关于初三数学圆的经典讲义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆
目录
圆的定义及相关概念
垂经定理及其推论
圆周角与圆心角
圆心角、弧、弦、弦心距关系定理
圆内接四边形
会用切线, 能证切线
切线长定理
三角形的内切圆
了解弦切角与圆幂定理(选学)
圆与圆的位置关系
圆的有关计算
一.圆的定义及相关概念
【考点速览】
考点1:
圆的对称性:圆既是轴对称图形又是中心对称图形。经过圆心的每一条直线都是它的对称轴。圆心是它的对称中心。
考点2:
确定圆的条件;圆心和半径
①圆心确定圆的位置,半径确定圆的大小;
②不在同一条直线上的三点确定一个圆;
考点3:
弦:连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。直径是圆中最大的弦。
弦心距:圆心到弦的距离叫做弦心距。
弧:圆上任意两点间的部分叫做弧。弧分为半圆,优弧、劣弧三种。
(请务必注意区分等弧,等弦,等圆的概念)
弓形:弦与它所对应的弧所构成的封闭图形。
弓高:弓形中弦的中点与弧的中点的连线段。
(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)
固定的已经不能再固定的方法:
求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到
直角三角形。如下图:
考点4:
三角形的外接圆:
锐角三角形的外心在 ,直角三角形的外心在 ,钝角三角形的外心在 。 考点5
点和圆的位置关系 设圆的半径为r ,点到圆心的距离为d , 则点与圆的位置关系有三种。
①点在圆外⇔d >r ;②点在圆上⇔d=r ;③点在圆内⇔ d <r ;
【典型例题】
例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。
例2.已知,如图,CD 是直径,︒=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。
M A B C D
O
E
B
A
C
例3 ⊙O 平面内一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。
例4 在半径为5cm 的圆中,弦AB ∥CD ,AB=6cm ,CD=8cm ,则AB 和CD 的距离是多少?
例5 如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6cm ,EB=2cm, 30=∠CEA , 求CD 的长.
例6.已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC ∠的度数.
二.垂径定理及其推论
【考点速览】
考点1
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条孤. 推论1:
①平分弦(不是直径)的直径重直于弦,并且平分弦所对的两条孤. ②弦的垂直平分线经过圆心,并且平分弦所对的两条孤.
③平分弦所对的一条孤的直径,垂直平分弦,并且平分弦所对的另一条孤. 推论2.圆的两条平行弦所夹的孤相等.垂径定理及推论1中的三条可概括为:
① 经过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所
对的优弧;⑤平分弦所对的劣弧.以上五点已知其中的任意两点,都可以推得其它两点
A
B D
C
O
·
E
【典型例题】
例1 如图AB 、CD 是⊙O 的弦,M 、N 分别是AB 、CD 的中点,且CNM AMN ∠=∠. 求证:AB=CD .
例2已知,不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE ⊥l 于E ,BF ⊥l 于F 。求证:CE=DF .
l
∙
问题一图1 O
H
F
E D C
B
A l
∙
问题一图2
O H F E D
C B
A
l
∙
问题一图3
O
H F
E D C B
A
【考点速练】
1.已知⊙O 的半径为2cm ,弦AB 长cm 32,则这条弦的中点到弦所对劣孤的中点的距离为( ).
A .1cm B.2cm C.cm 2 D.cm 3cm
3.如图1,⊙O 的半径为6cm ,AB 、CD 为两弦,且AB ⊥CD ,垂足为点E ,若CE=3cm ,DE=7cm ,则AB 的长为( )
A .10cm B.8cm C.cm 24 D.cm 28
4.有下列判断:①直径是圆的对称轴;②圆的对称轴是一条直径;③直径平分弦与弦所对的孤;④圆的对称轴有无数条.其中正确的判断有( ) A .0个 B.1个 C.2个 D.3个
5.如图2,同心圆中,大圆的弦交AB 于C 、D 若AB=4,CD=2,圆心O 到AB 的距离等于1,那么两个同心圆的半径之比为( )
A B
D
C O
· N
M
A
B
D
C
O 800
A .3:2 B.5:2 C.5:2 D.5:4
6.如图,⊙O 的直径为10,弦AB=8,P 是弦AB 上的一个动点,那么OP 长的取值范围是 .
7.如图,已知有一圆弧形拱桥,拱的跨度AB=16cm,拱高CD=4cm,那么拱形的半径是_ ___m.
8.如图,直径为1000mm 的圆柱形水管有积水(阴影部分),水面的宽度AB 为800mm ,求
水的最大深度CD .
三.圆周角与圆心角
【考点速览】 考点1
圆心角:顶点在圆心的角叫圆心角,圆心角的度数等于它所对的弧的度数。 Eg: 判别下列各图中的角是不是圆心角,并说明理由。
圆周角:顶点在圆周上,角两边和圆相交的角叫圆周角。两个条件缺一不可. Eg: 判断下列图示中,各图形中的角是不是圆周角,并说明理由
B
P
A
O D C
B A