5-3-5 分解质因数(二).教师版
小五数学第13讲:质数和合数(教师版)——刘文静
第十三讲质数和合数1、自然数按因数的个数来分:质数、合数、1、0四类.(1)质数(或素数):只有1和它本身两个因数。
(2)合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
(3)1:只有1个因数。
“1”既不是质数,也不是合数。
注:①最小的质数是2,最小的合数是4,连续的两个质数是2、3。
②每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
③ 20以内的质数:有8个(2、3、5、7、11、13、17、19)④ 100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、972、100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。
关系:奇数×奇数=奇数质数×质数=合数3、常见最大、最小A的最小因数是:1;最小的奇数是:1;A的最大因数是:本身;最小的偶数是:0;A的最小倍数是:本身;最小的质数是:2;最小的自然数是:0;最小的合数是:4;4、分解质因数:把一个合数分解成多个质数相乘的形式。
树状图例:分析:先把36写成两个因数相乘的形式,如果两个因数都是质数就不再进行分解了;如果两个因数中海油合数,那我们继续分解,一直分解到全部因数都是质数为止。
把36分解质因数是:36=2×2×3×35、用短除法分解质因数(一个合数写成几个质数相乘的形式)。
例:分析:看上面两个例子,分别是用短除法对18,30分解质因数,左边的数字表示“商”,竖折下面的表示余数,要注意步骤。
具体步骤是:6、互质数:公因数只有1的两个数,叫做互质数。
两个质数的互质数:5和7两个合数的互质数:8和9一质一合的互质数:7和87、两数互质的特殊情况:⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质;⑸质数与比它小的合数互质;教学重点:质数和合数的概念。
分解质因数(终极完整版)
专题一分解质因数专题简析:1.什么叫分解质因数?把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。
例如:24=2×2×2×3,75=3×5×5。
2.怎样分解质因数?把一个数分解质因数,要从最小的质数除起,一直除到结果为质数为止(短除法)。
3.分解质因数的目的:一是为了研究已知数与未知数之间的关系,从而使某些问题得到解决;二是为求最大公约数、最小公倍数服务。
【例题1】有4名同学参加夏令营,他们的年龄恰好一个比一个大1岁。
且知他们年龄的乘积是17160,你知道他们分别是多少岁呢?解析:17160=2×2×2×3×5×11×13=10×11×12×13【练习1】三个连续奇数的乘积是1287,则这三个数的和是多少?解析:1287=3×3×11×13=9×11×139+11+13=33【例题2】三个质数的和是38,求这三个质数的乘积最大值是多少?解析:奇+奇+偶=偶必有质数2,剩余两数和为36,则各自为17和19【练习2】两个质数的和是2001,这两个质数的乘积是多少?解析:同理【例题3】把7、14、20、21、28、30这六个数分成两组,每组三个数相乘,使他们的积相等应该如何分?解析:将每个数分解质因数,然后将质因数个数均分。
【练习3】将21,30,65,126,143,169,275分成两组,使两组数的积相等。
解析:同理【例题4】在1×2×3×4×5×…×200的末尾,连续有多少个零?解析:一个质因数2和一个质因数5相乘会使末尾产生一个0,质因数2的个数显然比质因数5的个数多,质因数的5的个数的确定:200÷5=40 200÷25=8 200÷125=1...75 所以有40+8+1=49个5,因此有49个0末尾。
二次根式计算专题——30题(教师版含答案)
(2) 3 12 3 1 1 48 27 32
【答案】(1)0;(2) 4 3 .
【解析】
试题分析:(1)原式=1 5 2 3 1 0 ;
(2)原式= 6 3 3 2 3 3 3 4 3 .
试题解析:原式=1 3 3 2 1 3 2 2 3
考点:1.实数的运算;2.零指数幂;3.分母有理化. 20.计算:
①
8
2
1 2
0
②
6 3 2
1 3
48
12
③
3a2 3
a 2
1 2
2a 3
【答案】① 2 1;② 14 ;③ a .
考点:二次根式化简.
14.计算 (3 2 24 8) 12 3
【答案】 -
2+
6
.
23
试卷第 4 页,总 10 页
【解析】 试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案. 试题解析:
(3 2 - 24 + 8) ¸ 12 = ( 6 - 2 6 +2 2) ¸ 2 3 = (2 2 - 6) ¸ 2 3 3
5
3
3 2 1;
(2) (6 x 2x 1 ) 3 x
4xBiblioteka (6 x 2x x ) 3 x 2x
(3 x 2 x ) 3 x
x 3 x
试卷第 1 页,总 10 页
1. 3
考点: 二次根式的混合运算.
3.计算: 3 12 2
小学奥数 5-5-4 余数性质(二).教师版
1. 学习余数的三大定理及综合运用2. 理解弃9法,并运用其解题一、三大余数定理:1.余数的加法定理 a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差。
例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2.当余数的差不够减时时,补上除数再减。
例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a 与b 的乘积除以c 的余数,等于a ,b 分别除以c 的余数的积,或者这个积除以c 所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c 的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2. 乘方:如果a 与b 除以m 的余数相同,那么n a 与n b 除以m 的余数也相同.二、弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234189818922678967178902889923++++=1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0知识点拨教学目标5-5-4.余数性质(二)这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。
五年级 第2讲 分解质因数(教师版)【修订版1.0】
第2讲 分解质因数一、教学目标1.掌握质因数及分解定义.2.学习短除法分解质因数.3.利用分解质因数解决实际问题.二、知识要点1.定义:质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.互质数:公约数只有1的两个自然数,叫做互质数.2.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数. 例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数.分解质因数往往是解数论题目的突破口,可以帮助我们分析数字的特征.3.短除法:短除符号与除式倒过来的符号十分相似,待分解的数放在被除数位置,除数位置放能整除待分解数的一个质数,一直除到商是质数为止.格式如图: ↓被除数待分解2 242 122 6 32 36 2 183 9 34.特殊数分解=⨯;10101371337=⨯⨯⨯.=⨯⨯;1000173137=⨯;1001711131113372017=______×______;2018=______×______;2019=______×______×______×______.三、例题精选【例1】对以下数进行质因数分解.(1)51=_______×_______(2)87=_______×_______(3)3528=______×______×______×______×______×______×______【★★★★★】【解析】51=3×17,87=3×29,3528=2×2×2×3×3×7×7.【巩固1】对以下数进行质因数分解.(1)57=_______×_______(2)91=_______×_______(3)1764=______×______×______×______×______×______【★★★★★】【解析】57=3×19,91=7×13,1764=2×2×3×3×7×7.【例2】如果两个自然数的和与差的积是23,那么这两个自然数分别是多少?【★★★★★】【解析】11和12.因为23是一个质数,23=1×23,故这连个自然数的和应为23,差应为1。
小学数学奥赛5-1-2-5 最值的数字谜(二).教师版
1. 掌握最值中的数字谜的技巧2. 能够综合运用数论相关知识解决数字谜问题数字谜中的最值问题常用分析方法1. 数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;2. 竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等.3. 数字谜的常用分析方法有:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.4. 除了数字谜问题常用的分析方法外,还会经常采用比较法,通过比较算式计算过程的各步骤,得到所求的最值的可能值,再验证能否取到这个最值.5. 数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型。
模块一、横式数字谜【例 1】 在下面的算式□中填入四个运算符号+、-、⨯、÷、(每个符号只填一次),则计算结果最大是_______.12345□□□□【考点】混合计算中的数字谜 【难度】2星 【题型】填空【关键词】希望杯,六年级,初赛,第3题,6分【解析】 为了得到最大结果必须用“×”连接4和5,那么4和5前边一定是“+”,通过尝试得到:112345203-÷+⨯=. 【答案】1203【例 2】 将+,-,×,÷四个运算符号分别填入下面的四个框中使该式的值最大。
1111123456□□□□ 【考点】混合计算中的数字谜 【难度】3星 【题型】填空【关键词】华杯赛,初赛,第9题【解析】 题目给出5个数,乘、除之后成3个数,其中减数应尽量小,由两个数合成(相乘或相除)的加数与另一个分数相加应尽量大,,,,;,例题精讲知识点拨教学目标5-1-2-5.最值中的数字谜(二),,;而,,,;其中最小的是,而,,所以最大【答案】最大【例3】将1、3、5、7、9填入等号左边的5个方框中,2、4、6、8填入等号右边的4个方框中,使等式成立,且等号两边的计算结果都是自然数.这个结果最大为.÷++=÷+【考点】混合计算中的数字谜【难度】3星【题型】填空【解析】等号左边相当于三个奇数相加,其结果为奇数,而等号右边的计算结果为奇数时,最大为628487÷+=,又3157987÷++=满足条件(情况不唯一),所以结果的最大值为87.【答案】87【例4】一个电子表用5个两位数(包括首位为0的两位数)表示时间,如15:23:45/06/18表示6月18日15点23分45秒.有一些时刻这个电子表上十个数字都不同,在这些时刻中,表示时间的5个两位数之和最大是.【考点】【难度】星【题型】填空【关键词】迎春杯,高年级,决赛,8题【解析】假设五个两位数的十位数上的数字之和为x,那么个位数上的数字之和为45x-,则五个两位数上的数字之和为1045459x x x+-=+,所以十位数上的数字之和越大,则五个两位数之和越大.显然,五个两位数的十位数字都不超过5,只能是012345,,,,,这五个数字中的五个.如果五个数字是54321,,,,,那么54,只能在“分”、“秒”两个两位数的十位,而3只能在“日期”的十位上,2只能在“时”的十位上,1只能在“月份”的十位上,此时“日期”的个位、“月份”的个位、“时”的个位不能同时满足实际情况.如果五个数字是54320,,,,,那么54,只能在“分”、“秒”两个两位数的十位,而3只能在“日期”的十位上,2只能在“时”的十位上,此时“日期”的个位、“时”的个位不能同时满足实际情况.如果五个数字是54310,,,,,那么54,只能在“分”、“秒”两个两位数的十位,而3只能在“日期”的十位上,则“日期”的个位无法满足情况.如果五个数字是54210,,,,,那么54,只能在“分”、“秒”两个两位数的十位,210,,依次在“日期”的十位上、“时”的十位上、“月份”的十位上容易满足条件.所以最大值为()45954210153+⨯++++=.【答案】153【例5】0.2.0080.A BCC A B••=••,三位数ABC的最大值是多少?【考点】乘除法中的最值问题【难度】3星【题型】填空【关键词】走美杯,六年级,初赛,第4题【解析】 2.008化为分数是251125,可以约分为251125的分数有502250、753375,所以ABC的最大值为753.【答案】753模块二、乘除法中的最值问题【例6】已知一个五位回文数等于45与一个四位回文数的乘积(即45abcba deed=⨯),那么这个五位回文数最大的可能值是________.【考点】乘除法中的最值问题【难度】3星【题型】填空【关键词】迎春杯,五年级,初赛,第7题【解析】 根据题意,45abcba deed =,则abcba 为45的倍数,所以a 应为0或5,又a 还在首位,所以a =5,现在要让abcba 尽可能的大,首先需要位数高的尽可能的大,所以令9b =,8c =,则a b c b a ++++=5+9+8+9+5=36是9的倍数,用59895÷45=1331符合条件,所以这个五位回文数最大的可能值是59895.【答案】59895【例 7】 在下面乘法竖式的每个方格中填入一个非零数字,使算式成立。
【教师版】小学奥数5-3-2 质数与合数(二).专项练习及答案解析
1.掌握质数与合数的定义 2.能够用特殊的偶质数2与质数5解题 3.能够利用质数个位数的特点解题 4. 质数、合数综合运用一、质数与合数 一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.要特别记住:0和1不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点.⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.二、判断一个数是否为质数的方法根据定义如果能够找到一个小于p 的质数q (均为整数),使得q 能够整除p ,那么p 就不是质数,所以我们只要拿所有小于p 的质数去除p 就可以了;但是这样的计算量很大,对于不太大的p ,我们可以先找一个大于且接近p 的平方数2K ,再列出所有不大于K 的质数,用这些质数去除p ,如没有能够除尽的那么p 就为质数.例如:149很接近1441212=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.。
模块一、偶质数2 【例 1】 如果,,a b c 都是质数,并且a b c -=,则c 的最小值是_________【考点】偶质数2 【难度】2星 【题型】填空【关键词】希望杯,4年级,初赛,17题【解析】 本题考察的是最小的偶质数2,所以c 最小是2.【答案】2【例 2】 两个质数之和为39,求这两个质数的乘积是多少.【考点】偶质数2 【难度】2星 【题型】解答【解析】 因为和为奇数,所以这两个数必为一奇一偶,所以其中一个是2,另一个是37,例题精讲知识点拨知识框架5-3-2.质数与合数(二)乘积为74.我们要善于抓住此类题的突破口。
2023年人教版数学五年级下册分数加减混合运算二教案与反思(精选3篇)
人教版数学五年级下册分数加减混合运算二教案与反思(精选3篇)〖人教版数学五年级下册分数加减混合运算二教案与反思第【1】篇〗教学目标(1)使学生进一步掌握分数连加、连减的计算方法。
(2)通过练习,使学生能根据特点正确、合理地选择方法进行计算。
(3)通过思考题探究,培养学生探究数学的兴趣,提高探究能力。
教学重点、难点重点、难点:根据特点正确、合理地选择方法进行计算。
教具、学具准备教学过程备注一、基本训练1、口算。
(下面这些题目你能很快说出结果吗?为什么?)1又1/7+2/7+1又3/71-1/2-1/33又17/20+1又8/9+1/91-1/8-52又3/14+4+1又11/144-1/3-1/64又7/10+2+1/105-1/5-3/52又1/5+4/9+1又7/8(1)学生谈谈看法后即计算。
(2)反馈时请举例说明“怎样算比较简便”。
2、揭示课题:带分数加减练习。
二、组织练习,提高技能1、先说说下列各题该如何计算,并独立完成。
3又11/18+7/10+2又1/610-4又6/7-2/56又1/12-2又13/15-1又17/202又8/13+4又5/11+1又5/13 (1)学生独立完成,教师巡视指名板演。
(2)反馈计算思路,设问:为什么题目中不要用简便方法计算,而你对第4题则用了简便方法计算。
2、引导讨论:计算带分数加减法,要观察数据特点,能运用运算定律进行简便计算的,则尽量用简便方法计算。
3、专项练习:下列各题怎样简便就怎样算。
5又1/3-1又1/6-2又5/64又5/12+11/12+1又7/12+10/219又3/8+3又5/6+1又5/87又3/11-2又8/9+1又7/11-4又1/9 (1)学生独立完成。
(2)同桌交换互批,并说说思路。
(3)全班交流。
三、应用练习,巩固技能1、谈话导入应用性练习。
2、选择正确的算式,并计算出结果。
(1)4又2/3与1又5/9的和,再加上2又5/6得多少?教学过程备注A、4又2/3+(1又5/9+2又5/6)B、4又2/3+1又5/9+2又5/6C、4又2/3+2又5/6+1又5/9(2)6减去3又5/6的差,再减去1又1/8,得多少?A、6-3又5/6-1又1/8B、6-(3又5/6-1又4/8)C、6-1又1/8-3又5/6(3)两个数的和是9又17/20,其中一个数是2又2/3,另一个数比它多多少?A、9又17/20-2又2/3B、9又17/20-(2又2/3+2又2/3)C、9又17/20-2又2/3-2又2/3(对第3题可扩展,设问:还有其他列式方法吗?如9又17/20-2又2/3×2)3、应用题练习。
小学奥数 5-1-2-3 乘除法数字谜(二).教师版
数字谜是杯赛中非常重要的一块,特别是迎春杯,数字谜是必考的,一般学生在做数字谜的时候都采用尝试的方式,但是这样会在考试中浪费很多时间.本模块主要讲乘除竖式数字谜的解题方法,学会通过找突破口来解决问题.最后通过例题的学习,总结解数字谜问题的关键是找到合适的解题突破口.在确定各数位上的数字时,首先要对填写的数字进行估算,这样可以缩小取值范围,然后再逐一检验,去掉不符合题意的取值,直到取得正确的解答.1. 数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.2. 数字谜突破口:这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则,数的性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)来进行正确的推理,判断.3. 解数字谜:一般是从某个数的首位或末位数字上寻找突破口.推理时应注意: ⑴ 数字谜中的文字,字母或其它符号,只取0~9中的某个数字; ⑵ 要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;⑶ 必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字; ⑷ 数字谜解出之后,最好验算一遍.模块一、与数论结合的数字谜 (1)、特殊数字【例 1】 如图,不同的汉字代表不同的数字,其中“变”为1,3,5,7,9,11,13这七个数的平均数,那么“学习改变命运”代表的多位数是 .1999998⨯学习改变命运变 【考点】与数论结合的数字谜之特殊数字 【难度】2星 【题型】填空 【关键词】学而思杯,4年级,第9题 【解析】 “变”就是7,19999987285714÷= 【答案】285714【例 2】 右边是一个六位乘以一个一位数的算式,不同的汉字表示不同的数,相同的汉字表示相同的数,其中的六位数是______ 。
例题精讲知识点拨教学目标5-1-2-3.乘除法数字谜(二)杯小9望99999×赛赛希学【考点】与数论结合的数字谜之特殊数字 【难度】3星 【题型】填空 【关键词】希望杯,4年级,初赛,20题 【解析】 赛×赛的个位是9,赛=3或7,赛=3,小学希望杯赛=333333,不合题意,舍去;故赛=7,小学希望杯赛=999999÷7=142857【答案】142857【例 3】 右面算式中相同的字母代表相同的数字,不同的字母代表不同的数字,问A 和E 各代表什么数字?E AEDEEEEE×3CB【考点】与数论结合的数字谜之特殊数字 【难度】3星 【题型】填空【解析】 由于被乘数的最高位数字与乘数相同,且乘积为EEEEEE ,是重复数字根据重复数字的特点拆分,将其分解质因数后为:=37111337EEEEEE E ⨯⨯⨯⨯⨯,所以3A =或者是7A =①若A =3,因为3×3=9,则E =1,而个位上1×3=3≠1,因此,A≠3。
五年级上册秋季数学思维拓展-质数与合数(教师版)
第3讲 质数与合数内容概述掌握质数与合数的概念;熟悉常用的质数,并掌握质数的判定方法;能够利用分解质因数的方法解决相关的整数问题;学会计算乘积末尾零的个数.典型问题兴趣篇1.(1)如果两个质数相加等于16,这两个质数有可能等于多少?(2)如果两个质数相加等于25,这两个质数有可能等于多少?(3)如果两个质数相加等于29,这样的两个质数存在吗?答案:(1)3,13或5,11。
(2)2,23 (3)不存在详解:利用奇偶性。
奇数+奇数=偶数,奇数+偶数=奇数。
两个质数和为奇数,必有质数22.有人说:“任何7个连续整数中一定有质数.”请你举一个例子,说明这句话是错的. 答案:90,91,92,93,94,95,963.请写出5个质数,使得它们正好构成一个公差为12的等差数列.答案:5,17,29,41,534.请把下面的数分解质因数:(1) 160;(2) 598;(3) 211.答案:(1)160=525×(2)21323××(3)211是质数5.三个自然数的乘积为84,其中两个数的和正好等于第三个数,请求出这三个数. 答案:3,4,7详解:分解质因数84=2237××,两个数的和等于第三个数,因此三个数分别为3,4,76.用一个两位数除330,结果正好能整除,请写出所有可能的两位数.答案:11,22,33,55,66,10,15,30详解:分解质因数330=23511×××,结果是两位数,枚举即可7.三个连续自然数的乘积等于39270.这三个连续自然数的和等于多少?答案:102详解:分解质因数39270=23571117×××××=333435××,三个数和为1028.请将2、5、14、24、27、55、56、99这8个数分成两组,使得这两组数的乘积相等. 答案:5,14,24和99为一组;2,27,55和56为一组详解:分别分解质因数,讲质因子平均分到两组即可9.请问:算式l x2 x3×…×15的计算结果的末尾有几个连续的0?答案:3个详解:连乘结果末尾0的个数取决于有几个10相乘,10=25×,2的个数明显要多于5的个数,因此只要算出有几个5即可。
因数倍数质数教师版
因数倍数质数合数【知识点1】因素与倍数1、因数与倍数2、分解质因数【例题1】引入8÷2=4 8=2×48是2和4的倍数,那么2和4就是8的因数在1 到20 的整数中,(1)哪些是2 的倍数?哪些是3的倍数?(2)哪些是10 的因数?哪些是16的因数?【解答】(1)2 的倍数:2、4、6、8、10、12、14、16、18、20;3 的倍数:3、6、9、12、15、18;(2)10 的因数为:1、5、10;16 的因数为:1、2、4、8、16;【例题2】请分别写出12 的因数,24 的因数,30的因数。
【解答】①12= 1×12= 2×6= 3×4全部因数为:1、2、3、4、6、12;②24= 1×24= 2×12= 3×8= 4×6全部因数为:1、2、3、4、6、8、12、24;③30=1×30=2×15= 3×10= 5 ×6全部因数为:1、2、3、5、6、10、15、30。
【例题3】最大公因数/最小公倍数【引入】求12和18的因数和倍数12的因数:1、2、3、4、6、1218的因数:1、2、3、6、9、18公因数:1、2、3、6最大公因数:612的倍数:12、24、36、48、60、72……18的倍数:18、36、54、72、90、108……公倍数:36、72……最小公倍数:36【例题1】:分别求出下面三组书的最大公因数和最小公倍数(1)12和18 (2)24和36 (3)48和96【解析】复习提问因数和倍数的定义,引入公因数和公倍数的概念。
进而讲解最大公因数和最小公倍数的方法,短除法。
【解答】(12,18)=2×3=6 (24,36)=2×2×3=12[12,18]=2×3×2×3=36 [12,18]=2×2×3×2×3=72(48,96)=2×2×2×2×3=48[12,18]= 2×2×2×2×3×1×2=96【知识点2】质数与合数1、质数:一个数,只有1和它本身两个因数,这样的数叫质数(素数)。
5-4-1完全平方数,题库教师版
5-4完全平方数教学目标完全平方数是数论板块中一个比较精华的小分支,从知识特点上讲属于约数倍数和质数合数交叉的知识体系,其题目多为考察上述两块综合性知识,是杯赛和小升初试卷中的一个热点.知识点拨一、完全平方数常用性质1.主要性质1.完全平方数的尾数只能是0,1,4,5,6,9。
不可能是2,3,7,8。
2.在两个连续正整数的平方数之间不存在完全平方数。
3.完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。
4.若质数p整除完全平方数2a,则p能被a整除。
2.一些重要的推论1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
4.完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。
5.完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。
6.完全平方数的个位数字为6时,其十位数字必为奇数。
7.凡个位数字是5但末两位数字不是25的自然数不是完全平方数;末尾只有奇数个“0”的自然数不是完全平方数;个位数字为1,4,9而十位数字为奇数的自然数不是完全平方数。
3.重点公式回顾:平方差公式:22()()a b a b a b -=+-模块一、完全平方数基本性质和概念【例 1】 (2000年“祖冲之杯”小学数学邀赛) 1234567654321(1234567654321)⨯++++++++++++是 的平方.【解析】 212345676543211111111=,212345676543217++++++++++++=,原式22(11111117)7777777=⨯=.【巩固】 (华杯赛试题)下面是一个算式:112123123412345123456+⨯+⨯⨯+⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯⨯,这个算式的得数能否是某个数的平方?【解析】 判断一个数是否是某个数的平方,首先要观察它的个位数是多少.平方数的个位数只能是0,1,4,5,6,9,而2,3,7,8不可能是平方数的个位数.这个算式的前二项之和为3,中间二项之和的个位数为0,后面二项中每项都有因子2和5,个位数一定是0,因此,这个0算式得数的个位数是3,不可能是某个数的平方.【例 2】 写出从360到630的自然数中有奇数个约数的数.【解析】 一个合数的约数的个数是在严格分解质因数之后,将每个质因数的指数(次数)加1后所得的乘积.如:1400严格分解质因数后为23×52×7,所以它的约数有(3+1)×(2+1)×(1+1)=4×3×2=24个.(包括1和它自身)如果某个自然数有奇数个约数,那么这个数的所有质因子的个数均为偶数个.这样它们加1后均是奇数,所得的乘积才能是奇数.而所有质因数的个数均是偶数个的数为完全平方数.即完全平方数(除0外)有奇数个约数,反过来,有奇数个约数的数一定是完全平方数.由以上分析知,我们所求的为360~630之间有多少个完全平方数?18×18=324,19×19=361,25×25=625,26×26=676,所以在360~630之间的完全平方数为192,202,212,222,232,242,252.即360到630的自然数中有奇数个约数的数为361,400,441,484,529,576,625.【巩固】 一个数的完全平方有39个约数,求该数的约数个数是多少?【解析】 设该数为1212n a a a n p p p ⨯⨯⨯,那么它的平方就是1222212n a a a n p p p ⨯⨯⨯,因此()()()1221212139n a a a +⨯+⨯⨯+=.由于39139313=⨯=⨯,⑴所以,1213a +=,22113a +=,可得11a =,26a =;故该数的约数个数为()()116114+⨯+=个;⑵或者,12139a +=,可得119a =,那么该数的约数个数为19120+=个.所以这个数的约数个数为14个或者20个.例题精讲【例 3】 从1到2008的所有自然数中,乘以72后是完全平方数的数共有多少个?【解析】 完全平方数,其所有质因数必定成对出现.而327223266=⨯=⨯⨯,所以满足条件的数必为某个完全平方数的2倍,由于2313119222008232322048⨯⨯=<<⨯⨯=,所以221⨯、222⨯、……、2231⨯都满足题意,即所求的满足条件的数共有31个.【巩固】 1016与正整数a 的乘积是一个完全平方数,则a 的最小值是________.【解析】 先将1016分解质因数:310162127=⨯,由于1016a ⨯是一个完全平方数,所以至少为422127⨯,故a 最小为2127254⨯=.【巩固】 已知3528a 恰是自然数b 的平方数,a 的最小值是 。
小学奥数 5-4-2 约数与倍数(二).教师版
5-4-2.约数与倍数(二)教学目标1.本讲主要对课本中的:约数、公约数、最大公约数;倍数、公倍数、最小公倍数性质的应用。
2.本讲核心目标:让孩子对数字的本质结构有一个深入的认识,例如:(1)约数、公约数、最大公约数;倍数、公倍数、最小公倍数的内在关系;(2)整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为△☆△☆...△☆的结构,而且表达形式唯一”知识点拨一、约数、公约数与最大公约数概念(1)约数:在正整数范围内约数又叫因数,整数a能被整数b整除,a叫做b的倍数,b就叫做a的约数;(2)公约数:如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;(3)最大公约数:公约数中最大的一个就是最大公约数;(4)0被排除在约数与倍数之外1.求最大公约数的方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来.例如:2313711,25222327,所以(231,252)3721;21812②短除法:先找出所有共有的约数,然后相乘.例如:396,所以(12,18)236;32③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最大公约数:151********;6003151285;315285130;28530915;301520;所以1515和600的最大公约数是15.2.最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数;②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n,所得的积的最大公约数等于这几个数的最大公约数乘以n.3.求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a;求出各个分数的分子的最大公约数b;b即为所求.a注意:两个最简分数的最大公约数不能是整数,最小公倍数可以是整数.例如: ⎡ 1 , 4 ⎤ = ⎣ ⎦4. 约数、公约数最大公约数的关系(1)约数是对一个数说的;(2)公约数是最大公约数的约数,最大公约数是公约数的倍数二、倍数的概念与最小公倍数(1)倍数:一个整数能够被另一整数整除,这个整数就是另一整数的倍数(2)公倍数:在两个或两个以上的自然数中,如果它们有相同的倍数,那么这些倍数就叫做它们的公倍数 (3)最小公倍数:公倍数中最小的那个称为这些正整数的最小公倍数。
五年级奥数周周练 第24周 分解质因数(二) (教师版)答案
第24周分解质因数(二)一、知识要点许多题目,特别是一些竞赛题,初看起来很玄妙,但它们都与乘积有关,对于这类题目,我们可以用分解质因数的方法求解。
因此,掌握并灵活应用分解质因数的知识,能解答许多一般方法不能解答的与积有关的应用题。
二、精讲精练【例题1】三个质数的和是80,这三个数的积最大可以是多少?【思路导航】三个质数相加的和是偶数,必有一个质数是2。
80-2=78,剩下两个质数的和是78,而且要使它的积最大,只能是41和37。
因此,这三个质数是2、37和41。
最大积是2×37×41=3034。
练习1:1.有三个质数,它们的乘积是1001,这三个质数各是多少?1001=7×11×13答:这三个质数分别是7、11、13。
2.张明是个初中生,有一次,他参加数学竞赛后,所得的名次、分数和他的岁数三者的积是2910。
求张明的成绩、名次和年龄分别是多少?2910=2×3×5×97,其中3×5=15,最接近他的年龄可能值,97一定是他的分数,那么2是他的名次。
答:张明的成绩、名次和年龄分别是97分、第2名、15岁。
3.写出若干个连续的自然数,使它们的积是15120。
把15120分解质因数,15120=2×2×2×2×3×3×3×5×7,可知15120=5×(2×3)×7×(2×2×2)×(3×3)=5×6×7×8×9答:5×6×7×8×9=15120。
【例题2】长方形的面积是375平方米,已知它的宽比长少10米,长和宽的和是多少米?【思路导航】这道题如果用方程来解会比较麻烦,我们可以把375分解质因数看一看。
分解质因数的方法
分解质因数的方法分解质因数是指将一个数按照素数的乘积形式来表示,这是一个非常重要的数学概念,也是数论中的一个基本问题。
在学习分解质因数的方法时,我们需要掌握一些基本的知识和技巧,下面我将为大家详细介绍分解质因数的方法。
首先,我们需要了解什么是质数。
质数是指除了1和本身之外没有其他因数的自然数,例如2、3、5、7等都是质数。
而非质数则是可以被除了1和本身之外的其他数整除的自然数,例如4、6、8、9等都是非质数。
接下来,我们来看一下分解质因数的具体方法。
假设我们要分解的数是n,我们可以先从最小的质数2开始,依次尝试用2去除n,如果能整除,则将2作为n的一个质因数,并将n除以2的商作为新的n。
然后再用2去除新的n,一直重复这个过程,直到无法再整除为止。
接着我们再尝试用下一个质数去除n,直到n变为1为止。
最后,我们将得到的所有质因数乘积即为n的分解质因数的结果。
举个例子,我们来分解质因数100。
首先,我们用2去除100,得到50;再用2去除50,得到25;再用5去除25,得到5;最后用5去除5,得到1。
所以100的分解质因数结果为2^2 5^2。
除了上面介绍的方法外,我们还可以利用试除法、分解法等方法来进行分解质因数。
试除法是指用小于或等于被除数的所有质数去除被除数,找到能整除的质数,然后继续用这个质数去除商,一直重复这个过程,直到商为1为止。
而分解法则是将被分解的数按照一定规则进行分解,直到无法继续分解为止。
总的来说,分解质因数是数论中的一个基本问题,掌握好分解质因数的方法对于我们理解数学知识、解决实际问题都有着重要的意义。
希望通过本文的介绍,大家能够更加深入地了解分解质因数的方法,提高自己的数学水平。
小五数学第13讲:质数和合数(教师版)
第十三讲质数和合数1、自然数按因数的个数来分:质数、合数、1、0四类.(1)质数(或素数):只有1和它本身两个因数。
(2)合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
(3)1:只有1个因数。
“1”既不是质数,也不是合数。
注:①最小的质数是2,最小的合数是4,连续的两个质数是2、3。
②每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
③ 20以内的质数:有8个(2、3、5、7、11、13、17、19)④ 100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、972、100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。
关系:奇数×奇数=奇数质数×质数=合数3、常见最大、最小A的最小因数是:1;最小的奇数是:1;A的最大因数是:本身;最小的偶数是:0;A的最小倍数是:本身;最小的质数是:2;最小的自然数是:0;最小的合数是:4;4、分解质因数:把一个合数分解成多个质数相乘的形式。
树状图例:分析:先把36写成两个因数相乘的形式,如果两个因数都是质数就不再进行分解了;如果两个因数中海油合数,那我们继续分解,一直分解到全部因数都是质数为止。
把36分解质因数是:36=2×2×3×35、用短除法分解质因数(一个合数写成几个质数相乘的形式)。
例:分析:看上面两个例子,分别是用短除法对18,30分解质因数,左边的数字表示“商”,竖折下面的表示余数,要注意步骤。
具体步骤是:6、互质数:公因数只有1的两个数,叫做互质数。
两个质数的互质数:5和7两个合数的互质数:8和9一质一合的互质数:7和87、两数互质的特殊情况:⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质;⑸质数与比它小的合数互质;教学重点:质数和合数的概念。
专题4.2 一元一次方程(情境应用题)(专项拔高卷)教师版
2023-2024学年苏科版数学七年级上册同步专题热点难点专项练习专题4.2 一元一次方程(情境应用题)(专项拔高卷)考试时间:90分钟 试卷满分:100分 难度:0.48一、选择题(共10题;每题2分,共20分)1.(2分)(2023七上·桂平期末)幻方是相当古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1,2,3,4,5,6,7,8,9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m 的值为( ) 3 85 mA .6B .2C .1D .4【答案】C 【规范解答】解:设第一行第一个数是x ,第三行第三个数是y ,依题意得15384x =--=,15456y =--=,∴6815m ++=,解得1m =.故答案为:C.【思路点拨】设第一行第一个数是x ,第三行第三个数是y ,根据“ 每一横行、每一竖行以及两条斜对角线上的数字之和都是15 ”先求出x 、y 值,再求出m 即可.2.(2分)(2023七上·温州期末)甲单位到药店购买了一箱消毒水和60元的口罩,乙单位在同一药店购买了一箱消毒水和25元的口罩,乙单位购买总价只相当于甲单位购买总价的712,一箱消毒水多少元?设一箱消毒水为x 元,则下列方程正确的是( )A .712(25+x)=60+xB .60+712x=25+xC .60-712x=25+xD .712(60+x)=25+x 【答案】D【规范解答】解:设一箱消毒水为x 元,根据题意得712(60+x)=25+x .故答案为:D【思路点拨】此题的等量关系为:乙单位购买总价=甲单位购买总价×712,列方程即可.3.(2分)(2022七上·永城期末)某电商平台将一件商品按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利78元,这件商品的进价是多少元?若设这种商品每件的进价为x 元,那么所列方程为( )A .80%(140%)78x x +-=B .80%(140%)78x +=C .80%(140%)78x x -+=D .80%(140%)78x x --=【答案】A【规范解答】解:由题意得:一件这种商品的标价为(140%)x +元,售价为80%(140%)x +,则可列方程为80%(140%)78x x +-=,故A 正确.故答案为:A.【思路点拨】根据标价×折扣-进价=利润列出方程即可.4.(2分)(2022七上·城阳期末)为使全国人民都过上幸福的小康生活,近年来各地扶贫办致力于帮扶当地区特色产品走进市民的菜篮子,助力更多优质农产品走出地区、走向全国.已知有一扶贫农产品去年和今年两年的销售总额为180万元,其中该扶贫农产品去年的价格为15元/千克,今年的价格为12元/千克,今年的销售产量比去年增长了25%.今年该扶贫农产品销售( )千克.A .60000B .75000C .6000D .7500【答案】B【规范解答】解:设去年该扶贫农产品销售x 千克,则今年该扶贫农产品销售()125%x +千克,根据题意得:()1512125%1800000x x ++=,解得60000x =,∴()125%75000x +=,∴今年该扶贫农产品销售75000千克,故答案为:B .【思路点拨】设去年该扶贫农产品销售x 千克,则今年该扶贫农产品销售()125%x +千克,根据题意列出方程()1512125%1800000x x ++=,再求解即可。
六年级下册奥数试题 分解质因数 全国通用(含答案)【精品】
第4讲分解质因数知识网络(1)如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。
(2)把一个合数用质因数相乘表示,叫做分解质因数。
如把12分解质因数得,这时称2和3是12的质因数。
(3)算术基本定理:任何大于1的整数都能表示成质数的乘积。
(4)如果把相同的质因数合并为它的幂,则任一大于1的整数N只能惟一地表示成:(其中质数;,,…,是自然数,它们分别是,,…,的指数),则上式称为N的标准分解式。
(5)分解质因数的方法主要是短除法。
(在小学阶段)试除时一般从最小质数开始。
重点·难点质数与互质的区别:质数是指约数只有1和它本身的自然数;而两个数的共同约数只有1时,这样两个数的关系称为互质。
学法指导已知约数的个数,求原自然数,属于求一个合数的约数个数的逆向问题。
首先把约数个数分解质因数,逆推求出原自然数,再从中找到符合题目要求的一个。
经典例题[例1]将八个数14、33、35、30、75、39、143、169分成两组,每组四个数,并且每组四个数的乘积相等,应该怎样分?思路剖析要使两组数的乘积相等,就要使两组中的质因数一样,并且相同质因数的个数相同。
为此,我们先将八个数分解质因数:14=2×733=3×1135=5×730=2×3×575=3×5×539=3×13143=11×13169=13×13通过观察各式可知,八个数中,质因数2、7、11各有两个,质因数3、5、13各有四个,所以每组中应该是2、7、11各有一个,3、5、13各有两个。
解答首先将14=2×7分在第一组,另外两个含有质因数2和7的数30=2×3×5和35=5×7就应分在第二组。
这样,在第二组中不仅有2与7,还有两个5,所以另外两个质因数5就应分在第一组,即75=3×5×5归在第一组中。
四年级数学质数
四年级数学质数一、质数的定义。
在人教版四年级数学中,一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数)。
例如,2,它的因数只有1和2;3的因数也只有1和3;5的因数是1和5等,像2、3、5这样的数就是质数。
二、质数的特点。
1. 最小的质数是2。
- 2是唯一的偶质数。
因为其他偶数都至少有1、2和它本身三个因数,比如4的因数有1、2、4,不符合质数的定义。
2. 质数除了2以外都是奇数。
- 但并不是所有奇数都是质数,例如9是奇数,它的因数有1、3、9,所以9不是质数。
三、判断质数的方法。
1. 列举因数法。
- 对于一个数,从1开始依次列举它的因数,看因数的个数是否只有2个。
例如判断7是否为质数,7的因数有1和7,只有2个因数,所以7是质数。
- 再如判断12是否为质数,12的因数有1、2、3、4、6、12,因数个数超过2个,所以12不是质数。
2. 试除法。
- 用比这个数小的质数依次去除这个数,如果都不能整除,那么这个数就是质数。
例如判断17是否为质数,用2、3、5、7、11、13依次去除17,都不能整除,所以17是质数。
四、质数在数学中的应用。
1. 分解质因数。
- 把一个合数写成几个质数相乘的形式,这几个质数就叫做这个合数的质因数。
例如,12 = 2×2×3,其中2和3都是质数,是12的质因数。
分解质因数在解决一些数学问题,如求最大公因数和最小公倍数时非常有用。
2. 数的整除性研究。
- 在研究数的整除性质时,质数是基础。
例如,一个数能被质数整除的特性等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果要让 B 尽可能地大,实际上就是让上面的式子中的 n 尽可能地小而 m 尽可能地大,因此应当
m 取最大的约数,而 n 应取最小的约数,因此 m 2009 , n 1 ,所以 B 2009 2008 .
【答案】 B 2009 2008
【巩固】
1 45
1
1
1
1
1
1
1
1
1
1
【考点】分数的拆分 【难度】4 星 【题型】填空
12 13 156
10 13 60 156
【答案】 1 1 1 1 10 13 60 156
【例 9】 已知等式 1 1 1 其中 a,b 是非零自然数,求 a+b 的最大值。 15 a b
【考点】分数的拆分 【难度】5 星 【题型】填空
【关键词】华杯赛,决赛,第 13 题
【解析】 易知,
x
y
x
y
都要大于 1001,要保证 a、b 都是四位数,所以 a、b 的比值都要小于 10,即 x、y 的比值小于 10.而
1001 的两个互质且比值小于 10 的约数有以下几组:(1,7)、(7,11)、(7,13)、(11,13)、(11,91)、
(13,77).所以我们依次取 x、y 为上面所列的数对中的数,代入 a、b 的表达式,得到本题的答案: a 8008,2574,2860,2184,9282,6930 b 1144,1638,1540,1848,1122,1170
1
3
4
11
2004 2004(3 4) 2004(3 4) 4676 3507
【答案】 1
1
2
11
2004 2004(1 2) 2004(1 2) 6012 3006
1
1
3
11
2004 2004(1 3) 2004(1 3) 8016 2672
1
2
3
11
2004 2004(2 3) 2004(2 3) 5010 3340
⑴ 本题10 的约数有:1 ,10,2,5. 例如:选 1 和 2,有: 1 1 2 1 2 1 1 ;
10 10 (1 2) 10 (1 2) 10 (1 2) 30 15
从上面变化的过程可以看出,如果取出的两组不同的 m 和 n ,它们的数值虽然不同,但是如果 m 和 n
page 1 of 8
1998 2 3 3 3 37 ; 2007 3 3 223 ; 2008 2 2 2 251;10101 3 7 13 37 .
例题精讲
模块一、分数的拆分
【例 1】 算式“ 1 + 1 + 1 =1”中,不同的汉字表示不同的自然数,则“希+望+杯”=
。
希望杯
1
【考点】分数的拆分 【难度】4 星 【题型】填空
【解析】先选 10 的三个约数,比如 5、2 和 1,表示成连减式 5 2 1 和连加式 5 2 1.
则:
1 10
1
4
1
10
1
20
1
80
1
40
1
16
如果选 10、5、2,那么有: 1 1 1 1 1 1 1 . 10 3 6 15 17 34 85
5-3-4.分解质因数.题库
教师版
page 2 of 8
b d cb ad 1 ,即有 cb ad 1 ,那么很容易发现只有 3×5-2×7=1 。符合原式的填法为 a c ac ac 32 1 。 7 5 35 【答案】 3 2 1 7 5 35
【例 5】 求满足条件 1 1 1 的 a、b 的值(a、b 都是四位数). a b 1001
5-3-4.分解质因数.题库
教师版
page 4 of 8
【解析】
1 45
1
72
1
120
1
18
1
30
1
405
1
135
1
81
1
9
1
15
1
45
【答案】
1 45
1
72
1
120
1
18
1
30
1
405
1
135
1
81
1
9
1
15
1
45
【例 8】 在下面的括号里填上不同的自然数,使等式成立.
1 10
1
1
1
1
1
当(m,n)=(1,5)时, 1 1 1 ,此时,a+b=108; 15 90 18
当(m,n)=(1,15)时,
1 15
1 240
1 16
,此时,a+b=256;
当(m,n)=(3,5)时
,
【答案】
a b
8008,2574,2860,2184,9282,6930 1144,1638,1540,1848,1122,1170
【巩固】若 1 1 1 ,其中 a、b 都是四位数,且 a<b,那么满足上述条件的所有数对(a,b)是 2004 a b
【考点】分数的拆分 【难度】4 星 【题型】填空
⑵ 10 的约数有 1、2、5、10,我们可选 2 和 5:
1 52
5
2
1 1
10 10 (5 2) 10 (5 2) 10 (5 2) 6 15
另外的解让学生去尝试练习.
【答案】(1) 1 1 1 1 1 1 1 1 1 1 1 10 20 20 11 110 12 60 14 35 15 30
1
3
4
11
2004 2004(3 4) 2004(3 4) 4676 3507
【例 6】 在下面的括号里填上不同的自然数,使等式成立.
5-3-4.分解质因数.题库
教师版
page 3 of 8
(1)
1 10
1 20
1 20
1
1
1
1
1
1
1
1
;
(2)
1 10
1
1
【考点】分数的拆分 【难度】4 星 【题型】填空
的比值相同,那么最后得到的 A 和 B 也是相同的.本题中,从 10 的约数中任取两个数, 共有
C42 4 10 种,但是其中比值不同的只有 5 组:(1,1);(1,2);(1,5);(1,10);(2,5),所以本题
共可拆分成 5 组.具体的解如下:
1 11 1 1 11 11 11 . 10 20 20 11 110 12 60 14 35 15 30
【考点】分数的拆分 【难度】4 星 【题型】解答
【解析】取 1001 的两个不同约数 x、 y(x y) ,得到:
1 xy
x
y
1
1
,因为 x、y 都是 1001 的约
1001 1001(x y) 1001(x y) 1001(x y) 1001 (x y) 1001 (x y)
x
y
数,所以 1001 、 1001 都是整数.所以只需令 a 1001(x+y), b 1001(x+y)就可以了.而 a、b
1986
c 331 ,检验满足.所以这 3 个质数的和为 2 3 331 336 .
【答案】 2 3 331 336
【例 3】 一个分数,分母是 901,分子是一个质数.现在有下面两种方法:⑴ 分子和分母各加一个相同的 一位数;⑵ 分子和分母各减一个相同的一位数.用其中一种方法组成一个新分数,新分数约分后 是 7 .那么原来分数的分子是多少. 13
例如:三个连续自然数的乘积是 210,求这三个数. 分析:∵210=2×3×5×7,∴可知这三个数是 5、6 和 7.
三、部分特殊数的分解
111 3 37 ; 1001 7 1113 ;
5-3-4.分解质因数.题库
11111 41 271;
教师版
10001 73137 ; 1995 3 5 7 19 ;
【考点】分数的拆分 【难度】3 星 【题型】解答 【解析】因为新分数约分后分母是13 ,而原分母为 901,由于 901 13 694 ,所以分母是加上 9 或者减
去 4 .若是前者则原来分数分子为 7 70 9 481 ,但 481 13 37 ,不是质数;若是后者则原来分 数分子是 69 7 4 487 ,而 487 是质数.所以原来分数分子为 487 .
【考点】分数的拆分 【难度】3 星 【题型】解答 【解析】设这 3 个质数从小到大为 a 、 b 、 c ,它们的倒数分别为 1 、 1 、 1 ,计算它们的和时需通分,且通
abc 分后的分母为 a b c ,求和得到的分数为 F ,如果这个分数能够约分,那么得到的分数的分母为
abc a 、 b 、 c 或它们之间的积.现在和为 1661 ,分母 1986 2 3 331,所以一定是 a 2 , b 3 ,
【解析】2004 的约数有:1,2004,2,1002,3,668,4,501,满足题意的分拆有:
1
1
2
11
2004 2004(1 2) 2004(1 2) 6012 3006
1
1
3
11
2004 2004(1 3) 2004(1 3) 8016 2672
1
2
3
11
2004 2004(2 3) 2004(2 3) 5010 3340
1 15
mn 15(m n)
m 15(m
n)
n 15(m
n)
,令(m,n)为互质的一对数,现在要让分母为
1,只
需 m,n 是 15 的一对互质的约数即可。
当(m,n)=(1,1)时,
1 15
1 30