数学建模作业43950
数学建模作业实验线性规划实验模板
数学建模作业(实验3线性规划实验)基本实验1.生产计划安排某公司使用三种操作装配三种玩具——玩具火车、玩具卡车和玩具汽车。
对于三种操作可用时间限制分别是每天430分钟、460分钟和420分钟, 玩具火车、玩具卡车和玩具汽车的单位收入分别是3美元、2美元和5美元。
每辆玩具火车在三种操作的装配时间分别是1分钟, 3分钟和1分钟。
每辆玩具卡车和每辆玩具汽车相应的时间是( 2, 0, 4) 和( 1, 2, 0) 分钟( 零时间表示不使用该项操作) 。
( 1) 将问题建立成一个线性规划模型, 确定最优的生产方案。
( 2) 对于操作1, 假定超过它当前每天430分钟能力的任何附加时间必须依靠每小时50美元的加班获得。
每小时成本包括劳动力和机器运行费两个方面。
对于操作1, 使用加班在经济上有利吗? 如果有利, 最多加多少时间?( 3) 假定操作2的操作员已同意每天加班工作两小时, 加班费是45美元一小时。
还有, 操作自身的成本是一小时10美元。
这项活动对于每天收入的实际结果是什么?( 4) 操作3需要加班时间吗?解答解:设生产玩具火车、玩具卡车和玩具汽车的数量分别为X1, X2, X3, 则目标函数为:3X1+2X2+5X3约束条件:X1+2X2+X3<=4303X1+2X3<=460X1+4X2<=420X1>=0; X2>=0; X3>=0最优值为目标函数取得最大。
LINGO程序max=3*x1+2*x2+5*x3;x1+2*x2+x3<=430;3*x1+2*x3<=460;x1+4*x2<=420;运行结果Globaloptimalsolutionfound.Objectivevalue:1350.000Infeasibilities:0.000000Totalsolveriterations:2ModelClass:LPTotalvariables:3Nonlinearvariables:0Integervariables:0Totalconstraints:4Nonlinearconstraints:0Totalnonzeros:10Nonlinearnonzeros:0VariableValueReducedCostX10.0000004.000000X2100.00000.000000X3230.00000.000000RowSlackorSurplusDualPrice11350.0001.00000020.0000001.00000030.0000002.000000420.000000.000000( 1) 由运行结果可得, 最优的生产方案为:玩具火车、玩具卡车和玩具汽车的生产数量分别为: 0、100、230; 收入为1350.( 2) 由DualPrice第二行可知, 当操作1每增加1分钟收入增加1美元, 因此50/60<1, 使用加班在经济上是有利的; Rangesinwhichthebasisisunchanged: ObjectiveCoefficientRanges:CurrentAllowableAllowable VariableCoefficientIncreaseDecreaseX13.0000004.000000INFINITYX22.0000008.0000002.000000X35.000000INFINITY2.666667RighthandSideRanges:CurrentAllowableAllowableRowRHSIncreaseDecrease2430.000010.00000200.00003460.0000400.000020.000004420.0000INFINITY20.00000分析可知, 最多增加10分钟。
数学建模的五次作业
图1中是大学校园一角。
图中标示出道路和两点之间的大致距离(单位:百英尺)。
你的同舍同学说服(convince)你在周末时候在某个道路交叉点(intersections)摆个热狗摊。
你希望小摊尽可能方便同学们。
哪里是最合适的地点呢?表1:校园一角从问题开始问题叙述:假如宿舍位于A,C,D,E和F点,A舍楼有200生,C和D各有300生,E和F楼各有100生。
(1) 如果我们知道A和C是女生楼,D,E和F是男生楼,并且只有30%的女生喜欢在你的小摊上吃热狗,而有80%的男生喜欢吃,那么你的选点会有怎样的改变?(2) 如果B和C点以及E和D点之间的路是上坡路,而上坡路比下坡路难走一倍。
你会怎样选点?A C D E F MAX AVG A 0154017601540176017601320B 660880110088011001100924C 15400220132017601760968D 17602200110015401760924E 15401320110004401540880F 176017601540440017601100G 15401760176066022017601188 A C D E F MAX AVGA04621408123214081408902B198264880704880880585.2C4620176105614081408620.4D52866088012321232541.2E4623968800352880418F528528123235201232528G 46252814085281761408620.4问题分析:问题(1)分析由于学生主要从宿舍到小摊,所以一个方法是算出从每个舍楼到每个可能的小摊地点的距离。
如表1的数据。
列表示所有可能的小摊位置,行表示从宿舍楼到各摊点位置的距离。
同时,在表格中包括了,从舍楼到小摊位置的最大距离和从小摊到舍楼的平均距离。
表1基于表中数据,如果将热狗摊安在B 点,那么没有哪个学生从舍楼到摊点需要走超过500英尺的距离,放在A 点则有学生要走800英尺。
数学建模第五章作业
第五章作业1.解(3)给定样条在左右端点的一阶导数的三次样条123456789-50510三次样条(给定样条在左右端点的一阶导数)样条的一阶导函数样条的二阶导函数样条的三阶导函数图1 绘制图1的MATLAB 脚本如下:x=[0,1,3,6,8,9];y=[-1,3,1,2,0,2,4,1]; pp=csape(x,y,'complete'),pp.coefss=@(t,tj,c)c(1).*(t-tj).^3+c(2).*(t-tj).^2+c(3).*(t-tj)+c(4); d1s=@(t,tj,c)3.*c(1).*(t-tj).^2+2.*c(2).*(t-tj)+c(3); d2s=@(t,tj,c)6.*c(1).*(t-tj)+2.*c(2); d3s=@(t,tj,c)6.*c(1).*ones(size(t)); for k=1:pp.piecesc=pp.coefs(k,:);u=x(k):.01:x(k+1);v=s(u,x(k),c); v1=d1s(u,x(k),c);v2=d2s(u,x(k),c);v3=d3s(u,x(k),c); plot(u,v,'k',u,v1,'k-.',u,v2,'k--',u,v3,'k:'),hold on endlegend('三次样条(给定样条在左右端点的一阶导数)','样条的一阶导函数',...'样条的二阶导函数','样条的三阶导函数') y1=[3,1,2,0,2,4];plot(x,y1,'ko'),hold off命令窗口显示的结果为 pp =form: 'pp'breaks: [0 1 3 6 8 9] coefs: [5x4 double] pieces: 5 order: 4 dim: 1 ans =1.4903 -2.4903 -1.00003.0000 -0.4879 1.9807 -1.5097 1.0000 0.1795 -0.9469 0.5580 2.0000 -0.0157 0.6691 -0.2754 0 -0.7874 0.5749 2.2126 2.0000 计算结果说明该三次样条的分段多项式形式为321.4903 2.49033,x x x --+ 01x ≤≤ 320.4879(1) 1.9807(1) 1.5097(1)1,x x x --+---+ 13x ≤≤()s x = 320.1795(3)0.9469(3)0.5580(3)2,x x x ---+-+ 36x ≤≤320.0157(6)0.6691(6)0.2754(6),x x x --+--- 68x ≤≤ 320.7874(8)0.5749(8) 2.2126(8)2,x x x --+-+-+ 89x ≤≤(4)给定样条在左右端点的二阶导数的三次样条123456789-3-2-11234三次样条(给定样条在左右端点的二阶导数)样条的一阶导函数样条的二阶导函数样条的三阶导函数图2 绘制图2的MATLAB 脚本如下x=[0,1,3,6,8,9];y=[0,3,1,2,0,2,4,0]; pp=csape(x,y,'second'),pp.coefss=@(t,tj,c)c(1).*(t-tj).^3+c(2).*(t-tj).^2+c(3).*(t-tj)+c(4); d1s=@(t,tj,c)3.*c(1).*(t-tj).^2+2.*c(2).*(t-tj)+c(3); d2s=@(t,tj,c)6.*c(1).*(t-tj)+2.*c(2); d3s=@(t,tj,c)6.*c(1).*ones(size(t)); for k=1:pp.piecesc=pp.coefs(k,:);u=x(k):.01:x(k+1);v=s(u,x(k),c); v1=d1s(u,x(k),c);v2=d2s(u,x(k),c);v3=d3s(u,x(k),c); plot(u,v,'k',u,v1,'k-.',u,v2,'k--',u,v3,'k:'),hold on endlegend('三次样条(给定样条在左右端点的二阶导数)','样条的一阶导函数',...'样条的二阶导函数','样条的三阶导函数') y1=[3,1,2,0,2,4];plot(x,y1,'ko'),hold off 命令窗口显示的结果为 pp =form: 'pp'breaks: [0 1 3 6 8 9] coefs: [5x4 double] pieces: 5 order: 4 dim: 1 ans =0.5134 0 -2.5134 3.0000 -0.4018 1.5402 -0.9732 1.0000 0.1754 -0.8706 0.3661 2.0000 -0.0741 0.7084 -0.1204 0 -0.0880 0.2639 1.8241 2.0000计算结果说明该三次样条的分段多项式形式为30.5134 2.51343,x x -+ 01x ≤≤ 320.4018(1) 1.5402(1)0.9732(1)1,x x x --+---+ 13x ≤≤()s x = 320.1754(3)0.8706(3)0.3661(3)2,x x x ---+-+ 36x ≤≤320.0741(6)0.7084(6)0.1204(6),x x x --+--- 68x ≤≤ 320.0880(8)0.2639(8) 1.8241(8)2,x x x --+-+-+ 89x ≤≤ (4)按照非结点方法得到的三次样条123456789-4-3-2-1012345三次样条(非结点方法)样条的一阶导函数样条的二阶导函数样条的三阶导函数图3 绘制图3的MATLAB 脚本如下x=[0,1,3,6,8,9];y=[3,1,2,0,2,4]; pp=csape(x,y,'not-a-knot'),pp.coefss=@(t,tj,c)c(1).*(t-tj).^3+c(2).*(t-tj).^2+c(3).*(t-tj)+c(4); d1s=@(t,tj,c)3.*c(1).*(t-tj).^2+2.*c(2).*(t-tj)+c(3); d2s=@(t,tj,c)6.*c(1).*(t-tj)+2.*c(2); d3s=@(t,tj,c)6.*c(1).*ones(size(t)); for k=1:pp.piecesc=pp.coefs(k,:);u=x(k):.01:x(k+1);v=s(u,x(k),c); v1=d1s(u,x(k),c);v2=d2s(u,x(k),c);v3=d3s(u,x(k),c); plot(u,v,'k',u,v1,'k-.',u,v2,'k--',u,v3,'k:'),hold on endlegend('三次样条(非结点方法)','样条的一阶导函数',... '样条的二阶导函数','样条的三阶导函数') plot(x,y,'ko'),hold off 命令窗口显示的结果为form: 'pp'breaks: [0 1 3 6 8 9] coefs: [5x4 double] pieces: 5 order: 4 dim: 1ans =-0.3240 2.1291 -3.8052 3.0000 -0.3240 1.1573 -0.5188 1.0000 0.1633 -0.7864 0.2229 2.0000 -0.0700 0.6833 -0.0866 0 -0.0700 0.2633 1.8066 2.0000 计算结果说明该三次样条的分段多项式形式为320.3240 2.1291 3.80523,x x -++-+ 01x ≤≤ 320.3240(1) 1.1573(1)0.5188(1)1,x x x --+---+ 13x ≤≤()s x = 320.1633(3)0.7864(3)0.2229(3)2,x x x ---+-+ 36x ≤≤320.0700(6)0.6833(6)0.0866(6),x x x --+--- 68x ≤≤ 320.0700(8)0.2633(8) 1.8066(8)2,x x x --+-+-+ 89x ≤≤(5)周期的三次样条123456789-10-551015三次样条(周期的)样条的一阶导函数样条的二阶导函数样条的三阶导函数图4 绘制图4的MATLAB 脚本如下x=[0,1,3,6,8,9];y=[3,1,2,0,2,4]; pp=csape(x,y,'periodic'),pp.coefss=@(t,tj,c)c(1).*(t-tj).^3+c(2).*(t-tj).^2+c(3).*(t-tj)+c(4); d1s=@(t,tj,c)3.*c(1).*(t-tj).^2+2.*c(2).*(t-tj)+c(3); d2s=@(t,tj,c)6.*c(1).*(t-tj)+2.*c(2); d3s=@(t,tj,c)6.*c(1).*ones(size(t)); for k=1:pp.piecesc=pp.coefs(k,:);u=x(k):.01:x(k+1);v=s(u,x(k),c); v1=d1s(u,x(k),c);v2=d2s(u,x(k),c);v3=d3s(u,x(k),c); plot(u,v,'k',u,v1,'k-.',u,v2,'k--',u,v3,'k:'),hold on endlegend('三次样条(周期的)','样条的一阶导函数',... '样条的二阶导函数','样条的三阶导函数') plot(x,y,'ko'),hold off 命令窗口显示的结果为 pp =form: 'pp'breaks: [0 1 3 6 8 9] coefs: [5x4 double] pieces: 5order: 4 dim: 1ans =1.9961 -3.7833 -0.2127 3.0000 -0.52962.2048 -1.7912 1.0000 0.1754 -0.9728 0.6728 2.0000 0.0537 0.6061 -0.4272 0 -1.5706 0.9285 2.6421 2.0000计算结果说明该三次样条的分段多项式形式为321.9961 3.78330.21273,x x x --+ 01x ≤≤ 320.5296(1) 2.2048(1) 1.7912(1)1,x x x --+---+ 13x ≤≤()s x = 320.1754(3)0.9728(3)0.6728(3)2,x x x ---+-+ 36x ≤≤320.0537(6)0.6061(6)0.4272(6),x x x -+--- 68x ≤≤ 321.5706(8)0.9285(8) 2.6421(8)2,x x x --+-+-+ 89x ≤≤ 2.解:问题分析:由题意,本题只需结合给出的10个结点坐标,分别利用多项式插值、分段线条插值、三次样条插值方法,借助Matlab 完成加工所需数据得到所求的图像,再利用复化梯形求积公式求得机翼断面的面积即可。
数学建模作业
课程:数学建模题目:_____________指导老师:_____________答题者:_____________院系:_______________学号:_______________日期:_____年____月____日农场作物种植,收益最大化问题的讨论摘要中国是一个拥有13亿人口的发展中农业大国,农业在中国历来被认为是安天下,安民心的战略产业。
虽然我国近年来在农业方面取得了一系列的瞩目成就,但我国的农业问题依然很严峻。
在一切都在追求利益最大化的今天,如何利用有限的土地等客观的资源来获得最优化的结果,仍是我们现在及其以后需要考虑的问题。
本文就是通过一个与农业生产有关的问题,通过抽象条件,建立数学模型,利用LINGO软件求解在理想情况下的最优化问题。
然后考虑一系列影响因素的变化对最优解的影响,来分析在特定情况下对农业生产的安排,以求在现有的资源限制下获得最大的利益。
最后得出,所建立的模型是较为符合实际情况的。
关键字:最优解农作物种植数学模型LINGO求解一、问题的提出1.1背景作为一个传统的农业大国,我们已经延续了五千多年的人类文明。
但随着我国人口的急剧增长,我国耕地正面临着愈加严峻的挑战。
虽说我国已经创造出了以占世界7%的耕地养活了占世界20%以上的人的辉煌成就,但面对重大自然灾害的频繁发生,世界局势对国际粮食市场的影响,以及耕地面积日益减少,大量的土地被荒废等一系列我们不希望看到的现状,如何安排农作物的种植以使得有限的土地等资源得到有效的利用,仍是我们需要考虑并解决的问题。
1.2问题一个家庭农场有625亩的土地可以用来种植农作物。
这个家庭考虑种植的农作物有玉米、小麦和燕麦。
预计可以有1000亩-尺的灌溉用水,农场工人每周可以投入的工作时间为300小时,其他的数据在表1中给出。
为获得最大的收益,每种作物应该各种植多少?表1农场问题的有关数据条件(每亩)作物玉米小麦燕麦灌溉用水(每亩-尺)劳力(人-小时/周)收益(美元)3.0 1.0 1.5 0.8 0.2 0.3 400 200 250二、基本假设(1)我们假设在理想情况下考虑该问题,不考虑因为天气,人为等因素对问题分析的影响。
数学建模小作业例题
数学建模小作业例题1. 在冷却过程中,物体的温度在任何时刻变化的速率大致正比于它的温度与周围介质温度之差,这一结论称为牛顿冷却定律,该定律同样用于加热过程。
一个煮硬了的鸡蛋有98℃,将它放在18℃的水池里,5分钟后,鸡蛋的温度为38℃,假定没有感到水变热,问鸡蛋达到20℃,还需多长时间?解:题意没有感到水变热,即池水中水温不变。
设:鸡蛋的温度为T,温度变化率就是dT/dt 其中t为时间,水的温度为T1,则鸡蛋与水温差为T-T1由题意有:T- T1=kdT/dt (其中k为比例常数) (1)方程(1)化为:dt=kdT/(T- T1)(2)对(2)两边同时积分之后并整理一下就得到:t=k*ln(T- T1)+C则k*ln(98-18)+ C=05=k*ln(38-18)+ct1=k*ln(20-18)+c-[k*ln(38-18)+c]=8.3(min)所以,还需8.3(min)。
2. 报童每天清晨从报社购进报纸零售,晚上将没有卖完的报纸退回。
设每份报纸的购进价为,零售价为,退回价为,应该自然地假设。
这就是说,报童售出一份报纸赚,退回一份报纸赔。
报童如果每天购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱。
请你为报童筹划一下,他应该如何确定每天购进报纸的数量,以获得最大的收入。
解:设:报纸具有时效性每份报纸进价b元,卖出价a元,卖不完退回份报纸c元。
设每日的订购量为n,如果订购的多了,报纸剩下会造成浪费,甚至陪钱。
订的少了,报纸不够卖,又会少赚钱。
为了获得最大效益,现在要确定最优订购量n。
n的意义。
n是每天购进报纸的数量,确定n一方面可以使报童长期以内拥有一个稳定的收入,另一方面也可以让报社确定每日的印刷量,避免纸张浪费。
所以,笔者认为n的意义是双重的。
本题就是让我们根据a、b、c及r来确定每日进购数n。
基本假设1、假设报童现在要与报社签定一个长期的订购合同,所以要确定每日的订购量n。
(完整word版)数学建模作业
结果:
Untitled2
j =
80.1000
b =
9.7106
p =
-0.4682
f =
3.1529
极差:
用z表示极差。
编写M文件:Untitled1.m
x1=[93 75 83 93 91 85 84 82 77 76 77 95 94 89 91];
x2=[88 86 83 96 81 79 97 78 75 67 69 68 84 83 81];
93
75
83
93
91
85
84
82
77
76
77
95
94
89
91
88
86
83
96
81
79
97
78
75
67
69
68
84
83
81
75
66
85
70
94
84
83
82
80
78
74
73
76
70
86
76
90
89
71
66
86
73
80
94
79
78
77
63
53
55
(1)计算均值,标准差,极差,偏度,峰度,画出直方图;
(2)检验分布的正态性;
检验结果
(1)布尔变量h=0,表示不拒绝零假设,说明提出的假设学生成绩均值80是合理的。
(2)95%的置信区间为[77.6,82.6],它完全包括80,且精度很高。
(3)sig的值为0.9367,远超过0.5,不能拒绝零假设。
最新数学建模第三次作业.docx
精品文档院系:数学学院专业:信息与计算科学年级:2014 级学生姓名:王继禹学号:201401050335教师姓名:徐霞6.6 习题3.一个慢跑者在平面上沿着他喜欢的路径跑步,突然一只狗攻击他,这只狗以恒定速率跑向慢跑者,狗的运动方向始终指向慢跑者,计算并画出狗的轨迹。
解:(1)模型分析建立:狗的轨迹:在任意时刻,狗的速度向量都指向它的目标慢跑者。
假设 1:慢跑者在某路径上跑步,他的运动由两个函数 X(t)和 Y(t)描述。
假设 2:当 t=0 时,狗是在点 (x0,y0)处,在时刻 t 时,它的位置是 (x(t),y(t)) 那么下列方程成立:222(1)狗以恒定速率跑:X’+y’=w(2)狗的速度向量平行于慢跑者与狗的位置的差向量:将上述方程带入等式:,可得:再将λ代入第二个方程,可得狗的轨迹的微分方程:(2)程序及结果dog 函数[dog.m]function[zs,isterminal,direction] = dog(t,z,flag)global w; % w=speed of the dogX=jogger(t);h = X-z;nh=norm(h);if nargin<3 || isempty(flag)zs=(w/nh)*h;elseswitch (flag)case 'events'zs = nh-1e-3;isterminal = 1;direction = 0;otherwiseerror(['Unknow flag:'flag]);endend慢跑者的运动轨迹方程,水平向右[jogger.m]function s = jogger(t);s = [8*t;0];标记的函数[cross.m]function cross(Cx,Cy,v)Kx = [Cx Cx Cx Cx-v Cx+v];Ky = [Cy Cy+2.5*v Cy+1.5*v Cy+1.5*v Cy+1.5*v]plot(Kx,Ky);plot(Cx,Cy,'o' );主程序:静态显示[main1.m]global wy0 = [60;70];w=10;options = odeset('RelTol',1e-5,'Events', 'on' ); [t,Y] = ode23('dog' ,[0,20],y0,options);clf;hold on ;axis([-10,100,-10,70]);plot(Y(:,1),Y(:,2));J=[];for h=1:length(t),w = jogger(t(h));J=[J;w'];endplot(J(:,1),J(:,2),':');p = max(size(Y));cross(Y(p,1),Y(p,2),2)hold off ;动态显示[main2.m]global w;y0=[60;70];w=10;options = odeset('RelTol',1e-5,'Events', 'on' ); [t,Y]=ode23('dog' ,[0,20],y0,options); J=[];for h=1:length(t);w= jogger(t(h));J=[J;w'];endxmin = min(min(Y(:,1)),min(J(:,1)));xmax = max(max(Y(:,1)),max(J(:,1)));ymin = min(min(Y(:,2)),min(J(:,2)));ymax = max(max(Y(:,2)),max(J(:,2)));clf;hold on ;axis([xmin-10 xmax ymin-10 ymax]);title('The jogger and the Dog');for h = 1:length(t)-1,plot([Y(h,1),Y(h+1,1)],[Y(h,2),Y(h+1,2)],'-', 'Color', 'red', 'EraseMode ' , 'none');plot([J(h,1),J(h+1,1)],[J(h,2),J(h+1,2)],'-', 'Color', 'green', 'EraseMo de', 'none');drawnow;pause(0.1);endplot(J(:,1),J(:,2),':' );p = max(size(Y));cross(Y(p,1),Y(p,2),2)hold off;结果t=12.2761812635281,在 12.27 秒后狗追上慢跑者。
数学建模作业
数学建模作业————————————————————————————————作者:————————————————————————————————日期:说明:本电子版题目与教材原题不符者以教材为准,教材上没有的做了会适当加分。
教材上有而本电子版题目没有原题的,请同学们自行录入原题。
所有基本题目解答过程均须不少于姜启源先生《数学模型第三版习题参考解答》之答案长度!第1章 数学模型引论1.1 在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?(稳定的椅子问题见姜启源《数学模型》第6页)(小型题目模版)解:模型分析(黑体五号字):……宋体五号字 模型假设与符号说明(黑体五号字):……宋体五号字 模型建立:……宋体五号字 模型求解:……宋体五号字 程序源代码(如果需要编程):……宋体五号字 程序运行结果(如果有图形或数据):……宋体五号字 模型讨论:……宋体五号字1.2 在商人们安全过河问题中,若商人和随从各四人,怎样才能安全过河呢?一般地,有n 名商人带n 名随从过河,船每次能渡k 人过河,试讨论商人们能安全过河时,n 与k 应满足什么关系。
(商人们安全过河问题见姜启源《数学模型》第7页)1.3 人、狗、鸡、米均要过河,船需要人划,另外至多还能载一物,而当人不在时,狗要吃鸡,鸡要吃米。
问人、狗、鸡、米怎样过河?1.4 有3对阿拉伯夫妻过河,船至多载两人,条件是根据阿拉伯法典,任一女子不能在其丈夫不在的情况下与其他的男子在一起。
问怎样过河?1.5 如果银行存款年利率为5.5%,问如果要求到2010年本利积累为100000元,那么在1990年应在银行存入多少元?而到2000年的本利积累为多少元?1.6 某城市的Logistic 模型为2610251251N N dt dN ⨯-=,如果不考虑该市的流动人口的影响以及非正常死亡。
设该市1990年人口总数为8000000人,试求该市在未来的人口总数。
当∞→t 时发生什么情况。
数学建模作业完整版
数学建模作业HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】《数学建模》作业学号姓名工作量 100 %专业所属学院指导教师二〇一七年六月数学建模作业第一部分:请在以下两题中任选一题完成(20 分)。
1、(马王堆一号墓入葬年代的测定建模问题)湖南省长沙市马王堆一号墓于 1972 年 8 月发掘出土,其时测得出土的木炭标本中碳-14 平均原子蜕变数为次/分钟,而新烧成的同种木材的木炭标本中碳-14(C-14)原子蜕变数为次/分钟. 又知碳-14 的半衰期为 5730 年,试推断该一号墓入葬的大致年代。
问题分析:放射性元素衰变的速度是不受环境影响的,它总是和该元素当前的量成正比,运用碳—14测定文物或化石年代的方法是基于下面的理由:(1)宇宙射线不断轰击大气层,使大气层中产生碳—14而同时碳—14又在不断衰变,从而大气层中碳—14含量处于动态平衡中,且其含量自古至今基本上是不变的;(2)碳—14被动植物体所吸收,所以活着的生物体由于不断的新陈代谢,体内的碳—14也处于动态平衡中,其含量在物体中所占的百分比自古至今都是一样的;(3)动植物的尸体由于停止了从环境中摄取碳—14,从而其体内碳—14含量将由于衰变的不断减少,碳定年代法就是根据碳—14的减少量来判断物体的大致死亡时间。
模型建立设t 时刻生物体中碳—14的含量为x (t ),放射性物质的半衰期(即放射性物质的原子数衰减一半所需的时间)为T ,生物体死亡时间为t0,则由放射性物质衰变规律得数学模型⎪⎩⎪⎨⎧=-=,)(,00x t x x dtdx λ ① 其中0>λ称为衰变系数,由放射性物质所决定,x 0为生物体在死亡时刻t 0时的碳—14含量。
模型求解对所得的一阶线性微分方程模型①采用同变量分离法求解,得 e x t t x t )(00)(--=λ??由于T t t =-0时,有 0021)()(x T t x t x =+=??代入上式,有 T e T 2ln ,212==-λ????? 所以得 ? T t t e x t x )(2ln 00)(--= ②这就是生物体中碳—14的含量随时间衰变的规律,由之易解得 )()(ln 2ln 00t x t x T t t =- ③ 将所得的数学模型的一般解应用于本例,此时以T=5730,37.380=x (新木炭标准中碳—14原子蜕变数),X(1972)=(出土的木炭标本中碳—14原子蜕变数) 代入到③式,得 ?209578.2937.38ln 2ln 57300≈=-t t 年 于是得??1232095197220950-=-=-≈t t 年结果表明,马王堆墓入葬年代大约在公元前123年左右的西汉中期,该结论与马王堆出土文物的考证结果相一致。
数学建模作业
1.输入一个矩阵A ,取出A 的第2行第1列的元素;取出A 的第1,3,4列的所有元素;让A 的第1列和第3列互换;删除A 的第2列。
2.产生3 ⨯4的1矩阵,产生4⨯2的随机矩阵,产生4维的单位矩阵。
3.将A 的第2行元素扩大2倍,再增加3后作为A 的第3行元素。
4.设矩阵 A =⎥⎥⎥⎦⎤⎢⎢⎢
⎣⎡---41
2
101
213,B =⎥⎥⎥
⎦⎤
⎢⎢
⎢⎣⎡--124013
,且AX=B ,求X . 5. 设矩阵 ⎥⎦
⎤⎢
⎣⎡-=02
1
201A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=20
010212
B ,⎥⎥⎥
⎦
⎤
⎢⎢
⎢⎣⎡--=24
2216C ,计算C BA +T 1,求不定积分⎰dx x x 22ln
2.求定积分dx x ⎰-20
2sin 1π
dx e
x
⎰
∞
∞
--
2
2
21π
3. 在一幅图上画出两个周期的正弦曲线和余弦曲线,画出坐标轴,加上各种图注,并在正弦曲线)2/~0(π和横轴之间填充红色。
4. 画出如下三维网格曲面图。
}10,10{},10,10{-∈-∈y x
一个农场有50亩土地,20个劳动力,计划种蔬菜,棉花和水稻,种植这三种农作物每亩地需劳动力1/2,1/3,1/4,预计每亩产值分别为4400元,3000元和2400元,如何规划经营使经济效益最大?。
数学建模的作业
实验1 渡口模型仿真计算实验内容:(渡口模型仿真)渡船营运者如何规划,使得单次运送车辆最多、最合理,从而获得最大利润。
实验目的:对渡口问题进行仿真计算,与理论结果进行比较,验证模型的正确性。
实验步骤:1、对问题的变量进行合理定义,并指出合理存在区间;2、选取合适步长,通过C语言或者MATLAB软件编程,遍历寻优,得到单次运送所获利润的最大值,并同时求出最大值点;3、考虑随机到达的情况,进行随机优化;4、比较结论,对模型的合理性进行评估,或者进一步优化和重构模型。
【问题提出】一个渡口的渡船营运者拥有一只甲板长32米,可以并排停放两列车辆的渡船。
他在考虑怎样在甲板上安排过河车辆的位置,才能安全地运过最多数量的车辆。
【准备工作】他关心一次可以运多少辆车,其中有多少小汽车,多少卡车,多少摩托车。
他观察了数日,发现每次情况不尽相同,得到下列数据和情况:(1)车辆随机到达,形成一个等待上船的车列;(2)来到渡口的车辆中,轿车约占40%,卡车约占55%,摩托车越占5%;(3)轿车车身长为3.5~5.5米,卡车车身长为8~10米。
【问题分析】这是一个遵循“先到先服务”的随机排队问题,这里试图用模拟模型的方法来解决,故需分析以下几个问题需要考虑下面一些问题:(1)应该怎样安排摩托车?(2)下一辆到达的车是轿车还是卡车?(3)怎样描述一辆车的车身长度?(4)到达的车要加入甲板上两列车队的哪一列中去?【建立模型】其中我以函数获得的平均分布的随机数,然后假定车身长度也符合平均分布,并假定渡船甲板由两列组合成一列,长64米,每辆车辆来到渡口,遵循先到先服务的原则,依次进入,并假定两辆车之间相隔0.5米,因此得出模型1假定遵循左右均衡的原则。
尽可能使左右车辆的卡车数量相等,轿车数量相等,得出模型2模型1中,由于车辆为分两队摆放,每边都应有一定间隙,例如,若有8米空隙在模型1中,理论上还可停一辆车,但显然是不可能的.假定给出停放两列汽车的方式为采用先停一列再停一列的方式,得出模型3由于车辆的长度不可能特长或特短,因此车长该服从正态分布.将以上模型修改,得出模型4,5,6【模型求解】注意到甲板停放两队汽车,可供停车的总长度为32*2=64米。
数学建模作业
数学建模作业姓名:李成靖班级:计科1403班1.某班准备从5名游泳队员中选4人组成接力队,参加学校的4×100m 混合泳接力比赛,5名队员4种泳姿的百米平均成绩如下表所示,问应如何选拔队员组成接力队?如果最近队员丁的蛙泳成绩有较大的退步,只有1′15"2;而队员戊经过艰苦训练自由泳成绩有所进步,达到57"5,组成接力队的方案是否应该调整?名队员4种泳姿的百米平均成绩解:(1).设c ij (秒)为队员i 第j 种泳姿的百米成绩,转化为0—1规划模型若参选择队员i 加泳姿j 的比赛,记x ij =1, 否则记x ij =0目标函数:即min=*x11+*x12+87*x13+*x14+*x21+66*x22+*x23+53*x24+78*x31+*x32+*x33+*x34+70*x41+*x42+*x43+*x44+*x51+71*x52+*x53+*x54;约束条件: x 11+x12+x13+x14<=1; x21+x22+x23+x24<=1; x31+x32+x33+x34<=1; x41+x42+x43+x44<=1;甲乙丙丁戊蝶泳 1′06"8 57"2 1′18" 1′10" 1′07"4 仰泳 1′15"6 1′06" 1′07"8 1′14"2 1′11" 蛙泳 1′27" 1′06"4 1′24"6 1′09"6 1′23"8 自由泳58"653"59"457"21′02"4∑∑===4151j iij ij x c Z Minx51+x52+x53+x54<=1;x11+x21+x31+x41+x51=1;x12+x22+x32+x42+x52=1;x13+x23+x33+x43+x53=1;x14+x24+x34+x44+x54=1;lingo模型程序和运行结果因此,最优解为x14=1,x21=1,x32=1,x43=1,其余变量为0成绩为(秒)=4′13"2即:甲~ 自由泳、乙~ 蝶泳、丙~ 仰泳、丁~ 蛙泳.(2).若丁的蛙泳成绩退步为1′15"2=(秒),戊的自由泳成绩进步为57"5=(秒),则目标函数:min=*x11+*x12+87*x13+*x14+*x21+66*x22+*x23+53*x24+78*x31+*x32+*x33+*x34+70*x41+*x42+*x43+*x44+*x51+71*x 52+*x53+*x54;约束条件:x11+x12+x13+x14<=1;x21+x22+x23+x24<=1;x31+x32+x33+x34<=1;x41+x42+x43+x44<=1;x51+x52+x53+x54<=1;x11+x21+x31+x41+x51=1;x12+x22+x32+x42+x52=1;x13+x23+x33+x43+x53=1;x14+x24+x34+x44+x54=1lingo模型程序和运行结果因此,最优解为x21=1,x32=1,x43=1,x54=1 ,其余变量为0;成绩为(秒)= 4′17"7 ,新方案:乙~ 蝶泳、丙~ 仰泳、丁~ 蛙泳、戊~ 自由泳。
数学建模作业
数学建模作业 YUKI was compiled on the morning of December 16, 2020院系:数学学院专业:信息与计算科学年级: 2014级学生姓名:王继禹学号: 0335教师姓名:徐霞1、考察温度x对产量y的影响,测得下列10组数据:求y关于x的线性回归方程,检验回归效果是否显著,并预测x=42℃时产量的估值及预测区间(置信度95%).解:(1)输入数据:x=[20 25 30 35 40 45 50 55 60 65]';X=[ones(10,1) x];Y=[ ]';(2) 回归分析及检验:输入以下命令:[b,bint,r,rint,stats]=regress(Y,X)得结果:b =bint =stats =即019.1212,0.223ββ∧∧== ,0β∧ 的置信区间为[,], 1β∧的置信区间为[,],20.9821,439.8311,0.0000R F p === ,p<, 可知回归模型9.12120.223y x =+成立。
y关于x 的线性回归方程的回归效果是显著的。
(3) 残差分析,作残差图:在(2)输入命令得出结果的基础上,再输入命令: rcoplot(r,rint) 得到残差图1:图1从残差图图1可以看出,所有数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型能较好地符合原始数据。
(4)预测及作图在(3)的命令基础上,再输入以下命令: z=b(1)+b(2)*x 再输入作图命令: plot(X,Y,'k+',X,z,'r')得到各数据点及回归方程的图形如图2.图2结论:由图2可以看出回归直线很好的拟合了所有数据点。
(5)计算当x=42℃时,产量的估值及预测区间: 在(4)的命令基础上,输入以下程序: x=42;>> z0=b(1)+b(2)*x 得结果: z0 =所以,当x=42℃时,产量的估值为及预测区间为[,] (置信度95%)。
数学建模作业
数学建模作业在当今的学术和实际应用领域,数学建模已经成为一种强大的工具,帮助我们解决各种各样复杂的问题。
它不仅仅是数学知识的运用,更是一种跨学科的思维方式和解决问题的方法。
数学建模的过程就像是一场精心策划的冒险。
首先,我们需要明确问题的本质,这就好比在茫茫大海中找到我们要航行的方向。
例如,假设我们要解决一个关于城市交通拥堵的问题,我们就得清楚了解造成拥堵的各种因素,是道路规划不合理?还是车辆数量增长过快?或者是公共交通系统不够完善?明确问题之后,接下来就是做出合理的假设。
这一步有点像给我们的冒险之旅设定一些规则和限制。
在交通拥堵的例子中,我们可能会假设人们的出行模式相对稳定,道路的建设短期内不会有大的变动等等。
这些假设虽然简化了现实情况,但却能让我们的模型更具可操作性。
然后就是建立模型了。
这是整个数学建模过程的核心部分。
我们要运用所学的数学知识,比如函数、方程、不等式、概率论等等,将现实问题转化为数学语言。
对于交通拥堵问题,我们可以建立一个流量模型,通过计算不同时间段、不同路段的车流量来分析拥堵的情况。
模型建立好了,接下来就是求解。
这可能需要用到各种数学工具和软件。
有时候,求解过程会很复杂,需要我们有足够的耐心和细心。
当我们得到结果之后,还不能掉以轻心。
因为模型的结果需要进行检验和分析。
我们要将结果与实际情况进行对比,看看是否合理。
如果结果与实际相差甚远,那就得回过头去检查我们的模型,看看是哪里出了问题,是假设不合理?还是模型建立有误?数学建模的应用范围非常广泛。
在经济领域,我们可以通过建立数学模型来预测市场的走势,帮助企业做出决策。
比如,通过分析历史数据和市场趋势,建立一个关于某种商品价格波动的模型,从而预测未来的价格走势,为企业的生产和销售提供参考。
在工程领域,数学建模也发挥着重要作用。
例如,在建筑设计中,可以通过建立力学模型来计算建筑物的受力情况,确保其安全性和稳定性。
在电子工程中,可以建立电路模型来优化电路设计,提高电子产品的性能。
数学建模作业
题目:生产计划问题摘要本文主要对汽车厂利润的问题的讨论及论述,通过一定的生产材料和固定的劳动时间,对汽车厂做出合理的生产计划及利润问题,首先对数据分析,从给出的数据中,该工厂的劳动时间是60000小时及钢材600吨,还有各种车型的生产资料,因此,我选择利用线性规划来解决这个问题,用线性规划来设计该工厂的生产方案,让工厂得到最大利润。
汽车厂生产三种类型的汽车,已知各类型每辆车对钢材、劳动时间的需求,利润及工厂每月的现有量:计算过程及分析过程:(1)制订月生产计划,使工厂的利润最大。
(给出程序)解:设小型车为x1,中型车为x2,大型为x3,最大利润为w 。
线性方程为:1231231231.53560028025040060000000x x x x x x x x x ++≤⎧⎪++≤⎨⎪≥≥≥⎩目标函数:123234w x x x =++ NMaximize[{2x1+3x2+4x3,1.5x1+3x 2+5x3≤600&&280x1+250x2+400x3≤60000&&x1≥0&&x2≥0&&x3≥0&&{x1,x2,x 3}∈Integers},{x1,x2,x3}] {632.,{x1→64,x2→168,x3→0}由于要使工厂都利润最大,解线性规划问题可知道该工厂的生产计划:小型车生产64辆,中型车168辆,大型车生产0辆。
(该程序是Mathematica )。
(第一种方案)。
(2) 如果生产某一类型汽车,则至少要生产80辆, 那么最优的生产计划应作何改变?(给出程序)解:设小型车为x1,中型车为x2,大型为x3,最大利润为w 。
线性方程为:1231231231.535600280250400600008021400x x x x x x x x x ++≤⎧⎪++≤⎪⎪≤≤⎨⎪≤⎪⎪≤⎩ 目标函数:123234w x x x =++NMaximize[{2x1+3x2+4x3,1.5x1+3x 2+5x3≤600&&280x1+250x2+400x3≤60000&&80≤x1≤214&&0≤x2&&0≤x3&&{x1,x2,x3}∈Integers},{x1,x2,x3}] {610.,{x1→80,x2→150,x3→0}} 1231231231.535600280250400600000802000x x x x x x x x x ++≤⎧⎪++≤⎪⎪≤⎨⎪≤≤⎪⎪≤⎩目标函数同上 NMaximize[{2x1+3x2+4x3,1.5x1+3x 2+5x3≤600&&280x1+250x2+400x3≤60000&&0≤x1&&80≤x2≤200&&0≤x3&&{x1,x2,x3}∈Integers},{x1,x2,x3}] {632.,{x1→64,x2→168,x3→0}} 1231231231.535600280250400600000080120x x x x x x x x x ++≤⎧⎪++≤⎪⎪≤⎨⎪≤⎪⎪≤≤⎩目标函数同上NMaximize[{2x1+3x2+4x3,1.5x1+3x 2+5x3≤600&&280x1+250x2+400x3≤60 000&&0≤x1&&0≤x2&&80≤x3≤120&&{x1 ,x2,x3}∈Integers},{x1,x2,x3}] {556.,{x1→73,x2→30,x3→80}} 要使工厂计划最优,再经过计算可知道,该工厂还是计划第二种方案生产:小型车80辆,中型车150辆,大型车0辆,因为按照这样生产可以节约钢材30吨,劳动时间20260小时,虽然不是利润最大,但同时能减轻工厂开支,相比第一种方案要好得多,所以我认为应该选择第二种方案最优。
数学建模课后作业
数学建模实验P.172 实验二最短电缆长度问题设有九个节点,它们的坐标分别为a(0,15), b(5,20), c(16,24), d(20,20),e(33,25), f(23,11), g(35,7), h(25,0), i(10,3)任意两个节点之间的距离为:w(w,w)=|w w−w w|+|w w−w w|问:怎样连接电缆,使每个节点都连通,且所用的总电缆的长度为最短.问题分析:本题研究的是一个最优化问题。
问题中给出了9个节点坐标,需要从复杂的连接方案中选出最短的电缆连接路线。
要设计方案求最短电缆长度,可先求出任意两点间的距离,然后在构造边权矩阵,用prim算法求电缆线的最优连通方案。
符号说明:W:任意两点之间的距离矩阵 X:节点的横坐标 Y:节点的纵坐标解:先计算出任意两点间的距离;W=[];X = [0 5 16 20 33 23 35 25 10]; Y = [15 20 24 20 25 11 7 0 3]; N=length(X); for i=1:Nfor j=1:NW=[W;(abs(X(i)-X(j))+abs(Y(i)-Y(j)))]end end W'输出结果截图为:将结果整理列表如下:i0用prim算法求电缆线的最优连通方案;运行结果截图为:分析结果可知:最小生成树的边集合为{(1,2),(2,3),(3,4),(4,6),(6,8),(6,7),(3,5),(8,9)}即用prime算法求出的最优电缆连接方案为:{(a,b),(b,c),(c,d),(d,f),(f,h),(f,g),(c,e),(h,i)}。
P186实验一求最短路问题求图14.9所示有向网络中自点1到点6的最短有向路问题分析:用floyde 算法算出任意两点之间的最短的距离。
符号说明:D:任意两个点之间的最短距离 n:迭代次数解:function [D,path]=floyd(a)n=size(a,1);%设置D和Path的初值D=a;path=zeros(n,n);for i=1:nfor j=1:nif D(i,j)~=infpath(i,j)=j; %j是i的后继点endendend%做n次迭代,每次迭代均更新D(i,j)和path(i,j) for k=1:nfor i=1:nfor j=1:nif D(i,k)+D(k,j)<D(i,j)D(i,j)=D(i,k)+D(k,j);path(i,j)=path(i,k);endendendend在MATLAB命令窗口键入:a=[0 5 inf 3 inf inf;inf 0 4 2 inf inf;inf inf 0 2 4 3;inf inf inf 0 5 inf;inf inf inf inf 0 2;inf inf inf inf inf 0];[D,path]=floyd(a)运行结果截图为:D =0 5 9 3 8 10Inf 0 4 2 7 7Inf Inf 0 2 4 3Inf Inf Inf 0 5 7Inf Inf Inf Inf 0 2Inf Inf Inf Inf Inf 0path =1 2 2 4 4 40 2 3 4 4 30 0 3 4 5 60 0 0 4 5 50 0 0 0 5 60 0 0 0 0 6由运行结果得:因为path(1,6)=4,意味着顶点1的后继点为4,path(4,6)=5,从而顶点4的后继点为5,同理,因path(5,6)=6,从而顶点5的后继点为6,故1→4→5→6便是顶点1到顶点6的最短路径。
数学建模作业精华版
航空枢纽选择选址专业:数学与应用数学成员:刘XX王XX指导老师:侯XX20XX年XX月XX日航空枢纽选择选址一.问题重述某航空公司专门从事货运。
此公司在世界6个城市之间进行运输,这些城市为:A,B,C,D,E,F。
此公司在这些城市之间平均每天运输的货物吨数列于下表中。
表格1:每对城市之间每天平均货运量A B C D E FA 0 500 1000 300 400 1500B 1500 0 250 630 360 1140C 400 510 0 460 320 490D 300 600 810 0 820 310E 400 100 420 730 0 970F 350 1020 260 580 380 0我们假定城市i和j之间的运输费用与它们之间的距离成正比。
下表给出了这些城市之间的距离,单位为公里。
表格2:城市之间的距离A B C D E FA 945 605 4667 4749 4394B 866 3726 3806 3448C 4471 4541 4152D 109 415E 431F此航空公司计划使用两个城市作为连接平台(航空枢纽),以降低运输费用。
然后每个城市将连接到一个枢纽。
连接到枢纽H1的城市与连接到枢纽H2之间的城市之间的运输即都需要通过H1到H2这段路径,这样能够降低运输费用。
我们知道两个枢纽之间的运输费用比一般运输费用低20%。
使用哪两个城市作为枢纽才能够最小化总运输成本?, 最小化总运输成本为多少?。
二.问题分析这是一个关于几个地点之间选中转站以减少运费的问题。
题目所给影响运费的因素有距离和运输货物的重量,而每段路程的运费与距离和运输量成正比,即S∝MS∝L设次正比系数为K,则有S=KML,这里取K=1单位。
影响枢纽的选择及总运费的因素归纳后只有各点之间的运费,此时可做有向图。
又总运费包括来和去,即i到j和j到i,相加后的即为各点之间的运费,此时问题可以简化为单一因素影响的选址问题,S即为所赋的权值,题目所要求的也就是取最小权值的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目:
某种电子系统由三种元件组成,为了使系统正常运转,每个元件都必须工作良好,如果一个或多个元件安装备用件将会提高系统的可靠性,已知系统运转的可靠性为各元件可靠性的乘积,而每一个元件的可靠性是备用元件函数,具体数值见下表。
若全部备用件费用限制为150元,重量限制为20公斤,问每个元件安装多少备用件可使系统可靠性达到极大值?
要求:①作出全局最优解
②列出这个问题的整数规划模型
假设:系统在运转过程中相互间没有影响,并且系统在增加备用件后
可靠性可以相互叠加。
建模:
设原件1,2,3需要的备用件各为x,y,z,可靠性为p分别为xp,yp,zp,整
个设备的可靠性为p,则由题意可得到:
p=xp*yp*zp;
2x+4y+6z<=20;
20x+30y+40z<=150;
x,y,z均为整数;
求出适当的x,y,z使p的值最大。
运用穷举法,编写C++程序如下:
#include<iostream>
void main()
{
using namespace std;
int x=0,y=0,z=0;//备À?用®?零¢?件t数ºy目?
double xp[6]={0.5,0.6,0.7,0.8,0.9,1},yp[4]={0.6,0.75,0.95,1},zp[3]={0.7,0.9,1};
double p=0,temp=0;//可¨¦靠?性?
int i=0,j=0,k=0;
cout<<"x\ty\tz\tp\n";
for(i=0;i<6;i++)
{ y=0;
for(j=0;j<4;j++)
{ z=0;
for(k=0;k<3;k++)
{if((x+2*y+3*z<=10)&&(2*x+3*y+4*z<=15))
{temp=p;
p=xp[x]*yp[y]*zp[z];
cout<<x<<"\t"<<y<<"\t"<<z<<"\t"<<p<<endl;
if(p<temp)
p=temp;
z++;}
else z++;}
y++;}
1 0
2 0.36 1 1 0 0.315 1 1 1 0.405 1 1 2 0.45 1 2 0 0.399 1 2 1 0.51
3 1 3 0 0.42 1 3 1 0.5
4 2
0.294
2
0 1 0.378 2 0 2 0.42 2 1 0 0.3675 2
1
1
0.4725
x++;}
cout<<endl<<p<<endl;
}
运行程序结果如下:
x y z p 0 0 0 0.21 0 0 1 0.27 0 0 2 0.3 0 1 0 0.2625 0 1 1 0.3375 0 1 2 0.375 0 2 0 0.3325
0 2 1 0.4275 0 2 2 0.475 0 3 0 0.35 0 3 1 0.45 1 0 0 0.252 1
0 1
0.324
得到最大可靠系数为0.6075,对应1,2,3零件数为4,1,1
模型应用:在资源一定的条件下,这种解决方式可使资源的最佳利用率提高。
结果分析:此解为全局最优解 另附:
同样,利用Lingo 软件也可以使用此解决方案的求解过程,求解时要注意运用线性规划方法可以得到最优解
小学二(2)班班规
一、 安全方面
2 1 2 0.525 2 2 0 0.4655 2 2 1 0.5985 2
3 0 0.49 3 0 0 0.336 3 0 1 0.432 3 0 2 0.48 3 1 0 0.42 3
1
1
0.54
3 2 0 0.532 3 3 0 0.56
4 0 0 0.378 4
1
0.486
4 1 0 0.472
5 4 1 1 0.6075 4 2 0 0.5985 5 0 0 0.42 5 0 1 0.54 5 1
0.525
0.6075
1、每天课间不能追逐打闹。
2、中午和下午放学要结伴回家。
3¡¢公路上走路要沿右边走,过马路要注意交通安全。
4¡¢不能在上学路上玩耍、逗留。
二、学习方面
1、每天到校后,不允许在走廊玩耍打闹,要进教室读书。
2、每节课铃声一响,要快速坐好,安静地等老师来上课。
3、课堂上不做小动作,不与同桌说悄悄话,认真思考,积极回答问题。
4、养成学前预习、学后复习的好习惯。
每天按时完成作业,保证字迹工整,卷面整洁。
5、考试时做到认真审题,不交头接耳,不抄袭,独立完成答卷。
三、升旗排队和两操方面
1、升旗时,要快速出教室排好队,做到快、静、齐,安静整齐地排队走出课室门,班长负责监督。
2、上午第二节后,快速坐好,按要求做好眼保健操。
3、下午预备铃声一响,在座位上做眼保健操。
四、卫生方面
1、每组值日生早晨7:35到校做值日。
2、要求各负其责,打扫要迅速彻底,打扫完毕劳动工具要摆放整齐。
3、卫生监督员(剑锋,锶妍,炜薪)要按时到岗,除负责自己的值日工作外,还要做好记录。
五、一日常规
1¡¢每天学生到齐后,班长要检查红领巾。
2¡¢劳动委员组织检查卫生。
3、每天负责领读的学生要督促学生学习。
4、上课前需唱一首歌,由文娱委员负责。
5¡¢做好两操。
6¡¢放学后,先做作业,然后帮助家长至少做一件家务事。
7¡¢如果有人违反班规,要到老师处说明原因。
班训:
坐如钟站如松快如风静无声
班规:
课堂听讲坐如钟,精神集中认真听;
排队升旗站如松,做操到位展雄风;
做事迅速快如风,样样事情记得清;
自习课上静无声,踏实学习不放松;
个人努力进步快,团结向上集体荣;
我为领巾添光彩,标兵集体记我功。
扣分标准
注:每人基本分60分起,学期末核算总分,作为学期评先依据。