第14章 一次函数单元测试卷(含答案)

合集下载

初二 第14章 一次函数 单元测试含答案

初二 第14章 一次函数 单元测试含答案

八年级数学一次函数单元测试题(总分:100.0 考试时间:65分钟)班级_______________ 准考证号________________ 姓名___________ 得分_____ 一、判断题:本大题共3小题,从第1小题到第2小题每题3.0分小计6.0分;第3小题为4.0分;共计10.0分。

1、函数y=(m+6)x+(m-2), 当m=-6时是一次函数( )2、( )3、函数y=-(x+6)与y轴的交点是(0 , 6).( )二、单选题:本大题共8小题,从第4小题到第5小题每题3.0分小计6.0分;从第6小题到第11小题每题4.0分小计24.0分;共计30.0分。

4、函数y=中,自变量x的取值范围是[]A.x>B.x<C.x≠D.x≠25、一列火车从青岛站出发,加速行驶一段时间后开始匀速行驶.过了一段时间,火车到达下一个车站,乘客上下车后,火车又加速,一段时间后再次开始匀速行驶.下面图________可以近似地刻画出火车在这段时间内的速度变化情况.[]A B C.D.6、正比例函数如图1所示,则这个函数的解析式为[]A.B.C.D.图1 图2 图37、下列函数中, 不是一次函数的是[ ]A.y=3xB.y=2-xC.y=x-D.y= -38、一次函数的图像不经过[]A.第一象限B.第二象限C.第三象限D.第四象限9、已知一次函数图像如图2所示,那么这个一次函数的解析式是[]A.B.C.D.10、下列说法中正确的是[]A.用图象表示变量之间的关系时,用竖直方向上的点表示自变量;B.用图象表示变量之间的关系时,用水平方向上的点表示因变量;C.用图象表示变量关系用横轴上的点表示因变量;D.用图象表示变量关系用纵轴上的点表示因变量.11、弹簧的长度与所挂物体的质量的关系为一次函数,如图3所示,由此图可知不挂物体时弹簧的长度为[]A.7cm B.8 cm C.9 cm D.10 cm三、填空题:本大题共6小题,从第12小题到第15小题每题3.0分小计12.0分;从第16小题到第17小题每题4.0分小计8.0分;共计20.0分。

一次函数单元测试题(含答案)

一次函数单元测试题(含答案)

一次函数测试题一、相信你一定能填对!(每小题3分,共24分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=2x -B .y=12x - C .y=24x - D .y=2x +·2x - 2.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 3.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四4.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>12 B .m=12 C .m<12 D .m=-125.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<36.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-17.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 8.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )二、你能填得又快又对吗?(每小题4分,共40分)9.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________. 10.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.11.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 12.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方. 13.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.14.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)15.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.16.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.17.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.18.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________. 三、认真解答,一定要细心哟!(共36分)23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(12分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围; ②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?xy1234-2-1CA-14321O答案:1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。

第14章 一次函数全章水平测试(含答案)

第14章 一次函数全章水平测试(含答案)

第14章《一次函数》全章水平测试度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。

一、选择题(每小题5分,共40分)1.下列四个图象中,不能表示y 是x的函数是( )ABC2.一根蜡烛长20㎝,点燃后,每小时燃烧5㎝,燃烧时剩下的高度h (㎝)与燃烧时间t (小时)的函数关系用图象表示为( )3.函数x y x y x y 21,3,2-=-==的共同特点是( ) A.图象过相同象限 B.y 随x 增大而减小 C.y 随x 增大而增大 D.图象都过原点4.若直线63+=x y 与坐标轴围成的三角形的面积为S ,则S 等于( )A.6B.12C.3D.24 5.若一次函数k x k y +-=)1(中,k >1,则函数的图象不经过第( )象限A.一B.二C.三D.四6.若直线32+=x y 与b x y 23-=相交于直线x y =上同一点,则b 的值是( )A.-3B.23-C.6D.49-7.要得到423--=x y 的图象,可把直线x y 23-=向( )A.左平移4个单位B.右平移4个单位C.上平移4个单位D.下平移4个单位8.若2+y 与3-x 成正比例,且当0=x 时,1=y ,则当1=x 时,y 等于( )A.1B.0C.-1D.2 二、填空题(每小题5分,共40分)1.若函数2)102()5(x m x m y -+-=(m 为常数)中的y 与x 成正比例,则m .2.一次函数的图象过点(1,2),且y 随x 增大而减小,请写出一个满足条件的解析式是 .3.直线13+=x y 与x y 51-=的交点坐标为 .4.直线42+-=x y 与x 轴交点的坐标是 ,方程222-=+-x 的解是 .5.当m 满足 时,一次函数m x y 263-+-=的图象与y 轴交于负半轴.6.已知一次函数的图象经过点A (0,3)且与两坐标轴所围成的三角形面积为3,则这个一次函数的解析式为 .7.若点A (2,3),B (4,-3),C (m ,0)在同一直线上,则=m .8.将x y 21=的图象向右平移2个单位后,得到的图象解析式是 . 三、解答题(每题10分,共70分)1.一次函数图象经过(3,5)和(-4,-9)两点,⑴求此一次函数的解析式;⑵若点(a ,2)在函数图象上,求a 的值.2.已知一次函数n x m y -++=3)42(,求:⑴m 、n 是什么数时,y 随x 的增大而增大;⑵m 、n 为何值时,函数图象与y 轴的交点在x 轴下方;⑶m 、n 为何值时,函数图象经过原点;⑷若图象经过第一、二、三象限,求m 、n 的取值范围.3.画出函数62+=x y 的图象,利用图象:⑴求方程062=+x 的解;⑵求不等式62+x >0的解;⑶若-2≤y ≤4,求x 的取值范围.4.⑴求过点(1,4)P 且与已知直线21y x =--平行的直线l 的函数表达式,并画出直线l 的图象;⑵设直线l 分别与y 轴、x 轴交于点A 、B ,如果直线m :(0)y kx t t =+>与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t 的函数表达式.5.我国边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶,如图(1),图(2)中1l,2l分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.(1) (2)根据图象回答下列问题:⑴哪条线表示B到海岸的距离与追赶时间之间的关系?⑵A,B哪个速度快?⑶15分内B能否追上A?⑷如果一直追下去,那么B能否追上A?⑸当A 逃到海岸12海里的公海时,B将无法对其进行检查,照此速度,B能否在A逃入公海前将其拦截?6.我国很多城市水资源缺乏,为了加强居民的节水意识,•某市制定了每月用水4吨以内(包括4吨)和用水4吨以上两种收费标准(收费标准:每吨水的价格),某用户每月应交水费y(元)是用水量x(吨)的函数,其函数图象如图.⑴观察图象,求出函数在不同范围内的解析式;⑵说出自来水公司在这两个用水范围内的收费标准;⑶若某用户该月交水费12.8元,求他用了多少吨水.y(元)x(吨)84.864O7.在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t(h),两组离乙地的距离分别为S1(km)和S2(km),图10中的折线分别表示S1、S2与t之间的函数关系.⑴甲、乙两地之间的距离为km,乙、丙两地之间的距离为km;⑵求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?⑶求图中线段AB所表示的S2与t间的函数关系式,并写出自变量t的取值范围.参考答案一、选择题(每小题5分,共40分)1.下列四个图象中,不能表示y 是x 的函数是( D )ABC2.一根蜡烛长20㎝,点燃后,每小时燃烧5㎝,燃烧时剩下的高度h (㎝)与燃烧时间t (小时)的函数关系用图象表示为( B )3.函数x y x y x y 21,3,2-=-==的共同特点是( D ) A.图象过相同象限 B.y 随x 增大而减小 C.y 随x 增大而增大 D.图象都过原点4.若直线63+=x y 与坐标轴围成的三角形的面积为S ,则S 等于( A )A.6B.12C.3D.24 5.若一次函数k x k y +-=)1(中,k >1,则函数的图象不经过第( C )象限A.一B.二C.三D.四6.若直线32+=x y 与b x y 23-=相交于直线x y =上同一点,则b 的值是( A )A.-3B.23-C.6D.49-7.要得到423--=x y 的图象,可把直线x y 23-=向( D )A.左平移4个单位B.右平移4个单位C.上平移4个单位D.下平移4个单位8.若2+y 与3-x 成正比例,且当0=x 时,1=y ,则当1=x 时,y 等于( B )A.1B.0C.-1D.2 二、填空题(每小题5分,共40分)1.若函数2)102()5(x m x m y -+-=(m 为常数)中的y 与x 成正比例,则m =-5.2.一次函数的图象过点(1,2),且y 随x 增大而减小,请写出一个满足条件的解析式是3+-=x y .(答案不唯一)3.直线13+=x y 与x y 51-=的交点坐标为 (0,1) .4.直线42+-=x y 与x 轴交点的坐标是(2,0),方程222-=+-x 的解是 x =2 .5.当m 满足 m >3 时,一次函数m x y 263-+-=的图象与y 轴交于负半轴.6.已知一次函数的图象经过点A (0,3)且与两坐标轴所围成的三角形面积为3,则这个一次函数的解析式为35.135.1+=+-=x y x y 或.7.若点A (2,3),B (4,-3),C (m ,0)在同一直线上,则=m 1 .8.将x y 5.0=的图象向右平移2个单位后,得到的图象解析式是15.0-=x y . 三、解答题(每题10分,共70分)1.一次函数图象经过(3,5)和(-4,-9)两点,⑴求此一次函数的解析式;⑵若点(a ,2)在函数图象上,求a 的值.解略:⑴12-=x y ,⑵23=a2.已知一次函数n x m y -++=3)42(,求:⑴m 、n 是什么数时,y 随x 的增大而增大;⑵m 、n 为何值时,函数图象与y 轴的交点在x 轴下方;⑶m 、n 为何值时,函数图象经过原点;⑷若图象经过第一、二、三象限,求m 、n 的取值范围.解略:⑴当m >-2、n 为任意数时,y 随x 的增大而增大;⑵当m ≠-2、n >3时,函数图象与y 轴的交点在x 轴下方;⑶当m ≠-2、n =3为何值时,函数图象经过原点; ⑷当m >-2、n <3时,图象经过第一、二、三象限.3.画出函数62+=x y 的图象,利用图象:⑴求方程062=+x 的解;⑵求不等式62+x >0的解;⑶若-2≤y ≤4,求x 的取值范围.解:图略⑴方程062=+x 的解为3-=x; ⑵不等式62+x >0的解为3->x ;⑶当14-≤≤-x 时-1≤y ≤3.4.⑴求过点(1,4)P 且与已知直线21y x =--平行的直线l 的函数表达式,并画出直线l 的图象;⑵设直线l 分别与y 轴、x 轴交于点A 、B ,如果直线m :(0)y kx t t =+>与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t 的函数表达式.解:⑴62+-=x y ,图略⑵△ABC 的面积S 关于t 的函数表达式为tS 2133-=5.我国边防局接到情报,近海处有一可疑船只A 正向公海方向行驶,边防局迅速派出快艇B 追赶,如图(1),图(2)中1l ,2l 分别表示两船相对于海岸的距离s (海里)与追赶时间t (分)之间的关系.(1) (2)根据图象回答下列问题:⑴哪条线表示B 到海岸的距离与追赶时间之间的关系?⑵A ,B 哪个速度快?⑶15分内B 能否追上A ?⑷如果一直追下去,那么B 能否追上A ?⑸当A 逃到海岸12海里的公海时,B 将无法对其进行检查,照此速度,B 能否在A 逃入公海前将其拦截?解略:⑴射线1l 表示B 到海岸的距离与追赶时间之间的关系;⑵快艇B 的速度快;⑶15分内B 不能否追上A ;⑷如果一直追下去,那么B 能追上A ;⑸照此速度,B 能在A 逃入公海前将其拦截.6.我国很多城市水资源缺乏,为了加强居民的节水意识,•某市制定了每月用水4吨以内(包括4吨)和用水4吨以上两种收费标准(收费标准:每吨水的价格),某用户每月应交水费y (元)是用水量x (吨)的函数,其函数图象如图.⑴观察图象,求出函数在不同范围内的解析式;⑵说出自来水公司在这两个用水范围内的收费标准;⑶若某用户该月交水费12.8元,求他用了多少吨水.解略:⑴⎩⎨⎧>-≤=)4(6.16.1)4(2.1x x x xy⑵4吨以内(包括4吨),每吨1.2元 4吨以上,每吨1.6元⑶若某用户该月交水费12.8元,则他用了9吨水.7.在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km ),图10中的折线分别表示S 1、S 2与t 之间的函数关系.⑴甲、乙两地之间的距离为 8 km ,乙、丙两地之间的距离为 2 km ; ⑵求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?⑶求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.解略:⑵第二组由甲地出发首次到达乙地及由乙地到 达丙地所用的时间分别是0.8h 和0.2h ; ⑶)18.0(8102<<-=t t S可以编辑的试卷(可以删除)。

第14章《一次函数》慈云中学单元测试题(含答案)

第14章《一次函数》慈云中学单元测试题(含答案)

y=ax-3y=2x+bOy-2-5x慈云中学八年级《一次函数》测试题题号 一1 二2 三3 四4 五5 六6 七7 八8 得分任何学习不可可能重复一次就可以掌握,必须经过多次重复、多方面、多个角度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。

班级 姓名 座号 评分______________一. 填空(每题4分,共28分)1. 已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是______2. 已知一次函数y=kx+5的图象经过点(-1,2),则k= .3. 一次函数y= -2x+4的图象与x 轴交点坐标是 ,与y 轴交点坐标是 图象与坐标轴所围成的三角形面积是 .4. 某种储蓄的月利率为0.15%,现存入1000元,则本息和y (元)与所存月数x 之间的函数关系式是 .5.写出同时具备下列两个条件的一次函数表达式(写出一个即可) . (1)y 随着x 的增大而减小。

(2)图象经过点(1,-3)6.某商店出售一种瓜子,其售价y (元)与瓜子质量x (千克)之间的关系如下表 质量x (千克) 1 2 3 4 …… 售价y (元)3.60+0.207.20+0.2010.80+0.2014.40+0.2……由上表得y 与x 之间的关系式是 . 7.已知函数2y x b =+和3y ax =-的图像交于点(25)P --,,则根据图像可得不等式23x b ax +>-的解集是 .二、选择题(每题3分,共21分)8.下列函数(1)y =πx (2)y=2x -1 (3)y=1x(4)y=2-1-3x (5)y=x 2-1中,是一x (cm )2052012.5 次函数的有( )A 、4个B 、3个C 、2个D 、1个9.已知点(-4,y 1),(2,y 2)都在直线y=- 12 x+2上,则y 1 y 2大小关系是( )A 、y 1 >y 2B 、y 1 =y 2C 、y 1 <y 2D 、不能比较10.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n(厘米)与燃烧时间t(时)的函数关系的图象是( )A 、BC D11.已知一次函数y=kx+b 的图象如图所示,则k,b 的符号是( ) A 、k>0,b>0 B 、k>0,b<0 C 、k<0,b>0 D 、k<0,b<012.弹簧的长度y cm 与所挂物体的质量x(kg)的关系是一次函数, 图象如右图所示,则弹簧不挂物体时的长度是( )A 、9cmB 、10cmC 、10.5cmD 、11cm 13.若把一次函数y=2x -3,向上平移3个单位长度,得到图象解析式是 ( )A 、 y=2xB 、y=2x -6C 、 y=5x -3D 、y=-x -3 14.下面函数图象不经过第二象限的为 ( )A 、y=3x+2B 、 y=3x -2C 、y=-3x+2D 、 y=-3x -2三、解答题(每题9+10+10++10+12=51分,共51分)15.如图是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题: (1)当行驶2千米时,收费应为 元;20 4h (厘米) t (小时)204 h (厘米) t (小时)204h (厘米) 204 h (厘米) t (小时)Yx(2)从图象上你能获得哪些信息?(请写出2条)①②(3)求出收费y(元)与行使x(千米)(x≥3)之间的函数关系式。

一次函数单元测试题(含答案)

一次函数单元测试题(含答案)

第十四章 一次函数测试题(时间:90分钟 总分120分)一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=2x -B .y=2x - C .y=24x - D .y=2x +·2x -2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( )A .m>12B .m=12C .m<12D .m=-126.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-1⑧.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________. 12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、认真解答,一定要细心哟!(共60分) 21.(14分)根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).22.(12分)一次函数y=kx+b 的图象如图所示:xy1234-2-1CA-14321O(1)求出该一次函数的表达式; (2)当x=10时,y 的值是多少? (3)当y=12时,•x 的值是多少?566-2xy1234-2-15-14321O23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围; ②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。

一次函数单元测试题(含答案)

一次函数单元测试题(含答案)

一次函数测试题一、选择题(每小题3分,共24分)1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=2x -B .y=12x - C .y=24x - D .y=2x +·2x - 2.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 3.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四4.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>12 B .m=12 C .m<12 D .m=-125.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<36.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-17.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 8.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )二、填空题(每小题4分,共40分)9.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________. 10.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.11.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 12.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方. 13.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.14.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)15.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.16.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.17.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.18.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________. 三、应用题(共36分)23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(12分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围; ②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?xy1234-2-1CA-14321O答案:411.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。

八年级数学第十四章一次函数单元测试

八年级数学第十四章一次函数单元测试

八年级 数学 第十四章一次函数 单元测试班级:____________姓名:____________座号:____________评分:____________一、填空题:(每空3分,共42分)1.已知函数:①y=0.2x+6;②y=-x-7;③y=4-2x ;④(1y x =;⑤y=4x ;⑥y=-(2-x),其中,y 的值随x 的增大而增大的函数是_____________;y 的值随x 的增大而减小的函数是________________;图像经过原点的函数是_____________.(只填序号) 2. 在数学25+-=x y 中,K = ,b=3.函数y=x -2自变量x 的取值范围是_________. 4.在432-=x y 中,当y=-6时,x = 5. 若点P(a ,b)在第二象限内,则直线y =ax +b 不经过第_______限6.某商店出售一种瓜子,其售价y (元)与瓜子质量x (千克)之间的关系如下表由上表得y 与x 之间的关系式是 .7.已知直线y x a =-与2y x b =+的交点为(5,-8),则方程组020x y a x y b --=⎧⎨-+=⎩的解是____________.8.若直线y=kx+b 平行直线y=5x+3,且过点(2,-1),则k=______ ,b=______ . 9.已知y+2和x 成正比例,当x=2时,y=4,则y 与x 的函数关系式是_________________. 10.已知正比例函数y =(m -1)25m x -的图象在第二、四象限,则m的值为_________, 二、选择题:(每题3分,共18分) 11.函数y=2x+1的图象经过( ) A .(2 , 0)B .(0 , 1)C. (1 , 0)D .(12, 0) 12.下列各曲线中不能表示y 是x 的函数是( )。

13.已知一次函数y=kx+b 的图象如图所示,则k 、b 的符号是( )(A)k>0,b>0 (B)k>0,b<0 (C)k<0,b>0 (D)k<0,b<014. 如图,直线与y 轴的交点是(0,-3),则当x<0时,( ) A. y<0 B. y<-3 C. y>0 D. y>-315.已知点(-4,y 1),(2,y 2)都在直线y=- 12 x+2上,则y 1 、y 2大小关系是( )(A )y 1 >y 2 (B )y 1 =y 2 (C )y 1 <y 2 (D )不能比较16.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n(厘米)与燃烧 时间t(时)的函数关系的图象是( )三、解答题: 17.(本题10分)一次函数y=kx+4的图象经过点(-3,-2),则 (1)求这个函数表达式;(3)判断(-5,3)是否在此函数的图象上;(4)把这条直线向下平移4个单位长度后的函数关系式是________________.18.(本题10分)下图中,1l 反映了某公司产品的销售 收入与销售量的关系,2l 反映了该公司产品的销售成本 与销售量的关系,根据图中信息求出:①直线1l 对应的函数表达式是 ; ②直线2l 对应的函数表达式是 。

第14章 一次函数单元复习测试卷(含答案)

第14章 一次函数单元复习测试卷(含答案)

第十四章 一次函数单元复习测试卷的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。

班级 姓名 座号 成绩一、选择题(每题5分,共30分)1.下列给出的四个点中,不在直线23y x =-上的是( )A.(1, -1)B.(0, -3)C.(2, 1)D.(-1,5) 2.下列关系式中,不是函数关系的是( )A.2y x =-B.y x =±C.2y x =D.32y x =+ 3.已知每枝笔售2元,则总售价y 元与售出数量x 枝的函数图像是( )A.一条直线B.一条射线C.一条线段D.呈射线排列的无限个点 4.如果直线36y x =+与24y x =-交点坐标为(,)a b ,则x ay b =⎧⎨=⎩是下列哪个方程组的解( )A.3624y x x y -=⎧⎨-=⎩B.3624y x x y -=⎧⎨-=-⎩C.3624x y x y -=⎧⎨-=⎩D.3624x y x y -=⎧⎨-=-⎩5.无论m 为何实数,直线2y x m =+与4y x =-+的交点不可能在( ) A.第一象限B.第二象限C.第三象限D.第四象限6.有一游泳池注满水,现按一定速度将水排尽,然后进行清洗,再按相同速度注满水,使用一段时间后,又按相同的速度将水排尽,则游泳池的存水量为h (米)随时间t (小时)变化的大致图象是( )二、填空题(每题5分,共30分)7.正比例函数的图像经过点(1,-5),它的解析式是 . 8.函数14y x =-中,自变量x 的取值范围是 . 9.直线142y x =-可以由直线112y x =+向 平移 个单位得到. 10.若直线26y x =-与x 、y 轴的交点分别为点A 、B ,则AOB S ∆= .11.若关于10(0)ax a +>≠的解集是1x <,则直线1y ax =+与x 轴的交点坐标是 . 12.在函数5y x m =-+的图象上有点1(2,)y -,2(5,)y ,则12,y y 的大小关系是 . 三、解答题(共40分)13.(8分)将长为30cm ,宽为10cm 的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm .(1)设x 张白纸粘合后的总长度为ycm ,写出y 与x 的函数关系式; (2)求出当20x =时,y 的值.14.(10分)已知一次函数图象经过(3,5)和(-4,-9)两点.(1)求此一次函数的解析式; (2)若点(m ,2)在函数图象上,求m 的值.15.(10分)一天上午8时,小华去县城购物,到下午2时返回家,结合图象回答:(1)小华何时第一次休息?(2)小华离家最远的距离是多少?(3)返回时平均速度是多少?(4)请你描述一下小华购物的情况.16.(12分)某水产品养殖加工厂有200名工人,每名工人每天平均捕捞水产品50kg,或将当日所捕捞的水产品40kg进行精加工,已知每千克水产品直接出售可获利润6元,精加工后再出售,可获利润18元,设每天安排x名工人进行水产品精加工.(1)求每天做水产品精加工所得利润y(元)与x的函数关系式;(2)如果每天精加工的水产品和未来得及精加工的水产品全部出售,那么如何安排生产可使这一天所获利润最大?最大利润是多少?参考答案一、选择题(每题5分,共30分)1.下列给出的四个点中,不在直线23y x =-上的是( D )A.(1, -1)B.(0, -3)C.(2, 1)D.(-1,5) 2.下列关系式中,不是函数关系的是( B )A.2y x =-B.y x =±C.2y x =D.32y x =+ 3.已知每枝笔售2元,则总售价y 元与售出数量x 枝的函数图像是( D )A.一条直线B.一条射线C.一条线段D.呈射线排列的无限个点 4.如果直线36y x =+与24y x =-交点坐标为(,)a b ,则x ay b =⎧⎨=⎩是下列哪个方程组的解( A )A.3624y x x y -=⎧⎨-=⎩B.3624y x x y -=⎧⎨-=-⎩C.3624x y x y -=⎧⎨-=⎩D.3624x y x y -=⎧⎨-=-⎩5.无论m 为何实数,直线2y x m =+与4y x =-+的交点不可能在( C ) A.第一象限B.第二象限C.第三象限D.第四象限6.有一游泳池注满水,现按一定速度将水排尽,然后进行清洗,再按相同速度注满水,使用一段时间后,又按相同的速度将水排尽,则游泳池的存水量为h (米)随时间t (小时)变化的大致图象是( C )二、填空题(每题5分,共30分)7.正比例函数的图像经过点(1,-5),它的解析式是 =- 5y x . 8.函数14y x =-中,自变量x 的取值范围是 ≠ 4x . 9.直线142y x =-可以由直线112y x =+向 下 平移 5 个单位得到.10.若直线26y x =-与x 、y 轴的交点分别为点A 、B ,则AOB S ∆= 9 .11.若关于10(0)ax a +>≠的解集是1x <,则直线1y ax =+与x 轴的交点坐标是 (1,0) . 12.在函数5y x m =-+的图象上有点1(2,)y -,2(5,)y ,则12,y y 的大小关系是 12>y y . 三、解答题(共40分)13.(8分)将长为30cm ,宽为10cm 的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm .(1)设x 张白纸粘合后的总长度为ycm ,写出y 与x 的函数关系式; (2)求出当20x =时,y 的值.解:(1)y 与x 的函数关系式为=+273y x(2)当=20x 时,=⨯+=27203543y .14.(10分)已知一次函数图象经过(3,5)和(-4,-9)两点.(1)求此一次函数的解析式; (2)若点(m ,2)在函数图象上,求m 的值. 解:(1)设一次函数的解析式为=+y kx b 则有3549k b k b +=⎧⎨-+=-⎩解得21k b =⎧⎨=-⎩∴一次函数的解析式为=-21y x (2)∵点(,2)m 在一次函数=-21y x 图象上 ∴212m -= ∴32m =15.(10分)一天上午8时,小华去县城购物,到下午2时返回家,结合图象回答: (1)小华何时第一次休息? (2)小华离家最远的距离是多少? (3)返回时平均速度是多少?(4)请你描述一下小华购物的情况. 答:(1)小华在上午9点第一次休息; (2)小华离家最远的距离是30千米; (3)返回时平均速度是15千米/小时; (4)略16.(12分)某水产品养殖加工厂有200名工人,每名工人每天平均捕捞水产品50kg ,或将当日所捕捞的水产品40kg 进行精加工,已知每千克水产品直接出售可获利润6元,精加工后再出售,可获利润18元,设每天安排x 名工人进行水产品精加工. (1)求每天做水产品精加工所得利润y (元)与x 的函数关系式;(2)如果每天精加工的水产品和未来得及精加工的水产品全部出售,那么如何安排生产可使这一天所获利润最大?最大利润是多少?解:(1)每天做水产品精加工所得利润y (元)与x 的函数关系式为1840720y x x =⨯=; (2)设一天所获的利润为W 元,则[] 720650(200)4018060000W x x x x =+⨯⨯--=+又∵x x ⨯--50(200)40≥0,∴x ≤11119.∵=>1800k ,∴y 随x 的增大而增大∴当=111x 时,利润最大, 1801116000079980W =⨯+=最大(元)答:应安排111名工人进行水产品精加工,安排89名工人捕捞水产品,所获利润最大,最大利润为79 980元.可以编辑的试卷(可以删除)。

八年级数学上册 第14章 一次函数综合练习(含答案)

八年级数学上册 第14章 一次函数综合练习(含答案)

第十四章一次函数基础【知识梳理】1.正比例函数与一次函数的关系:正比例函数是当y=kx+b中b=0时特殊的一次函数。

2.待定系数法确定正比例函数、一次函数的解析式:通常已知一点便可用待定系数法确定出正比例函数的解析式,已知两点便可确定一次函数解析式。

3.一次函数的图像:正比例函数y=kx(k≠0)是过(0,0),(1,k)两点的一条直线;一次函数y=kx+b(k≠0)是过(0,b),( ,0)两点的一条直线。

4.直线y=kx+b(k≠0)的位置与k、b符号的关系:当k>0是直线y=kx+b过第一、三象限,当k<0时直线过第二、四象限;b 决定直线与y轴交点的位置,b>0直线交y轴于正半轴,b<0直线交y轴于负半轴。

5.直线L1与L2的位置关系由k、b来确定:当直线L1∥L2时k相同b不同;当直线L1与L2重合时k、b都相同;当直线L1与L2相交于y轴同一点时,k不同b相同。

6.一次函数经常与一次方程、一次不等式相联系。

【能力训练】1.一次函数y=x-1的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2.(2004·福州)已知正比例函数y=kx(k≠0)的图像过第二、四象限,则( )A.y随x的增大而减小B.y随x的增大而增大C.当x<0时,y随x的增大而增大;当x>0时,y随x的增大而减小D.不论x如何变化,y不变3.(2003·甘肃)结合正比例函数y=4x的图像回答:当x>1时,y的取值范围是( )A.y=1B.1≤y<4C.y=4D.y>44.(2004·哈尔滨)直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C最多有( )A.4个B.5个C.7个D.8个5.某地的电话月租费24元,通话费每分钟0.15元,则每月话费y(元)与通话时间x(分钟)之间的关系式是,某居民某月的电话费是38.7元,则通话时间是分钟,若通话时间62分钟,则电话费为元.6.如图,表示商场一天的家电销售额与销售量的关系,表示一天的销售成本与销售量的关系.①当时,销售额= 万元,销售成本= 万元.此时,商场是是赢利还是亏损?②一天销售件时,销售额等于销售成本.③对应的函数表达式是 .④写出利润与销售量间的函数表达式.7.某单位为减少用车开支准备和一个体车主或一家出租车公司签订租车合同.设汽车每月行驶xKm,个体车主的月费用是y1元,出租车公司的月费用是y2元,y1、y2分别与x之间的函数关系图像,如图,观察图像并回答下列问题;(1)每月行驶的路程在什么范围内时,租用公司的车更省钱?(2)每月行驶的路程在什么范围内时,租两家的车的费用相同?(3)如果这个单位估计每月行驶的路程在2300Km,那么这个单位租哪家的车比较合算?8.在直角坐标系中,有以A(-1,-1),B(1,-1),C(1,1),D(—1,1)为顶点的正方形.设正方形在直线y=x上方及直线y=-x+2a上方部分的面积为S.(1)求a=时,S的值.(2)当a在实数范围内变化时,求S关于a的函数关系式.9.已知一次函数y=x+m的图像分别交x轴、y轴于A、B两点,且与反比例函数y=的图像在第一象限交于点C(4,n),CD⊥x轴于D.(1)求m、n的值,并作出两个函数图像;(2)如果点P、Q分别从A、C两点同时出发,以相同的速度分别沿线段AD、CA向D、A运动,设AP=k.问k为何值时,以A、P、Q为顶点的三角形与△AOB相似?10.如图,L1、L2分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数图像,假设两种灯的使用寿命都是2 000h,照明效果一样.(1)根据图像分别求出L1、L2的函数关系式;(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2 500h,他买了一个白炽灯和一个节能灯, 请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).11.甲乙两辆汽车在一条公路上匀速行驶,为了确定汽车的位置, 我们用数轴Ox表示这条公路,原点O为零千米路标(如图),并作如下约定:①速度v>0,表示汽车向数轴正方向行驶;速度c<0,表示汽车向数轴负方向行驶;速度v=0,表示汽车静止.②汽车位置在数轴上的坐标s>0,表示汽车位于零千米路标的右侧;汽车位置在数轴上的坐标s<0,表示汽车位于零千米路的左侧;汽车位置在数轴上的坐标s=0,表示汽车恰好位于零千米路标处.遵照上述约定,将这两辆汽车在公路上匀速行驶的情况,以一次函数图像的形式画在了同一直角坐标系中,如图.请解答下列问题:(1)就这两个一次函数图像所反映的两汽车在这条公路上行驶的状况填写如下的表格.(2)甲乙两车能否相遇?如能相遇,求相遇时的时刻及在公路上的位置;如不能相遇,请说明理由.参考答案:1.B2.A3.D4.C5.y =0.15x+24,98,33.3 6.①,,亏损②3 ③y1=x ④y=x—27.(1)超过3000千米,(2)3000千米(3)个体8.(1)(2)当a≤—1时,S=2;当—1<a≤0时,S=2—(1+a)2;当0<a≤1时,S=(1—a)2;当a≥1时,S=0。

八年级上人教新课标第十四章一次函数单元测试题.doc

八年级上人教新课标第十四章一次函数单元测试题.doc

2019-2020 年八年级上人教新课标第十四章一次函数单元测试题一.精心选一选(本大题共1、下列各图给出了变量x8 道小题,每题 4 分,共与 y 之间的函数是:32 分)()y y y yo x o x o x o xA B C D2、下列函数中,y 是x 的正比例函数的是:()A、 y=2x-1 B 、 y= xC、 y=2x 2 D 、y=-2x+1 33、已知一次函数的图象与直线为:A、 y=2x-14B、y=-x-6 y= -x+1C平行,且过点(、 y=-x+10 D8, 2),那么此一次函数的解析式(、 y=4x)4、点A(x1,y1)和点B(x2,y2)在同一直线y kx b 上,且k 0 .若x1 x2 ,则 y1,y2的关系是:()A、y1 y2 B 、 y1 y2 C 、 y1 y2 D、无法确定.5 、若函数y=kx + b 的图象如图所示,那么当y>0 时,x 的取值范围是:( )A、x>1B、x>2C、x<1D、x<26、一次函数y=kx+b 满足 kb>0 且y随x的增大而减小,则此函数的图象不经过()第 5 题A、第一象限 B 、第二象限 C 、第三象限 D 、第四象限7、一次函数 y=ax+b ,若 a+b=1,则它的图象必经过点()A 、 (-1,-1)B 、 (-1, 1)C 、 (1, -1)D 、(1, 1)8、三峡工程在2003 年 6 月 1 日至 2003 年 6 月 10 日下闸蓄水期间,水库水位由106 米升至 135 米,高峡平湖初现人间,假设水库水位匀速上升,那么下列图象中,能正确反映这 10 天水位 h(米)随时间 t (天)变化的是:()二.耐心填一填(本大题 5 小题,每小题 4 分,共 20 分)19、在函数y x 2中,自变量 x 的取值范围是。

10、请你写出一个图象经过点(0 ,2) ,且 y 随 x 的增大而减小的一次函数解析式。

一次函数单元测试题(含答案)

一次函数单元测试题(含答案)

一次函数测试题一、相信你一定能填对!(每小题3分,共24分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=2x -B .y=2x - C .y=24x - D .y=2x +·2x - 2.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 3.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四4.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>12 B .m=12 C .m<12 D .m=-125.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<36.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-17.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 8.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )二、你能填得又快又对吗?(每小题4分,共40分)9.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________. 10.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.11.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 12.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方. 13.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.14.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)15.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.16.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.17.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.18.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________. 三、认真解答,一定要细心哟!(共36分)23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(12分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围; ②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?xy1234-2-1CA-14321O答案:1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。

修订八年级(下)数学第十四章《一次函数》单元测试题

修订八年级(下)数学第十四章《一次函数》单元测试题

八年级(上)数学第十四章《一次函数》单元测试题(时间:120分钟 总分:120分)一.精心选一选:(本大题共10题,每小题3分,共30分):相信自己有能力选得又快又准,每道小题四个选择支中只有惟一一个是正确的,请将正确答案的代号填入下表。

1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,自变量是 ( )A.沙漠B.体温C.时间D.骆驼 2.下面两个变量是成正比例变化的是 ( )A . 正方形的面积和它的边长.B . 变量x 增加,变量y 也随之增加;C . 矩形的一组对边的边长固定,它的周长和另一组对边的边长.D . 圆的周长与它的半径.3. 下面哪个点不在函数y=-2x+3的图象上 ( ) A .(-5,13) B .(0.5,2) C .(3,0) D .(1,1) 4.在函数中,自变量x 的取值范围是 ( )A.x ≥2 B .x>2 C. x ≤2 D .x<25.已知点(-4,y 1),(2,y 2)都在直线y= - 12x+2上,则y 1 、y 2大小关系是 ( )A . y 1 > y 2B . y 1 = y 2C .y 1 < y 2D . 不能比较6.下列各图给出了变量x 与y 之间的函数是( )7.直线y=kx +b 经过一、二、四象限,则k 、b 应满足 ( )A . k>0, b<0B . k>0, b>0C . k<0, b<0;D . k<0, b>08.关于函数12+-=x y ,下列结论正确的是 ( )A .图象必经过点(﹣2,1)B .图象经过第一、二、三象限C .当21>x 时,0<y D .y 随x 的增大而增大9.已知一次函数y= ax+4与y = bx-2的图象在x 轴上相交于同一点,则ba的值是 ( ) A .4 B .-2 C . 12 D . - 12x y o A x y o B x y o D x y o 2-x y =10.已知一次函数y=kx+b,y 随着x 的增大而减小,且kb<0,则在直角坐标系内它的大致图象是 ( )A .B .C .D . 11.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。

第十四章 一次函数单元测试题

第十四章 一次函数单元测试题

第十四章 一次函数单元测试题班别:___________姓名:__________学号:__________成绩:__________ 一.选择题(每小题3分,共30分)1.如图,OA 、BA 分别表示甲、乙两名学生运动的一次函数图象,图中s 和t 分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快 ( )A.2.5米B.2米C.1.5米D.1米2.在下列函数中,与y=x-2图像完全相同的函数是( )A.y x =-()22B. y x =-()22C.y x =-()233D. y x x =-+2423.关于函数21y x =-+,下列结论正确的是( ) A.图象经过点(-2,1) B.图象经过第一、二、三象限C.当12x >时,0y < D.图象可由2y x =-的图象向下平移1个单位长度得到 4.过点A (0,-2),且与直线5y x =平行的直线是( )A.52y x =+B. 52y x =-+C.52y x =-D. 52y x =--5.如右图,直线y kx b =+与x 轴交于点(-4,0), 则0y >时,x 的取值范围是( )A.4x >-B. 0x >C.4x <-D. 0x <6.已知圆柱体的侧面积为80πcm 2,若圆柱底面半径为r(cm),数的图象大致是( )7. 如图中的图象(折线ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为380千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有( ). A.1个 B.2个C.3个D.4个C 8.幸福村办工厂今年前五个月生产某种产品的总量C (件)关于时间t (月)的函数图象,如图,则该厂对这种商品来说( ).A.1月至3月每月生产总量不变,4、5两月停止生产;B.1月至3月每月生产总量逐月增加,4、5两月停止生产;C.1月至3月每月生产总量逐月增加,4、5D.1月至3月每月生产总量逐月增加,4、5两月每月生产总量与3月持平. 9.要从y=34x 的图像得到直线y=324-x ,就要把直线y=34x ( ) A.向上平移32个单位 B.向下平移32个单位C.向上平移2个单位D.向下平移2个单位10.若直线2y x k =-+(k 为正整数)与坐标轴围成的三角形内的整点(含边界)有100个,则k 等于( )A. 9B. 16C. 18D. 22二.填空题:(每小题3分,共18分) 11.函数12x - 的自变量x 取值范围是_____________.12.把等腰三角形的一个底角的度数y 表示成顶角度数x 函数解析式是__________, 自变量x 的取值范围是_____________.13.当x =2时,函数y =kx -2和y =2x +k 的值相等,则k = .14.出租车收费按路程计算,2km 内(包括2km)收费3元,超过2km ,每增加1km 加收1元,则路程x ≥2km 时,车费y (元)与x 之间的函数关系为_____________________.15.若直线y=x-k 与 y=3x-1的交点在第三象限,则k 的取值范围是_______________. 16. 如图,先观察图形,然后填空:(1)当x 时,1y >0; (2)当x 时,2y <0; (3)当x 时,1y >0且2y >0.第十四章 一次函数单元测试题答卷班别:___________姓名:__________学号:__________成绩:__________二、填空题(每小题3分,共18分)11.________________ 12._________________;________________ 13._________________14.__________________ 15.____________ 16.___________; ___________;___________.三、解答题(共72分)17.(8分)已知:如图,在R t △ABC 中,∠C=90°,AC=6,BC=8,点P 在BC 上运动,设PC=x ,若用y 表示△APB 的面积,(1)求y 与x 的函数关系式,并求自变量x 的取值范围; (2)画出此函数图象.18.(6分) 已知y-m 与x+n 成正比例,m,n 是常数, (1)试说明:y 是x 的一次函数.(2)如果x=3时,y=5;x=2时,y=2,求当x=-3时,y 的值.19. (6分)已知点(3,3)在函数6y ax =-的图象上, (1)求a 的值;(2)求此图象上到x 轴距离为6的点的坐标.20.(8分) 已知点M 坐标为(-5,0),点N 在第三象限坐标为(x,y)且x+y=-6,设∆OMN 面积为S.(1)求S 关于x 的函数表达式; (2)求x 的取值范围;(3)当S=10时,求N 点坐标.21. (8分)为调动销售人员的积极性,A 、B 两公司均采取:“总收入=基本工资+奖金”的支付方式,其中A 公司每月2 000元基本工资,另加销售额的2%作为奖金;B 公司每月1 600的销售额如下表:(1)请问小李与小张2月份的总收入各是多少?(2)小李1~6月的销售额1y 与月份x 的函数关系式是1040012001+=x y ,小张1~6月的销售额2y 是月份x 的一次函数,请求出2y 与x 函数关系式;(3)如果7~12月份两人的销售额也分别满足(2)中两个一次函数的关系,问几月份起小张的总收入高于小李?22.(8分)机动车出发前油箱内有油42升,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q(升)与行驶时间t(时)之间的函数关系如图所示,根据图回答问题:(1)机动车行驶___________小时后加油;(2)加油前油箱余油量Q与行驶时间t之间的函数关系式是_______,中途加油_____升;(3)如果加油站距目的地还有230千米,车速为40千米/时,要达到目的地,油箱中的油是否够用?请说明理由?23. (10分)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,共50件.已知生产一件A种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元.(1)要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;(2)生产A、B两种产品获总利润是y(元),其中一种的生产件数是x,试写出y与x之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案获总利润最大?最大利润是多少?24.(8分)平面直角坐标系中,点A 的坐标是(2,0),点P 在直线y =-x +m上,且AP =OP =2.求m 的值.25.(10分)如图,动点P 从A 开始在线段AO 上以每秒2个单位的速度向原点O 运动,直线EF 从x 轴开始以每秒1个长度单位的速度向上平行移动(即EF//x 轴),并分别与y 轴、线段AB 交于E 、F 两点,连结PF 、PB ,设动点P 与直线EF 同时出发,并且运动时间为t 秒。

(完整版)(一次函数单元测试题含答案)

(完整版)(一次函数单元测试题含答案)

一次函数单元测试题(分数120分时间:120分钟)一、选择题(本大题共10小题,共30分)1.一次函数y=(k+2)x+k2−4的图象经过原点,则k的值为()A. 2B. −2C. 2或−2D. 32.已知一次函数y=kx+b−x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为( )A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<03.若直线y=kx+b经过第一、二、四象限,则直线y=bx+k的图象大致是()A. B. C. D.4.已知直线y=(m−3)x−3m+1不经过第一象限,则m的取值范围是()A. m≥13B. m≤13C. 13≤m<3 D. 13≤m≤35.下列函数关系式中:①y=2x+1;②y=1x ;③y=x+12−x;④s=60t;⑤y=100−25x,表示一次函数的有()A. 1个B. 2个C. 3个D. 4个6.如图,直线y=23x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为()A. (−3,0)B. (−6,0)C. (−32,0) D. (−52,0)7.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A. 乙前4秒行驶的路程为48米B. 在0到8秒内甲的速度每秒增加4米/秒C. 两车到第3秒时行驶的路程相等D. 在4至8秒内甲的速度都大于乙的速度8.如图,△ABC是等腰直角三角形,∠A=90∘,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是( )A. B. C. D.9.小明、小华从学校出发到青少年宫参加书法比赛,小明步行一段时间后,小华骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小明出发时间t(分)之间的函数关系如图所示.下列说法:①小华先到达青少年宫;②小华的速度是小明速度的2.5倍;③a=24;④b=480.其中正确的是()A. ①②④B. ①②③C. ①③④D. ①②③④10.已知一次函数y=ax+4与y=bx−2的图象在x轴上相交于同一点,则ba的值是( )A. 4B. −2C. 12D. −12二、填空题(本大题共10小题,共30分)11.函数y=√x+2−√3−x中自变量x的取值范围是______.12.如果直线y=−2x+b与两坐标轴所围成的三角形面积是9,则b的值为______ .13.已知y−2与x成正比例,当x=1时,y=5,那么y与x的函数关系式是______ .14.正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是 .15.已知一次函数y=(−3a+1)x+a的图象经过一、二、三象限,不经过第四象限,则a的取值范围是______ .16.经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是______ .17.如图,在平面直角坐标系中,直线y=−√52x+2√5与x轴,y轴分别交于点A,B,将△AOB沿过点A的直线折叠,使点B落在x轴的负半轴上,记作点C,折痕与y轴交于点D,则点D的坐标为______ 。

(完整版)第十四章一次函数单元测试题含答案

(完整版)第十四章一次函数单元测试题含答案

4、 若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是(11 1(A ) kv 1(B )」<k<1(C ) k>1 (D ) k>1 或 kv 13335、 若把一次函数y=2x — 5,向上平移5个单位长度,得到图象解析式是 (A)y=2x (B) y=2x — 10 (C ) y=5x — 3 ( D ) y= — x — 36、 正确反映,龟兔赛跑的图象是()7、直线y=-2x+6与两坐标轴围成的三角形的面积是((A ) 6(B ) 8(C 9(D ) 18&当-1 <x <2时,函数y=ax+6满足y<10,则常数a 的取值范围是((A ) -4<a<0 (B ) 0<a<2 (C ) -4<a<2 且 a ^ 0( D ) -4<a<29、已知直线y=(k - 2)x+k 不经过第三象限,则k 的取值范围是( )A.〜2B. k>2C. 0<k<2D. 0< k<210、 已知y 与x+4成正比例,并且x=2时,y=12,那么y 与x 之间的函数关系式为()(A ) y=6x ( B ) y=2x+8(C ) y=8x+6(D ) y=8x+4一次函数单元测试题一、选择题(每题3分,共36分) 1、下列各曲线中不能表示y 是x 的函数是( B 、 (1.5 , 0) )0 oC (8, 20)D (0.5 , 0.5 ) A (0,— 2)3、若直线y=kx+b 经过一、二、四象限,则直线 y=bx+k 不经过第()象限.(A ) (B )(C ) (D )四 D)•11、无论m为何实数,直线y=x+2m与y=-x+6的交点不可能在(12、y=kx+k 的大致图象是( ) 二、填空题(每题4分,共24分)13、若函数y= — 2x m+2是正比例函数,贝U m 的值是14、已知点A (a , - 2) , B (b , - 4)在直线y= - x+6上,贝U a 、b 的大小关系是a _____ b15、从A 地向B 地打长途电话,按时收费,3分钟内收费2.4元,以后每超过1分钟加收118、____________________________________________________________ 若直线y=kx+b 平行直线y=5x+3,且过点(2,-1 ),则k= _____________________________ ,b= ______ . 三、解答题(共60分)19、 (6分)知一次函数图象经过(3, 5)和(一4,— 9)两点,①求此一次函数的解析式; ②若点(a ,2)在函数图象上,求a 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第14章一次函数单元测试卷
(总分:100分,时间:100分钟)
题号一1 二2 三3 四4 五5 六6 七7 八8 得分
角度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。

一、选择题(每小题4分,共32分)
1.已知函数y=kx(k≠0)中,y随x的增大而增大,那么一次函数y=kx-k的图象经过() A.一,二,三象限 B.一,二,四象限 C.一,三,四象限 D.二,三,四象限2.下面的哪个点在函数y=2x-3的图象上()
A.(-5,-7) B.(0,3) C.(1,-1) D,(-2,7)
3.如图,直线y=kx+b交坐标轴于A、B两点,则不等式kx+b>0的解集是()A.x>-2 B.x>3 C.x<-2 D.x<3
4.函数y=
2
x+
的自变量x的取值范围是()
A.x≥-2且x≠3 B.x>-2且x≠3
C.x≥-2 D.x>-2
5.已知直线y=kx+b中,当x1>x2时,y1>y2,则下列结论中一定正确的是()A.k>0 B.k<0 C.b>0 D.b<0
6.下图中表示y是x函数的图象是()
7.一次函数y 1=kx+b与y2=x+a的图象如图测所示,
则下列结论:①k<0;②a>0;•③当x<3时,y1<y2
中,正确的个数是()
A.0个 B.1个 C.2个 D.3个
8.甲、乙两人在一次赛跑中,路程s与时间t的关系
如图测所示(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),•小王根据图象得到如下四个信息,其中错误的是()
A.这是一次1500m赛跑
B.甲、乙两人中先到达终点的是乙
C.甲、乙同时起跑
D.甲在这次赛跑中的速度为5m/s
二、填空题(每小题4分,共28分)
9.y-2与x成正比例,当x=-2时,y=4,则y与x的函数关系式是______.
10.根据图测所示的程序,计算当输入x=3时,输出的结果y=_______.
(第10题) (第13题)
11.生物学家研究表明,某种蛇的长度ycm是其尾长xcm的一次函数,•当蛇的尾长为6cm 时,蛇长45.5cm;当尾长为14cm时,蛇长为105.5cm.当一条蛇的尾长为10cm时,•这条蛇的长度是_______cm.
12.直线y=3x向下平移2个单位得到直线________.
13.如图测,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得关于x,y的二元
一次方程
,
.
y ax b
y kx
=+


=

的解是________.
14.随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量y(g/m3)与大气压强x(kPa)成正比例函数关系,当x=36(kPa)时,y=108(g/m3),•请写出y与x的函数关系式_____________.
三、解答题(共40分)
16.(12分)•某公司市场营销售部的营销员的个人月收入与该营销员每月的销售成一次函数关系,其图象如图测所示,根据图象提供的信息,解答下列问题:
(1)求出营销人员的个人月收入y元与该营销员每月的销售量x万件(x≥0)之间的函数关系式.
(2)已知该公司营销员李平5月份的销售量为1.2万件,求李平5月份的收入.
17.(12分)如图测,已知直线L1经过点A(-1,0)与点B(2,3),另一条直线L2经过点B,且与x轴相交于点P(m,0).
(1)求直线L1的解析式.
(2)若△APB的面积为3,求m的值.(提示:分两种情形,即点P在A的左侧和右侧)
18.(16分)第三届南宁国际龙舟赛于2006年6月3日至4日在南湖举行,甲、•乙两队在比赛时,路程y(米)与时间x(分钟)的函数图象如图测所示,根据函数图象填空和解答问题:
(1)最先到达终点的是_____队,比另一个队领先_____分钟到达.
(2)在比赛过程中,乙队_____分钟和_____分钟时两次加速,•图中点A•的坐标是_______,点B的坐标是_______.
(3)假设乙队在第一次加速后,始终保持这个速度继续前进,那么甲、•乙两队谁先到达终点?请说明理由.
参考答案
1.C 2.C 3.A 4.A 5.A 6.C 7.B 8.C
9.y=-x+2 10.2 11.75.5 12.y=3x-2
13.42
x y =-⎧⎨=-⎩ 14.y=3x 15.如y=-4x-2(答案不唯一)
16.(1)设y=kx+b (k ≠0).
因为图象过点(0,400)和(2,1600)两点,
所以400,600,21600.400.
b k k b b ==⎧⎧⎨⎨+==⎩⎩解这个方程组,得 所以所求的函数关系式为y=600x+400(x ≥0).
(2)当x=1.2时,y=600×1.2+400=1120(元).
17.(1)设直线L 1的解析式为y=kx+b ,由题意,得
0,1,2 3. 1.k b k k b b -+==⎧⎧⎨⎨+==⎩⎩
解得 所以直线L 1的解析式为y=x+1.
(2)当点P 在点A 的右侧时,AP=m-(-1)=m+1,
有S △APB =
12
×(m+1)×3=3,解得m=1.
此时点P的坐标为(1,0).
当点P在点A的左侧时,AP=-1-m,有
S△APB=1
2
×(-m-1)×3=3,解得m=-3,
此时,点P的坐标为(-3,0).
综上所述,m的值为1或-3.
18.(1)乙 0.6 (2)1 3 (1,100)(3,450)(3)易求得直线AB的解析式为y=175x-75,
当y=800时,即800=175x-75,x=5.
所以甲、乙两队同时到达终点.
可以编辑的试卷(可以删除)。

相关文档
最新文档