第三章 位置与坐标

合集下载

北师大版数学八年级上册第三章《位置与坐标》

北师大版数学八年级上册第三章《位置与坐标》

知2-讲
导引:要确定每所学校的位置,应以光明广场为参照物,然后 通过计算确定各学校所在位置的方位角,最后用方位角 和各学校到光明广场的距离来表示各学校的位置.
解:∠BOC=∠AOC-∠AOB=123°18′-68°24′ =54°54′,∠NOD=180°-∠AOB-∠AOD=180° -68°24′-88°28′=23°8′. 对光明广场来说,东方国际中学在南偏东68°24′,距 离为8.5 km处;东方红中学在正南方向,距离为10 km 处;29中在南偏西54°54′,距离为10 km处;37中在北 偏东23°8′,距离为7 km处.
第三章 位置与坐标
3.1 确定位置
1 课堂讲解 2 课时流程
确定位置的条件 表示物体位置的方法
逐点 导讲练
课堂 小结
作业 提升
回顾旧知
在数轴上,确定一个点的位置需要几个数据呢?
-2 -1 0 1 2 3
答:一个,例如: 若A点表示-2,B点表示3,则由-2和3就可以在 数轴上找到A点和B点的位置. 在直线上,确定一个点的位置一般需要一个数据.
y 5 第二象限 4 第一象限
(-,+) 3 2
(+,+)
1
-4 -3 -2 -1-1O 1 2 3 4 5 x
第三象限
-2 -3
第四象限
(-,-)
-4
(+,-)
-5
知2-讲
1、点P(x,y)在第一象限 2、点P(x,y)在第二象限 3、点P(x,y)在第三象限 4、点P(x,y)在第四象限
知2-讲
下面给出一张某市旅游景点的 示意图,在科技大学的小亮如 何给来访的朋友介绍该市的几 个风景点的位置呢?

第三章 位置与坐标

第三章  位置与坐标

第三章位置与坐标3.1 确定位置基础题知识点1 行列定位法1.如果将教室里第5行、第3列的座位表示为(5,3),那么第4行、第6列的座位表示为(4,6);(2,3)表示的是教室里第2行、第3列的座位.知识点2 方位角+距离定位法2.若我军战舰攻打敌军战舰,则需要知道(D)A.我军战舰的位置B.敌军战舰相对于我军战舰的方向C.敌军战舰相对于我军战舰的距离D.B、C选项都需要3.点A的位置如图所示,则关于点A的位置下列说法中正确的是(D)A.距点O 4 km处B.北偏东40°方向上4 km处C.在点O北偏东50°方向上4 km处D.在点O北偏东40°方向上4 km处知识点3 经纬度定位法4.某地发生了7.0级地震.以下能够准确表示这次地震震中位置的是(D)A.北纬30.3°B.东经103°C.成都西南方向D.北纬30.3°,东经103°知识点4 区域定位法5.如图是沈阳市地区简图的一部分,图中“故宫”、“鼓楼”所在的区域分别是(C)A.D7,E6 B.D6,E7C.E7,D6 D.E6,D7中档题6.在平面内,下列数据不能确定物体位置的是(B)A.3楼5号 B.北偏西40°C.解放路30号 D.东经120°,北纬30°7.将正整数按如图所示的规律排列.若用有序数对(a,b)表示第a排,从左至右第b个数,例如(4,3)表示的数是9,则(7,2)表示的数是23.8.如图,A表示三经路与一纬路的十字路口,B表示一经路与三纬路的十字路口,如果用(3,1)→(3,2)→(3,3)→(2,3)→(1,3)表示由A到B的一条路径,用同样的方式写出另一条由A到B的路径:(3,1)→(2,1)→(1,1)→(1,2)→(1,3).9.小明家在学校的北偏西40°的方向上,离学校300 m,小华家在学校的南偏西50°的方向上,离学校400 m,小明和小华两家之间的距离是多少?解:小明和小华两家之间的距离是500 m.综合题10.根据指令(s,A)(s≥0,0°≤A<360°)机器人在平面上能完成下列动作:先原地逆时针旋转角度A,再朝其面对的方向沿直线行走距离s,若机器人站在M处,面对的方向如图所示.(1)给机器人下一个指令(2,60°),机器人移动到了B,请你画出机器人从M到B的运动路径;(2)若机器人从M运动到了C点,则给机器人下的指令是(3,340°).解:如图所示.3.2 平面直角坐标系第1课时平面直角坐标系的有关概念基础题知识点1 平面直角坐标系1.与坐标平面内的点对应的是(B)A.一对实数 B.一对有序实数C.一对有理数 D.一对有序有理数2.(柳州中考)如图,P1、P2、P3这三个点中,在第二象限内的有(D)A.P1、P2、P3B.P1、P2C.P1、P3D.P1知识点2 由点的位置写出对应点的坐标3.如图所示,点A的坐标是(3,3),横坐标和纵坐标都是负数的点是C点,坐标是(-2,2)的点是D点.4.写出图中A,B,C,D,E,F,O各点的坐标.解:观察图,得A(2,3),B(3,2),C(-2,1),D(-1,-2),E(2.5,0),F(0,-2),O(0,0).知识点3 由坐标描出对应点的位置5.如图所示的平面直角坐标系中,把以下各组点描出来,并顺次连接各点.(0,-4),(3,-5),(6,0),(0,-1),(-6,0),(-3,-5),(0,-4).解:如图.中档题6.(柳州中考)如图,点A(-2,1)到y轴的距离为(C)A.-2B.1C.2D. 58.如图是某公园的平面图(每个方格的边长为100米).(1)写出任意五个景点的坐标;(2)某星期天的上午,苗苗在公园沿(-500,0)、(-200,-100)、(200,-200)、(300,200)、(500,0)的路线游玩了半天,请你写出她路上经过的地方.解:(1)湖心亭(-300,200),望春亭(-200,-100),音乐台(0,400),牡丹园(300,200),游乐园(200,-200).(2)西门→望春亭→游乐园→牡丹园→东门.综合题9.(株洲中考)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位……,依此类推,第n步的走法是:当n 能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3整除,余数为2时,则向右走2个单位.当走完第100步时,棋子所处位置的坐标是(C)A.(66,34)B.(67,33)C.(100,33)D.(99,34)第2课时平面直角坐标系中点的坐标特点基础题知识点1 各象限内的点的坐标的符号特点1.(大连中考)在平面直角坐标系中,点(1,5)所在的象限是(A)A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系中,点P的坐标为(-2,a2+1),则点P所在的象限是(B)A.第一象限 B.第二象限C.第三象限 D.第四象限3.若点A(2,x)在第四象限,则x的取值范围是x<0.4.写出一个平面直角坐标系中第三象限内点的坐标答案不唯一,如:(-1,-1).知识点2 坐标轴上的点的坐标特点5.在平面直角坐标系中,点(0,-10)在(D)A.x轴的正半轴上 B.x轴的负半轴上C.y轴的正半轴上D.y轴的负半轴上6.坐标平面内下列各点中,在x轴上的点是(B)A.(0,3) B.(-3,0)C.(-1,2) D.(-2,-3)7.已知点A(a+3,a)在y轴上,那么点A的坐标是(B)A.(0,3) B.(0,-3)C.(3,0) D.(-3,0)8.平面直角坐标系内有一点P(x,y),若点P在横轴上,则y=0;若点P在纵轴上,则x=0;若点P为坐标原点,则x=y=0.知识点3 平行于坐标轴的直线上的点的坐标特点9.平行于y轴的直线上任意两点坐标的关系是(B)A.纵坐标相等B.横坐标相等C.横坐标和纵坐标都相等D.横坐标和纵坐标都不相等10.过点A(-3,2)和点B(-3,5)作直线,则直线AB(A)A.平行于y轴 B.平行于x轴C.与y轴相交D.与y轴垂直11.点B的坐标为(3,-4),而直线AB平行于x轴,那么A点坐标有可能为(D)A.(3,-2) B.(2,4)C.(-3,2) D.(-3,-4)12.过点A(1,-2)且垂直于y轴的直线,交y轴于点B,则点B的坐标为(C)A.(0,1) B.(1,0)C.(0,-2) D.(-2,0)13.数学活动中,张明和王丽向老师说明他们的位置(单位:m).张明:我这里的坐标是(-200,300);王丽:我这里的坐标是(300,300).则老师知道张明与王丽之间的距离是500m.14.在平面直角坐标系中描出下列各点,并将各点用线段顺次连接起来.A(-2,3),B(2,3),C(5,0),D(-2,0).(1)图形中,线段CD上的点都在x轴上,它们的坐标特点是纵坐标都等于0;(2)A、D两点横坐标相等,线段AD平行于y轴;(3)线段AB与CD的位置关系是平行;(4)描出的图形的面积为16.5平方单位.中档题15.若P(a,0)中,a<0,则点P位于(B)A.x轴的正半轴B.x轴的负半轴C.y轴的正半轴D.y轴的负半轴16.(威海中考)若点A(a+1,b-2)在第二象限,则点B(-a,b+1)在(A)A.第一象限B.第二象限C.第三象限 D.第四象限17.(菏泽中考)若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在象限是(B)A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定18.已知点M(3,-2)与点M′(x,y)在同一条平行于x轴的直线上,且M′到y轴的距离等于4,那么点M′的坐标是(B)A.(4,2)或(-4,2) B.(4,-2)或(-4,-2)C.(4,-2)或(-5,-2) D.(4,-2)或(-1,-2)19.已知点P(a,a+3)在y轴上,则点Q(-a2-1,-a+1)在第二象限.20.若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是(-3,5).21.已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B点的坐标为(8,2)或(-2,2).22.已知点A(-5,0),点B(3,0),点C在y轴上,三角形ABC的面积为12,则点C的坐标为(0,3)或(0,-3).23.在平面直角坐标系中,点A(2,m+1)和点B(m+3,-4)都在直线l上,且直线l∥x轴.(1)求A,B两点间的距离;(2)若过点P(-1,2)的直线l′与直线l垂直于点C,求垂足C点的坐标.解:(1)因为直线l∥x轴,所以m+1=-4,解得m=-5.所以A(2,-4),B(-2,-4).所以A,B两点间的距离为2-(-2)=4.(2)因为直线l′与直线l垂直于点C,所以直线l′平行y轴.所以C点的横坐标为-1.而直线l上的纵坐标都为-4,所以C(-1,-4).24.图中显示10名同学平均每周用于阅读课外书的时间和用于看电视的时间(单位:小时).(1)用有序数对表示图中各点;(2)图中有一个点位于方格纸的对角线上,这个点表示什么意思?(3)图中方格纸的对角线的左上方的点有什么共同的特点?右下方的点呢?(4)估计一下你每周用于阅读课外书的时间和用于看电视的时间,在图上描出来,这个点位于什么位置.解:(1)(1,6),(1,9),(2,7),(3,5),(4,2),(5,5),(6,4),(7,2),(7,3),(9,1).(2)用于看电视的时间和用于阅读课外书的时间相等,均为5小时.(3)左上方的点表示用于阅读课外书的时间比用于看电视的时间多,右下方的点表示用于看电视的时间比用于阅读课外书的时间多.(4)略.综合题25.(甘孜中考)如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…(每个正方形从第三象限的顶点开始,按顺时针方向排序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y 轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为(5,-5).第3课时建立适当的坐标系描述图形的位置基础题知识点1 建立适当的直角坐标系求已知点的坐标1.如图,已知等腰△ABC,建立直角坐标系求各顶点的坐标,你认为最合理的方法是(A)A.以BC的中点O为坐标原点,BC所在的直线为x轴,AO所在的直线为y轴B.以B点为坐标原点,BC所在的直线为x轴,过B点作x轴的垂线为y轴C.以A点为坐标原点,平行于BC的直线为x轴,过A点作x轴的垂线为y轴D.以C点为坐标原点,平行于BA的直线为x轴,过C点作x轴的垂线为y轴2.建立两个适当的平面直角坐标系,分别表示边长为4的正方形的顶点的坐标.解:如图1,以正方形两邻边所在的直线为坐标轴,建立平面直角坐标系,则A(4,0),B(4,4),C(0,4),D(0,0);如图2,以正方形的两条对称轴所在的直线为坐标轴,建立平面直角坐标系,则A(2,-2),B(2,2),C(-2,2),D(-2,-2).知识点2 已知点的坐标求其他点的坐标3.如图,每个小方格的边长为1,如果E点的坐标是(-2,3),那么原点最可能在________的位置(D)A.A点B.B点C.C点D.D点4.张强在某旅游景点的动物园的大门口看到这个动物园的平面示意图(如图),若以大门为坐标原点,其他四个景点大致用坐标表示肯定错误的是(C)A.熊猫馆(1,4) B.猴山(6,0)C.百鸟园(5,-3) D.驼峰(3,-2)5.已知在直角坐标系xOy中,长方形ABCD的顶点A(-1,1),C(1,2).那么,写出顶点B,D的一组坐标分别为(1,1),(-1,2).6.(绵阳中考)如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别是A(-2,1)和B(-2,-3),那么第一架轰炸机C的平面坐标是(2,-1).7.△ABC 的边AC 在正方形网格中的位置如图所示,已知每个小正方形的边长为1,顶点A 的坐标为(-2,-2). (1)请在网格图中建立并画出平面直角坐标系; (2)直接写出点C 的坐标为(0,2);(3)若点B 的坐标为(3,-2),请在图中标出点B 的位置,并画出△ABC ; (4)求△ABC 的面积.解:(1)如图所示. (3)如图所示.(4)因为A 的坐标为(-2,-2),C 的坐标为(0,2), B 的坐标为(3,-2), 所以S △ABC =12×5×4=10.中档题8.若以B 点为原点,建立直角坐标系,A 点坐标为(3,4),则以A 点为原点,建立直角坐标系,B 点坐标为(A) A .(-3,-4) B .(-3,4) C .(3,-4) D .(3,4)9.(山西中考)如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图,若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是(3,0).10.已知点A 、B 的坐标分别为(2,0)、(2,4),以A 、B 、P 为顶点的三角形与△ABO 全等,则满足条件的点P 的坐标为(4,0),(4,4),(0,4).(只要写出一个即可)11.温州一位老人制作的仿真郑和宝船尺寸如图,已知在某一直角坐标系中,点A 的坐标为(9,0). (1)请你直接在图中画出该坐标系; (2)写出其余5点的坐标;(3)仿真郑和宝船图中互相平行的线段有哪些?分别写出来.解:(1)如图所示.(2)各点的坐标为:B(5,2),C(-5,2),D(-9,0),E(-5,-2),F(5,-2). (3)EF ∥BC ,DE ∥AB ,CD ∥AF.12.如图,已知火车站的坐标为(2,1),文化宫的坐标为(-1,2).(1)请你根据题目条件,画出平面直角坐标系; (2)写出体育场、市场、超市的坐标;(3)若宾馆的坐标为(4,2),请在图上标出宾馆所在位置. 解:(1)如图所示.(2)体育场(-2,4),市场(6,4),超市(4,-2). (3)如图所示.综合题13.如图所示,已知在直角△OAB 中,斜边OB 在x 轴的正半轴上,直角顶点A 在第四象限内,S △OAB =20,OA ∶AB =2∶1,求A 、B 两点的坐标.解:因为S △OAB =12OA ·AB =20,OA ∶AB =2∶1,设AB 为x ,则OA =2x , 12×2x ×x =20. 解得x =25,所以AB =25,OA =4 5.由勾股定理得OB =OA 2+AB 2=10.过点A 作AD ⊥OB ,再由面积法可得AD =4. 在直角△AOD 中,AD =4,OA =45,由勾股定理得OD =OA 2-AD 2=8.所以点A 、B 的坐标分别为(8,-4)、(10,0).3.3 轴对称与坐标变化基础题知识点1 关于坐标轴对称的点的坐标关系1.在直角坐标系中,点A与点A′关于x轴对称,那么点A与点A′的坐标的关系是(A)A.横坐标相同,纵坐标互为相反数B.纵坐标相同,横坐标互为相反数C.横坐标互为相反数,纵坐标互为相反数D.无法确定2.(成都中考)平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为(A)A.(-2,-3) B.(2,-3)C.(-3,-2) D.(3,-2)3.下列各组点关于y轴对称的是(B)A.(0,10)与(0,-10)B.(-3,-2)与(3,-2)C.(-3,-2)与(3,2)D.(-3,-2)与(-3,2)4.在平面直角坐标系中,点A的坐标为(-3,4),那么下列说法正确的是(C)A.点A与点B(3,-4)关于x轴对称B.点A与点C(-4,-3)关于x轴对称C.点A与点D(3,4)关于y轴对称D.点A与点E(4,3)关于y轴对称5.点A(x1,-5),B(2,y2),若A,B关于x轴对称,则x1=2,y2=5;若A,B关于y轴对称,则x1=-2,y2=-5.6.若点A关于x轴对称的点是(2,3),则点A的坐标为(2,-3);若点A关于y轴对称的点是(2,3),则点A的坐标为(-2,3).知识点2 根据点的坐标和对称方式作图7.在如图的平面直角坐标系中,已知点A(-2,-1),B(0,-3),C(1,-2),请在图中画出△ABC和与△ABC关于x轴对称的△A1B1C1.解:△ABC和△A1B1C1如图所示.8.在下面的平面直角坐标系中,依次描出下列各点:(0,2),(5,6),(3,2),(5,3),(5,1),(3,2),(4,0),(0,2).再用线段顺次连接各点.(1)得到的一个图形像什么?(2)(1)中各点的纵坐标不变,横坐标分别变为原来的-1倍,得到各个点的坐标分别是什么?描出这几个点,再用线段顺次连接起来,这样得到的图形与原来的图形有什么变化?先猜一猜,再动手画; (3)(1)中各点的横坐标不变,纵坐标分别变为原来的-1倍,得到各个点的坐标分别是什么?描出这几个点(仍在上图画),再用线段顺次连接起来,这样得到的图形与原来的图形有什么变化?先猜一猜,再动手画. 解:(1)如图,得到的一个图形像“鱼”.(2)(0,2),(-5,6),(-3,2),(-5,3),(-5,1),(-3,2),(-4,0),(0,2).得到的图形与原图形关于y 轴对称,如图.(3)(0,-2),(5,-6),(3,-2),(5,-3),(5,-1),(3,-2),(4,0),(0,-2).得到的图形与原图形关于x 轴对称,如图.中档题9.在平面直角坐标系中,若点P(a ,b)关于x 轴的对称点在第三象限,则(C) A .a>0,b>0 B .a>0,b<0 C .a<0,b>0 D .a<0,b<010.(海南中考)如图,△ABC 与△DEF 关于y 轴对称,已知A(-4,6),B(-6,2),E(2,1),则点D 的坐标为(B)A .(-4,6)B .(4,6)C .(-2,1)D .(6,2)11.如图,在3×3的正方形网格中有四个格点A ,B ,C ,D ,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是(B)A .A 点B .B 点C .C 点D .D 点12.点P(-2,3)关于y 轴的对称点是Q ,则PQ 的长为4.13.在平面直角坐标系内,点P(-3,a)与点Q(b ,-1)关于y 轴对称,则a +b 的值为2.14.(南京中考)在平面直角坐标系中,点A 的坐标是(2,-3),作点A 关于x 轴的对称点,得到点A ′,再作点A ′关于y 轴的对称点,得到点A ″,则点A ″的坐标是(-2,3).15.已知在平面直角坐标系中,点A 、B 的坐标分别为A(-3,4)、B(4,-2). (1)求点A 、B 关于y 轴对称的点的坐标;(2)在平面直角坐标系中分别作出点A 、B 关于x 轴对称的点M 、N ,顺次连接AM 、BM 、BN 、AN ,求四边形AMBN 的面积.解:(1)根据轴对称的性质,得点A(-3,4)关于y 轴对称的点的坐标是(3,4);点B(4,-2)关于y 轴对称的点的坐标是(-4,-2).(2)根据题意:点M 、N 与点A 、B 关于x 轴对称,可得M(-3,-4),N(4,2),图略. 四边形AMBN 的面积为(4+8)×7×12=42.16.在图上建立直角坐标系,用线段顺次连接点(0,0),(1,3),(4,4),(4,0),(0,0).作出这个图形关于x 轴对称的图形,并求它的面积和周长.解:如图.面积为2×12×1×3+3×3=12,周长为212+32+4+4=8+210.综合题17.如图,在直角坐标系中,已知两点A(0,4),B(8,2),点P 是x 轴上的一点,求PA +PB 的最小值.解:如图,A 与A ′关于x 轴对称.连接A ′B 交x 轴于P ,则P 点即为所求. 所以A ′B =PA +PB =62+82=10, 即PA +PB 的最小值为10.章末复习(三) 位置与坐标基础题知识点1 确定位置1.钓鱼岛及其附属岛屿自古以来就是中国的固有领土,在明代钓鱼岛纳入中国疆域版图,能够准确表示钓鱼岛这个地点的是(D)A.北纬25°40′~26°B.东经123°~124°34′C.福建的正东方向D.东经123°~124°34′,北纬25°40′~26°2.若图中的有序数对(4,1)对应字母D,有一个英文单词的字母顺序对应图中的有序数对为(1,1),(2,3),(2,3),(5,2),(5,1),则这个英文单词是APPLE.知识点2 平面直角坐标系中点与坐标的对应关系3.如图,在平面直角坐标系中,坐标是(0,-3)的点是(D)A.点AB.点BC.点CD.点D4.已知点M到x轴的距离为3,到y轴的距离为4.(1)若M点位于第一象限,则其坐标为(4,3);(2)若M点位于x轴的上方,则其坐标为(4,3)或(-4,3);(3)若M点位于y轴的右侧,则其坐标为(4,3)或(4,-3).知识点3 平面直角坐标系中点的坐标特点5.如图,AB∥CD,AD∥BC∥x轴,下列说法正确的是(C)A.A与D的横坐标相同B.A与B的横坐标相同C.B与C的纵坐标相同D.C与D的纵坐标相同6.若点P(a,b)满足ab>0,则点P在第一或第三象限;若点P(a,b)满足ab<0,则点P在第二或第四象限;若点P(a,b)满足ab=0,则点P在坐标轴上.知识点4 建立平面直角坐标系描述图形的位置7.如图,若点M的位置用(-40,-30)表示,那么(10,20)表示的是________的位置(B)A.点A B.点BC.点C D.点D8.(赤峰中考)如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(-1,2),写出“兵”所在位置的坐标:(-2,3).9.长方形ABCD的长为6,宽为4,建立平面直角坐标系,使其中C点的坐标为(-3,2),并写出其他三个顶点的坐标.解:以长方形对边中点的连线所在的直线分别为x轴、y轴,以其交点为原点建立平面直角坐标系,如图所示.其中A(3,-2)、B(3,2)、D(-3,-2).知识点5 轴对称与坐标变化10.(淮安中考)点A(3,-2)关于x轴对称的点的坐标是(3,2).11.(铜仁中考)已知点P(3,a)关于y轴对称的点为Q(b,2),则ab=-6.中档题12.如图,雷达探测器测得六个目标A,B,C,D,E,F出现,按照规定的目标表示方法,目标C,F的位置分别表示为C(6,120°),F(5,210°),按照此方法在表示目标A,B,D,E的位置时,其中表示不正确的是(D)A.A(5,30°) B.B(2,90°)C.D(4,240°) D.E(3,60°)13.(淄博中考)如果m是任意实数,那么点P(m-4,m+1)一定不在(D)A.第一象限 B.第二象限C.第三象限D.第四象限14.如图,在直角坐标系中,△OBC的顶点O(0,0),B(-6,0),且∠OCB=90°,OC=BC,则点C关于y轴对称的点的坐标是(A)A.(3,3)B.(-3,3)C.(-3,-3)D.(32,32)15.已知线段MN=4,MN∥y轴,若点M坐标为(-1,2),则点N的坐标为(-1,6)或_(-1,-2).16.在直角坐标系内描出各点,并依次用线段连接各点:(4,4),(3,3),(4,3),(2,1),(4,1),(72,0),(92,0),(4,1),(6,1),(4,3),(5,3),(4,4).观察得到的图形,你觉得该图形像什么?求出所得到图形的面积.解:如图所示:该图形像宝塔松.图形的面积为:1 2×1×1+12×4×2+12×2×1=112.17.在如图所示的网格(每个小正方形的边长为1)中,△ABC的顶点A的坐标为(-2,1),顶点B的坐标为(-1,2).(1)在网格图中画出两条坐标轴,并标出坐标原点;(2)作△A′B′C′关于x轴对称的图形△A″B″C″;(3)求出BB″的长.解:(1)如图.(2)如图.(3)BB″=22+42=2 5.综合题18.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动{即(0,0)——(0,1)——(1,1)——(1,0)…},且每秒移动一个单位,求第35秒时质点所在位置的坐标.解:由题意可知质点移动的速度是1个单位长度/秒,到达(1,0)时用了3秒,到达(2,0)时用了4秒;从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒;从(0,3)到(3,0)有六个单位长度,则到达(3,0)时用了9+6=15秒;依次类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(5,0)用25+10=35秒.故第35秒时质点到达的位置坐标为(5,0).。

北师大版数学八年级上册第三章位置与坐标知识归纳(含练习)

北师大版数学八年级上册第三章位置与坐标知识归纳(含练习)

2020年~2021年最新第三章 位置与坐标知识点1 坐标确定位置知识链接平面内特殊位置的点的坐标特征(1)各象限内点P (a ,b )的坐标特征:①第一象限:a >0,b >0; ②第二象限:a <0,b >0;③第三象限:a <0,b <0; ④第四象限:a >0,b <0.(2)坐标轴上点P (a ,b )的坐标特征:①x 轴上:a 为任意实数,b=0;②y 轴上:b 为任意实数,a=0;③坐标原点:a=0,b=0.(3)两坐标轴夹角平分线上点P (a ,b )的坐标特征:①一、三象限:b a =; ②二、四象限:b a -=.同步练习1.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( ) A .2 B .3 C .4 D .5考点:点到直线的距离;坐标确定位置;平行线之间的距离.解答:如图,∵到直线l 1的距离是1的点在与直线l 1平行且与l 1的距离是1的两条平行线a 1、a 2上,到直线l 2的距离是2的点在与直线l 2平行且与l 2的距离是2的两条平行线b 1、b 2上, ∴“距离坐标”是(1,2)的点是M 1、M 2、M 3、M 4,一共4个.故选C .2.如图,是用围棋子摆出的图案(用棋子的位置用用有序数对表示,如A 点在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( )A .黑(3,3),白(3,1)B .黑(3,1),白(3,3)C .黑(1,5),白(5,5)D .黑(3,2),白(3,3)考点:利用旋转设计图案;坐标确定位置;利用轴对称设计图案.解答:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形但不是中心对称图形,故此选项错误;B、当摆放黑(3,3),白(3,1)时,此时是轴对称图形也是中心对称图形,故此选项正确;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.故选:B.3.(2014•台湾)如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺考点:坐标确定位置.解答:依题意,OA=OC=400=AE,AB=CD=300,DE=400-300=100,所以邮局出发走到小杰家的路径为,向北直走AB+AE=700公尺,再向西直走DE=100公尺.故选:A.4.如图是我市几个旅游景点的大致位置示意图,如果用(0,0)表示新宁莨山的位置,用(1,5)表示隆回花瑶的位置,那么城市南山的位置可以表示为()A.(2,1)B.(0,1)C.(-2,-1)D.(-2,1)考点:坐标确定位置.解答:建立平面直角坐标系如图,城市南山的位置为(-2,-1).故选C.5.(2014•怀化模拟)小军从点O向东走了3千米后,再向西走了8千米,如果要使小军沿东西方向回到点O的位置,那么小明需要()A.向东走5千米B.向西走5千米C.向东走8千米D.向西走8千米考点:坐标确定位置.解答:小军从点O向东走了3千米,再向西走了8千米后在点O的西边5千米,所以,要回到点O的位置,小明需要向东走5千米.故选A.6.(2014•遵义二模)在一次寻宝游戏中,寻宝人找到了如图所示的两个标志点A(2,1)、B(4,-1),这两个标志点到“宝藏”点的距离都是10,则“宝藏”点的坐标是.考点:勾股定理的应用;坐标确定位置;线段垂直平分线的性质.解答:首先确定坐标轴,则“宝藏”点是C和D,坐标是:(5,2)和(1,-2).故答案是:(5,2)和(1,-2).7.(2014•曲靖模拟)在一次“寻宝”游戏中,“寻宝”人找到了如图所标示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都相等,则“宝藏”点的可能坐标是.考点:坐标确定位置.解答:如图,“宝藏”的可能坐标是(0,-1),(1,0),(2,1),(3,2),(4,3),(5,4),(6,5).故答案为:(0,-1),(1,0),(2,1),(3,2),(4,3),(5,4),(6,5).8.(2014•赤峰)如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(-1,2),写出“兵”所在位置的坐标.考点:坐标确定位置.解答:建立平面直角坐标系如图,兵的坐标为(-2,3).故答案为:(-2,3).9.如图1,是由方向线一组同心、等距圆组成的点的位置记录图.包括8个方向:东、南、西、北、东南、东北、西南、西北,方向线交点为O,以O为圆心、等距的圆由内向外分别称作1、2、3、…n.将点所处的圆和方向称作点的位置,例如M(2,西北),N(5,南),则P点位置为.如图2,若将(1,东)标记为点A1,在圆1上按逆时针方向旋转交点依次标记为A2、A3、…、A8;到A8后进入圆2,将(2,东)标记为A9,继续在圆2上按逆时针方向旋转交点依次标记为A10、A11、…、A16;到A16后进入圆3,之后重复以上操作过程.则点A25的位置为,点A2013的位置为,点A16n+2(n为正整数)的位置为.考点:规律型:点的坐标;坐标确定位置.解答:由题意得出:P点在第3个圆上,且在东北方向,故P点位置为:(3,东北),由题意可得出每8个数A点向外移动一次,∵25÷8=3…1,故点A25所在位置与A1方向相同,故点A25的位置为(4,东),∵2013÷8=251…5,故点A2013所在位置与A5方向相同,故点A2013的位置为(252,西),∵(16n+2)÷8=2n…2,故点A16n+2所在位置与A2方向相同,故点A16n+2的位置为(2n+1,东北),故答案为:(3,东北),(4,东),(252,西),(2n+1,东北).10.有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可认,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中C点的位置.解:C点的位置如图.11.如图是某台阶的一部分,如果A点的坐标为(0,0),B点的坐标为(1,1).(1)请建立适当的直角坐标系,并写出其余各点的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标比较有什么变化?(3)现要给台阶铺上地毯,单位长度为1,请你算算要多长的单位长度的地毯?解:以A点为原点,水平方向为x轴,建立平面直角坐标系,所以C,D,E,F各点的坐标分别为C(2,2),D(3,3),E(4,4),F(5,5);B,C,D,E,F的坐标与点A的坐标相比较,横坐标与纵坐标分别加1,2,3,4,5;现要给台阶铺上地毯,单位长度为1,要11个单位长度的地毯12.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.解:方法1,用有序实数对(a,b)表示,比如:以点A为原点,水平方向为x轴,建立直角坐标系,则B(3,3),方法2,用方向和距离表示,比如:B点位于A点的东北方向(北偏东45°等均可),距离A 3处.点2知识点2 平面直角坐标系知识链接1点的坐标(1)我们把有顺序的两个数a和b组成的数对,叫做有序数对,记作(a,b).(2)平面直角坐标系的相关概念①建立平面直角坐标系的方法:在同一平面内画两条有公共原点且垂直的数轴.②各部分名称:水平数轴叫x轴(横轴),竖直数轴叫y轴(纵轴),x轴一般取向右为正方向,y轴一般取象上为正方向,两轴交点叫坐标系的原点.它既属于x轴,又属于y轴.(3)坐标平面的划分建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.(4)坐标平面内的点与有序实数对是一一对应的关系.2 两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=(x1-x2)2+(y1-y2)2.说明:求直角坐标系内任意两点间的距离可直接套用此公式.同步练习1.(2014•台湾)如图的坐标平面上有P 、Q 两点,其坐标分别为(5,a )、(b ,7).根据图中P 、Q 两点的位置,判断点(6-b ,a-10)落在第几象限?( )A .一B .二C .三D .四考点:点的坐标.解答:∵(5,a )、(b ,7),∴a <7,b <5,∴6-b >0,a-10<0,∴点(6-b ,a-10)在第四象限.故选D .2.(2014•萧山区模拟)已知点P (1-2m ,m-1),则不论m 取什么值,该P 点必不在( )A .第一象限B .第二象限C .第三象限D .第四象限考点:点的坐标.分析:分横坐标是正数和负数两种情况求出m 的值,再求出纵坐标的正负情况,然后根据各象限内点的坐标特征解答.解答:①1-2m >0时,m <21,m-1<0,所以,点P 在第四象限,一定不在第一象限; ②1-2m <0时,m >21,m-1既可以是正数,也可以是负数,点P 可以在第二、三象限, 综上所述,P 点必不在第一象限.故选A .3.(2014•闵行区二模)如果点P (a ,b )在第四象限,那么点Q (-a ,b-4)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限考点:点的坐标.分析:根据第四象限的点的坐标特征确定出a 、b 的正负情况,再确定出点Q 的横坐标与纵坐标的正负情况,然后根据各象限内点的坐标特征判断即可.解答:∵点P (a ,b )在第四象限,∴a >0,b <0,∴-a <0,b-4<0,∴点Q (-a ,b-4)在第三象限.故选C .点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.(2014•北海)在平面直角坐标系中,点M (-2,1)在( )2秒3秒(2)当P点从点O出发10秒,可得到的整数点的个数是______个.(3)当P点从点O出发______秒时,可得到整数点(10,5)考点:点的坐标.分析:(1)在坐标系中全部标出即可;(2)由(1)可探索出规律,推出结果;(3)可将图向右移10各单位,用10秒;再向上移动5个单位用5秒.解答:(1)以1秒时达到的整数点为基准,向上或向右移动一格得到2秒时的可能的整数点;再以2秒时得到的整数点为基准,向上或向右移动一格,得到3秒时可能得到的整数点.P从O点出发时间可得到整数点的坐标可得到整数点的个数1秒(0,1)、(1,0) 22秒(0,2),(2,0),(1,1) 33秒(0,3),(3,0),(2,1),(1,2) 4(2)1秒时,达到2个整数点;2秒时,达到3个整数点;3秒时,达到4个整数点,那么10秒时,应达到11个整数点;(3)横坐标为10,需要从原点开始沿x轴向右移动10秒,纵坐标为5,需再向上移动5秒,所以需要的时间为15秒.知识点3 坐标与图形性质知识链接1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x 轴的距离与纵坐标有关,到y 轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.同步练习1.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0)、(0,8).以点A 为圆心,以AB 长为半径画弧,交x 正半轴于点C ,则点C 的坐标为 .考点:勾股定理;坐标与图形性质.分析:首先利用勾股定理求出AB 的长,进而得到AC 的长,因为OC=AC-AO ,所以OC 求出,继而求出点C 的坐标.解答:∵点A ,B 的坐标分别为(-6,0)、(0,8),∴AO=6,BO=8,∴AB=22BO AO =10,∵以点A 为圆心,以AB 长为半径画弧,∴AB=AC=10,∴OC=AC-AO=4,∵交x 正半轴于点C ,∴点C 的坐标为(4,0),故答案为:(4,0).2.如图,正方形ABCD 的边长为4,点A 的坐标为(-1,1),AB 平行于x 轴,则点C 的坐标为 .解答:C (3,5)3.如图,Rt △OAB 的斜边AO 在x 轴的正半轴上,直角顶点B 在第四象限内,S △OAB =20,OB :AB=1:2,求A 、B 两点的坐标.解答:A (10,0),B (2,-4)4.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于21MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=-1C .2a-b=1D .2a+b=1 考点:作图—基本作图;坐标与图形性质;角平分线的性质.分析:根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 与b 的数量关系.解答:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=-1,故选:B .5.如图,在平面直角坐标系中,有一矩形COAB ,其中三个顶点的坐标分别为C (0,3),O (0,0)和A (4,0),点B 在⊙O 上. (1)求点B 的坐标; (2)求⊙O 的面积.解答:(1) B (4,3) (2) 25π6.(2014•南平模拟)如图,在平面直角坐标系中,OABC 是正方形,点A 的坐标是(4,0),点P 在AB 边上,且∠CPB=60°,将△CPB 沿CP 折叠,使得点B 落在D 处,则D 的坐标为( )A .(2,32)B .(23 , 32-) C .(2,324-) D .(23,324-) 考点:翻折变换(折叠问题);坐标与图形性质.分析:作DE ⊥y 轴于E ,DF ⊥x 轴于F ,根据正方形的性质∴OC=BC=4,∠B=90°,由∠BPC=60°得∠1=30°,再根据折叠的性质得到∠1=∠2=30°,CD=CB=4,所以∠3=30°,在Rt △CDE 中,根据含30度的直角三角形三边的关系得到DE=21CD=2,CE=3DE=32,则OE=324-,所DF=324-,然后可写出D 点坐标.解答:作DE ⊥y 轴于E ,DF ⊥x 轴于F ,如图,∵四边形OABC 是正方形,点A 的坐标是(4,0), ∴OC=BC=4,∠B=90°, ∵∠BPC=60°, ∴∠1=30°,∵△CPB 沿CP 折叠,使得点B 落在D 处,∴∠1=∠2=30°,CD=CB=4, ∴∠3=30°, 在Rt △CDE 中,DE=21CD=2,CE=3DE=23, ∴OE=OC-CE=324-, ∴DF=OE=324-,∴D 点坐标为(2,324-).故选C .7.如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,3),点C 的坐标为(21,0),点P 为斜边OB 上的一个动点,则PA+PC 的最小值为 .考点:轴对称-最短路线问题;坐标与图形性质.分析:作A 关于OB 的对称点D ,连接CD 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N ,则此时PA+PC 的值最小,求出AM ,求出AD ,求出DN 、CN ,根据勾股定理求出CD ,即可得出答案.解答:作A 关于OB 的对称点D ,连接CD 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N , 则此时PA+PC 的值最小, ∵DP=PA ,∴PA+PC=PD+PC=CD , ∵B (3,3),∴AB=3,OA=3,∠B=60°,由勾股定理得:OB=32, 由三角形面积公式得:21×OA×AB=21×OB×AM ,∴AM=23, ∴AD=2×23=3,∵∠AMB=90°,∠B=60°, ∴∠BAM=30°, ∵∠BAO=90°, ∴∠OAM=60°, ∵DN ⊥OA , ∴∠NDA=30°,∴AN=21AD=23,由勾股定理得:DN=323, ∵C (21,0),∴CN=3-21-23=1,在Rt △DNC 中,由勾股定理得:DC==+22)323(1231, 即PA+PC 的最小值是231, 8.在直角坐标系中,有四个点A (-8,3)、B (-4,5)、C (0,n )、D (m ,0),当四边形ABCD 的周长最短时,nm的值为( ) A .73- B .23- C .27- D .23考点:轴对称-最短路线问题;坐标与图形性质.分析:若四边形的周长最短,由于AB 的值固定,则只要其余三边最短即可,根据对称性作出A 关于x 轴的对称点A′、B 关于y 轴的对称点B′,求出A′B′的解析式,利用解析式即可求出C 、D 坐标,得到nm .解答:根据题意,作出如图所示的图象:过点B 作B 关于y 轴的对称点B′、过点A 关于x 轴的对称点A′,连接A′B′,直线A′B′与坐标轴交点即为所求.解答:直线AB 方程为y=3x-9,直线OB 斜率为23-. 过O‘点平行于直线OB 的直线方程为:y=23-(x+1) . 联立两方程,解得交点B′的坐标为(35,-4).11.已知点D 与点A (8,0),B (0,6),C (a ,-a )是一平行四边形的四个顶点,则CD 长的最小值为 .考点:平行四边形的性质;坐标与图形性质.分析:①CD 是平行四边形的一条边,那么有AB=CD ;②CD 是平行四边形的一条对角线,过C 作CM ⊥AO 于M ,过D 作DF ⊥AO 于F ,交AC 于Q ,过B 作BN ⊥DF 于N ,证△DBN ≌△CAM ,推出DN=CM=a ,BN=AM=8-a ,得出D ((8-a ,6+a ),由勾股定理得:CD 2=(8-a-a )2+(6+a+a )2=8a 2-8a+100=8(a-21)2+98,求出即可.解答:有两种情况:①CD 是平行四边形的一条边,那么有AB=CD=2286+=10 ②CD 是平行四边形的一条对角线,*12.如图,△ABO 缩小后变为△A′B′O ,其中A 、B 的对应点分别为A′、B′点A 、B 、A′、B′均在图中在格点上.若线段AB 上有一点P (m ,n ),则点P 在A′B′上的对应点P′的坐标为( )A .(2m ,n ) B .(m ,n ) C .(m ,2n ) D .(2m ,2n ) 考点:位似变换;坐标与图形性质.分析:根据A ,B 两点坐标以及对应点A′,B′点的坐标得出坐标变化规律,进而得出P′的坐标.解答:∵△ABO 缩小后变为△A′B′O ,其中A 、B 的对应点分别为A′、B′点A 、B 、A′、B′均在图中在格点上,即A 点坐标为:(4,6),B 点坐标为:(6,2),A′点坐标为:(2,3),B′点坐标为:(3,1),∴线段AB 上有一点P (m ,n ),则点P 在A′B′上的对应点P′的坐标为:(2m ,2n). 故选D .*13.(2014•海港区一模)如图,在直角坐标系中,有16×16的正方形网格,△ABC 的顶点分别在网格的格点上.以原点O 为位似中心,放大△ABC 使放大后的△A′B′C′的顶点还在格点上,最大的△A′B′C′的面积是( ) A .8 B .16 C .32 D .64考点:位似变换;坐标与图形性质.分析:根据题意结合位似图形的性质与三角形最长边即为216,进而得出答案.解答:如图所示:△A′B′C′即为符合题意的图形, 最大的△A′B′C′的面积是:21×8×16=64.故选:D .知识点4 坐标与图形的变化知识链接1 坐标与图形变化---对称 (1)关于x 轴对称横坐标相等,纵坐标互为相反数.即点P (x ,y )关于x 轴的对称点P′的坐标是(x ,-y ). (2)关于y 轴对称 纵坐标相等,横坐标互为相反数.即点P (x ,y )关于y 轴的对称点P′的坐标是(-x ,y ). (3)关于直线对称①关于直线x=m 对称,P (a ,b )⇒P (2m-a ,b ) ②关于直线y=n 对称,P (a ,b )⇒P (a ,2n-b ) 2 坐标与图形变化---平移 (1)平移变换与坐标变化向右平移a 个单位,坐标P (x ,y )⇒P (x+a ,y ) 向左平移a 个单位,坐标P (x ,y )⇒P (x-a ,y ) 向上平移b 个单位,坐标P (x ,y )⇒P (x ,y+b ) 向下平移b 个单位,坐标P (x ,y )⇒P (x ,y-b )(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.) 3 坐标与图形变化---旋转(1)关于原点对称的点的坐标.即点P (x ,y )关于原点O 的对称点是P′(-x ,-y ). (2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.同步练习1.(2014•大连)在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A.(1,3)B.(2,2)C.(2,4)D.(3,3)考点:坐标与图形变化-平移.分析:根据向上平移,横坐标不变,纵坐标加解答.解答:∵点(2,3)向上平移1个单位,∴所得到的点的坐标是(2,4).故选:C.2.(2014•呼伦贝尔)将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:坐标与图形变化-平移.分析:先利用平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减) ,,求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.解答:点A(-2,-3)向右平移3个单位长度,得到点B的坐标为为(1,-3),故点在第四象限.故选D.3.(2014•牡丹江)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(-x,y-2)B.(-x,y+2)C.(-x+2,-y)D.(-x+2,y+2)考点:坐标与图形变化-平移.分析:先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(-x,y+2),即为P′点的坐标.解答:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(-x,y+2).故选:B.4.(2014•潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)考点:翻折变换(折叠问题);正方形的性质;坐标与图形变化-对称、平移.专题:规律型.分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.解答:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选:A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2)是解此题的关键.5.(2014•昆明)如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为.考点:坐标与图形变化-平移.分析:根据点向左平移a个单位,坐标P(x,y)⇒P(x-a,y)进行计算即可.解答:∵点A坐标为(1,3),∴线段OA向左平移2个单位长度,点A的对应点A′的坐标为(1-2,3),即(-1,3),故答案为:(-1,3).6.(2014•宜宾)在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是.考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.分析:首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.解答:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为:(2,-2).7.(2014•厦门)在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是,A1的坐标是.考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,纵坐标不变解答.解答:∵点O(0,0),A(1,3),线段OA向右平移3个单位,∴点O 1的坐标是(3,0),A 1的坐标是(4,3).故答案为:(3,0),(4,3).*8.(2014•巴中)如图,直线y=−34x+4与x 轴、y 轴分别交于A 、B 两点,把△A0B 绕点A 顺时针旋转90°后得到△AO′B′,则点B′的坐标是 .考点:坐标与图形变化-旋转.分析:首先根据直线AB 来求出点A 和点B 的坐标,B′的横坐标等于OA+OB ,而纵坐标等于OA ,进而得出B′的坐标.解答:直线y=-34x+4与x 轴,y 轴分别交于A (3,0),B (0,4)两点, ∵旋转前后三角形全等,∠O′AO=90°,∠B′O′A=90°∴OA=O′A ,OB=O′B′,O′B′∥x 轴,∴点B′的纵坐标为OA 长,即为3,横坐标为OA+OB=OA+O′B′=3+4=7,故点B′的坐标是(7,3),故答案为:(7,3).点评:本题主要考查了对于图形翻转的理解,其中要考虑到点B 和点B′位置的特殊性,以及点B′的坐标与OA 和OB 的关系.9.(2013•梅州)如图,在平面直角坐标系中,A (-2,2),B (-3,-2)(1)若点C 与点A 关于原点O 对称,则点C 的坐标为______;(2)将点A 向右平移5个单位得到点D ,则点D 的坐标为______;(3)由点A ,B ,C ,D 组成的四边形ABCD 内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.考点:关于原点对称的点的坐标;坐标与图形变化-平移;概率公式.分析:(1)根据关于原点的对称点,横纵坐标都互为相反数求解即可;(2)把点A 的横坐标加5,纵坐标不变即可得到对应点D 的坐标;(3)先找出在平行四边形内的所有整数点,再根据概率公式求解即可.解答:(1)∵点C 与点A (-2,2)关于原点O 对称,∴点C 的坐标为(2,-2);(2)∵将点A 向右平移5个单位得到点D ,∴点D 的坐标为(3,2);(3)由图可知:A (-2,2),B (-3,-2),C (2,-2),D (3,2),∵在平行四边形ABCD 内横、纵坐标均为整数的点有15个,其中横、纵坐标和为零的点有3个,即(-1,1),(0,0),(1,-1),∴P=153=51. 点评:本题考查了关于原点对称的点的坐标,坐标与图形变化-平移,概率公式.难度适中,掌握规律是解题的关键.10.(黄冈)在平面直角坐标系中,△ABC 的三个顶点的坐标是A (-2,3),B (-4,-1),C (2,0),将△ABC 平移至△A 1B 1C 1的位置,点A 、B 、C 的对应点分别是A 1、B 1、C 1,若点A 1的坐标为(3,1).则点C 1的坐标为______.考点:坐标与图形变化-平移.分析:首先根据A 点平移后的坐标变化,确定三角形的平移方法,点A 横坐标加5,纵坐标减2,那么让点C 的横坐标加5,纵坐标-2即为点C 1的坐标.解答:由A (-2,3)平移后点A 1的坐标为(3,1),可得A 点横坐标加5,纵坐标减2, 则点C 的坐标变化与A 点的变化相同,故C 1(2+5,0-2),即(7,-2).故答案为:(7,-2).点评:本题主要考查图形的平移变换,解决本题的关键是根据已知对应点找到所求对应点之间的变化规律.11.(北京)操作与探究:(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以31,再把所得数对应的点向右平移1个单位,得到点P 的对应点P′.点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段A′B′,其中点A ,B 的对应点分别为A′,B′.如图1,若点A 表示的数是-3,则点A′表示的数是______;若点B′表示的数是2,则点B 表示的数是______;已知线段AB 上的点E 经过上述操作后得到的对应点E′与点E 重合,则点E 表示的数是______.(2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0),得到正方形A′B′C′D′及其内部的点,其中点A ,B 的对应点分别为A′,B′.已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F′与点F 重合,求点F 的坐标.考点:坐标与图形变化-平移;数轴;正方形的性质;平移的性质.分析:(1)根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点B 表示的数为a ,根据题意列出方程求解即可得到点B 表示的数,设点E 表示的数为b ,根据题意列出方程计算即可得解;(2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点F 的坐标为(x ,y ),根据平移规律列出方程组求解即可.解答:(1)点A′:-3×31+1=-1+1=0,设点B 表示的数为a ,则31a+1=2, 解得a=3,设点E 表示的数为b ,则31b+1=b , 解得b=23;。

北师大版八年级数学上册第三章《位置与坐标》回顾思考优秀教学案例

北师大版八年级数学上册第三章《位置与坐标》回顾思考优秀教学案例
2.激发学生的好奇心,使他们产生学习坐标知识的兴趣,为新课的展开做好铺垫。
(二)讲授新知
1.回顾坐标系的建立、点的坐标、直线与坐标轴的交点坐标等基本知识;
2.通过示例讲解,引导学生掌握坐标知识在实际问题中的应用方法;
3.注重知识点的系统性,帮助学生构建完整的知识框架。
(三)学生小组讨论
1.设计具有挑战性的讨论题目,让学生在小组内积极思考、交流,共同解决问题;
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们困难时积极应对、勇于挑战的精神,增强他们的自信心;
3.通过对实际问题的探究,使学生认识到数学知识在生活中的重要性,培养他们的责任感和使命感。
在教学过程中,我将以平等、尊重的态度对待每一位学生,关注他们的个体差异,鼓励他们积极参与课堂讨论,表达自己的观点。同时,我将充分发挥教师的主导作用,引导学生掌握坐标知识,提高他们的数学素养,为他们的可持续发展奠定基础。
2.引导学生运用坐标知识进行分析,培养他们的逻辑思维能力和团队协作精神;
3.关注小组讨论的过程,及时给予指导和评价,提高学生的讨论效果。
(四)总结归纳
1.组织学生对所学知识进行总结归纳,帮助他们巩固记忆,形成知识体系;
2.强调坐标知识在实际生活中的重要性,使学生认识到学习坐标知识的现实意义;
3.总结本节课的学习方法,为学生的可持续发展奠定基础。
3.关注小组合作的过程,及时给予指导和评价,激发学生的学习积极性。
(四)反思与评价
1.引导学生对所学知识进行总结与反思,帮助他们巩固记忆,形成知识体系;
2.创设自我评价和小组评价的机会,让学生学会自我检查、相互借鉴,提高他们的自我认知能力;
3.注重过程性评价与终结性评价相结合,全面、客观地评价学生的学习成果,激发他们的学习动力。

北师大版八年级数学上册第三章《位置与坐标》小结与复习

北师大版八年级数学上册第三章《位置与坐标》小结与复习
8.点P到x轴、y轴的距离分别是2,1,则点P的坐标 可能为 (1,2)、(1,-2)、(-1,2)、(-1,-2) . 9.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的 距离相等,则点P的坐标 (3,3) 或 (6,-6) .
课后作业
10. 已知平面内一点P,它的横坐标与纵坐标互为相反数,
第三章 位置与坐标
小结与复习
知课识后构作架业
确定平面内点的位置k

①互相垂直


②有公共原点


读点与描点
建立平面直角坐标系
象限与象限内点的符号
坐标系的应用
特殊位置点的坐标 关于x、y轴对称
用坐标表示位置
知课识后梳作理业
一 确定位置
1.由点确定坐标 A点的坐标
记作A( 2,1 )
规定:横坐标在前, 纵坐标在后
(7,2),(8,2),(5,4)做如下变化,画出图形,说说
变化前后图形的关系.
(1)纵坐标不变,横坐标分别乘以-1.
解:
5 4
3
2
图形变化前后点的坐标分别为: 变化前 (3,0) (7,0) (2,2) (3,2)
变化后 (-3,0) (-7,0) (-2,2) (-3,2)
234 5678
(7,2) (8,2) (5,4) (-7,2)的直线上的点的坐标
y (0,y)
平行于x轴的直线上的
各点的纵坐标相同,横
坐标不同. 1
-1 0 1 -1
x
(x,0)平行于y轴的直线上的 各点的横坐标相同,纵
坐标不同.
课后作业
四 对称点的坐标
y B(-a,b)

1

第三章位置与坐标

第三章位置与坐标

第三章位置与坐标1.认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标.2.在实际问题中,能建立适当的直角坐标系,描述物体的位置,体会可以用直角坐标系画一个简单图形.3.能结合具体情境灵活运用多种方式确定物体的位置.4.在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系.经历探索图形位置变化与图形坐标变化之间关系的过程,进一步发展数形结合意识和应用意识,初步建立几何直观.从事对现实世界中确定位置的现象进行观察、分析、抽象和概括的活动,进一步发展空间观念.一、《标准》要求1.探索并理解平面直角坐标系及其应用.2.在研究确定物体位置等过程中,进一步发展空间观念;经历借助图形思考问题的过程,初步建立几何直观.3.结合实例进一步体会用有序数对表示物体的位置.4.理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标.5.在实际问题中,能建立适当的直角坐标系,描述物体的位置.6.对给定的正方形,会选择合适的直角坐标系,写出它的顶点坐标,体会用坐标刻画一个简单图形.7.在平面上,能用方位角和距离刻画两个物体的相对位置.8.在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系.二、教材分析“图形与坐标”是“图形与几何”领域的重要组成部分,它是发展学生空间观念的重要载体.作为第一、二学段“图形与位置”的发展,本章是第三学段“图形与坐标”的主体内容,将引领学生感受确定物体位置方法的多样性,抽象出平面直角坐标系的概念,进而利用平面直角坐标系确定物体的位置,并从坐标的角度描述学习过的轴对称图形,进一步认识轴对称.同时,平面直角坐标系是表示变量之间关系的重要工具,因此本章是以后学习“一次函数”的重要基础.本章首先结合学生的生活实际,选择了丰富多彩、形式多样的确定位置的现实背景,力图使学生感受平面上确定位置的共同特征:不管用什么方法确定位置,都需要两个数据.然后,通过实际背景认识确定位置的一个常用方法,引入平面直角坐标系,建立直角坐标系中的点与坐标之间的一一对应关系,学习根据坐标描出点的位置、由点的位置写出它的坐标,同时能建立适当的直角坐标系刻画图形上各点的位置.最后,在同一个直角坐标系里,探索图形的变化(轴对称)与坐标的变化之间的关系.【重点】1.确定物体位置的方法.2.认识和画出直角坐标系,在给定的直角坐标系中,能够根据坐标描出点的位置,由点的位置写出它的坐标.3.探索坐标变换与图形变换的关系.【难点】1.灵活运用各种方法确定物体的位置.2.认识图形与坐标的关系.3.正确确定坐标变换与图形变换的关系,进一步发展空间观念和审美意识.1.结合实际创造性地选用现实题材进行教学.教学中要立足于学生的生活经验和已有的数学活动经验,创造性地选用现实生活中的有关题材,丰富教学内容,生活中,确定位置的方法是多样的,有点定位、区域定位、极坐标定位、直角坐标定位等.教科书从学生熟悉的情境出发,选取了“电影院中找座位”“航海中找目标”“地图上确定城市的位置”等素材,教学中教师既可以利用教科书上已有的题材,也可以根据本地的生活实际和学生的认知实际,选取更为贴近学生的教学素材(如确定学校的位置、校园中旗杆的位置、学生在班级的位置等),鼓励学生用自己的方式来确定位置.2.恰当把握教学重点与要求.教学中应让学生充分经历确定物体位置的活动过程,在过程中体会到:不管用什么方法来确定一个物体在平面上的位置,都需要两个数据.要引导学生理解轴对称与坐标变化之间的联系,形成对图形变换的整体认识,进一步发展学生的数形结合意识、空间观念,建立几何直观.3.恰当运用多种教学手段.本章的教学需要大量的坐标纸、地图等材料,课前的准备是必需的.同时,建议有条件的地区使用计算机进行动态演示,以保证教学的效果.1确定位置1.要求学生在现实情境中感受物体定位的多种方法.2.初步学会根据实际情况找出具体的位置.3.能较灵活地运用不同的方式对物体定位.4.能了解在平面上确定物体位置的方法的统一性:都需要两个数据.1.通过现实事例,让学生了解到位置的重要性,引导学生进入新课.2.使学生置身情境中,研究物体的位置,对位置形成初步的认识.3.引导学生探索确定物体位置的方法.4.通过讨论交流等方式给学生讲解例题,掌握确定物体位置的方法.5.让学生经历探索、操作等过程,在实践中体会和掌握如何运用各种方法来确定物体的位置.6.通过课后练习、讨论交流等方式组织学生小结本课,回忆和巩固知识.1.通过现实生活中的有关题材,使学生体会生活中位置的确定离不开数据,数学与生活有着密切关系.2.使学生在合作与交流的过程中获得情感体验,培养学生的合作意识.【重点】1.使学生能在具体的情境中,根据行和列确定并描述物体的位置.2.能了解在平面上确定物体位置的方法:一般需要两个数据.【难点】能灵活运用不同方式准确确定物体的位置.【教师准备】教材情境图,带磁力的方格板和黑白棋.布置学生收集两张废旧电影票,准备学生尺、量角器.【学生准备】按教师的布置收集两张废旧电影票,准备学生尺、量角器.导入一:【问题】秦始皇兵马俑在什么位置呢?你能告诉我陕西省西安市的位置吗?[设计意图]通过上述图片,引导学生感受生活中常常需要确定位置.导入新课:怎样确定位置呢?导入二:【问题】在数轴上,确定一个点的位置需要几个数据呢?【答】一个,例如,若A点表示-2,B点表示3,则由-2和3就可以在数轴上找到A点和B点的位置.总结得出结论:在数轴上, 确定一个点的位置一般需要一个数据.一、探究(1)在电影院内如何找到电影票上所指的位置?(2)在电影票上,“3排6座”与“6排3座”中的“6”的含义有什么不同?(3)如果将“3排6座”记作(3,6),那么“6排3座”如何表示?(5,6)表示什么含义?[设计意图]较好地体现数学的现实性,有利于学生良好数学观的形成.(4)在只有一层的电影院内,确定一个座位一般需要几个数据?(5)在生活中,确定物体的位置还有其他的方法吗?与同伴进行交流.[设计意图]及时总结学生的经验,并要求学生自主寻找生活中的定位问题,进而可以选用学生所举的例子开展下面的教学活动,这样的课才是生动的,交互的.结论:生活中常常用“排数”和“座数”来确定位置.二、学有所用下表中是无序排列的汉字,小明拿到一张写有密码的字条,你能帮他破译吗?结论:生活中常常用“行数”和“列数”来确定位置.三、例题讲解下图是某次海战中敌我双方舰艇对峙示意图(图中1 cm表示20 n mile).对我方潜艇O来说:(1)北偏东40°的方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?(2)距离我方潜艇20 n mile的敌舰有哪几艘?(3)要确定每艘敌舰的位置,各需要几个数据?[设计意图]本例用方位角和距离刻画两个物体的相对位置,实际上,这就是极坐标定位.当然,这里并不严格地介绍极坐标,而是意在渗透极坐标的思想.解:(1)对我方潜艇来说,北偏东40°的方向上有两个目标:敌舰B和小岛.要想确定敌舰B的位置,仅用北偏东40°的方向是不够的,还需要知道敌舰B距我方潜艇的距离.(2)距我方潜艇20 n mile的敌舰有两艘:敌舰A和敌舰C.(3)要确定每艘敌舰的位置,各需要两个数据:距离和方位角.例如,对我方潜艇来说,敌舰A在正南方向,距离为20 n mile处;敌舰B在北偏东40°的方向,距离为28 n mile处;敌舰C在正东方向,距离为20 n mile处.结论:生活中常常用“方位角”和“距离”来确定位置.四、做一做(1)据新华社报道,2008年5月12日14:28,我国四川省发生里氏8.0级强烈地震,震中位于阿坝州汶川县境内,即北纬31°,东经103.4°.这是新中国成立以来破坏性最强、波及范围最大的一次地震.你能在图中找到震中的大致位置吗?[设计意图]这是根据经纬度来确定位置的.结论:生活中常常用“经度”和“纬度”来确定位置.(2)如图所示的是广州市地图简图的一部分,如何向同伴介绍“广州起义烈士陵园”所在的区域?“广州火车站”呢?[设计意图]这种确定位置的方法属于区域定位.生活中没有绝对的点,为了寻找点的方便,常将点框定在一定的区域内.结论:生活中常常用“区域定位”来确定位置.五、议一议(1)你能举出生活中需要确定位置的例子吗?与同伴进行交流.(2)在平面内,确定一个物体的位置一般需要几个数据?结论:在平面内,确定一个物体的位置一般需要2个数据.若设这两个数据分别为a和b,则:a表示:排数、行数、经度、方位……b表示:座数、列数、纬度、距离……[知识拓展]确定平面上的点的方法很多,不管采用哪种方法,平面内确定位置都需要两个量,特别是用一对数表示位置时,应该注意数是有顺序的.顺序不同表示点的位置就不同.1.在现实情境中感受了确定物体位置的多种方式,并能灵活运用不同方式确定物体的位置.2.在数轴上,确定一个点的位置一般需要一个数据.在平面内,确定一个物体的位置一般需要两个数据.若设这两个数据分别为a和b,则:a表示:排数、行数、经度、方位……b表示:座数、列数、纬度、距离……1.在平面内,下列数据不能确定物体位置的是()A.3楼5号B.北偏西40°C.解放路30号D.东经120°,北纬30°解析:在平面中,确定物体的位置一般需要两个数据,B选项只有一个数据,故不能确定物体的位置.故选B.2.海事救灾船前去救援某海域失火轮船,需要确定()A.方位角B.距离C.失火轮船的国籍D.方位角和距离解析:在海上确定物体的位置一般需要方位角和距离.故选D.3.如图所示,“马”所处的位置为(2,3),其中“马”走的规则是沿着“日”字形的对角线走.(1)用坐标表示图中“象”的位置是;(2)写出“马”下一步可以到达的所有位置,并在图中标出.解析:(1)结合图形写出即可.(2)根据网格结构找出与“马”现在的位置成“日”字的点,然后写出即可.解:(1)(5,3)(2)如图所示,(1,1),(3,1),(4,2),(4,4),(1,5),(3,5).1确定位置1.在平面内,确定一个点的位置一般需要两个数据.2.生活中常见的几种确定位置的方式.(1)用“排数”和“座数”.(2)用“行数”和“列数”.(3)用“经度”和“纬度”.(4)用“方位”和“距离”.(5)用区域定位.一、教材作业【必做题】教材第56页随堂练习.【选做题】教材第57页习题3.1第3,4题.二、课后作业【基础巩固】1.下列说法:①数轴上的每一个点的位置都可以用一个数来确定;②平面内任何一个点的位置都可以用一个数来确定;③若用两个数表示平面内一个点的位置,则(2,3)和(3,2)表示的是同一个点的位置.其中正确的有()A.0个B.1个C.2个D.3个2.如图所示的是某学校的平面示意图,如果用(2,5)表示校门的位置,那么图书馆的位置如何表示?图中(10,5)表示哪个地点的位置?【能力提升】3.小明家在学校的北偏东30°方向,距学校1000 m处,则学校在小明家的什么位置?【拓展探究】4.如图所示,一只甲虫在10×10的网格(每一格边长为1)上沿着网格线运动,它从C处出发想去看望A,B,D,E 处的其他甲虫,规定其行动为:向下向左走为正,向上向右走为负,如果从C到B记为:C→B(+5,+2)(第一个数表示左、右方向,第二个数表示上、下方向).(1)C→D(),C→A(),D→(+5,-6),E→D(,-4);(2)若这只甲虫的行走路线是C→A→B→D→E,请计算该甲虫走过的路程;(3)这只甲虫去P点处的行走路线为(-2,+2)→(+3,-4)→(-4,+2)→(+7,+3),请在图上标出P点的位置,想一想,有没有简便的计算方法?【答案与解析】1.B(解析:只有①正确.)2.解:图书馆的位置表示为(2,9).图中(10,5)表示旗杆的位置.3.解:南偏西30°方向,距小明家1000 m处.4.解:(1)(+2,+4)(+7,-2) A +5(2)由题意可知:甲虫所走过的路程为7+2+4+2+2+3+4+5=29. (3)标点P的位置略.简便的计算方法为:左、右方向:(-2)+(+3)+(-4)+(+7)=4,上、下方向:(+2)+(-4)+(+2)+(+3)=3,由此可知自点C处出发,向左走4格,向下走3格就到P点处.本节内容与现实生活联系紧密,学生在生活中经常能遇到相关的知识,因此在教学时建议尽量让学生参与进来.学生在亲身体验中学习知识,加深印象,并培养认真的学习态度.在教学中要让学生有条理地思考和表达.在确定位置的活动中,学生不仅自己要明白物体的位置,而且要能有条理地向别人表述.这种表达可以反映学生的表达水平、有关知识的掌握程度和空间观念.在确定位置的方法中渗透了“极坐标”的思想,只要学生能直观地理解就行,不需要深入理解此概念.可以让学生多注意生活中需要确定位置的地方,发现身边的公共设施或广告中定位不清的问题.让他们在生活中学习,并明白知识源于生活的道理.随堂练习(教材第56页)1.解:答案不唯一.如:青年之家餐厅在A1区;水阁云天在B1区;工人疗养院在C2区.2.解:(1)按照图中的表示数字,“将”在第9行第5列,“帅”在第1行第5列. (2)第7行第4列.习题3.1(教材第57页)1.解:先确定北京等四个城市的位置,估计它们的经纬度.然后按照要求,在经度线或纬度线上寻找符合要求的城市.2.解:(1)“经五纬一”在广播大厦旁边的十字路口.(2)从“经七纬五”出发,经过“经六纬五”到达“经五纬一”的路线不唯一.例如,“经七纬五”“经六纬五”“经五纬五”“经五纬三”到达“经五纬一”或“经七纬五”“经六纬五”“经六纬三”“经六纬一”到达“经五纬一”. (3)“华美达广场”位于“经六路”与“纬三路”的十字路口附近.平面内确定物体的位置时应注意:(1)用行列定位法表示平面内某点的位置必须有两个数据,缺一不可.(2)经纬定位法既适合在球面上定位,也适合在平面上定位,利用地理学上的经纬度来确定物体的位置的定位方法,指明一点的经度和纬度就可以确定物体在地球上的位置.(3)弄清区域定位法中字母及数字分别表示的含义,依照已知建筑物的表示方法表示建筑物的位置.(4)用直角坐标系定位法确定一个物体的位置也需要两个数据,一个是横坐标,另一个是纵坐标,两者缺一不可(下节课讲).(5)用一对数表示位置时要注意这对数是有顺序的,一般先写横格所表示的数,再写竖格所表示的数(简称“先横后纵”).如图所示,李老师家在2街与2巷的十字路口附近,如果用(2,2)→(2,3)→(2,4)→(3,4)→(4,4)→(5,4)表示李老师从家到学校上班的一条路径,请你用同样的方式写出由家到学校的另外一种路径.解:答案不唯一,如:(2,2)→(3,2)→(4,2)→(5,2)→(5,3)→(5,4).2平面直角坐标系1.理解平面直角坐标系的有关概念,并能正确画出平面直角坐标系.2.能建立适当的坐标系,描述物体的位置.3.在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标.1.通过两个找点、连线、观察、确定图形的大致形状的问题,使学生能在给定的直角坐标系中根据坐标描出点的位置,进一步掌握平面直角坐标系的基本内容.2.通过讨论交流的方式讲解例题.学生掌握根据已知条件建立适当的坐标系来描述物体位置的方法.1.培养学生发现问题和主动探索的能力.在与同伴的合作交流中,培养学生的责任心.2.培养学生细致、认真的学习习惯.3.通过教学,向学生渗透“数形结合”的数学思想,并培养学生将实际问题抽象为“数学模型”的能力.【重点】1.能正确画出平面直角坐标系.2.能在平面直角坐标系中,根据坐标找出点,由点求出坐标.【难点】1.理解平面内的点与有序数对之间的一一对应关系.2.在直角坐标系中,根据坐标找出点,由点求出坐标.第课时1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念.2.认识并能画出平面直角坐标系.3.能在给定的直角坐标系中,由点的位置写出它的坐标.1.从现实情境入手,感受建立平面直角坐标系的必要性,然后抽象出平面直角坐标系的相关概念.2.通过画坐标系、由点找坐标等过程,发展学生的数形结合意识、合作交流意识.由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实生活的密切联系,让学生认识数学与生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心.【重点】学生能正确画出平面直角坐标系,并能在平面直角坐标系中,根据定义写出给定点的坐标,以及根据坐标描出点的位置.【难点】理解坐标和平面上的点的一一对应的关系,体会数形结合思想.【教师准备】多媒体课件,画图工具,教材图3 - 4,3 - 5,3 - 6的情境图.【学生准备】画图工具,方格纸.导入一:同学们,你们喜欢旅游吗? 假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,在科技大学的小亮如何给来访的朋友介绍该市的几个风景点的位置呢?尽可能给出简洁的表示方法,并与同伴交流.大成殿:;中心广场:;碑林:.[设计意图]试图通过介绍景点回顾前一节中确定位置的方法,体会不同的介绍方法中的共性——一般需要两个数据.导入二:你是怎样确定各个景点的位置的?[处理方式]学生口答完成,对于回答不完整的由学生补充改正!教师引导性地进行语言说明,在数轴上我们能够用一个数字来表示点的坐标,那么平面内能否用一个数来表示景点的具体的位置呢?既复习了旧知识,又为下面用类比的方法学习新知识做铺垫.此处学生回答的方法多种多样,只要合理即可,还有没有更好的方法,进而提出问题.一一感受建立平面直角坐标系的必要性.[设计意图]通过播放图片,调动学生的热情,既复习回顾了旧知识,又激发起进一步学习的兴趣,吸引学生的注意力,用类比的方法学习平面直角坐标系,为学习新知识进行铺垫.引导学生猜想、探索,鼓励学生积极思考,调动学习积极性,并在活动中培养学生的探究、合作、交流的能力.一、做一做(一)(1)小红在旅游示意图上画上了方格,标上数字,如图(1)所示,并用(0,0)表示科技大学的位置,用(5,7)表示中心广场的位置,那么钟楼的位置如何表示?(2,5)表示哪个地点的位置?(5,2)呢?(1)(2)按照小红的方法,(5,2)中的2表示,(2,5)中的2表示.(2)如果小亮和他的朋友在中心广场,并以中心广场为“原点”,做了如图(2)所示的标记,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?(通常将(0,0)点称为原点)如果城市比较大,地图还需要向右上方扩展,你能类似地表示右上部分其他点的位置吗?[设计意图]以方格纸为背景,可以方便地利用有序数对描述各景点的位置.生活中用两个距离表示位置时,一般不用负数,而直角坐标系中的坐标是可正可负的,为此,设计了本问题.二、相关概念思路一:给出定义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向.水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴和y轴统称坐标轴,它们的公共原点O称为直角坐标系的原点.如图所示,对于平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标.如图所示,在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫做第一象限,其他三部分按逆时针方向依次叫做第二象限、第三象限和第四象限.坐标轴上的点不在任何一个象限内.思路二:活动内容1:认识平面直角坐标系.(多媒体展示)问题1什么是平面直角坐标系?简称什么?两条数轴如何放置?如何称呼?方向如何确定?它们的交点叫什么?问题2坐标轴将平面分为哪几个部分?它们的名称分别是什么?坐标轴上的点属于哪个部分?问题3在方格纸上画出平面直角坐标系.问题4象限是怎样划分的?[处理方式]给学生5~8分钟的时间先结合自学提纲自学课本,然后根据自己的理解在方格纸上画出平面直角坐标系,并标出各部分名称.学生之间相互提问解答.最后找学生代表发言,教师要求学生尽量不看课本,对于问题1和问题2,学生根据课本内容回答应该问题不大,但是此处教师应该补充正方向的确定不是唯一的,我们为了习惯,通常取向右与向上的方向分别为两条数轴的正方向.对于数轴的名称,多找几位学生回答,最后教师强调画平面直角坐标系应注意:①两条数轴互相垂直;②原点重合;③标注两坐标轴名称;④单位长度一般取相同的.问题3直接要求学生在所画平面直角坐标系中标出各个象限的名称,并引导学生得出坐标轴上的点不在任何一个象限内.(多媒体出示,同时给学生1分钟时间改正反思,查找错误的原因)注意:坐标轴上的点不属于任何象限,原点既在横轴上又在纵轴上.在上图建立的平面直角坐标系中,两条坐标轴将坐标平面分成四个部分(按逆时针方向)分别叫第一象限、第二象限、第三象限、第四象限.[设计意图]平面直角坐标系的产生是法国数学家迪卡尔的伟大发现,里边涉及的概念很难引导学生自己得出,因此可以通过自学的方式让学生掌握这些知识,培养学生自学能力、合作交流能力,体现学生主动学习的理念,对学生进行数学文化方面的熏陶和理想教育.培养作图能力和对概念的进一步认识,强化理解.活动内容2:点的坐标的定义.(多媒体出示)问题1直角坐标系内,如何根据点的位置确定点的坐标?写出A点的坐标(如图(1)所示).问题2在平面直角坐标系内,如何根据点的坐标确定点的位置?找出坐标为(2,4)的C点(如图(2)所示).[处理方式]给学生3~4分钟的时间自学课本,然后根据自己的理解,写出A点的坐标,然后同桌比较写出的答案是否一样.找出不同的原因,然后再一次自学课本,小组内讨论得出正确答案:A(3,4).教师引导学生说明怎样得到点A的坐标,例如:①过点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y 轴上的坐标是4,我们说A点的横坐标是3,纵坐标是4,有序数对(3,4)就叫做点A的坐标,记作A(3,4).②用直角三角板中的直角,使直角顶点落在点A上,并且保证两条直角边与坐标系中x轴和y轴垂直,一条直角边通过x轴上的坐标是3,另一条直角边通过y轴上的坐标是4,所以点A的坐标记作A(3,4).这些方法都可以得到点的坐标,此处学生容易出现错误,教师强调有序数对的横坐标在前,纵坐标在后,教师可以引导学生编顺口溜,利于学生理解辨别(平面直角坐标系,两条数轴来唱戏,一个点,两个数,先横后纵再括号,中间隔开用逗号).然后教师在平面直角坐标系中画出B点,要求学生写出点B的坐标,并板书在黑板上,学生讲评更正.对于问题2如何根据坐标找到平面上的点,学生独立思考,在方格纸上已经画好的平面直角坐标系中找出点C(2,4),组内探索交流后回答,并在黑板上演示,教师强调坐标要写在点旁边,书写格式要正确.(多媒体出示,同时给学生2分钟时间查缺补漏,查找错误的原因)。

2024-2025学年北师版中学数学八年级上册第三章位置与坐标3.1确定位置教案

2024-2025学年北师版中学数学八年级上册第三章位置与坐标3.1确定位置教案

第三章位置与坐标1 确定位置教学目标教学反思1.理解在平面内确定一个物体的位置一般需要两个数据,灵活运用不同的方式确定物体的位置.2.经历在现实生活中确定物体位置的过程,感受确定物体位置的多种方法.3.体验生活中处处有确定位置,感受现实生活中确定位置的必要性.教学重难点重点:理解在平面内确定一个物体的位置一般需要两个数据.难点:灵活运用不同的方式确定物体的位置.教学过程导入新课提出问题:1.在数轴上,确定一个点的位置需要几个数据呢?学生:一个,例如A点表示-2,B点表示3,则由-2和3就可以在数轴上找到A点和B点的位置.2.在平面内,又如何确定一个点的位置呢?小明父子二人周末去电影院看电影,座位号分别是3排6座和6排3座.怎样才能既快又准地找到座位?设计意图:利用学生感兴趣的生活知识,贴近学生的生活,培养学生的学习兴趣,激发学生的求知欲,让学生在不知不觉中感受学习数学的乐趣,以愉快的心情开始一节课的学习,激发学习数学的积极性.探究新知一、预习新知让学生自主预习课本54~56页,并思考下面的问题:1.在电影院内如何找到电影票上指定的位置?2.在电影票上,“3排6座”与“6排3座”中的“6”的含义有什么不同?3.如果将“3排6座”简记作(3,6),那么“6排3座”如何表示?(5,6)表示什么含义呢?(教师巡视)学生独立思考,然后小组内讨论,最后学生代表发表各小组的见解.设计意图:这样能较好地体现数学的实践性,可以形成良好的数学观.二、合作探究在电影院内,确定一个位置一般需要几个数据?两个数据,排数和座位号数.教师总结:我们称这种方法为行列定位法.“3排6座”可以记作(3,6),“6排3座” 可以记作(6,3),它们的前后顺序可以交换吗?这两个数据各自表示的意义不同,不能交换前后顺序,我们把这样的这样的数据叫做有序实数对.(学生总结,教师点评)在平面内,确定一个物体的位置一般需要两个数据.根据有序实数对怎样确定教室里每个人的位置?我们把竖行叫做列,确定第几列一般从左往右数,引导学生按列报数,把横行叫做排,确定第几排一般从前往后数,引导学生按排报数.做游戏教学反思(1)第二列同学拍拍肩,第五排同学站起来,谁做了两次动作,请说说你的位置.(2)第四列同学举手,第三排同学拍拍手,谁做了两次动作,请说说你的位置.在生活中,确定物体的位置还有其他方法吗?与同伴交流.方向定位法、经纬度定位法、区域定位法.巩固练习电影院的3排6座表示为(3,6),如果某同学的座位号为(7,5),那么该同学所坐的位置是()A.5排7座B.7排5座C.5座7层D.7排5层答案:B典型例题【例1】观察如图所示象棋盘,回答问题:(1)请你说出“将”与“帅”的位置;(2)说出“马3 进4”(即第3 列的马前进到第4列)后的位置.【问题探索】只要把每个棋子所在的行和列表示清楚本题就解决了.【解】(1)(5,9),(5,1)(注:第一个数字是列数,第二个数字是行数);(2)(4,7).【总结】利用有序数对表示点的位置的“三步法”:(1)明确有序数对中行与列的表示顺序;(2)由已知点确定起始行与列;(3)用有序数对表示所求各点的位置.【例2】一家超市的位置如图,则学校在这家超市的什么位置?【问题探索】用方向定位法确定物体的位置时,一般先考虑什么?再确定什么?【解】学校在超市的南偏西60°方向,且距离超市500米处.【总结】确定位置的方法有多种,但都需要两个数据.方向定位法所需的两个数据:一是方向角;二是距离.要避免出现缺少其中一个数据的错解.课堂练习1.七(2)班有45人参加学校运动会的入场式,队伍共9排5列.如果用(2,4)表示第2排从左至右第4列的同学,那么在队伍最中间的同学应表示为()A.(15,4)B.(2,3)C.(3,0)D.(5,3)2.生态园位于县城东北方向5公里处,下列选项中表示准确的是()A BC D3.现规定向东、向北走为正.小林向东走5米,再向南走8米,记作(5,-8),那么,(-3,6)表示______.4.如图,棋子B在(2,1)处,用有序数对表示出图中另外六枚棋子的位置.参考答案1.D2.B3.向西走3米,再向北走6米4.解:A(0,0),C(3,3),D(1,2),E(4,1),F(2,4),G(5,4).课堂小结(学生总结,老师点评)在平面内,确定一个物体的位置一般需要两个数据,也就是有序实数对.确定位置的方法:行列定位法、方向定位法、经纬度定位法、区域定位法.布置作业随堂练习第1题,习题3.1第2题板书设计1 确定位置在平面内,确定一个物体的位置一般需要两个数据.教学反思。

第三章、位置与坐标全章

第三章、位置与坐标全章

第 1 页 共 1 页第三章 位置与坐标3.1确定位置一、知识点:1、平面上确定物体位置的方法(1)行列定位法;(2)方位角定位法;(3)经纬定位法;(4)区域定位法;(5)方格纸定位法。

2、(1)平面定位通常用两个量来确定;(2)定位前选择参照物;(3)不同物体采取不同的定位方法。

二、理解、巩固与拓展1、如图3.1.1,如果站1的位置表示为(B,1),那么站2位置为( , ) ;在图上标出(A,2)位置。

2、如图3.1.2,甲乙两个同学用围棋做游戏,现在轮到黑棋落子,黑棋下一子后,白棋再下一子,白棋和黑棋都组成轴对 称图形,则下列下子方法不正确的是( ) A 、黑(3,7);白(5,3) B 、黑(4,7);白(6,2) C 、黑(2,7);白(5,3) D 、黑(3,7);白(2,6)3、如图3.1.3是某古塔平面示意图,古塔B 的位置用(5,4)表示,小明由A 出发到古塔的路径表示错误的是( )A 、(2,2) (2,4) (4,5)B 、(2,2) (2,4) (5,4)C 、(2,2) (4,2) (4,4) (5,4)D (2,2) (2,3) (5,3) (5,4) 4、如图3.1.4,上午8点30分,一艘船从A 处出发,速度为每小时40海里,向正东航行,9点30到达B 处,从A 到B 两地测得小岛M 在北偏东45°、北偏西45°方向上,那么B 处与小岛M 的距离等于 。

5、如图3.1.5是某市部分区域平面图,纵横交错的街道上分布一些建筑,如果学校的位置定义为(6,4),那么广场可以表示为( );(3,4)表示的地方是6、如图3.16是莱布尼兹三角形,若用(m,n )表示第m 行,从左到右第n 个数,如(4,3)表示的数为 121, 那么(9,2)表示的数为 。

7、毛毛要从A 地赶往C 地,手上有一张地图,地图上只标记着A,B.C 三地,但是C 地还被墨迹污染,但是毛毛知道,C 地在A 地的南偏西60°,B 地的北偏西45°上。

北师大版八年级数学上册第三章位置与坐标3.1确定位置(教案)

北师大版八年级数学上册第三章位置与坐标3.1确定位置(教案)
北师大版八年级数学上册第三章位置与坐标3.1确定位置(教案)
一、教学内容
北师大版八年级数学上册第三章位置与坐标3.1确定位置。本节课主要内容包括:
1.利用数对表示物体在平面图上的位置;
2.根据方向和距离确定物体位置;
3.探索并掌握物体位置关系的基本原理;
4.应用坐标确定物体位置的方法。
二、核心素养目标
1.培养学生运用数对和坐标系描述物体位置的能力,增强空间观念和几何直观;
2.提高学生根据方向和距离确定物体位置的实际操作和解决问题的能力,发展模型思想;
3.培养学生通过观察、分析、归纳,探索物体位置关系规律,提升逻辑思维和推理能力;
4.引导学生在实际情境中发现数学问题,运用坐标确定物体位置,增强数学应用意识。
五、教学反思
在今天的教学中,我发现学生们对数对和坐标系的概念掌握得相对顺利,他们能够通过直观的例子理解数对表示位置的原理。然而,在将方向和距离应用到实际问题中时,部分学生遇到了一些困难。这让我意识到,我们需要在接下来的课程中加强对这一难点的讲解和练习。
课堂上,我尝试通过案例分析引导学生思考如何将实际问题转化为数学模型,我发现这样的方式能够有效帮助学生理解问题背后的数学原理。但是,我也注意到,在小组讨论环节,有些学生还不够积极主动,这可能是因为他们对问题的理解还不够深入,或者是对小组合作的方式还不够适应。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了数对和坐标系的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对如何确定位置的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

位置与坐标

位置与坐标

第三章位置与坐标
1.确定位置
在同一平面内确定一个物体的位置一般需要两个数据
2.平面直角坐标系
【定义】:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。

水平的数轴叫做x轴或横轴;铅直的数轴叫做y轴或纵轴,x轴和y轴统称坐标轴,他们的公共原点O称为直角坐标系的原点。

【确定一个点在坐标心中的位置】:对于平面内任意一点P,过点P分别向x 轴和y轴上对应的数a,b分别叫做点P的横坐标和纵坐标;有序实数对(a,b)叫做点P的坐标。

3.象限的划分
在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分:右上方的部分叫做第一象限;其他三部分按逆时针方向依次叫做第二象限;第三象限;第四象限。

坐标轴上的点不在任何一个象限内。

在直角坐标系中,对于平面上的任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来。

对于任意一个有序实数对,都有平面上唯一的点与它对应。

4.坐标轴的对称与变化
关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数。

关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。

关于原点对称的两个点的坐标,横坐标和纵坐标都互为相反数。

北师大版八年级上册数学第三章位置与坐标PPT

北师大版八年级上册数学第三章位置与坐标PPT
例 1.下列语句不正确的是( D )
A.平面直角坐标系中,两条互相垂直的数轴的垂足是原点 B.平面直角坐标系所在的平面叫做坐标平面 C.平面直角坐标系中,x轴、y轴把坐标平面分成四部分 D.凡是两条互相垂直的直线都能组成平面直角坐标系
新课讲解
分析:本题主要考查平面直角坐标系的概念.根据平面直 角坐标系的概念可知A,B,C项正确.D项不正确, 因为坐标系必须由数轴构成,且构成平面直角坐标 系的两条数轴互相垂直、原点重合,故选D.
怎样确定位置呢?
新课讲解
知识点1 平面上确定物体位置的方法
议一议
(1)在电影院内,确定一个座位一般需要几个 数据?
(2)在生活中,确定物体的位置还有其他方法 吗?与同伴进行交流.
(3)在平面内,确定一个点的位置一般需要几 个数据呢?
新课讲解
如果将“6排3号”简记作(6,3),那么“3排6号” 如何表示?(5,6)表示什么含义?
第三章 位置与坐标
1 确定位置
目 录
CONTENTS
1 学习目标 3 新课讲解 5 当堂小练 7 布置作业
2 新课导入 4 课堂小结 6 拓展与延伸
学习目标
1.在现实生活中感受确定位置的多种方法. 2.能比较灵活地运用不同的方法确定物体的位置. 3.根据图形或者目标确定位置.(重点)
新课导入
生活中我们常常需要确定物体的位置。如:确定学校、 家庭的位置,确定地图上城市的位置,在棋盘上确定棋子 的位置,在海战中确定战舰的位置……
些目标?要想确定敌舰B的位
1.4cm 1cm
置,还需要什么数据? (2)距我方潜艇20 n mile处 的敌舰有哪几艘?
1cm
(3)要确定每艘敌舰的 位置,各需要几个数据?

北师大版八年级数学上册第三章位置与坐标确定位置课件

北师大版八年级数学上册第三章位置与坐标确定位置课件

解:(1)A→C(+3,+4)B→D(+3,-2)C→D(+1,-2); (2)据已知条件可知:A→B表示为(1,4),B→C记为(2,0),C→D记为 (1,-2);则甲虫A爬行的路程为1+4+2+0+1+2=10. 答:甲虫A爬行的路程为10; (3)甲虫A爬行示意图与点P的位置如图所示.
3. 下面是某市地图简图的一部分,图中“故宫”“鼓楼”所在的区域分别 是( C )
A. D7,E6
B. D6,E7 C. E7,D6 D. E6,D7
4. 下列语句:①5排6号;②北偏东23°;③解放路68号;④北纬60°,东 经90°;⑤人民广场南.其中能确定物体的具体位置的是 ①③④ (填序号).
【拓展训练】 8. 如图,在5×5的方格(每小格边长为1)内有4只甲 虫A、B、C、D,它们爬行规律总是先左右,再上下.规定: 向右与向上为正,向左与向下为负.从A到B的爬行路线记为: A→B(+1,+4),从B到A的爬行路线为:B→A(-1,-4), 其中第一个数表示左右爬行信息,第二个数表示上下爬行信 息,那么图中 (1) A→C( , ),B→D( , ),C→D(+1, ); (2) 若甲虫A的爬行路线为A→B→C→D,请计算甲虫A爬行的路程; (3) 若甲虫A的爬行路线依次为(+2,+2),(+1,-1),(-2,+3),(-1, -2),最终到达甲虫P处,请在图中标出甲虫A的爬行路线示意图及最终甲虫P的位置.
为 (10,9) .
4. 如图,“炮”在第2列第7行,则“帅”的位置在 第5列第10行, “相”
的位置在 第7列第6行 .
【基础训练】
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章位置与坐标
3.1 确定位置
1.如图是某市市区几个旅游景点示意图(图中每个小正方形的边长为1个单位长度),如果以O为原点建立两条互相垂直的数轴,如果用(2,
2.5)表示金凤广场的位置,用(11
,7)表示动物园的位置.根据此规定
(1)湖心岛、光岳楼、山陕会馆的位置如何表示?
(2)(11,7)和(7,11)是同一个位置吗?为什么?
2.某轮船航行到A处时观察岛B在A的北偏西75°方向上,如果轮船继续向正西航行10海里到C处,发现岛B在船的北偏西60°方向,请按1海里对应0.5
cm画出小岛与船的位置关系图示?并说明轮船向前航行过程中,距岛B的最近距离.。

相关文档
最新文档