雨量预报分析的评价模型数学建模
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
雨量预报分析的评价模型
一、摘要
我们将FORECAST文件夹中的数据按日期先后顺序导入Matlab,建立53×47×164的三维矩阵rain1和rain2;把MEASURING文件夹中的数据以同样方法导入91×7×41的三维矩阵temp中,然后建立循环将temp矩阵中每一层的后4列提取,另存入一个91×164的rain3矩阵;在命令窗中直接导入预测点的经度和纬度存入矩阵lon和lat中,导入实测点的经度和纬度存入矩阵lon1和lat1中,并对其作图,得到实测点和预测点的经纬度图。
整理得到91个观测点41天的预测值和测量值对应的两个91×164矩阵,根据气象部门将降雨的等级分为6个等级的分法,把矩阵中相应的降雨量值转化为其所对应等级值,其中,预测中的零全部记为0,得到两个预报等级矩阵。
针对问题(1),利用插值基点为散乱节点的插值函数griddata[1]在Matlab中进行三次样条插值处理,将91个观测站点41天164个时段的雨量情况进行预测。利用残差平
方和
2
1
()
n
ij i
i
weap wear
ξ
=
=-
∑
以及平均误差1
1n
ij i
i
avg weap wear
n=
=-
∑
来作为评价的标准。
残差平方和ξ与平均误差avg值较小的一种预测方法作为较好的预报方法。残差平方和以及平均误差数值越小,表明预报越准确度越高。预测方法一的残差平方和为174290.00,平均误差为0.4553。预测方法二的残差平方和为195580.00,平均误差为0.4753。雨量预报方法一的准确性更高一些。针对问题(2),两个预报等级矩阵,继续利用残差平方和以及平均误差来作为评价的标准。残差平方和以及平均误差数值越小,表明预报越准确度越高,相应公众感受就越好。预测方法一的残差平方和为2774,平均误差为0.1730。预测方法二的残差平方和为2806,平均误差为0.1745。雨量预报方法一的准确性更高一些。
由于残差平方和与平均误差难以反映真实汇报的准确度,我们将模型改进优化。把矩阵中相应的降雨量值转化为其所对应等级值,得到两个预报等级矩阵,将两个预报等级矩阵与实测等级矩阵做差值运算,得到两个等级差矩阵,对等级差作绝对值处理,进行等级差统计。
我们利用预测准确度检验法对两种预报进行评价。预测准确度(H )等于预报正确次数(R )(即运算之差为0的情况)和预测次数(T )之比,即100%R
H T
=
⨯。准确度越高,表明预报准确度越高,相应公众感受就越好。预报1的预报准确度为83.26%高于预报2的准确度83.11%,公众更易接受第一种预报方法。
关键字:散乱节点插值 残差平方和 平均误差 预报等级矩阵 预测准确度
二、问题重述
雨量预报对农业生产和城市工作和生活有重要作用,但准确、及时地对雨量作出预报是一个十分困难的问题,广受世界各国关注。我国某地气象台和气象研究所正在研究6小时雨量预报方法,即每天晚上20点预报从21点开始的4个时段(21点至次日3点,次日3点至9点,9点至15点,15点至21点)在某些位置的雨量,这些位置位于东经120度、北纬32度附近的53×47的等距网格点上。同时设立91个观测站点实测这些时段的实际雨量,由于各种条件的限制,站点的设置是不均匀的。
气象部门希望建立一种科学评价预报方法好坏的数学模型与方法。气象部门提供了41天的用两种不同方法的预报数据和相应的实测数据。预报数据在文件夹FORECAST中,实测数据在文件夹MEASURING中,其中的文件都可以用Windows系统的“写字板”程序打开阅读。
FORECAST中的文件lon.dat和lat.dat分别包含网格点的经纬度,其余文件名为
MEASURING中包含了41个名为<日期>.SIX的文件,如020618.SIX表示2002年6月18日晚上21点开始的连续4个时段各站点的实测数据(雨量),这些文件的数据格式是:站号纬度经度第1段第2段第3段第4段58138 32.9833 118.5167 0.0000 0.2000 10.1000 3.1000
58139 33.3000 118.8500 0.0000 0.0000 4.6000
7.4000
58141 33.6667 119.2667 0.0000 0.0000 1.1000 1.4000
58143 33.8000 119.8000 0.0000 0.0000 0.0000 1.8000
58146 33.4833 119.8167 0.0000 0.0000 1.5000 1.9000
……
雨量用毫米做单位,小于0.1毫米视为无雨。
(1)请建立数学模型来评价两种6小时雨量预报方法的准确性;
(2)气象部门将6小时降雨量分为6等:0.1—2.5毫米为小雨,2.6—6毫米为中雨,6.1
—12毫米为大雨,12.1—25毫米为暴雨,25.1—60毫米为大暴雨,大于60.1毫米为特大暴雨。若按此分级向公众预报,如何在评价方法中考虑公众的感受?
三、名词和符号说明
四、模型假设
:假设题目中全部数据真实可靠,忽略误差; :假设观测站所在位置的经纬度准确无误; :假设天气预报针对的位置在所给网格点附近; :假设雨量在各网点之间的变动是连续的;
五、问题分析
针对问题1,我们将两种预测方法的所有预测值构造成两个以有序时间段对应的预测值为列,以网格点的个数为行的2491×164矩阵,对于91观测站点41天的实测值做同样的处理,构造成91×164的矩阵。这样,繁琐的数据经过预处理后就整理成了三个矩阵。由于观测站点相应位置没有两种预测方法对应的预测值,无法直接进行评价,我们采用了三次样条插值的方法进行插值预处理,到了91个观测站点两种预测方法的相应时刻的预测值,然后将两种预测方法雨量预测值与雨量实测值进行比较,从而判断出两种预测方法的准确性。
1L 2L 3L 4
L