多目标规划模型概述课件分析(PPT62张)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§10.2 多目标规划问题的求解
1、主要目标法
在有些多目标决策问题中,各种目标的重要性程度
往往不一样。其中一个重要性程度最高和最为关键的
目标,称之为主要目标法。其余的目标则称为非主要
目标。
opt(FX)(f1(X),f2(X),...f.p,(X))T
s.t. gi(X)0
hj(X)0
例如,在上述多目标问题中,假定f1(X)为主要目标,其余p-1 个为非主要目标。这时,希望主要目标达到极大值,并要求
其余的目标满足一定的条件,即 maxf1(X)
s.t.hgji
( (
X X
) )
0, 0,
i 1,2,...,n j 1,2,...,m
fk
(X
)
k
,
k
1,2,...,p
1
例题1 某工厂在一个计划期内生产甲、乙两种产品,各产品 都要消耗A,B,C三种不同的资源。每件产品对资源的单位 消耗、各种资源的限量以及各产品的单位价格、单位利润和 所造成的单位污染如下表。假定产品能全部销售出去,问每 期怎样安排生产,才能使利润和产值都最大,且造成的污染 最小?
用单纯形法求得其最优解为
x1 12.5,x2 26.25, f1(x) 4025, f2(x) 2075,0f3(x) 90
400 x 1 600 x 2 20000
3
x
1
2x2
90
9 4
x x
1 1
4x2 5x2
240 200
3
x
1
10
x2
Biblioteka Baidu
300
x 1 , x 2 0
2、线性加权和目标规划
hj(X)0
X(x1,x2,...x.n), 为决策变量
如对于求极大(max)型,其各种解定义如下: 绝对最优解:若对于任意的X,都有F(X*)≥F(X) 有效解:若不存在X,使得F(X*)≤ F(X)
弱有效解:若不存在X,使得F(X*)<F(X)
2、多目标优选问题的模型结构
可用效用函数来表示。设方案的效用是目标属性
1
多目标规划模型
在现实生活中,决策的目标往往有多个,例如,对企业产品的生产管 理,既希望达到高利润,又希望优质和低消耗,还希望减少对环境的污 染等.这就是一个多目标决策的问题.又如选购一个好的计算机系统, 似乎只有一个目标,但由于要从多方面去反映,要用多个不同的准则 来衡量,比如,性能要好,维护要容易,费用要省.这些准则自然构成了多 个目标,故也是一个多目标决策问题.
4 3
x1 x1
5x2 10 x
200 2 300
x 1 , x 2 0
望达到的目标值转化为约束条件。 经研究,工厂认为总产值至少应 达到20000个单位,而污染控制 在90个单位以下,即
f2(X)40x0160x02 20000
f3(X)3x12x2 90
由主要目标法化为单目标问题
max f 1 ( X ) 70 x 1 120 x 2
化多目标问题为单目标问题的方法大致可分为两 类,一类是转化为一个单目标问题,另一类是转化为多 个单目标问题,关键是如何转化.
下面,我们介绍几种主要的转化方法:主要目标法、 线性加权和法、字典序法、步骤法。
§10.1多目标决策问题的特征
一、解的特点
在解决单目标问题时,我们的任务是选择一个或一组变 量X,使目标函数f(X)取得最大(或最小)。对于任意两方案 所对应的解,只要比较它们相应的目标值,就可以判断谁优 谁劣。但在多目标情况下,问题却不那么单纯了。例如,有 两个目标f1(X),f2(X),希望它们都越大越好。下图列出在这两 个目标下共有8个解的方案。其中方案1,2,3,4称为劣解, 因为它们在两个目标值上都比方案5差,是可以淘汰的解。而 方案5,6,7,8是非劣解(或称为有效解,满意解),因为 这些解都不能轻易被淘汰掉,它们中间的一个与其余任何一 个相比,总有一个指标更优越,而另一个指标却更差。
f2 1
56
3
7
24
8
f
二、模型结构
多目标决策问题包含有三大要素:目标、方案和决策者。
在多目标决策问题中,目标有多层次的含义。从最高层次 来看,目标代表了问题要达到的总目标。如确定最满意的 投资项目、选择最满意的食品。从较低层次来看,目标可 看成是体现总目标得以实现的各个具体的目标,如投资项 目的盈利要大、成本要低、风险要小;目标也可看成衡量 总目标得以实现的各个准则,如食品的味道要好,质量要 好,花费要少。
矛盾性、不可公度性。
一般来说,多目标决策问题有两类.一类是多目标规划问题,其对 象是在管理决策过程中求解使多个目标都达到满意结果的最优方案. 另一类是多目标优选问题,其对象是在管理决策过程中根据多个目 标或多个准则衡量和得出各种备选方案的优先等级与排序.
多目标决策由于考虑的目标多,有些目标之间又 彼此有矛盾,这就使多目标问题成为一个复杂而困难 的问题.但由于客观实际的需要,多目标决策问题越来 越受到重视,因而出现了许多解决此决策问题的方法. 一般来说,其基本途径是,把求解多目标问题转化为求 解单目标问题.其主要步骤是,先转化为单目标问题, 然后利用单目标模型的方法,求出单目标模型的最优 解,以此作为多目标问题的解.
的函数:
U (x)U (f1,f2,..f.p),
并设
aij fi(xj )
且各个方案的效用函数分别为
U (xj)U (a1j,a2j,.a .p .)j,
则多目标优选模型的结构可表示如下:
ord(U X)(U(X1)U , (X2),..U ..(,Xp))T s.t. gi(X)0
hj(X)0
解:问题的多目标模型如下
max f 1 ( X ) 70 x 1 120 x 2 max f 2 ( X ) 400 x 1 600 x 2
对于上述模型的三个目标,工厂 确定利润最大为主要目标。另两 个目标则通过预测预先给定的希
max( f 3 ( X )) 3 x 1 2 x 2
9 x1 4 x 2 240
多目标决策问题中的方案即为决策变量,也称为多目 标问题的解。备选方案即决策问题的可行解。在多目标决 策中,有些问题的方案是有限的,有些问题 的方案是无限 的。方案有其特征或特性,称之为属性。
1、多目标规划问题的模型结构
opt(FX)(f1(X),f2(X),...f.p,(X))T s.t. gi(X)0