泄露天机2018高考押题卷文科数学(二)
2018届全国高考模拟试卷(二)文科数学试卷

2018届全国高考模拟试卷(二)文科数学试卷本试题卷共10页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合()(){}230A x x x =--<,{26B x x a =<-或}x a >,若A B ⋂=∅,则a 的取值范围是( )A .(],3-∞B .(],4-∞C .[]3,4D .()3,4 2.i 是虚数单位,复数z 满足()113i z i +=+,则z =( ) A .12i + B .2i + C .12i - D .2i -3.已知“正三角形的内切圆与三边相切,切点是各边的中点”,类比之可以猜想:正四面体的内切球与各面相切,切点是( ) A .各面内某边的中点B .各面内某条中线的中点C .各面内某条高的三等分点D .各面内某条角平分线的四等分点 4.设函数()f x 在R 上为增函数,则下列结论一定正确的是( ) A.()1y f x =在R 上为减函数B.()y f x =在R 上为增函数C. ()1y f x =-在R 上为增函数D.()y f x =-在R 上为减函数5.投掷两枚质地均匀的正方体散子,将两枚散子向上点数之和记作S .在一次投掷中,已知S 是奇数,则9S =的概率是( ) A .16 B .29 C .19 D .156.过抛物线()2:20E x py p =>的焦点,且与其对称轴垂直的直线与E 交于,A B 两点,若E 在,A B 两点处的切线与E 的对称轴交于点C ,则ABC ∆外接圆的半径是( )A .)1p B .p C D .2p7. 若4cos 35πα⎛⎫+= ⎪⎝⎭,则cos 23πα⎛⎫-= ⎪⎝⎭( )A .2325 B .2325- C .725 D .725-8. 在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若2cos 2b C c a +=,且3b c ==,则a =( )A .1B ..49.某几何体的三视图如图所示,若图中小正方形的边长为1,则该几何体的体积是( )A .323 B .643 C .16 D .1310.执行如图所示的程序框图,与输出的值最接近的是( )A .14 B .34 C .4π D .14π- 11.《九章算术》中记载了我国古代数学家祖暅在计算球的体积中使用的一个原理:“幂势既同,则积不异”,此即祖暅原理,其含义为:两个同高的几何体,如在等高处的截面的面积恒相等,则它们的体积相等.如图,设满足不等式组240,4,0x y x y ⎧-≥⎪≤⎨⎪≥⎩的点(),x y 组成的图形(图(1)中的阴影部分)绕y 轴旋转180︒,所得几何体的体积为1V ;满足不等式组()222216,4,0x y x y r y ⎧+≤⎪⎪+-≥⎨⎪≥⎪⎩的点(),x y 组成的图形(图(2)中的阴影部分)绕y 轴旋转180︒,所得几何体的体积为2V .利用祖暅原理,可得1V =( )A .323π B .643π C .32π D .64π 12.若对任意的0x >,不等式()22ln 10x m x m -≥≠恒成立,则m 的取值范围是( ) A .{}1 B .[)1,+∞ C .[)2,+∞ D .[),e +∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知a 为单位向量,()1,3b =,且1a b ⋅=,则a 与b 夹角的大小是 . 14. 若实数,x y 满足约束条件1,10,326,,,x y x y x y x N y N +≥⎧⎪-+≥⎪⎨+≤⎪⎪∈∈⎩则2z x y =-的最大值是 .15. 将函数()()221sin cos f x x x x =---的图象向左平移3π个单位,得到函数()y g x =的图象,若,22x ππ⎡⎤∈-⎢⎥⎣⎦,则函数()g x 的单调递增区间是 .16. 设椭圆()222210b x y a b a +>>=的上顶点为B ,右顶点为A ,右焦点为F ,E 为椭圆下半部分上一点,若椭圆在E 处的切线平行于AB,则直线EF 的斜率是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知等差数列{}n a 的公差d 不为零,2416a a a =-,且20a ≠. (1)求1a 与d 的关系式; (2)当29d =时,设1281n n n b a a +=,求数列{}n b 的前n 项和n S .18.如图,四棱柱1111ABCD A B C D -的底面ABCD 为菱形,且11A AB A AD ∠=∠.(1)证明:四边形11BB D D 为矩形;(2)若1,60AB A A BAD =∠=︒,1AC ⊥平面11BB D D ,求四棱柱1111ABCD A B C D -的体积. 19.某高三理科班共有60名同学参加某次考试,从中随机挑选出5名同学,他们的数学成绩x 与物理成绩y 如下表:数据表明y 与x 之间有较强的线性关系. (1)求y 关于x 的线性回归方程;(2)该班一名同学的数学成绩为110分,利用(1)中的回归方程,估计该同学的物理成绩; (3)本次考试中,规定数学成绩达到125分为优秀,物理成绩达到100分为优秀.若该班数学优秀率与物理优秀率分别为50%和60%,且除去抽走的5名同学外,剩下的同学中数学优秀但物理不优秀的同学共有5人.能否在犯错误概率不超过0.01的前提下认为数学优秀与物理优秀有关?参考数据:回归直线的系数()()()121nii i nii xx y yb xx==--=-∑∑,a y bx =-.()()()()()22n ad bc K a b c d a c b d -=++++,()()226.6350.01,10.8280.01P K P K ≥=≥=.20. 已知圆()()221:222C x y -+-=内有一动弦AB ,且2AB =,以AB 为斜边作等腰直角三角形PAB ,点P 在圆外. (1)求点P 的轨迹2C 的方程;(2)从原点O 作圆1C 的两条切线,分别交2C 于,,,E F G H 四点,求以这四点为顶点的四边形的面积S .21.已知函数()()21ln 12f x x x =+-. (1)判断()f x 的零点个数;(2)若函数()g x ax a =-,当1x >时,()g x 的图象总在()f x 的图象的下方,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线C 的极坐标方程为22cos 1cos θρθ=-,直线l 的参数方程为2cos ,1sin x t y t αα=+⎧⎨=+⎩(t 为参数,α为倾斜角). (1)若34πα=,求l 的普通方程和C 的直角坐标方程; (2)若l 与C 有两个不同的交点,A B ,且()2,1P 为AB 的中点,求AB . 23.选修4-5:不等式选讲 已知函数()11f x x x =++-. (1)求函数()f x 的最小值a ;(2)根据(1)中的结论,若33m n a +=,且0,0m n >>,求证:2m n +≤.2018届全国高考模拟试卷(二)参考答案一、选择题1-5: CBCDB 6-10: BDDAC 11、12:CA 二、填空题 13.3π 14. 2 15.5,1212ππ⎡⎤-⎢⎥⎣⎦(注:写成开区间或半开半闭区间亦可)三、解答题17. 解:(1)因为2416a a a =-,所以()()211135a d a a d +=-+, 即有()()11290a d a d ++=.因为20a ≠,即10a d +≠,所以1290a d +=. (2)因为1290a d +=,又29d =,所以2119n n a -=. 所以()()12211812112921129n n n b a a n n n n +===-----. 所以1231111111197755321129n n S b b b b n n ⎛⎫⎛⎫⎛⎫⎛⎫=++++=-+-+-++- ⎪ ⎪ ⎪ ⎪--------⎝⎭⎝⎭⎝⎭⎝⎭()112929929n n n -=-=---. 18.(1)证明: 连接AC ,设AC BD O ⋂=,连接111,,A B A D AO . ∵11,A AB A AD AB AD ∠=∠=,∴11A B A D =. 又O 为BD 的中点,∴1,AO BD AO BD ⊥⊥. ∴BD ⊥平面11A ACC ,∴1BD AA ⊥. ∵11//BB AA ,∴1BD BB ⊥.又四边形11BB D D 是平行四边形,则四边形11BB D D 为矩形.(2)解:由12,60AB A A BAD ==∠=︒,可得2AD AB ==,∴AC =由BD ⊥平面11A ACC ,可得平面ABCD ⊥平面11A ACC ,且交线为AC .过点1A 作1A E AC ⊥,垂足为点E ,则1A E ⊥平面ABCD . 因为1AC ⊥平面11BB D D ,∴11AC BB ⊥,即11AC AA ⊥.在1Rt AAC ∆中,可得11A C A E ==.所以四棱柱1111ABCD A B C D -的体积为12222V =⨯⨯⨯=19. 解:((1)由题意可知120,90x y ==, 故()()()()()()()()()()()()()()()222221451201109013012090901201201029010512078901001207090145120130120120120105120100120b --+--+--+--+--=-+-+-+-+-50000180400108040.8625100022540013505++++====++++.901200.86a =-⨯=-,故回归方程为0.86y x =-.(2)将110x =代入上述方程,得0.8110682y =⨯-=.(3)由题意可知,该班数学优秀人数及物理优秀人数分别为30,36. 抽出的5人中,数学优秀但物理不优秀的共1人, 故全班数学优秀但物理不优秀的人共6人. 于是可以得到22⨯列联表为:于是()2260241812610 6.63530303624K ⨯⨯-⨯==>⨯⨯⨯,因此在犯错误概率不超过0.01的前提下,可以认为数学优秀与物理优秀有关.20.解:(1)连接11,C A C B ,∵112C A C B AB ===,∴1C AB ∆为等腰直角三角形. ∵FAB ∆为等腰直角三角形,∴四边形1FAC B 为正方形. ∴12PC =,∴点P 的轨迹是以1C 为圆心,2为半径的圆, 则2C 的方程为()()22224x y -+-=.(2)如图,,1C N OF ⊥于点N ,连接111,,C E C F C O .在1Rt OC N ∆中,∵11OC C N =ON =∴11sin 2C ON ∠=,∴130C ON ∠=︒. ∴OEH ∆与OFG ∆为正三角形.∵11C EN C FN ∆≅∆,且112C E C F ==,∴NE NF =∴四边形EFGH 的面积226OFC CEH S S S ∆∆=-=-=.21.解:(1)()()21ln 12f x x x =+-的定义域为()0,+∞, 又()11f x x x'=+-, ∵12x x+≥,∴()10f x '≥>, ∴()f x 在()0,+∞上为增函数,又()10f =, ∴()f x 在()0,+∞上只有一个零点. (2)由题意当1x >时,()211ln 20x x ax a --+>+恒成立. 令()()211ln 2h x x x ax a =-+-+,则()11h x x a x'=+--. 当1a ≤时,∵()1110h x x a a x'=+-->-≥,∴()h x 在()1,+∞上为增函数. 又()10h =,∴()0h x >恒成立.当1a >时,()()211x a x h x x-++'=,令()()211x x a x ϕ=-++,则()()()214310a a a ∆=+-=+->. 令()0x ϕ=的两根分别为12,x x 且12x x <,则∵121210,10x x a x x +=+>⋅=>,∴1201x x <<<, 当()21,x x ∈时,()0x ϕ<,∴()0h x '<,∴()h x 在()21,x 上为减函数,又()10h =,∴当()21,x x ∈时,()0h x <. 故a 的取值范围为(],1-∞.22.解:(1)l 的普通房成为30x y +-=, C 的直角坐标方程为22y x =.(2)把2cos 1sin x t y t αα=+⎧⎨=+⎩代入抛物线方程22y x =得()()22sin 2sin cos 30*t t ααα+--=,设,A B 所对应的参数为12,t t ,则()1222sin cos sin t t ααα-+=.∵()2,1P 为AB 的中点,∴P 点所对应的参数为122sin cos 02sin t t ααα+-=-=, ∴sin cos 0αα-=,即4πα=.则()*变为21302t -=,此时26,t t ==∴AB =23.(1)解:()()11112f x x x x x =++-≥+--=,当且仅当11x -≤≤时取等号, 所以()min 2f x =,即2a =.(2)证明:假设:2m n +>,则()332,2m m n n >->-. 所以()()3323322612n n m n n >-+=+-≥+. ① 由(1)知2a =,所以332m n +=. ② ①与②矛盾,所以2m n +≤.。
2018年全国高考数学考前押题文科数学题卷及答案解析

1 2
D. ,
1 2
第Ⅱ卷
本 卷 包 括 必 考 题 和 选 考 题 两 部 分 。 第 (13)~(21) 题 为 必 考 题 , 每 个 试 题 考 生 都 必须作答。第 (22)~(23) 题为选考题,考生根据要求作答。 二、填空题:本大题共 4 小题,每小题 5 分。
… , x10 ,
是抛物线 C 的焦点,若 x1 x2 x10 10 ,则
x y 2≥0 y 15.若 x , y 满足约束条件 x y 4≤0 ,则 的取值范围为__________. x 1 y≥2
16 .在三棱椎 P ABC 中,底面 ABC 是等边三角形,侧面 PAB 是直角三角形,且
F F 2 PF2 ,设 C1 与 C2 的 的焦点 F 1, F 2 ,若点 P 是 C1 与 C2 在第一象限内的交点,且 1 2
离心率分别为 e1 , e2 ,则 e2 e1 的取值范围是( A. , )
1 3
B. ,
1 3
C. ,
B. n 2017 i
C. n 2018 i )
D. n 2017 i
π 2 ,则“ cosx x ”是“ cos x<x ”的( 2
A.充分而不必要条件 C.充分必要条件
B.必要而不充分条件 D.既不充分也不必要条件
9.如图为正方体 ABCD A1B1C1D1 ,动点 M 从 B1 点出发,在正方体表面上沿逆时针方
PA PB 2 , PA AC ,则该三棱椎外接球的表面积为________.
三、解答题:解答应写出文字说明、证明过程或演算步骤。
2018届全国高考考前押题卷(二)数学试卷(文科)

2018届全国高考考前押题卷(二)数学试卷(文科)本试题卷共14页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数为纯虚数,其中i为虚数单位,则a=()A.2 B.C.﹣2 D.2.已知集合A={x|y=log2(x﹣1)},集合B={x|(x+1)(x﹣2)≤0},则A∪B=()A.[﹣1,+∞)B.(1,2]C.(1,+∞)D.[﹣1,2]3.已知命题“若x>1,则2x<3x”,则在它的逆命题、否命题、逆否命题中,正确命题的个数是()A.0 B.1 C.2 D.34.已知函数f(x)=sinωx+cosωx(x∈R),又f(α)=2,f(β)=2,且|α﹣β|的最小值是,则正数ω的值为()A.1 B.2 C.3 D.45.已知向量,满足=(1,﹣1),||=1,且⊥(+),则与的夹角为()A.B.C. D.6.如图是某班甲、乙两位同学在5次阶段性检测中的数学成绩(百分制)的茎叶图,甲、乙两位同学得分的中位数分别为x1,x2,得分的方差分别为y1,y2,则下列结论正确的是()A.x1<x2,y1<y2B.x1<x2,y1>y2C.x1>x2,y1>y2D.x1>x2,y1<y2 7.在平面直角坐标系xOy中,以坐标原点为圆心且与直线mx﹣y﹣2m+1=0(m ∈R)相切的所有圆中,半径最大的圆的标准方程为()A.x2+y2=5 B.x2+y2=3 C.x2+y2=9 D.x2+y2=78.某四棱台的三视图如图所示,则该四棱台的体积是()A.7 B.6 C.5 D.49.已知f(x)是定义在R上的奇函数,且f(x+2)=f(x﹣2);当0≤x≤1时,f(x)=,则f(1)+f(2)+f(3)+…+fA.﹣1 B.0 C.1 D.210.若函数y=f(x)的图象上存在不同两点M、N关于原点对称,则称点对[M,N]是函数y=f(x)的一对“和谐点对”(点对[M,N]与[N,M]看作同一对“和谐点对”).已知函数f(x)=则此函数的“和谐点对”有()A.0对 B.1对 C.2对 D.4对二、填空题:本大题共5小题,每小题5分,共25分.11.已知向量=(x,1),=(2,﹣1),在区间[﹣1,1]上随机地取一个数x,则事件“•≥0”发生的概率为.12.若直线y=k(x+2)上存在点(x,y)∈{(x,y)|x﹣y≥0,x+y≤1,y≥﹣1},则实数k的取值区间为.13.在平面几何里有射影定理:在△ABC中,AB⊥AC,点D是点A在BC边上的射影,则AC2=CD•CB.拓展到空间,在三棱锥A﹣BCD中,BA⊥平面ACD,点O 是点A在平面BCD内的射影,类比平面三角形射影定理,得出=.14.如果双曲线C:的渐近线与抛物线y=x2+相切,则C的离心率为.15.已知min{{a,b}=f(x)=min{|x|,|x+t|},函数f(x)的图象关于直线x=﹣对称;若“∀x∈[1,+∞),e x>2mex”是真命题(这里e是自然对数的底数),则当实数m>0时,函数g(x)=f(x)﹣m零点的个数为.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.某学校有若干学生社团,其中“文学社”、“围棋社”、“书法社”的人数分别为9、18、27.现采用分层抽样的方法从这三个社团中抽取6人外出参加活动.(1)求应从这三个社团中分别抽取的人数;(2)将抽取的6人进行编号,编号分别为A1,A2,A3,A4,A5,A6,现从这6人中随机地抽出2人组成活动小组.①用所给编号列出所有可能的结果;②设A为事件“编号为A1和A2的2人中恰有1人被抽到”,求事件A发生的概率.17.已知函数f(x)=2sinx().(1)求函数f(x)在()上的值域;(2)在△ABC中,f(C)=0,且sinB=sinAsinC,求tanA的值.18.如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,D为棱BC的中点,AB=AC,BC=,求证:(1)A1C∥平面ADB1;(2)BC1⊥平面ADB1.19.已知等差数列{a n}中,a1=1,且a1,a2,a4+2成等比数列.(1)求数列{a n}的通项公式及其前n项和S n;(2)设,求数列{b n}的前2n项和T2n.20.已知函数f(x)=(x﹣1)e x﹣ax2(a∈R),这里e是自然对数的底数.(1)求f(x)的单调区间;(2)试讨论f(x)在区间(a﹣1,+∞)上是否存在极小值点?若存在,请求出极小值;若不存在,请说明理由.21.已知椭圆C:=1(a>b>0)的长轴长为4,焦距为2.(1)求椭圆C的方程:(2)过点D(0,1)且斜率为k的动直线l与椭圆C相交于A、B两点,E是y 轴上异于点D的一点,记△EAD与△EBD的面积分别为S1,S2,满足S1=λS2,其中λ=.(i)求点E的坐标:(ii)若λ=2,求直线l的方程.2018届全国高考考前押题卷(二)数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数为纯虚数,其中i为虚数单位,则a=()A.2 B.C.﹣2 D.【考点】A5:复数代数形式的乘除运算.【分析】利用复数代数形式的乘除运算化简,再由实部为0且虚部不为0求解.【解答】解:由为纯虚数,得,解得a=﹣2.故选:C.2.已知集合A={x|y=log2(x﹣1)},集合B={x|(x+1)(x﹣2)≤0},则A∪B=()A.[﹣1,+∞)B.(1,2]C.(1,+∞)D.[﹣1,2]【考点】1D:并集及其运算.【分析】求函数y=log2(x﹣1)的定义域可得集合A,解不等式可得集合B,由集合并集的定义即可得答案.【解答】解:根据题意,对于函数y=log2(x﹣1),有x﹣1>0,解可得x>1,即函数y=log2(x﹣1)的定义域为(1,+∞),A为函数y=log2(x﹣1)的定义域,则A=(1,+∞),集合B={x|(x+1)(x﹣2)≤0}={x|﹣1≤x≤2}=[﹣1,2],则A∪B=[﹣1,+∞);故选:A.3.已知命题“若x>1,则2x<3x”,则在它的逆命题、否命题、逆否命题中,正确命题的个数是()A.0 B.1 C.2 D.3【考点】21:四种命题.【分析】写出原命题的逆命题、否命题和逆否命题,再判断真假性.【解答】解:原命题“若x>1,则2x<3x”,则它的逆命题:若2x<3x,则x>1,为假命题;否命题:若x≤1,则2x≥3x,为假命题;逆否命题:若2x≥3x,则x≤1,为真命题.其中真命题的个数是:1.故选:B.4.已知函数f(x)=sinωx+cosωx(x∈R),又f(α)=2,f(β)=2,且|α﹣β|的最小值是,则正数ω的值为()A.1 B.2 C.3 D.4【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】利用辅助角公式化简,由f(α)=2,f(β)=2,且|α﹣β|的最小值是,可知函数f(x)的最小值周T=,可得ω的值.【解答】解:函数f(x)=sinωx+cosωx=2sin(ωx+).由f(α)=2,f(β)=2,且|α﹣β|的最小值是,∴函数f(x)的最小值周T=.∴.故选:D.5.已知向量,满足=(1,﹣1),||=1,且⊥(+),则与的夹角为()A.B.C. D.【考点】9R:平面向量数量积的运算.【分析】求得向量的模,由向量垂直的条件:数量积为0,化简,再由数量积的定义和向量的平方即为模的平方,解方程可得向量夹角的余弦值,进而得到向量的夹角.【解答】解:向量,满足=(1,﹣1),||=1,且⊥(+),可得||=,•(+)=0,即为•+2=0,即有||•||•co s<,>+||2=cos<,>+1=0,则cos<,>=﹣,由0≤<,>≤π,可得与的夹角为.故选:D.6.如图是某班甲、乙两位同学在5次阶段性检测中的数学成绩(百分制)的茎叶图,甲、乙两位同学得分的中位数分别为x1,x2,得分的方差分别为y1,y2,则下列结论正确的是()A.x1<x2,y1<y2B.x1<x2,y1>y2C.x1>x2,y1>y2D.x1>x2,y1<y2【考点】BA:茎叶图.【分析】由茎叶图,知甲的成绩是75,83,85,85,92,乙的成绩是74,84,84,85,98,由此能够求出结果.【解答】解:由茎叶图,知甲的成绩是75,83,85,85,92,乙的成绩是74,84,84,85,98,故x1=85,x2=84,故x1>x2,而甲的平均数是(75+83+85+85+92)=84,乙的平均数是(74+84+84+85+98)=85,故y1=(81+1+1+1+64)=29.6,y2==58.4,故y1<y2,故选:D.7.在平面直角坐标系xOy中,以坐标原点为圆心且与直线mx﹣y﹣2m+1=0(m ∈R)相切的所有圆中,半径最大的圆的标准方程为()A.x2+y2=5 B.x2+y2=3 C.x2+y2=9 D.x2+y2=7【考点】J9:直线与圆的位置关系.【分析】由题意画出图形,可得当圆与直线mx﹣y﹣2m+1=0切于P(2,1)时,圆的半径最大,求出圆的半径可得半径最大的圆的标准方程.【解答】解:直线mx﹣y﹣2m+1=0过定点P(2,1),如图,∴当圆与直线mx﹣y﹣2m+1=0切于P时,圆的半径最大为.此时圆的标准方程为x2+y2=5.故选:A.8.某四棱台的三视图如图所示,则该四棱台的体积是()A.7 B.6 C.5 D.4【考点】L!:由三视图求面积、体积.【分析】根据四棱台的三视图,得出该四棱台的结构特征是什么,由此计算它的体积即可.【解答】解:由几何体的三视图得到几何体是上下底面都是正方形的棱台如图:根据图中数据得到棱台的体积为=7;故选A.9.已知f(x)是定义在R上的奇函数,且f(x+2)=f(x﹣2);当0≤x≤1时,f(x)=,则f(1)+f(2)+f(3)+…+fA.﹣1 B.0 C.1 D.2【考点】3L:函数奇偶性的性质.【分析】根据条件求出函数的周期是4,结合函数奇偶性和周期性的性质求出函数在一个周期内的值内f(1)+f(2)+f(3)+f(4)=0,然后进行整体计算即可.【解答】解:由f(x+2)=f(x﹣2)得f(x+4)=f(x),则函数是周期为4的周期函数,∵f(x)是定义在R上的奇函数,∴当0≤x≤1时,f(x)=,则f(0)=0,f(1)=1,当x=0时,f(2)=f(﹣2)=﹣f(2),则f(2)=0,f(3)=f(3﹣4)=f(﹣1)=﹣f(1)=﹣1,f(4)=f(0)=0,则在一个周期内f(1)+f(2)+f(3)+f(4)=1+0﹣1+0=0,则f(1)+f(2)+f(3)+…+f+f(2)+f(3)+f(4)]+f=f(1)=1,故选:C.10.若函数y=f(x)的图象上存在不同两点M、N关于原点对称,则称点对[M,N]是函数y=f(x)的一对“和谐点对”(点对[M,N]与[N,M]看作同一对“和谐点对”).已知函数f(x)=则此函数的“和谐点对”有()A.0对 B.1对 C.2对 D.4对【考点】3O:函数的图象.【分析】令f(x)+f(﹣x)=0,根据图象判断方程的根的个数,得出结论.【解答】解:若f(x)=,令f(x)+f(﹣x)=0,若0<x<1,则﹣lnx﹣x3+3x=0,即lnx=﹣x3+3x,作出y=lnx与y=﹣x3+3x的函数图象,由图象可知两函数在(0,1)上无交点,若x≥1,则lnx﹣x3+3x=0,即lnx=x3﹣3x,作出y=lnx与y=x3﹣3x的函数图象,由图象可知两函数在(1,+∞)上有1个交点,所以,f(x)只有1对“和谐点对”.故选B.二、填空题:本大题共5小题,每小题5分,共25分.11.已知向量=(x,1),=(2,﹣1),在区间[﹣1,1]上随机地取一个数x,则事件“•≥0”发生的概率为.【考点】CF:几何概型.【分析】由已知利用数量积公式得到满足条件的x的不等式,利用求解长度比求概率.【解答】解:由已知得到事件“•≥0”发生的x的不等式为2x﹣1≥0,即x,所以在区间[﹣1,1]上随机地取一个数x,则事件“•≥0”发生的概率为:;故答案为:.12.若直线y=k(x+2)上存在点(x,y)∈{(x,y)|x﹣y≥0,x+y≤1,y≥﹣1},则实数k的取值区间为[﹣1,] .【考点】7C:简单线性规划.【分析】由题意,做出不等式组对应的可行域,由于函数y=k(x+2)的图象是过点P(﹣2,0),且斜率为k的直线l,故由图即可得出其范围.【解答】解:由约束条件作出可行域如图,因为函数y=k(x+2)的图象是过点P(﹣2,0),且斜率为k的直线l,由图知,当直线l过点B(,)时,k取最大值,当直线l过点C(﹣1,﹣1)时,k取最小值,故实数k的取值范围是[﹣1,].故答案为:[﹣1,].13.在平面几何里有射影定理:在△ABC中,AB⊥AC,点D是点A在BC边上的射影,则AC2=CD•CB.拓展到空间,在三棱锥A﹣BCD中,BA⊥平面ACD,点O是点A在平面BCD内的射影,类比平面三角形射影定理,得出=S△•S△BCD.DCO【考点】F3:类比推理.【分析】这是一个类比推理的题,在由平面图形到空间图形的类比推理中,一般是由点的性质类比推理到线的性质,由线的性质类比推理到面的性质,由已知在平面几何中在△ABC中,AB⊥AC,点D是点A在BC边上的射影,则AC2=CD•CB,我们可以类比这一性质,推理出若在三棱锥A﹣BCD中,BA⊥平面ACD,点O是点A在平面BCD内的射影,即可得到答案【解答】解:由已知在平面几何中,在△ABC中,AB⊥AC,点D是点A在BC边上的射影,则AC2=CD•CB,我们可以类比这一性质,推理出:在三棱锥A﹣BCD中,BA⊥平面ACD,点O是点A在平面BCD内的射影,)2=S△DCO•S△BCD.则(S△ACD•S△BCD故答案为S△DCO14.如果双曲线C:的渐近线与抛物线y=x2+相切,则C的离心率为.【考点】KC:双曲线的简单性质.【分析】先求双曲线的渐近线,再利用条件渐近线与抛物线y=x2+相切得方程只有一解,运用判别式为0,从而得出a,b的关系,进而求出离心率.【解答】解:双曲线C:的渐近线为y=±x,所以其中一条渐近线可以为y=x,又因为渐近线与抛物线y=x2+只有一个交点,所以x=x2+只有一个解,所以()2﹣4×=0 即()2=1,即a2=b2,c2=a2+b2,所以c2=2a2,所以离心率e==.故答案为:.15.已知min{{a,b}=f(x)=min{|x|,|x+t|},函数f(x)的图象关于直线x=﹣对称;若“∀x∈[1,+∞),e x>2mex”是真命题(这里e是自然对数的底数),则当实数m>0时,函数g(x)=f(x)﹣m零点的个数为4.【考点】57:函数与方程的综合运用;52:函数零点的判定定理.【分析】根据对称关系得出t=1,根据命题为真求出m的范围,根据f(x)的函数图象判断出零点个数.【解答】解:∵f(x)的图象关于x=﹣对称,且f(0)=0,∴f(﹣1)=0,即|﹣1+t|=0,解得t=1.∴f(x)=,∵对∀x∈[1,+∞),e x>2mex是真命题,∴m<恒成立,x∈[1,+∞).令h(x)=,则h′(x)==≥0,∴h(x)在[1,+∞)上单调递增,∴h min(x)=h(1)=,∴0<m.作出f(x)的函数图象如图所示:由图象可知y=f(x)与y=m有4个交点,∴g(x)=f(x)﹣m有4个零点.故答案为:4.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.某学校有若干学生社团,其中“文学社”、“围棋社”、“书法社”的人数分别为9、18、27.现采用分层抽样的方法从这三个社团中抽取6人外出参加活动.(1)求应从这三个社团中分别抽取的人数;(2)将抽取的6人进行编号,编号分别为A1,A2,A3,A4,A5,A6,现从这6人中随机地抽出2人组成活动小组.①用所给编号列出所有可能的结果;②设A为事件“编号为A1和A2的2人中恰有1人被抽到”,求事件A发生的概率.【考点】CC:列举法计算基本事件数及事件发生的概率.【分析】(1)由题意可得抽取比例,可得相应的人数;(2)列举可得从6名人员中随机抽取2名的所有结果共15种;事件A包含上述8个,由概率公式可得.【解答】解:(1)应从“文学社”、“围棋社”、“书法社”中抽取的人数分别是:1,2,3,(2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为:(A1,A2),(A1,A3),(A1,A4),(A1,A5),(A1,A6),(A2,A3),(A2,A4),(A2,A5),(A2,A6),(A3,A4),(A3,A5),(A3,A6),(A4,A5),(A4,A6)),(A5,A6),共15种.②事件A包含:(A1,A3),(A1,A4),(A1,A5),(A1,A6),(A2,A3),(A2,A4),(A2,A5),(A2,A6)),共8个基本事件.因此,事件A发生的概率P(A)=.17.已知函数f(x)=2sinx().(1)求函数f(x)在()上的值域;(2)在△ABC中,f(C)=0,且sinB=sinAsinC,求tanA的值.【考点】HT:三角形中的几何计算;GL:三角函数中的恒等变换应用.【分析】(1)利用二倍角以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,x∈()上时,求出内层函数的取值范围,结合三角函数的图象和性质,即得到f(x)的值域.(2)根据f(C)=0求出角C,sinB=sinAsinC=sin(A+C)利用和与差公式,即可求tanA的值.【解答】解:函数f(x)=2sinx().化简可得:f(x)=2sinxcosx﹣2sin2x=sin2x+cos2x﹣1=2sin(2x+)﹣1.(1)∵x∈()上时,可得:2x+∈(,).∴<sin(2x+)≤1故得函数f(x)在()上的值域为(﹣2,1].(2)∵f(x)=2sin(2x+)﹣1,∵f(C)=0,即sin(2C+)=.∵0<C<π,∴2C+=.得:C=.∵sinB=sinAsinC,可得sin(A+C)=sinAsinC,∴sin(A+)=sinAsin.得:()sinA=cosA.那么:tanA==.18.如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,D为棱BC的中点,AB=AC,BC=,求证:(1)A1C∥平面ADB1;(2)BC1⊥平面ADB1.【考点】LW:直线与平面垂直的判定;LS:直线与平面平行的判定.【分析】(1)如图,连接A1B交AB1于M,可得DM∥A1C,即可证得A1C∥平面ADB1,(2)三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,可得AD⊥BB1,即可得AD⊥BC1,在矩形BCC1B1中,由△BDB1∽△B1BC1,可得.即可得BC1⊥DB1,BC1⊥平面ADB1.【解答】解:(1)证明:如图,连接A1B交AB1于M,则M为A1B中点,连接DM,∵D为棱BC的中点,∴DM∥A1C,又A1C⊄平面ADB1,DM⊂平面ADB1∴A1C∥平面ADB1,(2)三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,可得AD⊥BB1∵D为棱BC的中点,AB=AC,∴AD⊥面BCC1B1,即AD⊥BC1,在矩形BCC1B1中,∵BC=,∴∴△DBB1∽△BB1C1⇒∠BDB1=∠B1BC1,∠BB1D=∠BC1B1,即.∴BC1⊥DB1,且AD∩DB1=D,∴BC1⊥平面ADB1.19.已知等差数列{a n}中,a1=1,且a1,a2,a4+2成等比数列.(1)求数列{a n}的通项公式及其前n项和S n;(2)设,求数列{b n}的前2n项和T2n.【考点】8E:数列的求和;8H:数列递推式.【分析】(1)设等差数列{a n}的公差为d,由a1=1,且a1,a2,a4+2成等比数列.可得:=a1•(a4+2),即(1+d)2=1×(1+3d+2),解得d.经过验证可得d,再利用等差数列的通项公式与求和公式即可得出.(2)=.∴当n为偶数时,==16.当n为奇数时,==.可得数列{b n}的奇数项是以为首项,为公比的等比数列;偶数项是以8为首项,16为公比的等比数列.利用求和公式即可得出.【解答】解:(1)设等差数列{a n}的公差为d,∵a1=1,且a1,a2,a4+2成等比数列.∴=a1•(a4+2),即(1+d)2=1×(1+3d+2),解得d=2或﹣1.其中d=﹣1时,a2=0,舍去.∴d=2,可得a n=1+2(n﹣1)=2n﹣1.S n==n2.(2)=.∴当n为偶数时,==16.当n为奇数时,==.∴数列{b n}的奇数项是以为首项,为公比的等比数列;偶数项是以8为首项,16为公比的等比数列.∴数列{b n}的前2n项和T2n=(b1+b3+…+b2n﹣1)+(b2+b4+…+b2n)=+=(16n﹣16﹣n).20.已知函数f(x)=(x﹣1)e x﹣ax2(a∈R),这里e是自然对数的底数.(1)求f(x)的单调区间;(2)试讨论f(x)在区间(a﹣1,+∞)上是否存在极小值点?若存在,请求出极小值;若不存在,请说明理由.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【分析】(1)求出函数的导数,通过讨论a的范围求出函数的单调区间即可;(2)通过讨论a的范围,得到函数的单调区间,求出函数的极小值即可.【解答】解:(1)f′(x)=x(e x﹣a),①a≤0时,e x﹣a>0,令f′(x)>0,解得:x>0,令f′(x)<0,解得:x<0,故f(x)在(﹣∞,0)递减,在(0,+∞)递增;②a>1时,令e x=a,解得:x=lna,则lna>0,令f′(x)>0,解得:x>lna或x<0,令f′(x)<0,解得:0<x<lna,故f(x)在(﹣∞,0)递增,在(0,lna)递减,在(lna,+∞)递增;③a=1时,f′(x)≥0,f(x)在R递增;④0<a<1时,lna<0,令f′(x)>0,解得:x>0或x<lna,令f′(x)<0,解得:lna<x<0,故f(x)在(﹣∞,lna)递增,在(lna,0)递减,在(0,+∞)递增;0)=﹣1;(2)由(1)a≤0时,a﹣1≤﹣1,f(x)极小值=f(a>1时,a﹣1>0,f(x)在(a﹣1,lna)递减,在(lna,+∞)递增,lna)=alna﹣a﹣aln2a;∴f(x)极小值=f(a=1时,f(x)在(a﹣1,+∞)递增,无极小值点;0<a<1时,﹣1<a﹣1<0,f(x)在(a﹣1,0)递减,在(0,+∞)递增,0)=﹣1.故f(x)极小值=f(21.已知椭圆C:=1(a>b>0)的长轴长为4,焦距为2.(1)求椭圆C的方程:(2)过点D(0,1)且斜率为k的动直线l与椭圆C相交于A、B两点,E是y 轴上异于点D的一点,记△EAD与△EBD的面积分别为S1,S2,满足S1=λS2,其中λ=.(i)求点E的坐标:(ii)若λ=2,求直线l的方程.【考点】KL:直线与椭圆的位置关系.【分析】(1)由a=2,c=1,b2=a2﹣c2=3,即可求得椭圆方程;(2)(i)根据三角形的面积公式,求得sin∠AED=sin∠BED,则∠AED=∠BED,可得k1+k2=0,设直线l的方程,代入椭圆方程,利用韦达定理及直线的斜率公式,即可求得m的值,求得点E的坐标:(ii)由(i)可知:=2,根据向量的数量积的坐标运算及韦达定理即可求得k的值,求得直线l的方程.【解答】解:(1)由椭圆的焦点在x轴上,2a=4,a=2,焦距2c=2,c=1.则b2=a2﹣c2=3,∴椭圆的标准方程:;(2)(i)由S1=丨EA丨丨ED丨sin∠AED,S2=丨EB丨丨ED丨sin∠BED,S1=λS2,丨EA丨sin∠AED=λ丨EB丨sin∠BED,由λ=.则sin∠AED=sin∠BED,由∠AED+∠BED<π,∴∠AED=∠BED,因此直线EA和ED的倾斜角互补,由题意可知直线EA和EB的斜率存在,分别设为k1,k2,则k1+k2=0,由题意可知,直线l的方程y=kx+1,,整理得:(3+4k2)x2+8kx﹣8=0,由△>0恒成立,设A(x1,y1),B(x2,y2),E(0,m),x1+x2=﹣,x1x2=﹣,k1+k2=+=+,=2k+(1﹣m)(+)=2k+(1﹣m),=2k+k(1﹣m)=k(3﹣m),由k1+k2=0,则k(3﹣m)=0,对任意k∈R恒成立,则m=3,∴存在点E点坐标为(0,3);(ii)由λ=2时,S1=2S2,=2,为△EAD与△EBD都以E为顶点,又有相同的高,则=,∴=2,则=2,设A(x1,y1),B(x2,y2),D(0,1),则=(﹣x1,1﹣y1),=(x2,y2﹣1),由=2,则(﹣x1,1﹣y1)=2(x2,y2﹣1),∴﹣x1=2x2,即x1=﹣2x2,代入解得:﹣x2=﹣,﹣x22=,∴x2=,x22=,∴()2=,解得:k=±,∴直线l的方程为:y=x+1或y=﹣x+1.。
泄露天机2018高考押题卷文科数学(二)

泄露天机2018高考押题卷文科数学(二) 2018年普通高等学校招生全国统一考试文科数学(二)注意事项:1.答题前,考生需在答题卡上填写姓名和准考证号。
2.回答选择题时,用铅笔在答题卡上涂黑对应题目的答案标号,如需更改,先用橡皮擦干净再涂其他答案标号。
非选择题需写在答题卡上,写在试卷上无效。
3.考试结束后,将试卷和答题卡一并上交。
第Ⅰ卷一、选择题(共12小题,每小题5分,共60分)1.已知集合$A=\{x\in Z|x^2-3x-4\leq 0\}$,$B=\{x<\lnx<2\}$,则$AB=$()A。
$\{1,2,3,4\}$B。
$\{3,4\}$C。
$\{2,3,4\}$D。
$\{-1,0,1,2,3,4\}$答案】C解析】$A=\{x\in Z|-1\leq x\leq 4\}=\{-1,0,1,2,3,4\}$,$B=\{x|1<x<e^2\}$,所以$AB=\{2,3,4\}$。
2.设复数$z=1-2i$($i$是虚数单位),则$z+z$的值为()A。
32B。
2C。
1D。
22答案】B解析】$z+z=2$,$z\cdot z=5-4i$。
3.“$p\land q$为假”是“$p\lor q$为假”的()条件。
A。
充分不必要B。
必要不充分C。
充要D。
既不充分也不必要答案】B解析】由“$p\land q$为假”得出$p,q$中至少一个为假。
当$p,q$为一假一真时,$p\lor q$为真,故不充分;当“$p\lor q$为假”时,$p,q$同时为假,所以$p\land q$为假,所以是必要的,所以选B。
4.已知实数$x,y$满足约束条件$\begin{cases}x\leq 2\\x-2y+2\geq 0\\x+y+2\geq 0\end{cases}$,则$z=-\frac{x}{3}+y$的最大值为($\frac{3}{4}$)。
答案】C解析】作出的可行域为三角形(包括边界),把$z=-\frac{x}{3}+y$改写为$y=\frac{x}{3}+z$,当且仅当动直线$y=\frac{x}{3}+z$过点$(2,2)$时,$z$取得最大值为$\frac{3}{4}$。
《泄露天机》陕西省西安市2018届高三高考押题卷文科数学Word版含答案

陕西省西安市2018届高三高考押题卷文科数学本试题卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
第Ⅰ卷一、选择题:本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合0y A yx ⎧⎫==⎨⎬⎩⎭,集合(){}10B x x x =->,则A B =R ð( ) A .{}|01x x ≤≤ B .{}|01x x << C .{}0D ∅2.已知复数z 满足1i 1z z -=+,则复数z 在复平面内对应点在( ) A .第一、二象限B .第三、四象限C .实轴D .虚轴3.为了得到函数cos 2y x =的图像,可将函数sin 26y x π⎛⎫=-⎪⎝⎭的图像( ) A .向右平移6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度D .向左平移3π个单位长度4.某公司准备招聘了一批员工.有20人经过初试,其中有5人是与公司所需专业不对口,其余都是对口专业,在不知道面试者专业情况下,现依次选取2人进行第二次面试,第一个人已面试后,则第二次选到与公司所需专业不对口的概率是( ) A .519B .119C .14D .125.《九章算术》中“开立圆术”曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径”.“开立圆术”相当于给出了已知球的体积V ,求其直径d ,公式为d =13,根据“开立圆术”的方法求球的体积为( ) A .481πB .6π C .481D .616.若变量,x y 满足不等式组120x x y x y ⎧⎪⎨⎪++⎩≤≥≥,则(),x y 的整数解有( )A .6B .7C .8D .97.某几何体的三视图如图所示,设正方形的边长为a ,则该三棱锥的表面积为( ) A .2aB2C2 D.28.已知等差数列{}n a 的前n 项和为S n ,且S 2=4,S 4=16,数列{}n b 满足1n n n b a a +=+,则数列{}n b 的前9和9T 为( ) A .80B .20C .180D .1669.已知直线:21l y x =+与圆C :221x y +=交于两点A ,B ,不在圆上的一点()1,M m -,若MA 1MB ⋅=,则m 的值为( ) A .1-,75B .1,75C .1,75-D .1-,75-10.已知函数()()22e xf x x x =-,关于()f x 的性质,有以下四个推断:①()f x 的定义域是(),-∞+∞; ②函数()f x 是区间()0,2上的增函数; ③()f x 是奇函数; ④函数()f x在x =其中推断正确的个数是( ) A .0B .1C .2D .311.已知椭圆的标准方程为22154x y +=,12,F F 为椭圆的左右焦点,O 为原点,P 是椭圆在第一象限的点,则12PF PF -的取值范围( )A .()0,2B .()1,6C .(D .()0,612.已知正方体1111ABCD A BC D -的棱长为1,E 为棱1CC 的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F 、B 、E 、G 、H 为面MBN 过三点B 、E 、F 的截面与正方体1111ABCD A BC D -在棱上的交点,则下列说法错误的是( ) A .HF //BEB .BM =C .∠MBND .△MBN 的面积是4第Ⅱ卷本卷包括必考题和选考题两部分。
2018年高等学校招生全国统一考试押题卷文科数学试卷(二)含解析

1.设 i 是虚数单位,若复数 z i ,则 z 的共轭复数为(
)
1i
11
A.
i
22
1 B.1 i
2
1 C. 1 i
2
11
D.
i
22
【答案】 D
【解析】复数 z i i 1 ,根据共轭复数的概念得到, z 的共轭复数为: 1 1 i .故
1i 2
22
答案为: D.
2.设 z i 1 , f x
2
x
x
1 ,所以向量 a 与 b 的夹角为 2π.
2
3
8.已知点 P 在圆 C :x2 y2 4x 2 y 4 0 上运动,则点 P 到直线 l :x 2 y 5 0
的距离的最小值是(
)
A. 4
B. 5
C. 5 1
D. 5 1
【答案】 D
【解析】 圆 C : x2
y2
4x 2y
4
2
0 化为 x 2
2
y 1 1 ,圆心 C 2,1 半径
【答案】 A
C. 7
D. 9
【解析】 根据不等式组得到可行域是一个封闭的四边形区域,目标函数化为 y ax z ,当直线过点 4,6 时,有最大值, 将点代入得到 z 4a 6 18 a 3 ,
故答案为: A .
10.双曲线
x2 a2
y2 b2
1 ( a 0,b 0) 的左、右焦点分别为 F1 ,F2 ,过 F1 作倾斜角为 60
1,则 f
z
(
)
i1
A.i
B. i
C. 1 i
D. 1 i
【答案】 A
【解析 】
fx
x2 x 1 ,
2018年普通高等学校招生全国统一考试仿真卷 -文科数学(二)解析版

绝密 ★ 启用前2018年普通高等学校招生全国统一考试仿真卷文科数学(二)本试题卷共14页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2018·渭南质检]设i是虚数单位,若复数z 的共轭复数为() AB CD 【答案】D【解析】z答案为:D .2.[2018·吉林实验中学]若双曲线221y x m-=的一个焦点为()3,0-,则m =( ) A .B .8 C .9D .64【答案】B【解析】由双曲线性质:21a =,2b m=,219c m ∴=+=,8m =,故选B .3.[2018·菏泽期末]()f x)AB.C D .2【答案】DD . 4.[2018·晋城一模]函数()12xf x ⎛⎫= ⎪⎝⎭,()0,x ∈+∞的值域为D ,在区间()1,2-上随机取一个数x ,则x D ∈的概率是( ) A .12B .13C .14D .1【答案】B【解析】0x >,1012x⎛⎫∴<< ⎪⎝⎭,即值域()0,1D =,若在区间()1,2-上随机取一个数x ,x D ∈的事件记为A ,则()()101213P A -==--,故选B .5.[2018·菏泽期末]已知变量x 和y 的统计数据如下表:根据上表可得回归直线方程0.7y x a =+,据此可以预报当6x =时,y =( ) A .8.9 B .8.6C .8.2D .8.1【答案】D【解析】12345635x +++++==,5566865y ++++==,∴60.73a =⨯+, 3.9a =,∴6x =时,0.76 3.98.1y =⨯+=,故选D .6.[2018·昆明一中]一个几何体的三视图如图所示,则该几何体的体积为( )班级 姓名 准考证号 考场号座位号此卷只装订不密封A.83B.163C.203D.8【答案】B【解析】由图可知该几何体底面积为8,高为2的四棱锥,如图所示:∴该几何体的体积1168233V=⨯⨯=,故选B.7.[2018·漳州调研]《九章算术》是我国古代的数学名著,书中有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共猎得五鹿,欲以爵次分之,问各得几何?”其意思:“共有五头鹿,5人以爵次进行分配(古代数学中“以爵次分之”这种表述,一般表示等差分配,在本题中表示等差分配).”在这个问题中,若大夫得“一鹿、三分鹿之二”,则簪裹得()A.一鹿、三分鹿之一B.一鹿C.三分鹿之二D.三分鹿之一【答案】B【解析】由题意可知,五人按等差数列进行分五鹿,设大夫得的鹿数为首项a1,且,公差为d,则,解得,所以B.8.[2018·周口期末])A.B.C.D.【答案】B10x-≠,1x≠,即()()11x∈-∞+∞,,,故排除A,D,当0x=C,故选B.9.[2018·郴州月考]阅读如图所示的程序框图,运行相应程序,输出的结果是()A.12 B.18 C.120 D.125【答案】C【解析】第一次运行:011a=+=,1i=为奇数,112S=+=,112i=+=;第二次运行:123a=+=,2i=为偶数,326S=⨯=,213i=+=;第三次运行:336a=+=,3i=为奇数,6612S=+=,314i=+=;第四次运行:6410a=+=,4i=为偶数,1012120S=⨯=,415i=+=;程序终止运行,输出120S=.故选C.10.[2018·济南期末]设x,y 满足约束条件1122x yx yx y+⎧⎪--⎨⎪-⎩≥≥≤,若目标函数3z ax y=+仅在点()1,0处取得最小值,则a的取值范围为()A .()6,3-B .()6,3--C .()0,3D .(]6,0-【答案】A【解析】作出约束条件1122x y x y x y +⎧⎪--⎨⎪-⎩≥≥≤,表示的可行域如图所示,将3z ax y =+化成33a z y x =-+,当123a -<-<时,33a zy x =-+仅在点()1,0处取得最小值,即目标函数3z ax y =+仅在点()1,0A 处取得最小值,解得63a -<<,故选A .11.[2018·武邑中学]已知抛物线22(0)y px p =>的焦点为F ,其准线与双曲线2213y x -=相交于M ,N 两点,若MNF △为直角三角形,其中F 为直角顶点,则p =( )A.B.C. D .6【答案】A【解析】由题设知抛物线22y px =2213y x -=解得双曲线的对称性知MNF △为等腰直角三角形22334p p ∴=+,p ∴=A . 12.[2018·滁州期末]若关于x 在()()00-∞+∞,,上恒成立,则实数k 的取值范围为( )A )25e ⎛+∞ ⎝,B )23e ⎛+∞ ⎝,C 25e ⎫⎛+∞⎪ ⎭⎝,D 23e ⎫⎛+∞⎪ ⎭⎝,【答案】A【解析】201e xx x x k >⎧⎪⎨+->⎪⎩所以当(),1x ∈-∞-时,()0f x '<,当()1,0x ∈-时,()0f x '>, 当()0,2x ∈时,()0f x '>,当()2,x ∈+∞时,()0f x '<, 所以()2k f >或()1k f <-或e k <-,故选A . 第Ⅱ卷本卷包括必考题和选考题两部分。
2018届全国高考数学文科模拟闯关押题模拟(二)(解析版)

2018届全国高考数学文科模拟闯关押题模拟(二)(解析版)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合A={-1,a},B={0,1},若A∩B={0},则A∪B=( )A. {0,1}B. {-1,0}C. {-1,0,1}D. {-1,1,2}【答案】C【解析】由A∩B={0},得 ,所以,A∪B={-1,0,1}.2. 已知=1-yi,其中x,y是实数,i是虚数单位,则x-y=( )A. 1B. 2C. 3D. 4【答案】A【解析】由题意,(x-x i)=1-y i,解得x=2,y=1.故x-y=1.点睛:本题重点考查复数的基本运算和复数的概率,属于基本体,首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如,其次要熟悉复数的相关基本概念,如复数的实部为,虚部为,模为,对应点为,共轭复数为.3. 命题“∃x∈R,≥0”的否定是( )A. “∃x∈R,≤0”B. “∃x∈R,<0”C. “∀x∈R,≤0”D. “∀x∈R,<0”【答案】D【解析】由于特称命题的否定是全称命题,否定方法是先改变量词,然后否定结论,故命题“∃x∈R,≥0”的否定是“∀x∈R,<0”4. 将函数f(x)=sin的图象向左平移个单位,得到g(x)的图象,则g(x)=( )A. sinB. cosC. sin 2xD. cos 2x【答案】A【解析】函数f(x)=sin的图象向左平移个单位,得到g(x)5. 右边茎叶图记录了甲、乙两组各十名学生在高考前体检中的体重(单位:kg).记甲组数据的众数与中位数分别为x1,y1,乙组数据的众数与中位数分别为x2,y2,则( )A. x1>x2,y1>y2B. x1>x2,y1<y2C. x1<x2,y1>y2D. x1<x2,y1<y2【答案】D【解析】甲组数据的众数为x1=64,乙组数据的众数为x2=66,则x1<x2;甲组数据的中位数为y1==65,乙组数据的中位数为y2==66.5,则y1<y2.6. 已知函数f(x)的导数为f′(x),且满足关系式f(x)=+2xf′(1),则f′(1)-f′(-1)=( )A. 1B. -1C. 0D. 2【答案】C【解析】由f(x)=+2xf′(1),得f′(x)=-+2f′(1),则f′(1)=-1+2f′(1),解得f′(1)=1.则f′(x)=-+2.则f′(-1)=-1+2=1.故f′(1)-f′(-1)=0.7. 已知m,n,l为三条不同的直线,α,β为两个不同的平面,给出下面4个命题:①由α∥β,m⊂α,n⊂β,得m与n平行或异面;②由m∥n,m⊥α,n⊥l,得l∥α;③由m∥n,m∥α,得n∥α;④由m⊥α,n⊥β,α⊥β,l⊥m,得l∥n.其中正确命题的序号是( )A. ①B. ②④C. ①②D. ①②④【答案】A【解析】①正确;对于②,还有可能l⊂α,故②不对;对于③,当m∥n,m∥α时,直线n与平面α不一定平行,还有可能n⊂α,故③不对;对于④,l与m还可能异面或相交,故④不对.8. 若抛物线y2=4x的准线过双曲线的一个焦点,且双曲线的实轴长为,则该双曲线的渐近线方程为( )A. y=±2xB. y=±xC. y=±4xD. y=±3x【答案】B【解析】依题意,抛物线y2=4x的准线是x=-1,双曲线的一个焦点是(-1,0),即,又双曲线的实轴长为双曲线的渐近线方程为y=±x.9. 执行如图所示的程序框图,输出的z值为( )A. 9B. 15C. 125D. 225【答案】D【解析】S=0,a=3;S=log23,a=5;S=log23+log25=log215,a=7>5,z=4log215=152=225.10. 祖暅原理:“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高,意思是两个同高的几何体,如在等高处截面的面积恒相等,则体积相等.已知某不规则几何体与如图所示的几何体满足“幂势同”,则该不规则几何体的体积为( )A. B. C. 3 D. 6【答案】B【解析】由祖暅原理可知,该不规则几何体的体积与已知三视图几何体体积相等,图示几何体是一个三棱锥,其直观图如下图:其底面是底和高分别为5,的三角形,高为,则该三棱锥的体积为V=.从而该不规则几何体的体积为.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.11. 已知向量m=(-2,3)与n=(1,t),若向量m+n与m-n的夹角为锐角,则函数f(t)=t2-2t +3的值域是( )A. ∪B. ∪C. D.【答案】A【解析】m+n=(-1,t+3),m-n=(-3,3-t),(m+n)·(m-n)>0,3+9-t2>0,-2<t<2,又-3(t+3)≠-(3-t),∴t≠-,∴f(t)=(t-)2∈.12. 已知函数若函数g(x)=b-f(1-x)有3个零点x1,x2,x3,则x1+x2+x3的取值范围是( )A. (-1,1)B. (-1,2)C. (1-,1)D. (2-,2)【答案】D【解析】f(1-x)=,f(1-x)=b的三个根为x1,x2,x3,不妨设x1<x2<x3,则x2+x3=2,-<x1<0,∴2-<x1+x2+x3<2.二、填空题:本题共4小题,每小题5分,共20分.13. 若函数f(x)=ax-x3的图象过点(1,3),则f(-2)=________.【答案】0【解析】函数f(x)=ax-x3的图像过点(1,3),,解得,即f(x)=4x-x3,则.14. 若x,y满足,则2x+3y的最小值为________.【答案】-4【解析】依题意,不等式组表示区域如下图所示直线2x+3y =0如图中虚线所示,当直线平移经过点C时,2x+3y取得最小值,由得:C(7,-6), 此时.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.15. 在△ABC中,角A,B,C的对边分别为a,b,c,若acosB-bcosA=c,则A=________.【答案】【解析】在△ABC中,∵acosB-bcosA=c,根据正弦定理可得:sinAcosB-sinBcosA=sinC,又sinC=sin(A+B)=sinAcosB+sinBcosA,∴sinBcosA=0,∵A,B∈(0,π),∴cosA=0,解得A=.16. 已知圆C:(x-a)2+(y-b)2=1(a<0)的圆心在直线y=(x+1)上,且圆C上的点到直线y=-x 距离的最大值为1+,则a2+b2=________.【答案】3【解析】由已知可得圆C的圆心坐标为(a,b)又圆心在直线y=(x+1)上则则圆C上的点在直线y=-x距离的最大值为1+即解得或,又故可得则则三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17. 已知各项都为正数的数列{a n}满足a1=1,=2a n+1(a n+1)-a n.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{a n·b n}的前n项和T n.【答案】(Ⅰ)a n=()n-1(Ⅱ)T n=2-(n+1)( )n-1.【解析】试题分析:(Ⅰ)由=2a n+1(a n+1)-a n,化简可得.进而可得a n=()n-1.(Ⅱ)根据错位相减法,即可求出数列的数列{a n·b n}的前n项和T n.试题解析:(Ⅰ)由=2a n+1(a n+1)-a n,得2a n+1(a n+1)=a n(a n+1),因为数列{a n}的各项都为正数,所以.故数列{a n}是首项为1,公比为的等比数列,因此a n=()n-1.(Ⅱ)由(Ⅰ)知a n=()n-1,故b n=n-1,所以a n·b n=(n-1)( )n-1,数列{a n·b n}的前n项和T n=+2×()2+3×()3+…+(n-2)×()n-2+(n-1)×()n-1①T n=()2+2×()3+3×()4+…+(n-2)×()n-1+(n-1)×()n,②①-②得T n=+()2+()3+…+()n-1-(n-1)×()n=-(n-1)×()n=1-()n-1-(n-1)×()n=1-(n+1)( )n,T n=2-(n+1)( )n-1.18. 某P2P平台需要了解该平台投资者的大致年龄分布,发现其投资者年龄大多集中在区间[20,50]岁之间,对区间[20,50]岁的人群随机抽取20人进行了一次理财习惯调查,得到如下统计表和各年龄段人数频率分布直方图:组数分组人数(单位:人)第一组[20,25) 2第二组[25,30) a第三组[30,35) 5第四组[35,40) 4第五组[40,45) 3第六组[45,50] 2(Ⅰ)求a的值并画出频率分布直方图;(Ⅱ)在统计表的第五与第六组的5人中,随机选取2人,求这2人的年龄都小于45岁的概率.【答案】(Ⅰ)见解析(Ⅱ) P=.【解析】试题分析:(Ⅰ)由题意a=20-2-5-4-3-2=4,可依次求得直方图中小矩形的高度从而画出频率直方图.(Ⅱ)从5人中选取2人的取法有10种,其中2人都小于45岁的有3种,所求概率为P=.试题解析:(Ⅰ)a=20-2-5-4-3-2=4,直方图中小矩形的高度依次为=0.02,=0.04,=0.05,=0.04,=0.03,=0.02,频率直方图如图(Ⅱ)记第五组中的3人为A,B,C,第六组中的2人为a,b,则从中选取2人的取法有AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,ab共10种,其中2人都小于45岁的有3种,所以所求概率为P=.19. 四棱锥A-BCDE中,侧棱AD⊥底面BCDE,底面BCDE是直角梯形,DE∥BC,BC⊥CD,BC=2AD=2DC =2DE=4,H,I分别是AD,AE的中点.(Ⅰ)在AB上求作一点F,BC上求作一点G,使得平面FGI∥平面ACD;(Ⅱ)求平面CHI将四棱锥A-BCDE分成的两部分的体积比.【答案】(Ⅰ)见解析(Ⅱ).【解析】试题分析:(Ⅰ)通过证明IG∥HC和FG∥AC.从而平面FGI∥平面ACD.(Ⅱ)先求得四棱锥A-BCHI的体积V1=××=,和四棱锥A-BCDE的体积V=××(2+4)×2×2=4,通过作差得到多面体HI-ABCD的体积V2=V-V1=,可得两部分体积比为.试题解析:(Ⅰ)如右图所示,分别作AB的四等分点F(离A较近),BC的四等分点G(离C较近),则其使得平面FGI∥平面ACD.证明如下:因为H,I分别是AD,AE的中点,所以HI∥DE,且HI=DE.又DE∥BC,BC=2DE,所以HI∥BC且HI=BC.所以HI∥GC且HI=GC.所以四边形HIGC是平行四边形.所以IG∥HC.由题意,,所以FG∥AC.又IG∩FG=G,HC∩AC=C,所以平面FGI∥平面ACD.(Ⅱ)连接BI,∵H,I分别为AD,AE中点,∴HI∥DE,HI=DE=1,又DE∥BC,∴HI∥BC,∴平面CHI将四棱锥分成四棱锥A-BCHI与多面体HI-ABCD两部分,过D作D M⊥CH,垂足为M,则A到平面BCHI的距离等于DM,∵AD⊥平面BCDE,∴AD⊥CD,在Rt△CDH中,CD=2,DH=1,CH=,DM=,∵BC⊥CD,AD⊥BC,AD∩CD=D,∴BC⊥平面ACD,∵CH⊂平面ACD,∴BC⊥CH,四边形BCHI的面积为(1+4)×=,四棱锥A-BCHI的体积V1=××=,四棱锥A-BCDE的体积V=××(2+4)×2×2=4,多面体HI-ABCD的体积V2=V-V1=,∴平面CHI将四棱锥A-BCDE分成的两部分体积比为.20. 已知椭圆C:(a>b>0)的离心率为,焦距为2c,且c,,2成等比数列.(Ⅰ)求椭圆C的标准方程;(Ⅱ)点B坐标为(0,),问是否存在过点B的直线l交椭圆C于M,N两点,且满足 (O为坐标原点)?若存在,求出此时直线l的方程;若不存在,请说明理由.【答案】(Ⅰ)+y2=1(Ⅱ)y=x+或y=-x+.【解析】试题分析:(Ⅰ)根据题意可以知道: ()2=2·c ,椭圆的离心率可得a=,即可求得a和b的值,即可求得椭圆方程;(Ⅱ)设直线MN的方程,代入椭圆方程,由韦达定理及向量数量积的坐标运算,即可求得k的值,直线l 的方程.试题解析:(Ⅰ)()2=2·c,解得c=1.又e′==,及a2=b2+c2,解得a=,b=1.所以椭圆C的标准方程为+y2=1.(Ⅱ)若直线l过点B(0,).当直线l的斜率不存在时,显然不符合题意;故直线l的斜率存在,设为k,则直线l的方程为y-=kx,即y=kx+.联立方程组消去y,得(1+2k2)x2+4kx+2=0.显然Δ=(4k)2-4(1+2k2)×2>0,解得k>或k<-.(*)设点M(x1,y1),N(x2,y2),则x1+x2=,x1x2=.由,得=0,则x1x2+y1y2=0.即+(kx1+)(kx2+)=0,得+k2x1x2+k(x1+x2)+2=0,得+k2·+k+2=0,化简得=0,解得k=±.符合(*)式,此时直线l的方程为y=x+或y=-x+.故存在过点B的直线l交椭圆C于M,N两点,且满足,此时直线l的方程为y=x+或y=-x+.点睛:本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.21. 对于函数f(x)(x∈D),若x∈D时,均有f′(x)<f(x)成立,则称函数f(x)是J函数.(Ⅰ)当函数f(x)=x2+m(e x+x),x≥e是J函数时,求实数m的取值范围;(Ⅱ)若函数g(x)为R+上的J函数,试比较g(a)与e a-1g(1)的大小.【答案】(Ⅰ)m>(Ⅱ)见解析【解析】试题分析:(1)根据J函数的定义,解不等式f'(x)>f(x),通过这个不等式,我们可以求出m的取值范围,(2)根据函数g(x)为(0,+∞)上的J函数,构造函数h(x)=,利用函数的单调性进行判断.试题解析:(Ⅰ)由f(x)=x2+m(e x+x),x≥e得f′(x)=2x+m(e x+1),x≥e,由f′(x)<f(x)得2x+m(e x+1)<x2+m(e x+x),∴m(x-1)>2x-x2,又x≥e,∴m>,令y=,则y′=<0,又x≥e,∴y max=,∴m>.(Ⅱ)构造函数h(x)=,x∈R+,则h′(x)=<0,可得h(x)为R+上的减函数.当a>1时,h(a)<h(1),即,得g(a)<e a-1g(1);当0<a<1时,h(a)>h(1),即,得g(a)>e a-1g(1);当a=1时,h(a)=h(1),即,得g(a)=e a-1g(1).(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22. 以平面直角坐标系的原点为极点,x轴正半轴为极轴建立极坐标系.已知圆C的极坐标方程为ρ=2sin θ,直线l的参数方程为(t为参数),若l与C交于A,B两点.(Ⅰ)求|AB|;(Ⅱ)设P(1,2),求|PA|·|PB|的值.【答案】(Ⅰ) (Ⅱ)1.【解析】试题分析:(Ⅰ)将直线l的参数方程为带入圆的普通方程,化简得10t2-8t+1=0,利用参数t的意义求|AB|即可.(Ⅱ)利用两点间的距离公式可得|PA|·|PB|=10|t1t2|=1.试题解析:(Ⅰ)由ρ=2sin θ,得ρ2=2ρsin θ,即x2+y2=2y,把x=1-t,y=2-3t代入上式得(1-t)2+(2-3t)2=2(2-3t),∴10t2-8t+1=0,则t1+t2=,t1t2=,(t1-t2)2=(t1+t2)2-4t1t2=-=,∴|AB|====.(Ⅱ)|PA|·|PB|===10|t1t2|=1.23. 设函数f(x)=|2x+1|+|x+1|.(Ⅰ)求不等式f(x)≤8的解集;(Ⅱ)若不等式f(x)>|a-2|对任意x∈R恒成立,求实数a的取值范围.【答案】(Ⅰ)(Ⅱ)a∈.【解析】试题分析:(1)分,,三段解不等式,得结论;(2)本题不等式恒成立,只要求得f(x)原最小值,然后解不等式|a-2|<即可.试题解析:(Ⅰ)f(x)=f(x)≤8,则或或∴-≤x≤2或-1<x<-或-≤10≤-1,∴-≤x≤2,∴f(x)≤8的解集为.(Ⅱ)由(Ⅰ)得f(x)最小值为,依题意,|a-2|<,∴<a<,即a∈.。
(全优试卷)普通高等学校招生全国统一考试押题卷文科数学(二)Word版含解析

绝密★启用前2018年普通高等学校招生全国统一考试押题卷文科数学(二)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1A B C D【答案】D【解析】D.2A B C D【答案】A【解析】,,A.3A B C D【答案】C【解析】C.4A B C D.1【答案】BB.5A.5 B.6 C.7 D.8【答案】A6.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”,ABCD【答案】A【解析】A.7ABCD【答案】D【解析】8.的距离的最小值是()ABCD【答案】D【解析】为1,则圆上一点PD.9为18ABC D【答案】A【解析】根据不等式组得到可行域是一个封闭的四边形区域,目标函数化为有最大值,故答案为:A.10则该双曲线的离心率是()A B C.2 D【答案】B【解析】中点坐标公式可代入双曲线方程可由于B.11.围是()A B C D【答案】D【解析】D.12.值范围为()ABCD【答案】A【解析】令,则当()0,2x ∈时,()0f x '>,当()2,x ∈+∞时,()0f x '<,所以()2k f >或()1k f <-,即25ek >或e k <-,故选A . 第Ⅱ卷本卷包括必考题和选考题两部分。
2018年高考押题猜题试卷文科数学(有答案)

2018年高考押题猜题试卷文科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置. 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}1,3,5,6,9U =,{}3,6,9A =,则图中阴影部分表示的集合是( )A .{1,3,5}B .{1,5,6}C .{6,9}D .{1,5}2z 的共轭复数z =( )ABC D3.已知焦点在y轴上的双曲线的渐近线方程为2y x =±,则该双曲线的离心率为( )AB .32 C或32 D .24.已知空间几何体的三视图如图所示,则该几何体的体积是() A .43 B .83 C .4 D .8 5.已知函数()()sin f x x ωϕ=+,x ∈R (其中0ω>,ππω-<<)的部分图象,如图所示,那么()f x 的解析式为() ABCD6.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法错误的是( ) A .此人第二天走了九十六里路 B .此人第一天走的路程比后五天走的路程多六里 C .此人第三天走的路程占全程的18 D .此人后三天共走了42里路 7.已知x ,y 满足约束条件010 220x y x y x y -+--⎧⎪⎨⎪+⎩≤≥≥,则2z x y =++的最大值是( ) A .3 B .5 C .6 D .7此卷只装订不密封班级姓名准考证号考场号座位号82a b ==,()()22a b a b +⋅-=-,则a b 与的夹角为( )A .30︒B .45︒C .60︒D .120︒9.已知定义在R 上的偶函数()f x 满足()()2f x f x +=,且当[]0,1x ∈时,()f x x =,则函数()()4log g x f x x =-的零点个数是( )A .0B .2C .4D .610.在锐角ABC △中,角A ,B ,C 对应的边分别是a ,b ,c ,向量()sin ,tan a C A =,()tan ,sin b A A =,且cos cos a b A C ⋅=+,则)A .)1B .(12,2+C .(1++D .11.若直线y x b =+与曲线3y =b 的取值范围是()A .1⎡-+⎣ BC .1,1⎡-+⎣ D .1⎡⎤-⎣⎦12.在一次体育兴趣小组的聚会中,要安排6人的座位,使他们在如图所示的6个椅子中就坐,且相邻座位(如1与2,2与3)上的人要有共同的体育兴趣爱好.现已知这6人的体育兴趣爱好如下表所示,且小林坐在1号位置上,则4号位置上坐的是( )A .小方B .小张C .小周D .小马第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.函数()1sin f x x x +-=在()0,2π上的单调情况是_______________.14.如图是某算法的程序框图,则程序运行后输出的结果是__________. 15.已知函数()()sin π01f x x x =<<,若a b ≠,且()()f a f b =,则41a b +的最小值为_____________. 16.如图,在四面体ABCD 中,点1B ,1C ,1D 分别在棱AB ,AC ,AD 上,且平面111B C D ∥平面BCD ,1A 为BCD △内一点,记三棱锥1111A B C D -的体积为V ,设1AD x AD =,对于函数()V f x =,则下列结论正确的是__________. ①当23x =时,函数()f x 取到最大值; ②函数()f x 在2,13⎛⎫ ⎪⎝⎭上是减函数; ③函数()f x 的图像关于直线12x =对称; ④不存在0x ,使得()014A BCD f x V ->(其中A BCD V -为四面体ABCD 的体积). 三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答. (一)必考题:60分,每个试题12分. 17.各项均为正数的等比数列{}n a ,前n 项和为n S ,且满足322a a -=,37S =. (1)求数列{}n a 的通项公式; (2)若()2111log n n b n a +=+⋅,求数列{}n b 的前n 项和n T .18.据统计,目前微信用户已达10亿,2016年,诸多传统企业大佬纷纷尝试进入微商渠道,让这个行业不断地走向正规化、规范化.2017年3月25日,第五届中国微商博览会在山东济南舜耕国际会展中心召开,力争为中国微商产业转型升级,某品牌饮料公司对微商销售情况进行中期调研,从某地区随机抽取6家微商一周的销售金额(单位:百元)的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)若销售金额(单位:万元)不低于平均值x 的微商定义为优秀微商,其余为非优秀微商,根据茎叶图推断该地区110家微商中有几家优秀?(2)从随机抽取的6家微商中再任取2家举行消费者回访调查活动,求恰有1家是优秀微商的概率.19.已知三棱锥A BCD -中,ABC △是等腰直角三角形,且AC BC ⊥,2BC =,AD ⊥平面BCD ,1AD =.(1)求证:平面ABC ⊥平面ACD ;(2)若E 为AB 中点,求点A 到平面CED 的距离.20.已知椭圆E 的中心在原点,焦点在x 轴,焦距为2倍.(1)求椭圆E 的标准方程;(2)设()2,0P ,过椭圆E 左焦点F 的直线l 交E 于A 、B 两点,若对满足条件的任意直线l ,不等式PA PB λ⋅≤(λ∈R )恒成立,求λ的最小值.21.已知二次函数()f x 的最小值为4-,且关于x 的不等式()0f x ≤的解集为{}13x x x ∈R -≤≤,. (1)求函数()f x 的解析式; (2(二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分) 22.已知直线l 的参数方程为cos 1sin x t y t αα==+⎧⎨⎩(0πα<≤,t 为参数),曲线C 的极坐标方 (1)将曲线C 的极坐标方程化为直坐标方程,并说明曲线C 的形状; (2)若直线l 经过点()1,0,求直线l 被曲线C 截得的线段AB 的长. 23.已知0a >,0b >,函数()f x x a x b =++-的最小值为4. (1)求a b +的值; (2)求221149a b +的最小值.2018年高考押题猜题试卷文科数学答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】∵{}1,3,5,6,9U =,{}3,6,9A =,∴{}1,5U A =ð,∴图中阴影部分表示的集合是{}1,5U A =ð,故选D .2.【答案】C 【解析】(11i z --=+z故选C .3.【答案】A【解析】因为焦点在y轴上的双曲线的渐近线方程为y x =22225455b a c a ==-,2295a c =,295e =,5e =,故选A .4.【答案】B【解析】几何体为四棱锥,高为2,底面为正方形面积为22=4⨯,1824=33V ∴=⨯⨯,选B .5.【答案】A【解析】周期2ππ42π2T ω==⨯=,∴1ω=,()()sin f x x ϕ=+,∵()0sin 1f ϕ==,π2ϕ=,A .6.【答案】C【解析】由题意可知,每天走的路程里数构成以12为公比的等比数列,由6378S =求得首项,再由等比数列的通项公式求第二天的,第三天的,后三天的路程,即可得到答案.7.【答案】C【解析】绘制不等式组表达的平面区域如图所示,则目标函数22z x y x y =++=++,结合目标函数的几何意义可知目标函数在点()2,2C 处取得最大值:max 2226z =++=. 本题选择C 选项. 8.【答案】C 【解析】由()()22a b a b +⋅-=-2222a a b b +⋅-=-, 22cos ,22a a b a b b +<>-=-,又2a b ==,∴44cos ,82a b +<>-=-, 1cos ,2a b <>=,∵两向量夹角的范围为[]0180︒︒,,∴a 与b 的夹角为60︒.故选:C . 9.【答案】D 【解析】由题意,偶函数()f x 的周期为2,作出函数()f x 象,如图所示,观察图象可知,两个函数的交点个数为6个,所以函数()()4log g x f x x =-的零点个数是6. 10.【答案】B 【解析】cos cos a b A C ⋅=+,()()cos cos cos sin sin sin A C A A A C ∴+=⋅+, 22cos sin cos cos sin sin A A A C A C ∴-=-+,()cos2cos cos A A C B ∴=-+=,2B A ∴=, 因为ABC △是锐角三角形,所以π02C <<,π022B A <=<,πππ32B A A ∴--=-<,π6A ∴>,ππ64A ∴<<,由正弦定理,可得:ππ64A <<,cos A <<,此卷只装订不密封班级姓名准考证号考场号座位号sin sin sin 3sin 2sin cos 2cos sin 22sin cos sin sin sin c bC BA AA A A A A Aa A A A+++++===24cos 2cos 1A A =+-,214cos 2cos 12A A ∴+<+-<+.本题选择B 选项.11.【答案】D【解析】将曲线的方程3y =()()22234x y -+-=()13,04y x ≤≤≤≤,即表示以()2,3A 为圆心,以2为半径的一个半圆,如图所示:由圆心到直线y x b =+的距离等于半径2,可∴1b =+或1b =-D .12.【答案】A【解析】重新整理:篮球:小林,小马; 网球:小林,小张;羽毛球:小林,小李; 足球:小方,小张;排球:小方,小李; 跆拳道:小方,小周;棒球:小马,小李; 击剑:小周,小张乒乓球:小马; 自行车:小周由于小周的自行车与小马的乒乓球没有共同兴趣爱好者,所以小周两边一事实上是跆拳道与击剑的,小马两边只能是棒球与篮球的.即小马与小林一定相邻,所以1号位是小林,2号位一定是小马,3号位就是棒球的小李.小周与小张及小方一定相邻,所以小周坐5号位.从3号位角度,4号位只能是排球和羽毛球(小林,不可能),所以是排球小方.6号位小张.选A .第Ⅱ卷 二、填空题:本大题共4小题,每小题5分. 13.【答案】单调递增 【解析】在()0,2π上有()1cos 0f x x ='->,所以()f x 在()0,2π单调递增,故答案为单调递增. 14.【答案】10 【解析】当0s =,1n =时,()01109s =+-+=<,则112n =+=;当0s =,2n =时,()201239s =+-+=<,则213n =+=;当3s =,3n =时,()331359s =+-+=<,则314n =+=;当5s=,4n =时,()4514109s =+-+=>,此时运算程序结束,输出10s =,应填答案10. 15.【答案】9 【解析】画出了函数图象,()()f a f b =,故得到a 和b 是关于轴对称的,1a b +=;45549b a a b +++=≥.等号成立的条件为2a b =.故答案为9. 16.【答案】①②④ 【解析】令1A BCD V -=,1AD x AD =11A A h x h =-,所以()()21f x x x =-,()01x <<,()()()()221123f x x x x x x '=-+-=-,则()f x 在20,3⎛⎫ ⎪⎝⎭单调递增,2,13⎛⎫ ⎪⎝⎭单②④. 三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答. (一)必考题:60分,每个试题12分.17.【答案】(1)12n n a -=;(2)1n nT n =+.【解析】(1)设等比数列{}n a 的公比为q ,由3232 7a a S ==⎧⎨⎩-得()21121217a q a q a q q -=+=⎧⎪⎨⎪⎩+,解得2q =或15q =-,∵数列{}n a 为正项数列,∴2q =,代入2112a q a q -=,得11a =,∴12n n a -=.(2)()2111log n nn a b +=+⋅()()21log 21n n n n =+=+,此时()11111n b n n n n ==-++, ∴121111112231n n T b b b n n =++⋯+=-+-+⋯+-+1111nn n =-=++.18.【答案】(1)推断该地区110家微商中有55家优秀;(2)35.【解析】(1)6家微商一周的销售金额分别为8,14,17,23,26,35, 故销售金额的平均值为1814172326352056x =+++++=()..由题意知优秀微商有3家,故优秀的概率为12,由此可推断该地区110家微商中有55家优秀.(2)从随机抽取的6家微商中再任取2家举行消费者回访调查活动,有15种, 设“恰有1家是优秀微商”为事件A ,则事件A 包含的基本事件个数为9种,所以()93155P A ==.即恰有1家是优秀微商的概率为35.19.【答案】(1)见解析; (2)5d =.【解析】(1)证明:因为AD ⊥平面BCD ,BC ⊂平面BCD ,所以AD BC ⊥,又因为AC BC ⊥,AC AD A =,所以BC ⊥平面ACD ,BC ⊂平面ABC ,所以平面ABC ⊥平面ACD .(2)由已知可得CD =,取CD 中点为F ,连结EF,由于12ED EC AB ===以ECD △为等腰三角形,从而2EF =1)知BC ⊥平面ACD ,所以E 到平面ACD 的距离为1令A 到平面CED 的距离为d ,有5d =. 20.【答案】(1(2)172. 【解析】(1)依题意,a =,1c =, 解得22a =,21b =,∴椭圆E 的标准方程为2212x y +=. (2)设11,A x y (),22,B x y (), 则()()()()112212122,2,22x y x y x x P PB y y A ⋅⋅=--=-+-, 当直线l 垂直于x 轴时,121x x ==-,12y y =-且2112y =, 此时()13,PA y =-,()()213,3,PB y y =-=--, 所以()2211732PA PB y ⋅=--=; 当直线l 不垂直于x 轴时,设直线():1l y k x =+, 由()22122y k x x y ⎧=+⎪⎨+=⎪⎩,整理得()2222124220k x k x k +++-=, 所以2122412k x x k +=-+,21222212k x x k -=+, 所以()()()2121212241+1PA PB x x x x k x x ⋅=-++++()()()2221212=124k x x k x x k ++-+++()()2222222224=1241212k k k k k k k -+⋅--⋅++++()2221721713172122221k k k +==-<++, 要使不等式PA PB λ⋅≤(λ∈R )恒成立,只需()max 172PA PB λ⋅=≥,即λ的最小值为172. 21.【答案】(1)()223f x x x =--; (2)1个. 【解析】(1)∵()f x 是二次函数,且关于x 的不等式()0f x ≤的解集为()()()21323f x a x x ax ax a =+-=--,且0a >. ∴()()min 144f x f a ==-=-,1a =.故函数()f x 的解析式为()223f x x x =--.(2)∵()()22334ln 4ln 20x x g x x x x x x x --=-=--->, ∴()()()2213341x x g x x x x --=+='-,令()0g x '=,得11x =,23x =. 当x 变化时,()g x ',()g x 的取值变化情况如下:又因为()g x 在()3,+∞上单调递增,因而()g x 在()3,+∞上只有1个零点,故()g x 在()3,+∞上仅有1个零点.(二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分)22.【答案】(1)详见解析; (2)8.【解析】(1可得22sin 4cos ρθρθ=,即24y x =, ∴曲线C 表示的是焦点为()1,0,准线为1x =-的抛物线.(2)将()1,0代入cos 1sin x t y t αα==+⎧⎨⎩,得1cos 01sin t t αα==+⎧⎨⎩,∴tan 1α=-,∵0πα<≤,∴lt 为参数).将直线l 的参数方程代入24y x =得220t ++=,由直线参数方程的几何意义可知,128AB t t =-===.23.【答案】(1)4a b +=;(2)最小值为1613.【解析】(1()()0x a x b +-<时等号成立, 又0a >,0b >,所以a b a b +=+, 所以()f x 的最小值为a b +,所以4a b +=.(2)由(1)知4a b +=,4b a =-,所以()2222111144949a b a a +=+-2138163699a a =-+=2131616361313a ⎛⎫-+ ⎪⎝⎭, 故当1613a =,3613b =时,221149a b +的最小值为1613.。
2018年高考数学(文)原创押题预测卷 02(新课标Ⅱ卷)(参考答案)

易得 g x 0 ,∴ g x g 1 3 0 ,则 h x 0 .
∴ x 1, , h x h 1 1 ,∴ b 1 .
2
2
综上所述,实数
b
的取值范围是
1 2
,
.……12
分
22.(本小题满分 10 分) 选修 4-4:坐标系与参数方程
【解析】(I)由 2
2 2sin2
2
lnx 1 x2 bx 0 在 x 1, 上恒成立,
2
即 bx lnx 1 x2 ,∴ b lnx 1 x ……7 分
2
x2
设 h x
lnx x
1 2
x
,则
h x
2
2lnx 2x2
x2
.
文科数学 第 3页(共 7页)
设 g x 2 2lnx x2 ,则 g x 2 2x, x 1, ,
m
m
8
∴ 1 k 1 ,且 k 0 .
8
8
综合①②,可知直线
BG
的斜率
k
的取值范围是
1 8
,
0
0,
1 8
.……12
分
21.(本小题满分 12 分)
【解析】(1) f (x) 1 1 1 x ,令 f (x) 0 ,得 x 1 ,……2 分
x
x
当 a 1时, x (0,1) , f (x) 0 ; x (1, a) , f (x) 0 ,所以,当 x 1 时, f (x) 取到最大值
种选法;其中价格之和大于 12 元,即选取的 2 片都为“一级”瓷砖的有 AB,AC,AD,BC,BD,CD 共
文科数学 第 1页(共 7页)
6 种选法. …………11 分
2018全国II卷高考压轴卷 文科数学 Word版含解析

2018全国卷II 高考压轴卷文科数学本试卷共23题(含选考题)。
全卷满分150分。
考试用时120分钟。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}0,1,2,3,4A =---,{}210B x x =<,则A B =( )A .{}4B .{}1,2,3--C .{}0,1,2,3--D .{}3,2,1,0,1,2,3---2. 已知复数()z a i a R =+∈,若4z z +=,则复数z 的共轭复数z = A .2i + B .2i - C .2i -+ D .2i --3. 设等差数列{}n a 的前n 项和为n S ,若81126a a =+,则9S =( ) A .27 B .36 C.45 D .544. 已知命题p :“a b >”是“22ab>”的充要条件;q :x R ∃∈,ln x e x <,则A .¬p ∨q 为真命题B .p ∧¬q 为假命题C .p ∧q 为真命题D .p ∨q 为真命题5. 若命题:0,,sin 2p x x x p π⎛⎫∀∈<⌝ ⎪⎝⎭,则为 A .0,,sin 2x x x π⎛⎫∀∈≥ ⎪⎝⎭B .0,,sin 2x x x π⎛⎫∀∉≥ ⎪⎝⎭C .0000,,sin 2x x x π⎛⎫∃∈≥ ⎪⎝⎭D .0000,,sin 2x x x π⎛⎫∃∈≤ ⎪⎝⎭6. 将函数cos 2y x =的图象向左平移2π个单位,得到函数()y f x =的图象,则下列说法正确的是( )A .()y f x =是奇函数B .()y f x =的周期为2πC .()y f x =的图象关于直线2x π=对称 D .()y f x =的图象关于点(,0)2π-的对称7. 执行如图的程序框图,则输出的S 值为A.1B.23 C.12-D.0 8. 函数2()(3)ln f x x x =-⋅的大致图象为( )A B C D9. 多面体MN ABCD -的底面ABCD 为矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则AM 的长为( )A 3B 5C 6D .210. 已知向量()()2,1,1,1m n =-=.若()()2m n am n -⊥+,则实数a =( )A .57-B .57C .12-D .1211. 已知P 为抛物线y 2=4x 上一个动点,Q 为圆x 2+(y ﹣4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是( ) A .B .C .D .12. 已知()f x 是定义在R 上的偶函数,且x R ∈时,均有()()32f x f x +=-,()28f x ≤≤,则满足条件的()f x 可以是( )A .()263cos5x f x π=+ B .()53cos 5xf x π=+ C .()2,8,R x Q f x x C Q ∈⎧=⎨∈⎩ D .()2,08,0x f x x ≤⎧=⎨>⎩二、填空题:本题共4小题,每小题5分,共20分。
2018年高考仿真卷文科数学试卷(二)含解析答案

2018高考仿真卷²文科数学(二)(考试时间:120分钟试卷满分:150分)第Ⅰ卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i是虚数单位,则复数=()A.-2+iB.iC.2-iD.-i2.已知集合M={x|x2-4x<0},N=,则M∪N=()A.[-2,4)B.(-2,4)C.(0,2)D.(0,2]3.采用系统抽样的方法从 1 000人中抽取50人做问卷调查,为此将他们随机编号为1,2,3,…,1 000,适当分组后,在第一组中采用简单随机抽样的方法抽到的号码为8.若编号落入区间[1,400]上的人做问卷A,编号落入区间[401,750]上的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为()A.12B.13C.14D.154.已知命题p:函数y=ln(x2+3)+的最小值是2;命题q:“x>2”是“x>1”的充分不必要条件.则下列命题是真命题的是()A.p∧qB.(p)∧(q)C.(p)∧qD.p∧(q)5.已知点A是抛物线C1:y2=2px(p>0)与双曲线C2:=1(a>0,b>0)的一条渐近线的交点,若点A 到抛物线C1的焦点的距离为p,则双曲线C2的离心率等于()A. B. C. D.6.某产品的广告费用x(单位:万元)与销售额y(单位:万元)的统计数据如下表:根据表中数据求得回归直线方程为=9.5x+,则等于()A.22B.26C.33.6D.19.57.设a,b,c分别是△ABC的内角A,B,C所对边的边长,则直线sin A²x-ay-c=0与bx+sin B²y+sin C=0的位置关系是()A.平行B.重合C.垂直D.相交但不垂直8.如图,正四棱锥P-ABCD底面的四个顶点A,B,C,D在球O的同一个大圆上,点P在球面上,若V 正四棱锥P-ABCD=,则球O的表面积是()A.4πB.8πC.12πD.16π9.已知变量x,y满足线性约束条件若目标函数z=kx-y仅在点(0,2)处取得最小值,则k的取值范围是()A.k<-3B.k>1C.-1<k<1D.-3<k<110.某几何体的三视图如图所示,当a+b取最大值时,这个几何体的体积为()A. B. C. D.11.已知M是△ABC内一点(不含边界),且=2,∠BAC=30°.若△MBC,△MCA,△MAB的面积分别为x,y,z,记f(x,y,z)=,则f(x,y,z)的最小值为()A.26B.32C.36D.4812.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“商高线”.给出下列四个集合:①M=;②M={(x,y)|y=sin x+1};③M={(x,y)|y=log2x};④M={(x,y)|y=e x-2}.其中是“商高线”的序号是()A.①②B.②③C.①④D.②④第Ⅱ卷非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.执行如图所示的程序框图,若输入x=0.1,则输出的m的值是.14.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则f(-log35)的值为.15.关于函数f(x)=2(sin x-cos x)cos x的下列四个结论:①函数f(x)的最大值为;②把函数f(x)=sin 2x-1的图象向右平移个单位后可得到函数f(x)=2(sin x-cos x)²cos x 的图象;③函数f(x)的单调递增区间为,k∈Z;④函数f(x)的图象的对称中心为,k∈Z.其中正确的结论有个.16.已知数列{a n}满足a1=,a n-1-a n=(n≥2),则该数列的通项公式为.三、解答题(本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤)17.(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知A=,sin B=3sin C.(1)求tan C的值;(2)若a=,求△ABC的面积.18.(本小题满分12分)国家教育部要求高中阶段每学年都要组织学生进行“国家学生体质健康数据测试”,方案要求以学校为单位组织实施.某校对高一(1)班的同学按照“国家学生体质健康数据测试”的项目进行了测试,并对测试成绩进行统计,其频率分布直方图如图所示,若分数在[90,100]上的人数为2.(1)请求出分数在[70,80)内的人数;(2)现根据测试成绩从第一组和第五组(从低分段到高分段依次分为第一组,第二组,…,第五组)中任意选出2人,形成搭档小组.若选出的2人成绩差大于30,则称这2人为“互补组”,试求选出的2人为“互补组”的概率.19.(本小题满分12分)如图,在正方体ABCD-A1B1C1D1中,E,F分别为AB,BB1的中点.(1)求证:EF⊥平面A1D1B;(2)若AA1=2,求三棱锥D1-DEF的体积.20.(本小题满分12分)已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点在椭圆C 上.(1)求椭圆C的方程;(2)设P是椭圆C长轴上的一个动点,过P作斜率为的直线l交椭圆C于A,B两点,求证:|PA|2+|PB|2为定值.21.(本小题满分12分)设函数f(x)=.(1)求证:f(x)在(0,1)和(1,+∞)内都是增函数;(2)若在函数f(x)的定义域内,不等式af(x)>x恒成立,求a的取值范围.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题评分.22.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C:ρcos2θ=2a sin θ(a>0),过点P(-4,-2)的直线l的参数方程为(t为参数),直线l与曲线C分别交于点M,N.(1)写出C的直角坐标方程和l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a的值.23.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x-1|+|x+1|.(1)求不等式f(x)≥3的解集;(2)若关于x的不等式f(x)>a2-x2+2x在R上恒成立,求实数a的取值范围.参考答案2018高考仿真卷²文科数学(二)1.B解析 (方法一)=i.(方法二)=i.2.A解析∵M={x|0<x<4},N={x|-2≤x≤2},∴M∪N=[-2,4).3.A解析若采用系统抽样的方法从1 000人中抽取50人做问卷调查,则需要分为50组,每组20人.若第一组抽到的号码为8,则以后每组抽取的号码分别为28,48,68,88,108,…,所以编号落入区间[1,400]上的有20人,编号落入区间[401,750]上的有18人,所以做问卷C 的有12人.4.C解析因为命题p为假命题,命题q为真命题,所以(p)∧q为真命题.5.C解析因为点A到抛物线C1的焦点的距离为p,所以点A到抛物线准线的距离为p.所以点A的坐标为.所以双曲线的渐近线方程为y=±2x.所以=2,所以b2=4a2.又b2=c2-a2,所以c2=5a2.所以双曲线的离心率为.6.B解析由题意知=2,=45.又由公式,得=26,故选B.7.C解析因为,所以两条直线斜率的乘积为=-1,所以这两条直线垂直.8.D解析连接PO,由题意知,PO⊥底面ABCD,PO=R,S正方形ABCD=2R2.因为V正四棱锥P-ABCD=,所以²2R2²R=,解得R=2,所以球O的表面积是16π.9.D解析如图,作出不等式组所表示的平面区域.由z=kx-y得y=kx-z,要使目标函数z=kx-y仅在点A(0,2)处取得最小值,则阴影部分区域在直线y=kx+2的下方,故目标函数线的斜率k满足-3<k<1.10.D解析由该几何体的三视图可得其直观图为如图所示的三棱锥,且从点A出发的三条棱两两垂直,AB=1,PC=,PB=a,BC=b.可知PA2+AC2=a2-1+b2-1=6,即a2+b2=8.故(a+b)2=8+2ab≤8+2,即a+b≤4,当且仅当a=b=2时,a+b取得最大值,此时PA=,AC=.所以该几何体的体积V=³1³.11.C解析由=2,∠BAC=30°,可得S△ABC=1,即x+y+z=1.故(x+y+z)=1+4+9+≥14+4+6+12=36,当且仅当x=,y=,z=时等号成立.因此,f(x,y,z)的最小值为36.12.D解析若对于函数图象上的任意一点M(x1,y1),在其图象上都存在点N(x2,y2),使OM⊥ON,则函数图象上的点的集合为“商高线”.对于①,若取M(1,1),则不存在这样的点;对于③,若取M(1,0),则不存在这样的点.②④都符合.故选D.13.0解析若输入x=0.1,则m=lg 0.1=-1.因为m<0,所以m=-1+1=0.所以输出的m的值为0.14.-4解析因为f(x)是定义在R上的奇函数,所以f(0)=1+m=0.所以m=-1.所以f(-log35)=-f(log35)=-(-1)=-4.15.2解析因为f(x)=2sin x²cos x-2cos2x=sin 2x-cos 2x-1=sin-1,所以其最大值为-1.所以①错误.因为函数f(x)=sin 2x-1的图象向右平移个单位后得到函数f(x)=sin-1=sin-1的图象,所以②错误.由-+2kπ≤2x-+2kπ,k∈Z,得函数f(x)的单调递增区间为,k∈Z,即为,k'∈Z.故③正确.由2x-=kπ,k∈Z,得x=,k∈Z,故④正确.16.a n= 解析因为a n-1-a n=(n≥2),所以,所以.所以,…,.所以.所以.所以a n=(n≥2).经检验,当n=1时也适合此公式.所以a n=.17.解 (1)∵A=,∴B+C=.∴sin=3sin C.∴cos C+sin C=3sin C.∴cos C=sin C.∴tan C=.(2)由,sin B=3sin C,得b=3c.在△ABC中,由余弦定理得a2=b2+c2-2bc cos A=9c2+c2-2³(3c)³c³=7c2.∵a=,∴c=1,b=3.∴△ABC的面积为S=bc sin A=.18.解 (1)由频率分布直方图可知分数在[50,60)内的频率为0.1,[ 60,70)内的频率为0.25,[80,90)内的频率为0.15,[90,100]上的频率为0.05.故分数在[70,80)内的频率为1-0.1-0.25-0.15-0.05=0.45.因为分数在[90,100]上的人数为2,频率为0.05,所以参加测试的总人数为=40.所以分数在[70,80)内的人数为40³0.45=18.(2)因为参加测试的总人数为=40,所以分数在[50,60)内的人数为40³0.1=4.设第一组[50,60)内的同学为A1,A2,A3,A4;第五组[90,100]上的同学为B1,B2,则从中选出2人的选法有(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),( A3,B2),(A4,B1),(A4,B2),(B1,B2),共15种,其中2人成绩差大于30的选法有(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),共8种, 则选出的2人为“互补组”的概率为.19.(1)证明如图,连接AB1.因为E,F分别为AB与AB1的中点,所以EF∥AB1.因为AB1⊥A1B,所以EF⊥A1B.又因为D1A1⊥平面ABB1A1,平面ABB1A1⊃EF,所以D1A1⊥EF.又因为A1B∩D1A1=A1,所以EF⊥平面A1D1B.(2)解如图,连接DB.因为BB1∥DD1,所以.所以=S△DEB²DD1=³2=.20.(1)解因为2a=4,所以a=2.又因为焦点在x轴上,所以设椭圆方程为=1.将点代入椭圆方程得b2=1,所以椭圆方程为+y2=1.(2)证明设点P(m,0)(-2≤m≤2),可得直线l的方程是y=,由方程组消去y得2x2-2mx+m2-4=0.(*)设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根.所以x1+x2=m,x1x2=.所以|PA|2+|PB|2=(x1-m)2++(x2-m)2+=(x1-m)2+(x1-m)2+(x2-m)2+(x2-m)2=[(x1-m)2+(x2-m)2]=-2m(x1+x2)+2m2]=[(x1+x2)2-2m(x1+x2)-2x1x2+2m2]=[m2-2m2-(m2-4)+2m2]=5.所以|PA|2+|PB|2为定值.21.(1)证明由题意可得f'(x)==(x>0,x≠1).令g(x)=2ln x-,则g'(x)=.当0<x<1时,g'(x) <0,g(x)是减函数,g(x)>g(1)=0.于是f'(x)=g(x)>0,故f(x)在(0,1)内为增函数.当x>1时,g'(x)>0,g(x)是增函数,g(x)>g(1)=0,于是f'(x)=g(x)>0,故f(x)在(1,+∞)内为增函数.(2)解af(x)-x=-x=.令h(x)=-ln x(x>0),则h'(x)=.令φ(x)=ax2-x+a,当a>0,且Δ=1-4a2≤0,即a≥时,此时φ(x)=ax2-x+a>0在(0,1),(1,+∞)内恒成立,所以当a≥时,h'(x)>0在(0,1),(1,+∞)内恒成立,故h(x)在(0,1),(1,+∞)内是增函数,若0<x<1,则h(x)< h(1)=0,所以af(x)-x=h(x)>0;若x>1,则h(x)>h(1)=0,所以af(x)-x=h(x)>0,所以当x>0,x≠1时都有af(x)>x成立.当0<a<时,h'(x)<0,解得<x<,所以h(x)在内是减函数,h(x)<h(1)=0.故af(x)-x=h(x)<0,不符合题意.当a≤0时,x∈(0,1)∪(1,+∞),都有h'(x)<0,故h(x)在(0,1),(1,+∞)内为减函数,同理可知,在(0,1),(1,+∞)内,af(x)-x=h(x)<0,不符合题意.综上所述,a≥,即a的取值范围是.22.解 (1)曲线C的直角坐标方程为x2=2ay(a>0),直线l的普通方程为x-y+2=0.(2)将直线l的参数方程与C的直角坐标方程联立,得t2-2(4+a)t+8(4+a)=0.(*)由Δ=8a(4+a)>0,可设点M,N对应的参数分别为t1,t2,且t1,t2是方程(*)的根,则|PM|=|t1|,|PN|=|t2|,|MN|=|t1-t2|.由题设得(t1-t2)2=|t1t2|,即(t1+t2)2-4t1t2=|t1t2|.由(*)得t1+t2=2(4+a),t1t2=8(4+a)>0.则有(4+a)2-5(4+a)=0,解得a=1或a=-4.因为a>0,所以a=1.23.解 (1)原不等式等价于解得x≤-或x≥.故原不等式的解集为.(2)令g(x)=|x-1|+|x+1|+x2-2x,则g(x)=当x∈(-∞,1]时,g(x)单调递减;当x∈[1,+∞)时,g(x)单调递增.故当x=1时,g(x)取得最小值1.因为不等式f(x)>a2-x2+2x在R上恒成立,所以a2<1,解得-1<a<1.所以实数a的取值范围是(-1,1).。
2018年全国高考数学考前押题文科数学题卷二及答案解析

2018年高考数学考前押题文科数学题卷2(满分150分。
考试用时120分钟。
)第Ⅰ卷一、选择题:本大题共12小题,每小题5分。
1.已知全集{}1,2,3,4U =,若,,则等于( )A .B .C .D .2.在下列函数中,最小值为的是( ) A . BC .D . 3.从某校高三年级随机抽取一个班,对该班名学生的高校招生体检表中视力情况进行统计,其结果的频率分布直方图如图所示:若某高校专业对视力的要求在以上,则该班学生中能报专业的人数为()A .B .C .D .4.函数的部分图象大致为( )A .B .21y x x=+2y =122x xy =+50A 0.9A 30252220sin 21cos xy x=+C .D .5.已知等差数列的前项和为,且,则数列的公差为( )A .3B .C .D .66.某几何体由上、下两部分组成,其三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则该几何体上部分与下部分的体积之比为( )A .B .C .D .7.如果函数在区间上单调递减,那么的最大值为( ) A .16B .18C .25D .308.已知函数(),若是函数的一条对称轴,且,则所在的直线为( ) A .B .C .D .9.在如图所示的程序框图中,若输入的,输出的,则判断框内可以填入的条件是( ){}n a n n S 233215S S -={}n a 4-5-13122356()()()()2128122f x m x n x m =-+-+>[]2,1--mn ()sin cos f x a x b x =+x ∈R 0x x =()f x 0tan 2x =()a b ,20x y -=20x y +=20x y -=20x y +=A .B .C .D .10.函数的图像如图所示,则的值等于( )A .B .C .D .111.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数(且)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,间的距离为2,动点与,,当,,不共线时,面积的最大值是() A .BCD 12.已知函数是定义在上的奇函数,其导函数为,若对任意的正实数,都有恒成立,且,则使成立的实数的集合为( )A .B . C.D .第Ⅱ卷本卷包括必考题和选考题两部分。
最新--泄露天机高三高考押题精粹文科数学试题及i答案 精品推荐

泄露天机——2018年高考押题精粹(数学文课标版)(30道选择题+20道非选择题)一. 选择题(30道)1. 已知全集U R =,集合{}Z x x x A ∈≤=,1|, {}02|2=-=x x x B ,则图中的阴影部分表示的集合为( )A.{}1-B.{}2C.{}2,1 D. {}2,02. 已知全集U R =,集合{}31<<=x x A ,{}2>=x x B ,则U A C B =( ) A. {}21≤<x x B. {}32<<x x C. {}21<<x x D.{}2≤x x3. 已知i 为虚数单位,R a ∈,若ia i+-2为纯虚数,则复数i a z 2)12(++=的模等于( )A .2B .3C .6D .114.复数z 满足(1i)2i z +=,则复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限5. 设命题p :函数y =sin2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是( )A .p 为真B .﹁q 为假C .p ∧q 为假D .p ∨q 为真6. “1x ≥”是“2x >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7. 一个算法的程序框图如右,则其输出结果是( )A .0B .2C .12+D 18.阅读如图所示的程序框图,如果输出i=4,那么空白的判断框中应填入的条件是( )A .S <8,B .S <9,C .S <18,D .S <189.已知函数cos(),(0)2y A x A ϕπ=+>在一个周期内的图象如图所示,其中P ,Q 分别是这段图象的最高点和最低点,M ,N 是图象与x 轴的交点,且∠PMQ =90°,则A 的值为( ) ABC .1D .218.若ABC ∆的内角,,A B C 所对的边,,a b c 满足422=-+c b a )(,且060C =,则ab 的值为( )A .348-B . 1C .34D .3218.要得到函数sin(2)4y x π=-的图象,只要将函数sin 2y x =的图象( )A .向左平移4π单位B .向右平移4π单位C .向左平移8π单位D .向右平移8π单位18、在 ABC 中,若对任意的R ∈λ,都有BC AC AB ≥+λ,则 ABC ∆ ( )A.一定为锐角三角形B.一定为钝角三角形C.一定为直角三角形D.可以为任意三角形 18.已知21,e e 是夹角为32π的两个单位向量,若向量2123e e a -=,则=⋅1e ( )A .2B .4C .5D .718.已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图可能为( )18.一个球的球心到过球面上A 、B 、C 三点的平面的距离等于球半径的一半,若AB=BC=CA=3,则球的体积为 ( )A .8πB . 43π4C .18πD .32π318. 在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩(a 为常数)所表示平面区域的面积等于2,则a 的值为( )]A.-5B.1C.2D.318. 已知()f x 是定义在R 上的奇函数,当0x >时,2()2x f x x =+,若2(2)()f a f a ->,则实数a 的取值范围是( )A. (1,2)-B. (2,1)-C. (,1)(2,)-∞-+∞ D. (,2)(1,)-∞-+∞18.如图,大正方形靶盘的边长为5,四个全等的直角三角形围成一个小正方形,即阴影部分.较短的直角边长为3,现向大正方形靶盘投掷飞镖,则飞镖落在阴影区域的概率为( ) A.251 B. 254 C. 51 D. 25919.已知函数131)(223+++=x b ax x x f ,若a 是从123,,三个数中任取的一个数,b 是从012,,三个数中任取的一个数,则该函数有两个极值点的概率为( )A. 97 B. 31 C.95 D.3220.某商场为了了解毛衣的月销售量y (件)与月平均气温)(C x ︒之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:由表中数据算出线性回归方程ˆybx a =+中的b =2-,气象部门预测下个月的平均气温约为C ︒6,据此估计该商场下个月毛衣销售量约为( )件. A .46 B .40 C .38 D .5821.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,180]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为 ( )A .588B .480C .450D .18022.等差数列{}n a 的前n项和为5128,11,186,n S a S a ==则=( )A .18B .20C .21D .2223.等比数列{}n a 的各项为正,公比q 满足24q =,则3445a a a a ++的值为 ( )A .14B .2C .12±D .1224.若圆09422=--+x y x 与y 轴的两个交点B A ,都在双曲线上,且B A ,两点恰好将此双曲线的焦距三等分,则此双曲线的标准方程为( )A .172922=-y x B. 172922=-x y C. 1811622=-y x D.1168122=-x y 25.已知直线:90l x y +-=和圆22:228810M x y x y +---=,点A 在直线l 上,,B C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 的横坐标的取值范围为( ) A .[2,6] B .[0,6] C .[1,6] D .[3,6]26.已知抛物线y 2=2px (p >0)与双曲线x 2a 2-y2b2=1(a >0,b >0)有相同的焦点F ,点A 是两曲线的一个交点,且AF ⊥x 轴,则双曲线的离心率为 ( )A .2+2B .5+1C .3+1D .2+127.函数()f x 是定义域为R 的奇函数,且0x ≤时,1()22x f x x a =-+,则函数()f x 的零点个数是( )A .1B . 2C .3D .428.已知()21sin ,42f x x x π⎛⎫=++ ⎪⎝⎭()f x '为()f x 的导函数,则()f x '的图像是( )29.设函数()(1)cos ()k f x x x k N *=-∈,则( ) A.当k=2018时,()f x 在x=1处取得极小值 B.当k=2018时,()f x 在x=1处取得极大值C.当k=2018时,()f x 在x=1处取得极小值D.当k=2018时,()f x 在x=1处取得极大值30. 设函数[],0(),(1),0x x x f x f x x -≥⎧=⎨+<⎩其中][x 表示不超过x 的最大整数,如[ 1.2]-=-2,]2.1[=1,]1[=1,若直线(0)y kx k k =+>与函数y=)(x f 的图象恰有三个不同的交点,则k 的取值范围是 ( ) A .]31,41( B .]41,0( C .]31,41[ D .)31,41[ 二.填空题(8道)31. 已知442cos sin ,(0,)32πααα-=∈,则2cos(2)3πα+= . 32.已知|OA →|=1,|OB →|=2,∠AOB =2π3,OC →=12OA →+14OB →,则OA →与OC →的夹角大小为 .33.已知实数y x ,满足⎪⎩⎪⎨⎧≥≤+≤14y ay x xy ,若y x z +=3的最大值为,16则.________=a34. 点,,,A B C D 在同一个球的球面上,2,AB BC AC ===面体ABCD 体积的最大值为43,则该球的表面积为 .35. 下图茎叶图是甲、乙两人在5次综合测评中成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为 .36.已知数列}a {n 是正项等差数列,若n321na a 3a 2a b n321n ++++++++=,则数列}b {n 也为等差数列. 类比上述结论,已知数列}c {n 是正项等比数列,若n d = ,则数列{n d }也为等比数列.37.如图,在△ABC 中,已知B =π3,AC =43,D 为BC边上一点.若AB =AD ,则△ADC 的周长的最大值为________.38.已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左右焦点,点P 在双曲线上且不与顶点重合,过2F 作12F PF ∠的角平分线的垂线,垂足为A .若OA b =,则该双曲线的离心率为__________________.三.解答题(12道)39.在△ABC 中,角A B C ,,的对边分别为a b c ,,,且a b c <<,2sin b A =.(Ⅰ)求角B 的大小;(Ⅱ)若2a =,b =,求c 边的长和△ABC 的面积.40. 已知等差数列{}n a 满足{}3577,26,n a a a a =+=的前n 项和为n S . (1)求n a 及n S ; (2)令*21()1n n b n N a =∈-,求数列{}n b 的前n 项和n T .41. 为了了解湖南各景点在大众中的熟知度,随机对15~65岁的人群抽样了n 人,回答问题“湖南省有哪几个著名的旅游景点?”统计结果如下图表.(Ⅰ)分别求出a ,b ,x ,y 的值;(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法 抽取6人,求第2,3,4组每组各抽取多少人?(Ⅲ)在(Ⅱ)抽取的6人中随机抽取2人,求所抽取的人中 恰好没有第3组人的概率.42. 为了解某市民众对政府出台楼市限购令的情况,在该市随机抽取了50名市民进行调查,他们月收入(单位:百元)的频数分布及对楼称为“非高收入族”.(1)根据已知条件完成下面的2×2列联表,问能否在犯错误的概率不超过0.01(2)赞成楼市限购令的概率.附:22()()()()()n ad bc K a b c d a c b d -=++++43. 如图1,在直角梯形ABCD中,90ADC ∠=︒,//CD AB ,122AD CD AB ===, 点E 为AC 中点.将ADC∆沿AC 折起, 使平面ADC ⊥平面ABC ,得到几何体D ABC -,如图2所示. (I )在CD 上找一点F ,使//AD 平面EFB ; (II )求点C 到平面ABD 的距离.44、已知椭圆C 的中心在坐标原点,右焦点为(1,0)F ,A 、B 是椭圆C 的左、右顶点,P 是椭圆C 上异于A 、B 的动点,且△APB 面积的最大值为(1)求椭圆C 的方程;(2)直线AP 与直线2x =交于点D ,证明:以BD 为直径的圆与直线PF 相切.45. 已知抛物线)0(22>=p py x 的焦点为F ,点A 为抛物线上的一点,其纵坐标为1,45=AF . (I )求抛物线的方程;(II )设C B ,为抛物线上不同于A 的两点,且AB AC ⊥,过,B C 两点分BACD图1EACD图2E别作抛物线的切线,记两切线的交点为D ,求OD 的最小值.46. 已知函数()(1)e 1.x f x x =-- (I )求函数()f x 的最大值; (Ⅱ)设()(),f x g x x=证明()g x 有最大值()g t ,且-2<t <-147. 已知322()2f x x ax a x =+-+. (1)若0,a ≠ 求函数()f x 的单调区间;(2)若不等式22ln ()1x x f x a '≤++恒成立,求实数a 的取值范围.48.如图所示,PA为圆O 的切线,A为点,两点,于交圆C B O PO ,20PA =,10,PB =BAC ∠的角平分线与BC 和圆O 分别交于点D 和E .(I ) 求证AB PC PA AC ⋅=⋅(II ) 求AD AE ⋅的值.49. 坐标系与参数方程在直角坐标系xOy 中,圆C 的参数方程1cos (sin x y ϕϕϕ=+⎧⎨=⎩为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (Ⅰ)求圆C 的极坐标方程;(Ⅱ)直线l 的极坐标方程是2sin()3πρθ+=:3OM πθ=与圆C的交点为O 、P ,与直线l 的交点为Q ,求线段PQ 的长.50. 已知关于x 的不等式34x x m -+-<的解集不是空集. ( I )求参数m 的取值范围的集合M ; ( II )设a,b M,求证:a+b<ab+1.泄露天机——2014年高考押题精粹(数学文课标版)(30道选择题+20道非选择题)【参考答案及点评】三.选择题(30道)1.【答案】B2.【答案】A【点评】:集合问题是高考必考内容之一,题目相对简单.集合的表示法有列举法、描述法、图示法三种,高考中与集合的子,交,并,补相结合,侧重考查简单的不等式的有关知识。
2018年高考数学(文)精准押题卷02(全国II卷)试卷(含答案)

2018年高考精准押题卷02(全国II 卷)数学·文一、选择题1.已知集合A={x|y= }.B={y|y=2x x ≥0}.则A ∩B=( ) A.[1,4] B.[0,+∞] C .(1, +∞) D.[1,+∞]2.已知复数Z 满足(1-2i )Z=3+2i (i 为虚部单位)则 的实部是( ) A.51-B.57-C.51D.573.已知等差数列{n a }的前n 项和为n S ,431-=a a ,4a 是2a 与5a 的等比中项,则=10S ( ) A. 10 B.110 C. -10 D.-1004.设点E 是△ABC 内一点,存在下列4个命题,其中错误命题的个数是( )① 若 · =0, · =0则 ·=0 ② 对于正数m ,n 存在 =m +n③ 如果3= + ,那么3 = + ④ 若| |=| |=| |则△ABC 是钝角三角形 A .1 B .2 C .3 D .45.一个球O 与棱长为4的正四面体的各个棱都相切,则球O 的表面积为( ) A.4π B.6π C.π D.8π6.六位选手争夺百米赛跑冠军,观众甲.乙.丙.丁.先做如下猜测:甲说:获奖不是1号就是2号,乙说:获奖的不可能是3号.丙说:4号.5号6号都不可能获奖.丁说:获奖的是4号.5号.6号中的一个比赛结果只有一个人猜对.则猜对者是( ) A .丙 B.乙 C.甲 D.丁7.一个几何体的三视图如图1所示,则该几何体的体积是( )A .4+π B +π C314+ π D.5+π 8.如图所示的程序框图的输出结果为( )A. 20192017B. 20191009C. 201922017∙ D .201920189. 直线0=-+m my x 恒经过的定点到双曲线12222=-b y a x ()0,0>>b a 的一条渐近线的距离为21,则双曲线的离心率为( ) A.2 B.4 C.5 D 2410. 函数)42lg()(2a ax x x f --=在区间]1,(--∞上是减函数,则实数a 的取值范围( ) A ),1[+∞ B ]1,32(-C ),1[)32,(+∞--∞ D[),32+∞- 11.椭圆 +=1上到直线2x+3y+1=0的距离等于的点的个数是( )A. 2B. 4C. 3 D .112.已知函数 =(x-1)2e x-1,若函数g (x )= []+1 恰有了个零点,则实数k 的值为( ) A .8e 2 B .16+e 4C .32 D. +二、填空题13.已知函数 ( ∞, ( ,∞) 则满足 =的解集为 。
全国普通高等学校2018届高三招生统考(二)数学(文)模拟试卷(含答案)

2018年普通高等学校招生全国统一考试模拟试题文数(二)本试卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第I 卷一、选择题:本题共12小题。
每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}()(){}2,1,0,1,130A B x x x A B =--=+-<⋂=,则A .{}1,01-B .{}01, C. {}0 D .{}21--, 2.若i 为虚数单位,()()13i a i i a +-=+=,则实数A .2B .2- C.3 D .3-3.游戏《王者荣耀》对青少年的不良影响巨大,被称为“王者农药”.某车间20名青年工人都有着不低的游戏段位等级,其中白银段位11人,其余人都是黄金或铂金段位,从该车间随机抽取一名工人,若抽得黄金段位的概率是0.2,则抽得铂金段位的概率是A .0.20B .0.22C .0.25D .0.424.下列函数既是偶函数又在区间()0,+∞上单调递增的是A .3y x =B .14y x = C .y x = D .tan y x = 5.已知变量,x y 满足不等式组10,35250,430,x x y x y -≥⎧⎪+-≤⎨⎪-+≤⎩,则目标函数23z x y =--的最大值是A .3-B .5-C .195D .5 6.一个几何体的三视图如图所示,则该几何体的体积为 A .53π B .73πC .76πD .23π 7.设实数,,a b c 满足321log 32,,ln ,,,a b a c a a b c --===则的大小关系为 A .c a b << B .c b a << C .a c b << D .b c a <<8.数学猜想是推动数学理论发展的强大动力,是数学发展中最活跃、最主动、最积极的因素之一,是人类理性中最富有创造性的部分.1927年德国汉堡大学的学生考拉兹提出一个猜想:对于每一个正整数,如果它是奇数,对它乘3再加1,如果它是偶数,对它除以2,这样循环,最终结果都能得到1.下面是根据考拉兹猜想设计的一个程序框图,则输出的i 为A .5B .6C .7D .89.已知函数()()2sin 03f x x ωω=<<的图象关于直线4x π=对称,将()f x 的图象向右平移3π个单位,再向上平移1个单位可以得到函数()g x 的图象,则()32g x ππ⎡⎤-⎢⎥⎣⎦在区间,上的值域是 A. 131⎡⎤-+⎣⎦, B .231⎡⎤+⎣⎦, C. 3,1⎡⎤⎢⎥⎣⎦ D .301⎡⎤+⎢⎥⎣⎦,10.已知正四棱锥P —ABCD 的各顶点都在同一球面上,底面正方形的边长为2,若该正四棱锥的体积为2,则此球的体积为A .1243πB .62581π C. 50081π D. 2569π 11.已知定义在R 上的函数()f x 满足()()f x f x '>-,则关于m 的不等式(2f m +)()13120m f m e --->的解集是A .1,3⎛⎫+∞ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .1,3⎛⎫-∞ ⎪⎝⎭ D .11,23⎛⎫- ⎪⎝⎭12.已知椭圆()2223:10242x y C b e b +=<<=的离心率,椭圆C 与y 轴正半轴的交点F 是抛物线()2:20D x py p =>的焦点,过点F 的直线l 交抛物线D 于A ,B 两点,过点A ,B 分别作抛物线D 的切线1212l l l l 和,直线和相交于点M ,则FM AB ⋅=u u u u r u u u rA .0B .1C .1-D .不确定第Ⅱ卷本卷包括必考题和选考题两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B. 2
C. 1
D. 2 2
【解析】 z z 2 , z z 2 .
3.“ p q 为假”是“ p q 为假”的(
)条件.
A .充分不必要
B .必要不充分
C.充要
D .既不充分也不必要
【答案】 B
【解析】 由“ p q 为假”得出 p , q 中至少一个为假.当 p , q 为一假一真时, p q 为真,故不
则双曲线的一个焦点到一条渐近线的距离为(
)
A.2
B. 2
C. 2 2
D. 4
文科数学试卷 第 2 页(共 14 页)
3 、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷
一、选择题:共 12 小题,每小题 5 分,共 60 分.在每个小题给出的四个选项中,只有一项是符合 题目要求的.
1.已知集合 A x Z x2 3x 4 0 , B x 0 ln x 2 ,则 A B ( )
A . 1,2,3,4
B . 3,4
【解析】依次运行流程图, 结果如下: S 13 ,n 12 ;S 25 ,n 11 ;S 36 ,n 10 ;S 46 ,
n 9 ,此时退出循环,所以 a 的值可以取 10.故选 C.
x2 y2
7.设双曲线 C : a2 b2 1 a 0, b 0 的两条渐近线互相垂直,顶点到一条渐近线的距离为
1,
充分;当“ p q 为假”时, p , q 同时为假,所以 p q 为假,所以是必要的,所以选 B.
文科数学试卷 第 1 页(共 14 页)
x2
x
4.已知实数 x , y 满足约束条件 x 2y 2 0 ,则 z
y 的最大值为(
)
3
x y20
14
A.
3
【答案】 C
B. 2
4
C.
3
D. 4
【解析】 作出的可行域为三角形(包括边界) ,把 z
号 位 封座
密
号 场 不考
订
装号 证 考 准
只
卷 名 姓
此
级 班
绝密 ★ 启用前
2018 年普通高等学校招生全国统一考试
文 科 数 学(二)
注意事项: 1、答题前,考生务必将自己的姓名、准考证号填写在答题卡上。 2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡 上,写在本试卷上无效。
x
4
y
z 过点 2, 2 时, z 取得最大值为 .
3
3
x
xy 改写为 y源自z ,当且仅当动直线3
3
5.据有关文献记载:我国古代一座 9 层塔共挂了 126 盏灯,且相邻两层中的下一层灯数比上一层灯
数都多 n ( n 为常数)盏,底层的灯数是顶层的 13 倍,则塔的底层共有灯(
)盏.
A.2 【答案】 C
B. 3
C . 26
D. 27
a9 13a1
【解析】 设顶层有灯 a1 盏,底层共有 a9 盏,由已知得,则
9 a9 a1
126
a9 26,
2
所以选 C.
6.如图是一个算法流程图,若输入 n 的值是 13,输出 S 的值是 46,则 a 的值可以是(
)
A.8
B. 9
C . 10
D. 11
【答案】 C
C. 2,3,4
D. 1,0,1,2,3,4
【答案】 C
【解析】 A x Z x2 3x 4 0
xZ1x4
1,0,1,2,3,4 ,
B x 0 ln x 2 x 1 x e2 ,所以 A B 2,3,4 .
2.设复数 z 1 2i ( i 是虚数单位) ,则 z z 的值为(
)
A. 3 2
【答案】 B