直角三角形PAD 中,∠A =90°,AD ⎳BC ,所以BC ⊥PA ,在四棱锥P -ABCD 中,BC ⊥PB ,BC ⊥AB ,因为AD ⎳BC ,则AD ⊥PB ,AD ⊥AB ,又PB ∩AB =B ,PB ,AB ⊂平面PAB ,所以AD ⊥平面PAB ,又PA ⊂平面PAB ,所以PA ⊥AD ,因为AD =8,AB =3,PA =4,AD ⎳BC ,则PB =5,BC =5,所以AB 2+PA 2=PB 2,故PA ⊥AB ,所以以点A 为坐标原点,分别以AB ,AD ,AP 所在方向为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A -xyz ,如图所示,A (0,0,0),B (3,0,0),C (3,5,0),P 0,0,4 ,D 0,8,0 ,所以PB =(3,0,-4),PC =(3,5,-4),PD =(0,8,-4),设m =(x 1,y 1,z 1)为平面PBC 的一个法向量,则m ⋅PB =0m ⋅PC =0,即3x 1-4z 1=03x 1+5y 1-4z 1=0 ,令x 1=4,则y 1=0,z 1=2,m =(4,0,3),设n =(x 2,y 2,z 2)为平面PCD 的一个法向量,则m ⋅PD =0m ⋅PC =0 ,即8y 2-4z 2=03x 2+5y 2-4z 2=0,令y 2=1,则x 2=1,z 2=2,n =(1,1,2),设二面角B -PC -D 所成角为α,则cos α=-cos m ,n =-m ⋅n m ⋅n =-4×1+0×1+2×3 42+02+32×12+12+22=-105×6=-63.因为二面角B -PC -D 的余弦值为-63.例23.如图1,在平面四边形PDCB 中,PD ∥BC ,BA ⊥PD ,PA =AB =BC =2,AD =1.将△PAB 沿BA 翻折到△SAB 的位置,使得平面SAB ⊥平面ABCD ,如图2所示.(1)设平面SDC 与平面SAB 的交线为l ,求证:BC ⊥l ;(2)点Q 在线段SC 上(点Q 不与端点重合),平面QBD 与平面BCD 夹角的余弦值为66,求线段BQ 的长.【解析】(1)依题意,AD ⊥AB ,因为PD ∥BC ,所以BC ⊥AB ,由于平面SAB ⊥平面ABCD ,且交线为AB ,BC ⊂平面ABCD ,所以BC ⊥平面SAB ,因为l 是平面SDC 与平面SAB 的交线,所以l ⊂平面SAB ,故BC ⊥l .(2)由上可知,AD ⊥平面SAB ,所以AD ⊥SA ,由题意可知SA ⊥AB ,AD ⊥AB ,以点A 为坐标原点,分别以AD ,AB ,AS 所在直线为x ,y ,z 轴建立空间直角坐标系,则A 0,0,0 ,B 0,2,0 ,C 2,2,0 ,D 1,0,0 ,S 0,0,2 ,BD =1,-2,0 ,SC =2,2,-2 ,设SQ =λSC 0<λ<1 ,则Q 2λ,2λ,2-2λ ,BQ =2λ,2λ-2,2-2λ ,设n =x ,y ,z 是平面QBD 的一个法向量,则n ⋅BD =x -2y =0n ⋅BQ =2λx +2λ-1 y +21-λ z =0,令x =2,可得n =2,1,1-3λ1-λ由于m =0,0,1 是平面CBD 的一个法向量,依题意,二面角Q -BD -C 的余弦值为66,所以cos m ,n =m ⋅n m ⋅n =1-3λ1-λ 1×4+1+1-3λ1-λ2=66,解得λ=12∈0,1 ,此时BQ =1,-1,1 ,BQ =3,即线段BQ 的长为3.例24.如图,在平面五边形PABCD 中,△PAD 为正三角形,AD ∥BC ,∠DAB =90°且AD =AB =2BC =2.将△PAD 沿AD 翻折成如图所示的四棱锥P -ABCD ,使得PC =7.F ,Q 分别为AB ,CE 的中点.(1)求证:FQ ∥平面PAD ;(2)若DE PE=12,求平面EFC 与平面PAD 夹角的余弦值.【解析】(1)(1)证明:取DC 的中点M ,连接MF ,MQ .则MQPD ,MFDA .因为MQ ⊄面PAD ,ME ⊄面PAD ,所以,MQ ∥面PAD ,MF ∥面PAD ,因为MQ ∩ME =M ,所以,面MQF 面PAD ,因为FQ ⊂面MQF ,所以FQ ∥面PAD .(2)(2)取AD 的中点O ,连接OP ,OC ,因为△PAD 为正三角形,AD =2,所以OP ⊥AD 且OP =3,在直角梯形ABCD 中,AD ∥BC ,∠DAB =90°,AB =2BC =2,所以,OC ⊥AD 且OC =2,又因为PC =7,所以在△POC 中,OP 2+OC 2=PC 2,即OP ⊥OC ,所以,以O 为坐标原点,分别以OD ,OC ,OP 的方向为x ,y ,z 轴的正向,建立如图所示的空间直角坐标系,则D 1,0,0,C 0,2,0 ,F -1,1,0 ,P 0,0,3 ,DP =-1,0,3 .因为DE PE=12,即DE =13DP =-13,0,33 ,λ>0,所以,E 23,0,33,所以EC =-23,2,-33 ,EF =-53,1,-33.设n =x 1,y 1,z 1 为平面EFC 的一个法向量,则n ⋅EC =0n ⋅EF =0 ,即-23x 1+2y 1-33z 1=0-53x 1+y 1-33z 1=0,取n =3,-3,-83 .又平面PAD 的一个法向量m =0,1,0 ,设平面EFC 与平面PAD 夹角为α,cos α=n ⋅m n ⋅m =39+9+192=21070.例25.如图,在平行四边形ABCD 中,AB =3,AD =2,∠A =60°,E ,F 分别为线段AB ,CD 上的点,且BE =2AE ,DF =FC ,现将△ADE 沿DE 翻折至△A 1DE 的位置,连接A 1B ,A 1C .(1)若点G 为线段A 1B 上一点,且A 1G =3GB ,求证:FG ⎳平面A 1DE ;(2)当三棱锥C -A 1DE 的体积达到最大时,求二面角B -A 1C -D 的正弦值.【解析】(1)在A 1E 上取一点M ,使A 1M =3ME ,连接DM ,MG ,因为A 1G =3GB ,EB =2AE ,所以MG ∥EB ,MG =34EB =34×23AB =12AB ,因为平行四边形ABCD 中,AB =CD ,AB ∥CD ,F 为CD 的中点,所以DF =12CD =12AB ,所以DF =MG ,DF ∥MG ,所以四边形DMGF 为平行四边形,所以FG ∥DM ,因为FG ⊄平面A 1DE ,DM ⊂平面A 1DE ,所以FG ∥平面A 1DE ,(2)当平面A 1DE ⊥平面DEC 时,三棱锥C -A 1DE 的体积最大,△ADE 中,∠A =60°,AD =2,AE =1,则DE 2=AD 2+AE 2-2AD ⋅AE cos A =4+1-2×2×1×12=3,所以DE 2+AE 2=AD 2,所以∠AED =90°,所以A 1E ⊥DE ,因为平面A 1DE ⊥平面DEC ,平面A 1DE ∩平面DEC =DE ,所以A 1E ⊥平面DEC ,因为BE ⊂平面DEC ,所以A 1E ⊥BE ,所以A 1E ,BE ,DE 两两垂直,所以以E 为原点,EB ,ED ,EA 1所在的直线分别为x ,y ,z 轴建立空间直角坐标系,如图所示,则D (0,3,0),A 1(0,0,1),B (2,0,0),C (3,3,0),所以DC =(3,0,0),DA 1 =(0,-3,1),BC =(1,3,0),CA 1 =(-3,-3,1),设平面A 1CD 的法向量为n =(x ,y ,z ),则n ⋅DA 1 =-3y +z =0n ⋅CA 1 =-3x -3y +z =0,令y =1,则n =(0,1,3),设平面A 1BC 的法向量为m =(a ,b ,c ),则m ⋅BC =a +3b =0m ⋅CA 1 =-3a -3b +c =0,令b =1,则m =(-3,1,-23),所以cos m ,n =m ⋅n m n=1-62×4=-58,所以二面角B -A 1C -D 的正弦值为1--58 2=398例26.如图1,四边形ABCD 是边长为2的正方形,四边形ABEF 是等腰梯形,AB =BE =12EF ,现将正方形ABCD 沿AB 翻折,使CD 与C D 重合,得到如图2所示的几何体,其中D E =4.(1)证明:AF ⊥平面AD E ;(2)求二面角D -AE -C 的余弦值.【解析】(1)证明:易得AD =AF =2,EF =D E =4,所以AE =23,则AD 2+AE 2=D E 2=EF 2,∴AD ⊥AE ,AE ⊥AF .又AD ⊥AB ,且AB ∩AE =A ,AB ,AE ⊂平面ABEF ,∴AD ⊥平面ABEF .∵AF ⊂平面ABEF ,∴AF ⊥AD .∵AE ∩AD =A ,AE ⊂平面AD E ,AD ⊂平面AD E ,∴AF ⊥平面AD E .(2)由(1)知AD ⊥平面ABEF ,则以A 为坐标原点,AB ,AD 所在直线分别为y ,z 轴,平面ABEF 内过点A 且垂直于AB 的直线为x 轴,建立如图所示的空间直角坐标系,则A 0,0,0 ,E 3,3,0 ,F 3,-1,0 ,C 0,2,2 ,∴AF =3,-1,0 ,AE =3,3,0 ,AC =00,2,2 .设平面AEC 的一个法向量为m =x ,y ,z ,则m ⋅AE =0m ⋅AC =0 ,得3x +3y =0,2y +2z =0,令x =3,则m =3,-1,1 .由(1)知,平面AED 的一个法向量为AF =3,-1,0 .∴cos AF ,m =AF ⋅m AF m=255.易知二面角D -AE -C 为锐二面角,∴二面角D -AE -C 的余弦值为255.例27.如图,在梯形ABCD 中,AD ∥BC ,AB =BC =2,AD =4,现将△ABC 所在平面沿对角线AC 翻折,使点B 翻折至点E ,且成直二面角E -AC -D .(1)证明:平面EDC ⊥平面EAC ;(2)若直线DE 与平面EAC 所成角的余弦值为12,求二面角D -EA -C 的余弦值.【解析】(1)证明:取AD 中点M ,连接CM ,由题意可得AM =2,AM 平行且等于BC ,∴四边形ABCM 为平行四边形,∵AM =MD =CM =2,∴△ACD 为直角三角形,即AC ⊥CD ,∵直二面角E -AC -D ,CD ⊂平面ACD ,∴平面EAC ⊥平面ACD ,平面EAC ∩平面ACD =AC ,∴CD ⊥平面EAC ,CD ⊂平面ECD ,∴平面ECD ⊥平面EAC .(2)由(1)可得DC ⊥平面EAC ,∴∠DEC 为直线DE 与平面EAC 所成角,∴cos ∠DEC =12,∴∠DEC =60°.在Rt △ECD 中,∵CE =2,∴CD =23,ED =4,在Rt △ACD 中,AC =2,∴△ABC 、△AEC 为等边三角形,以AC 中点O 为坐标原点,以OC ,OM ,OE 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,A (-1,0,0),C (1,0,0),E (0,0,3),D (1,23,0),平面EAC 为xOz 平面,则其法向量为v =(0,1,0),在平面AED 内,设其法向量为u =(x ,y ,z ),AD =(2,23,0),AE =(1,0,3),则AD ⋅u =0AE ⋅u =0 ,即2x +23y =0x +3z =0,令x =3,则y =-1,z =-1,∴u =(3,-1,-1),设二面角D -EA -C 的平面角为θ,∴cos ‹u ,v ›=u ⋅v |u ||v |=-55,由图可知二面角D -EA -C 为锐角,∴cos θ=55.例28.如图1,在△ABC 中,∠ACB =90°,DE 是△ABC 的中位线,沿DE 将△ADE 进行翻折,使得△ACE 是等边三角形(如图2),记AB 的中点为F .(1)证明:DF ⊥平面ABC .(2)若AE =2,二面角D -AC -E 为π6,求直线AB 与平面ACD 所成角的正弦值.【解析】(1)如图,取AC 中点G ,连接FG 和EG ,由已知得DE ∥BC ,且DE =12BC .因为F ,G 分别为AB ,AC 的中点,所以FG ∥BC ,且FG =12BC 所以DE ∥FG ,且DE =FG .所以四边形DEGF 是平行四边形.所以EG ∥DF .因为翻折的BC ⊥AC ,易知DE ⊥AC .所以翻折后DE ⊥EA ,DE ⊥EC .又因为EA ∩EC =E ,EA ,EC ⊂平面AEC ,所以DE ⊥平面AEC .因为DE ∥BC ,所以BC ⊥平面AEC .因为EG ⊂平面AEC ,所以EG ⊥BC .因为△ACE 是等边三角形,点G 是AC 中点,所以EG ⊥AC又因为AC ∩BC =C ,AC ,BC ⊂平面ABC .所以EG ⊥平面ABC .。

立体几何的练习题及解题方法

立体几何的练习题及解题方法

立体几何的练习题及解题方法立体几何是数学中的一个重要分支,它研究的是空间中的几何图形。

在学习立体几何时,我们常常需要进行一些练习题来加深对各种几何图形的理解,并熟悉解题方法。

本文将提供一些立体几何的练习题,并探讨它们的解题方法。

一、体积计算题1.请计算一个边长为5cm的正方体的体积。

解题方法:正方体的体积计算公式为V = a^3,其中a表示边长。

将已知数据带入公式,得到V = 5^3 = 125 cm^3。

因此,正方体的体积为125立方厘米。

2.已知一个椎体的底面半径为4cm,高为6cm,求它的体积。

解题方法:椎体的体积计算公式为V = (1/3)πr^2h,其中r表示底面半径,h表示高。

将已知数据带入公式,得到V = (1/3)π(4^2)(6) ≈100.53 cm^3。

因此,椎体的体积约为100.53立方厘米。

二、表面积计算题1.已知一个正方体的边长为3cm,求它的表面积。

解题方法:正方体的表面积计算公式为S = 6a^2,其中a表示边长。

将已知数据带入公式,得到S = 6(3^2) = 54 cm^2。

因此,正方体的表面积为54平方厘米。

2.请计算一个圆锥的表面积,已知它的底面半径为6cm,侧面高为8cm。

解题方法:圆锥的表面积计算公式为S = πr(r + l),其中r表示底面半径,l表示斜高。

首先,我们需要计算斜高,可以利用勾股定理得到l = √(r^2 + h^2)。

将已知数据带入公式,得到l = √(6^2 + 8^2) = 10 cm。

然后,将r和l带入表面积计算公式,得到S = π(6)(6 + 10) ≈ 251.33 cm^2。

因此,圆锥的表面积约为251.33平方厘米。

三、图形的相交与不相交题1.已知一个正方体和一个立方体,它们的边长均为4cm,判断它们是否相交。

解题方法:两个立体图形相交的条件是它们至少有一个公共点。

由于正方体和立方体的边长相等,并且它们的中心点重合,因此它们相交。

立体几何大题的答题规范与技巧

立体几何大题的答题规范与技巧

立体几何大题的答题规范与技巧一、对于空间中的定理与判定,除公理外都要明确写出条件,才有结论。

需要多个条件时, 要逐个写出。

对于平面几何中的结论,要求写出完整的条件,可以省略部分证明过程。

二、一般地,有多个小题时,前几小题应该用几何法,可以节省时间。

最后一小题若几何法 较复杂,可以用坐标法。

三、建坐标系的要求:使更多的点在坐标轴上,坐标系最好在几何体的内部。

四、采用坐标法时,要千方百计的给出点、向量的坐标。

对未知的坐标可以先设。

若某个未知的点P 在直线AB 上变化,则可以用三点共线设出点P 的坐标。

如:A(0,1,2),B(2,2,3),点P 在线段AB 上改变,则设P(x ,y ,z), 因为λ=,由此坐标化后,得P(2,1,2++λλλ ),10≤≤λ。

五、证明线线平行的方法1、平行公理:b a //,c a c b ////⇒;2、线面平行⇒线线平行:α//a ,β⊂a ,b a b //⇒=⋂βα;3、面面平行⇒线线平行:βα// ,a =⋂αγ,b a b //⇒=⋂βγ;4、α⊥a ,b a b //⇒⊥α;5、CD AB CD AB //⇒=λ。

六、证明线面平行的方法1、线线平行⇒线面平行:b a //,α⊂b ,αα//a a ⇒⊄;2、面面平行⇒线面平行:βα// ,βα//a a ⇒⊂;3、0=⋅,αα//AB AB ⇒⊄。

(其中是平面的一个法向量)七、证明面面平行的方法1、线面平行⇒面面平行:α//a ,α//b ,β⊂b a ,,βα//⇒=⋂P b a ;2、α⊥a ,βαβ//⇒⊥a ;3、线线平行⇒面面平行:α⊂b a ,,β⊂''b a ,,P b a =⋂,a a '//,βα////⇒'b b ;4、21n n λ=。

八、证明线线垂直的方法1、b a //,c b c a ⊥⇒⊥;2、勾股定理(适用于证明两相交直线垂直);3、线面垂直⇒线线垂直:α⊥a ,b a b ⊥⇒⊂α(适用于两异面直线垂直);4、CD AB ⊥⇒=⋅0。

立体几何解答题答题技巧

立体几何解答题答题技巧

立体几何解答题答题技巧
以下是一些解答立体几何题目的技巧:
1. 画图:在解答立体几何问题时,绘制一个清晰的图形是非常重要的。

通过画图,可以更好地理解题目所描述的形状和关系,并找出解决问题的关键。

2. 理解几何定理和性质:学习和记忆立体几何的常见定理和性质是解题的关键。

熟悉面积、体积、角度等几何概念,以及多边形和多面体的性质。

这样,当遇到相关题目时,可以迅速应用这些知识。

3. 拆解分析:有些立体几何题目可能比较复杂,可以通过将其拆分为更简单的部分来解决。

例如,将一个立体体积问题看作是由多个小立方体组成的,然后分别计算每个小立方体的体积,并将它们相加。

4. 利用对称性:利用立体图形的对称性质有助于简化和解决问题。

寻找对称平面、轴等可以帮助我们发现有用的信息和关系。

5. 代数方法:对于一些立体几何问题,代数方法也可以用来解决。

将图形中的长度、距离等量用变量表示,然后根据已知条件设置方程,最后求解未知量。

6. 实践和总结:解答立体几何问题需要一定的实践和经验积累。

多做一些习题,总结解题技巧和方法,以及特殊情况下的应对策略,能够提升解题能力。

总之,解答立体几何题目需要综合运用几何知识、分析能力和创造性思维。

熟练掌握解题技巧,并在实践中不断提升,可以更好地解决各种立体几何问题。

一轮复习专题43 立体几何大题解题模板

一轮复习专题43 立体几何大题解题模板

专题43立体几何大题解题模板一、立体几何大题解题模板答题技巧:1、证明面面垂直只能证明线面垂直。

如证明平面β⊥α,一般都是在两个面中找其中一个面中的一条直线与另一个面垂直,这里有一个小技巧,一般都是在β面中找直线。

小技巧:欲证平面⊥α平面β,则只需在平面α内找一条直线垂直于平面β内的两条相交直线,但一般需要倒过来证平面⊥β平面α,具体思路是:(1)在平面β中找到一条直线1l ,在平面α中找到两条直线2l 、3l ;(2)21l l ⊥,这一般题中直接给;(3)31l l ⊥,这一般需要证:⊥3l 平面ν,ν⊂1l ,则13l l ⊥;(4)A l l =32 ,即2l 与3l 有交点(这步必须写),2l 、3l 在平面α上(这步可以写可以不写);(5)⊥1l 平面α,从而推出平面⊥β平面α,最后证出平面⊥α平面β。

2、等体积公式:由于三棱锥是由4个三角形围成的四面体,任何一个三角形都可以看成其底面。

但在求体积时需要选择合适的底和高,这就需要灵活换底面,但是三棱锥的体积保持不变。

这种方法我们称为“等积法”,它是三棱锥求体积的巧妙方法,也是其“专属产品”。

其他的,如四棱锥求体积就不能随意换底,不能用等积法求体积。

另外,等积法的优越性还体现在求“点到平面的距离”中。

但注意:等积法求体积时,要谨记“先证后求”的原则,先作出或证明底面的高,再计算三棱锥的体积。

3、注意一般立体几何涉及到计算最好把各个需要计算的平面或图形在草纸上画出平面图形,这样就导成解简单的平面解析几何,也就是解三角形,使计算和理解更容易。

二、2021年高考预测从近几年各地高考试题分析,立体几何题型一般是1个解答题,1至2个填空或选择题。

解答题一般与棱柱和棱锥相关,主要考查线线关系、线面关系和面面关系,其重点是考查空间想象能力和推理运算能力。

高考试题中,立体几何侧重考查学生的空间概念、逻辑思维能力、空间想象能力及运算能力。

高考对立体几何的考查侧重以下几个方面:1、从命题形式来看:涉及立体几何内容的命题形式最为多变、除保留传统的“四选一”的选择题型外,还尝试开发了“多选填空”、“完型填空”、“构造填空”等题型,并且这种命题形式正在不断完善和翻新;解答题则设计成几个小问题,此类考题往往以多面体为依托,第一小问考查线线、线面、面面的位置关系,后面几问考查面积、体积等度量关系,其解题思路也都是“作--证--求”,强调作图、证明和计算相结合。

高考数学一轮复习立体几何答题技巧

高考数学一轮复习立体几何答题技巧

高考数学一轮复习立体几何答题技巧高考立体几何试题一样共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内,下面是立体几何答题技巧,期望对大伙儿有关心。

知识整合1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、运算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,第一应从解决“平行与垂直”的有关问题着手,通过较为差不多问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,把握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2. 判定两个平面平行的方法:(1)依照定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。

3.两个平面平行的要紧性质:⑴由定义知:“两平行平面没有公共点”。

⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。

⑶两个平面平行的性质定理:”假如两个平行平面同时和第三个平面相交,那么它们的交线平行“。

⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

⑸夹在两个平行平面间的平行线段相等。

⑹通过平面外一点只有一个平面和已知平面平行。

单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。

让学生把一周看到或听到的新奇事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积存的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。

如此,即巩固了所学的材料,又锤炼了学生的写作能力,同时还培养了学生的观看能力、思维能力等等,达到“一石多鸟”的成效。

课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品 文 档
立体几何大题的答题规范与技巧
一、对于空间中的定理与判定,除公理外都要明确写出条件,才有结论。

需要多个条件时, 要逐个写出。

对于平面几何中的结论,要求写出完整的条件,可以省略部分证明过程。

二、一般地,有多个小题时,前几小题应该用几何法,可以节省时间。

最后一小题若几何法 较复杂,可以用坐标法。

三、建坐标系的要求:使更多的点在坐标轴上,坐标系最好在几何体的内部。

四、采用坐标法时,要千方百计的给出点、向量的坐标。

对未知的坐标可以先设。

若某个未知的点P 在直线AB 上变化,则可以用三点共线设出点P 的坐标。

如:A(0,1,2),B(2,2,3),点P 在线段AB 上改变,则设P(x ,y ,z), 因为λ=,由此坐标化后,得P(2,1,2++λλλ ),10≤≤λ。

五、证明线线平行的方法
1、平行公理:b a //,c a c b ////⇒;
2、线面平行⇒线线平行:α//a ,β⊂a ,b a b //⇒=⋂βα;
3、面面平行⇒线线平行:βα// ,a =⋂αγ,b a b //⇒=⋂βγ;
4、α⊥a ,b a b //⇒⊥α;
5、CD AB //⇒=λ。

六、证明线面平行的方法
1、线线平行⇒线面平行:b a //,α⊂b ,αα//a a ⇒⊄;
2、面面平行⇒线面平行:βα// ,βα//a a ⇒⊂;
3、0=⋅n AB ,αα//AB AB ⇒⊄。

(其中n 是平面的一个法向量)
七、证明面面平行的方法
1、线面平行⇒面面平行:α//a ,α//b ,β⊂b a ,,βα//⇒=⋂P b a ;
2、α⊥a ,βαβ//⇒⊥a ;
3、线线平行⇒面面平行:α⊂b a ,,β⊂''b a ,,P b a =⋂,a a '//,βα////⇒'b b ;
4、21n n λ=。

八、证明线线垂直的方法
1、b a //,c b c a ⊥⇒⊥;
2、勾股定理(适用于证明两相交直线垂直);
3、线面垂直⇒线线垂直:α⊥a ,b a b ⊥⇒⊂α(适用于两异面直线垂直);
4、CD AB CD AB ⊥⇒=⋅0。

九、证明线面垂直的方法
1、线线垂直⇒线面垂直:b a ⊥,c a ⊥,α⊂c b ,,α⊥⇒=⋂a P c b ;
2、α⊥a ,ββα⊥⇒a //
; 3、b a //,αα⊥⇒⊥a b ; 4、面面垂直⇒线面垂直:βα⊥,b =⋂βα,α⊂a ,β⊥⇒⊥a b a ;
5、αλ⊥⇒=AB 。

十、证明面面垂直的方法 1、线面垂直⇒面面垂直:β⊥a ,⇒⊂αa βα⊥; 2、βα⊥⇒=⋅021n n 。

十一、求异面直线所成的角(简称线线角)]2,0(π
θ∈
1、 平移法(几何法):⑴利用三角形的中位线平移(减半平移);
⑵利用平行四边形平移(等长平移)。

2、用几何法是一定写出“角某某是直线AB 与CD 所成的角或其补角”!
3、公式法(坐标法):||||cos CD AB ⋅=θ。

十二、求直线与平面所成的角的方法(简称线面角)]2,0[π
θ∈
1、找射影法(几何法)
如图,找到直线与平面的交点B (斜足),过直线上一
点A 作平面的垂线,找到垂足(O ),连OB ,∠ABO 就
是直线AB 与平面所成的角。

2、当直线AB 与CD 平行时,直线AB 、CD 与平面所成的角相等。

3、用几何法是一定写出“∵α⊥AO ∴∠ABO 是直线AB 与平面所成的角”!
4、公式法:||||sin n AB n AB ⋅=θ(坐标法);
|
|sin AB h A =θ(其中A h 表示点A 到平面的距离,可以用等体积法求得) 十三、求二面角的方法
1、找平面角法(几何法)
⑴定义法:在棱上找一点O ,分别在两半平面内作棱的垂线OA 、OB ,∠AOB 就是
二面角的平面角;(点O 往往是线段的中点或一些特征点)
⑵垂线法:在其中一个面内取一点A ,过A 作另一面的垂线AB (B 为垂足),
过B 作棱的垂线AO (O 为垂足),∠AOB 就是二面角的平面角。

2、用几何法时一定写出“∵m AO ⊥,m BO ⊥(m 为棱)∴∠AOB 是直线AB 与平
面所成的角”!
3、有时可以把二面角分割成二个二面角之和。

4、公式法:|||||cos |2121n n n n ⋅=θ
或AO
h A =θsin (其中A h 表示点A 到平面的距离,AO 表示A 到棱m 的距离) 此公式的计算结果,θ一般有两解,需要根据空间感判断二面角是锐角或钝角后才 能最后确定其大小。

十四、几点强调
1、求任何一种角,平移其中的任何一个要素(直线或平面)都不会改变角度的大小。

2、求多面体的外接球的半径时,可以借助于长方体,即在长方体中的8个顶点中选择 几个顶点画出此多面体。

如此长方体的外接球半径就是多面体外接球的半径。

3、证明线面平行时,一般要在平面内找一直线与其平行,找此平行线的模型有:
4、过平面外一点作平面的垂线,找垂足的过程:
先过这个点作平面内某一直线的垂线,找到垂足,再证明此垂线与平面内的另一直
线也垂直(相交直线),即此垂线垂直平面。

5、求点到平面的距离,当找不到垂足时,可以用等体积法求点到平面的距离。

君有所悟,吾心足矣。

相关文档
最新文档