2013年广东省初中数学竞赛初赛试题及答案

合集下载

2013年全国高中数学联赛初赛广东省试题及答案

2013年全国高中数学联赛初赛广东省试题及答案

2013年高中数学联赛初赛广东省试题一、填空题(每小题8分,满分64分)1、已知sin cos ,cos sin 2αβαβ==,则22sin cos βα+=_______. 解:0或3.2已知两式平方相加,得2sin 0β=或21cos .4β=222sin cos 2sin βαβ+==0或3.22、不等式632(2)(2)x x x x -+>+-的解集为_________. 解:(,1)(2,).-∞-⋃+∞原不等式等价于623(2)(2).x x x x +>+++ 设3()f x x x =+,则()f x 在R 上单调增.所以,原不等式等价于22()(2)21 2.f x f x x x x x >+⇔>+⇔<->或3、已知错误!未找到引用源。

(错误!未找到引用源。

表示不超过x 的最大整数),设方程12012{}2013x x -=的两个不同实数解为12,x x ,则2122013()x x ⨯+=__________. 解:2011-.由于1{}[0,1),(0,1)2013x ∈∈,所以112012(1,1).20122012x x ∈-⇒-<< 当102012x -<<时,原方程即21120121201320122013x x x -=+⇒=-; 当102012x ≤<时,原方程即2212012201312013x x x -=⇒=.4、在平面直角坐标系中,设点*(,)(,)A x y x y N ∈,一只虫子从原点O 出发,沿x 轴正方向或y 轴正方向爬行(该虫子只能在整点处改变爬行方向),到达终点A 的不同路线数目记为(,)f x y . 则(,2)f n =_______.解:1(1)(2).2n n ++ 111(1,2)323,(2,2)634,(3,2)104 5.222f f f ==⨯⨯==⨯⨯==⨯⨯猜测1(,2)(1)(2)2f n n n =++,可归纳证明.5、将一只小球放入一个长方体容器内,且与共点的三个面相接触.若小球上一点P 到这三个面的距离分别为4、5、5,则这只小球的半径为___________.解:3或11.分别以三个面两两的交线为x 轴、y 轴、z 轴,建立空间直角坐标系.设点P 坐标为(4,5,5),小球圆心O 坐标为(,,).r r r6、将20132012表示成两个*1()n n N n+∈型分数的乘积的不同方法数是________.(其中ab 与ba 是同一种表示方法)解:24.设,p q 是正整数,满足201311201220132012.20122012p q p p q q ++⨯=⋅⇒=+- 220122013231161503⨯=⨯⨯⨯⨯的正因数的个数为4(12)(11)48+⨯+=.注意到(,)()p q p q ≠与(,)q p 是相同的表示方法,故所求的方法数为24.7、设E 为正方形ABCD 边AB 的中点,分别在边AD 、BC 上任取两点P 、Q ,则∠PEQ 为锐角的概率为__________.解:3ln 4.4- 设正方形边长为1,,AP x BQ y ==.则1()()0.4EP EQ EA AP EB BQ EA EB AP BQ xy ⋅=+⋅+=⋅+⋅=-> 从而,14xy >. 又01,01x y <<<<. 故所求概率为两直线1,1x y ==及曲线14xy =所围成图形的面积与边长为1的正方形的面积之比,即1214313ln 41:1.4444x ⎛⎫⨯-=-⎪⎝⎭⎰8、已知实系数一元二次方程20ax bx c ++=有实根,则使得2222()()()a b b c c a ra -+-+-≥成立的正实数r 的最大值为____________.解:max 9.8r =不妨设1a =,方程20x bx c ++=的两实根为12,x x .由韦达定理,1212,.b x x c x x =--=222222()()()(1)()(1)a b b c c a b b c c ∴-+-+-=-+-+-22212121212(1)()(1)x x x x x x x x =++++++-2211222(1)(1)x x x x =++++2212131392[()][()].24248x x =++⋅++≥从而,98r ≤,当1212x x ==-时等号成立.二、解答题(第一道小题满分16分,后两道小题每题满分20分)9、已知数列{}n a 的各项均为正数,121,3a a ==,且对任意*n N ∈,都有2122n n n a a a ++=+.问:是否存在常数λ,使得21n n n a a a λ+++=对任意*n N ∈都成立? 解:在2122n n n a a a ++=+中,令1n =,得37.a = 若存在常数λ使得21n n n a a a λ+++=,则1328.3a a a λλ+=⇒=∵2122n n n a a a ++=+,∴2*112(2,)n n n a a a n n N -+=+≥∈.∴222212111112n n n n n n n n n n n n a a a a a a a a a a a a ++-++-++-=-⇒+=+.由于0n a >,上式两边同除以1n n a a +,得1121(2).n n n n n n a a a a n a a +-++++=≥所以,21113128.3n n n n n n a a a a a a a a a +-+++++====即存在常数83λ=,使得21n n n a a a λ+++=对任意*n N ∈都成立.34OM OA OB =+,点N 由34OM OA OB =+,得M点.所以,由椭圆定义有||||2 2.NCND +=11、已知*(,)m n m n N <∈,两个有限正整数集合,A B 满足:||||,||A B n A B m ==⋂=(这里用||X 表示集合X 的元素个数).平面向量集{,}k u k A B ∈⋃满足1i j i Aj Bu u ∈∈==∑∑. 证明:22||.k k A B u m n ∈⋃≥+∑ 证明:不妨设{1,2,,},{1,2,,2}.A n B n m n m n m ==-+-+-令121221,n m n n n m a a a a a a -++-======== 12 4.n m n m n a a a -+-+====由柯西不等式,注意到212()42().n mii an m m n m -==-+=+∑从而,22212||||.n m k i k A Bi u u m n-∈⋃==≥+∑∑。

2002~2013年全国初中数学竞赛试题及答案(完整版)

2002~2013年全国初中数学竞赛试题及答案(完整版)

2002年全国初中数学竞赛试题一、选择题1.设a <b <0,a 2+b 2=4ab ,则ba ba -+的值为【 】 A 、3 B 、6 C 、2 D 、32.已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a 2+b 2+c 2-ab -bc -ca 的值为【 】A 、0B 、1C 、2D 、33.如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则ABCDAGCD S S 矩形四边形等于【 】A 、65 B 、54 C 、43 D 、32ABC DEF G4.设a 、b 、c 为实数,x =a 2-2b +3π,y =b 2-2c +3π,z =c 2-2a +3π,则x 、y 、z 中至少有一个值【 】A 、大于0B 、等于0C 、不大于0D 、小于0 5.设关于x 的方程ax 2+(a +2)x +9a =0,有两个不等的实数根x 1、x 2,且x 1<1<x 2,那么a 的取值范围是【 】A 、72-<a <52 B 、a >52 C 、a <72- D 、112-<a <06.A 1A 2A 3…A 9是一个正九边形,A 1A 2=a ,A 1A 3=b ,则A 1A 5等于【 】 A 、22b a + B 、22b ab a ++ C 、()b a +21D 、a +b 二、填空题7.设x 1、x 2是关于x 的一元二次方程x 2+ax +a =2的两个实数根,则(x 1-2x 2)(x 2-2x 1)的最大值为 。

8.已知a 、b 为抛物线y =(x -c)(x -c -d)-2与x 轴交点的横坐标,a <b ,则b c c a -+-的值为 。

9.如图,在△ABC 中,∠ABC =600,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB = 。

2013年全国初中数学竞赛试题(附详细答案)

2013年全国初中数学竞赛试题(附详细答案)

2013年全国初中数学竞赛试题及参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0 (C )12(D )1【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++.2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--= (D )2222(2)0c x b ac x a ---=【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12bx x a+=-,12c x x a =,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b a c x x x x c +--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c--+=,即2222(2)0c x b ac x a --+=. 3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ).(A )OD (B )OE (C )DE(D )AC(第3题)【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2OD OE OC=,·DC DO DE OC =都是有理数,而AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6 (D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC.连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6.5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****的值为( ).(A )607967(B )1821967(C )5463967(D )16389967【答案】C【解答】设201320124m ***=,则()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.(第3题答题)(第4题答题)(第4题)二、填空题6.设a =b 是2a 的小数部分,则3(2)b +的值为 . 【答案】9【解答】由于2123a a <<<<,故222b a =-=,因此33(2)9b +==. 7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .【答案】20413【解答】如图,连接AF ,则有:45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413. 8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.(第7题答题)(第7题)9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=. 若0b d =≠,则1==d a b ,1==bc d,进而2b d a c ==--=-. 若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件. 10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+, 所以204y >,故y 的最小值为207,此时141x =.三、解答题11.如图,抛物线y=23ax bx+-,顶点为E,该抛物线与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA.直线113y x=-+与y轴交于点D.求∠DBC-∠CBE.【解答】将0x=分别代入y=113x-+,23y ax bx=+-知,D(0,1),C(0,3-),所以B(3,0),A(1-,0).直线y=113x-+过点B.将点C(0,3-)的坐标代入y=(1)(3)a x x+-,得1a=.抛物线223y x x=--的顶点为E(1,4-).于是由勾股定理得BC=CE BE=因为BC2+CE2=BE2,所以,△BCE为直角三角形,90BCE∠=︒.因此tan CBE∠=CECB=13.又tan∠DBO=13ODOB=,则∠DBO=CBE∠.所以,45DBC CBE DBC DBO OBC∠-∠=∠-∠=∠=︒.(第11题答题)(第11题)12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.【解答】分三种情况讨论. (i )若△ABC 为锐角三角形.因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.(ii )若△ABC 为钝角三角形.当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。

广东省广州市白云区2013年八年级数学初赛试题 新人教版

广东省广州市白云区2013年八年级数学初赛试题 新人教版

2013年白云区八年级初二数学竞赛初赛试题(全卷共三大题,17小题,满分100分,时间60分钟,不得使用计算器)班级某某成绩一、选择题(10题,每题4分,共40分)1.在函数21yx=-中,自变量x的取值X围是( * )A.1x-≥B.1x>-且12x≠C.1x≥-且12x≠D.1x-≥2.若x的相反数是3,y=5,则x+y的值为(*)A. –8B. 2C. 8或–2D. –8或23.如果代数式-2+38a b+的值为18,那么代数式962b a-+的值等于(*)A. 28 B . –28 C. 32 D. –324.已知函数25(1)my m x-=+是反比例函数,且图象在第二、四象限内,则m的值是(*) A.2 B.2-C.2±D.12-5.有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57名,仙海湖某船家有3艘大船与6艘小船,一次可以载游客的人数为(*)A. 129B. 120C. 108D. 966.现规定一种运算:a b ab a b*=+-,其中,a b为实数,则()a b b a b*+-*等于(*)A. 2a b- B. 2b b- C. 2b D. 2b a-7.几位同学拍了一X合影做留念,已知冲一X底片需要0.8元,洗一X相片需要0.35元,在每位同学得到一X相片、共用一X底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数(*)A. 至多6人B. 至少6人C. 至少5人D. 至多5人8.函数y ax a=-与ayx=(a≠0)在同一直角坐标系中的图象可能是(*).xA .B .C .D .9.下列命题中的假命题是 (*)A. △ABC 中,若∠A =∠C -∠B ,则△ABC 是直角三角形;B. △ABC 中,若222c b a =+,则△ABC 是直角三角形;C. △ABC 中,若∠A 、∠B 、∠C 的度数比是5︰2︰3,则△ABC 是直角三角形;D. 在△ABC 中,若三边长a :b :c =2:2:3,则△ABC 是直角三角形.10.如图1所示,点P 是AB 上任意一点,ABC ABD ∠=∠,还应补充一个条件,才能推出APC APD ∆≅∆,从下列条件中补充一个条件,不一定能推出APC APD ∆≅∆的是(*)A. BC = BDB. AC = ADC. ACB ADB ∠=∠D.CAB DAB ∠=∠二、填空题(5题,每题6分,共30分)11.有一组数:1,2,5,10,17,26,……,请你观察这组数的构成规律,用你发现的规律确定第8个数为 * .12.已知113x y -=,则代数式21422x xy y x xy y----的值为 * . 13、如图2,在ABC ∆中,90,50,30,ACB AB cm BC cm CD AB ∠=︒==⊥于D ,则 CD= * .BCD P A 图1 B D AC图214.已知:244x x -+与 |1y -| 互为相反数,则式子()x y x y y x ⎛⎫-÷+ ⎪⎝⎭的值等于.15.如图,一次函数y =kx +b 与反比例函数ay x=(x >0) 的图象交于A (1,6)、B (2,3)两点。

初中数学竞赛试题及答案解析

初中数学竞赛试题及答案解析

初中数学竞赛试题二、填空题1、 41-的负倒数与4-的倒数之和等于 . 2、 甲、乙、丙、丁四个数之和等于90-.甲数减4-,乙数加4-,丙数乘4-,丁数除以4-彼此相等.则四个数中的最大的一个数比最小的一个数大 .3、 已知a 1999=,则=-+---+-200133314232323a a a a a a .4、 填数计算:〇中填入的最小的自然数.△中填入最小的非负数.□中填入不小于5-且小于3的整数的个数.将下式的计算结果写在等号右边的横线上.(〇+□)⨯△= .5、 从集合}5,4,1,2,3{---中取出三个不同的数,可能得到的最大乘积填在□中,可能得到的最小乘积填在〇中,并将下式计算的结果写在等号右边的横线上.-(-□)÷〇= .6、 计算:=------------)4151()3141()2131(1)4151()3141()2131(1 . 7、 x 是有理数,则22195221100++-x x 的最小值是 . 8、 如图,C 是线段AB 的中点,D 是线段AC 的中点.已知图中所有线段的长度之和为23,则线段AC 的长度为.9、 在1000到5000之间同时被24,36,30整除的最小整数是_________,最大整数是__________.10、 一个有理数的倒数的相反数的3倍是31,那么这个有理数是 . 11、 一个有理数的二次幂大于这个有理数,那么这样的有理数的取值范围是 .12、 若8919+=+=+c b a ,则=-+-+-222)()()(a c c b b a .13、 a 1的倒数是51-,那么=a _____. 14、 小丽写出三个有理数,其中每两个有理数的平均值分别是326,217,7,那么这三个有理数的平均值是 .15、 计算:=--+-)36173)(72.0()722(125.11.16、 m ,y 互为相反数,n 和y 互为倒数,则5)(y my n -的值是_____.17、 已知1171=x ,则3)114(3)711)(1(2++--x x x 的值是 . 18、 已知52,32<-<-b a a b .则化简98272-+++-----b a a b a b 所得的结果是 .19、 m ,n 是正整数,mn =120,则m +n 可能取到的最小值是_____.20、 若a=1997,则7122----+a a a a 的值是 .21、 若x = -0.239,则199********-------++-+-x x x x x x 的值等于_____.参考答案二、填空题1、 417- 解:41-的负倒数为411--,4-的倒数为41-, 二者之和为:411--+41-417414-=--=.2、 204解:设等数为a ,则 90)4()4()]4([)]4([-=-⨯+-+--+-+a a a a 即90412-=-a ,∴ a =40, 因此,甲数为36,乙数为44,丙数为-10,丁数为-160,其中,最大数-最小数=44-(-160)=204.3、 4000000 解:当a 1999=时,142314232323-+-=-+-a a a a a a=-+-200133323a a a 200133323-+-a a a ,所以,原式=142323-+-a a a )2001333(23-+--a a a2000200019992000)1(20002+⨯=++=++=a a a a400000020002000=⨯=.4、 0解:〇中填1,△中0,□填8. []⎣⎦⎡⎤00)81(=⨯+.5、 ⎣⎦⎡⎤2160)30(-=÷-- 解:由-3,-2,-1,4,5中任取三个相乘可得10种不同的乘积,它们是:124)1)(3(,205)2)(3(,244)2)(3(,6)1)(2)(3(=⋅--=⋅--=⋅--=---,105)1)(2(,84)1)(2(,6054)3(,155)1)(3(=⋅--=⋅---=⋅⋅-=⋅--,2054)1(,4054)2(-=⋅⋅--=⋅⋅-,最大乘积是30,最小的乘积是-60.∴ ⎣⎦⎡⎤2160)30(-=÷--.6、 137 解:)4151()3141()2131(1)4151()3141()2131(1------------ )4151()3141()2131(1)]4151([)]3141([)]2131([1---------------= )4151()3141()2131(1)4151()3141()2131(1-------+-+-+= 41513141213114151314121311+-+-+--+-+-+= 13710131075121151211==-++-=.7、 1715 解:一般解法是分三种情况讨论:(1)当22195-<x 时 ,,(2)当22110022195≤≤-x 时 ,,(3)当221100>x 时 ,.综合(1),(2),(3)可得,最小值是1715.最简单的解法是:根据绝对值的几何意义,22195221100++-x x 表示数轴上x 对应的点P 到22195-对应的点A 和221100对应的点B 的距离之和,易知当P 在线段AB 上时,P A +PB 最小值为2211001715)22195(=--.8、 1373 解:设线段AC 的长度为x ,则AD =2x ,则AB =2x ,DC =2x ,DB =x 23,CB =x ,所以 232321221=+++++x x x x x x ,即23213=x .∴13731346==x .即AB 长度为1373.9、 4680解:24,30,36三个数的最小公倍数是360,10803360=⨯,∴大于10000且能被24,30,36整除的最小整数是1080,又36010805000⋅+>n ,其中n 为自然数,解得9810<n .∴取10=n ,得4680360101080=⋅+.∴具有这种性质的最大整数是4680.10、 -9解:利用还原算法:某数a 的3倍是31,显然91=a ,而91应是一个有理数倒数的相反数,所以这个有理数的倒数为91-,故这个有理数是-9.11、 大于1的有理数和负有理数解:画出数轴如图.大于1的有理数的二次幂大于它自身;1的二次幂等于1;大于0且小于1的有理数的二次幂小于它本身;0的二次幂是0;负有理数的二次幂是正数,大于它自身.综上可知,二次幂大于其自身的有理数的范围,是大于1的有理数和负有理数.12、 222解:由8919+=+=+c b a 得:11,1,10=--=--=-a c c b b a .∴+-+-22)()(c b b a =-2)(a c 222121110011)1()10(222=++=+-+-.13、 51- 解:a 1的倒数是51-,那么a 1=-5,51-=a .14、 1817 解:设小丽写出的三个有理数为x ,y ,z ,则3262,2172,72=+=+=+z y z x y x , 所以15,340,14=+=+=+x z z y y x ,三式相加,3127)(2=++z y x , 则1817181273==++z y x .15、 -14 解:因为2179167212518511.125(2)(0.72)(3)73687100367214-+--=-+=-+=-. 所以原分式的值为-14.16、 0解:由m 和y 互为相反数,知m = -y ,由n 和y 互为倒数,知道0,0≠≠y n 且yn 1= ∴0=-=-y y y y y m y n ,故5)(ym y n -=0. ∴17、 38 解:由1171=x ,可知2114,1171=+=-x x ,所以原式= 37772(1117)322113838111111-+=+=.18、 -6解:由32<-a b ,得03272<--<--a b a b .由52<-b a ,得052>+-a b ,得 05282>+->+-a b a b .而853)2()2(=+<-+-=+b a a b a b . 089<-+<-+∴a b b a98272-+++-----b a a b a b9)()82()72(-+-+----=b a a b a b987+--=6-=.19、 22解:由222)(1204)(4)(n m n m mn n m -+⋅=-+=+当2)(n m -愈小时,2)(n m +越小,从而m +n 也愈小,m 、n 为120的约数,且n m -要最小,由53222120⋅⋅⋅⋅==mn所以,当m =12,n =10时,m +n =22为最小值.20、 4000解:当a =1997时,0719971997,011997199722>-->-+7122----+a a a a)7()1(22----+=a a a a7122++--+=a a a a62+=a4000619972=+⋅=.21、 999解:由b a x <≤,可得a b a x b x -=---,则原式)19961997()23()1(---++---+--=x x x x x x)19961997()23()01(-++-+-=个99921998111=÷+++= 999=.。

初中数学竞赛初赛(市级选拔)试题(含解答)-

初中数学竞赛初赛(市级选拔)试题(含解答)-

初中数学竞赛初赛(市级选拔)试题一、选择题(共8小题,每小题5分,共40分)1.要使方程组⎩⎨⎧=+=+23223y x a y x 的解是一对异号的数,则a 的取值范围是( )(A )334<<a (B )34<a (C )3>a (D )343<>a a 或 2.一块含有︒30角的直角三角形(如图),它的斜边AB =8cm, 里面空 心DEF ∆的各边与ABC ∆的对应边平行,且各对应边的距离都是1cm,那么DEF ∆的周长是( )(A)5cm (B)6cm (C) cm )(36- (D) cm )(33+3.将长为15cm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有( )(A)5种 (B) 6种 (C)7种 (D)8种4.作抛物线A 关于x 轴对称的抛物线B ,再将抛物线B 向左平移2个单位,向上平移1个单位,得到的抛物线C 的函数解析式是1122-+=)x (y ,则抛物线A 所对应的函数表达式是 ( )(A)2322-+-=)x (y (B) 2322++-=)x (y(C) 2122---=)x (y (D) 2322++-=)x (y5.书架上有两套同样的教材,每套分上、下两册,在这四册教材中随机抽取两册,恰好组成一套教材的概率是( )(A)32 (B) 31 (C) 21 (D) 61 6.如图,一枚棋子放在七边形ABCDEFG 的顶点处,现顺时针方向移动这枚棋子10次,移动规则是:第k 次依次移动k 个顶点。

如第一次移动1个顶点,棋子停在顶点B 处,第二次移动2个顶点,棋子停在顶点D 。

依这样的规则,在这10次移动的过程中,棋子不可能分为两停到的顶点是( )(A)C,E,F (B)C,E,G (C)C,E (D)E,F.7.一元二次方程)a (c bx ax 002≠=++中,若b ,a 都是偶数,C 是奇数,则这个方程( )(A)有整数根 (B)没有整数根 (C)没有有理数根 (D)没有实数根8.如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L 形,那么在由54⨯ 个小方格组成的方格纸上可以画出不同位置的L 形图案个数是( )(A)16 (B) 32 (C) 48 (D) 64二、填空题:(共有6个小题,每小题5分,满分30分)9.已知直角三角形的两直角边长分别为3cm,4cm ,那么以两直角边为直径的两圆公共弦的长为 cm.10.将一组数据按由小到大(或由大到小)的顺序排列,处于最中间位置的数(当数据的个数是奇数时),或最中间两个数据的平均数(当数据的个数是偶数时)叫做这组数据的中位数,现有一组数据共100个数,其中有15个数在中位数和平均数之间,如果这组数据的中位数和平均数都不在这100个数中,那么这组数据中小于平均数的数据占这100个数据的百分比是11.ABC ∆中,c ,b ,a 分别是C ,B ,A ∠∠∠的对边,已知232310-=+==C ,b ,a ,则C sin c B sin b +的值是等于 。

2013年全国数学竞赛试题详细参考答案

2013年全国数学竞赛试题详细参考答案

中国教育学会中学数学教学专业委员会“《数学周报》杯”2013年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填都得0分)1.已知实数x y ,满足 42424233y y x x -=+=,,则444y x+的值为( ).(A )7 (B )(C )(D )5 【答】(A )解:因为20x >,2y ≥0,由已知条件得212184x ==,21122y --+==, 所以444y x +=22233y x ++- 2226y x=-+=7. 另解:由已知得:2222222()()30()30x x y y ⎧-+--=⎪⎨⎪+-=⎩,显然222y x -≠,以222,y x -为根的一元二次方程为230t t +-=,所以 222222()1,()3y y x x-+=--⨯=- 故444y x +=22222222[()]2()(1)2(3)7y y x x-+-⨯-⨯=--⨯-= 2.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数2y x mx n =++的图象与x 轴有两个不同交点的概率是( ).(A )512 (B )49 (C )1736(D )12【答】(C )解:基本事件总数有6×6=36,即可以得到36个二次函数. 由题意知∆=24m n ->0,即2m >4n .通过枚举知,满足条件的m n ,有17对. 故1736P =. 3.有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点(第3题)E可以确定的不同直线最少有( ).(A )6条 (B ) 8条 (C )10条 (D )12条【答】(B )解:如图,大圆周上有4个不同的点A ,B ,C ,D ,两两连线可以确定6条不同的直线;小圆周上的两个点E ,F 中,至少有一个不是四边形ABCD 的对角线AC 与BD 的交点,则它与A ,B ,C ,D 的连线中,至少有两条不同于A ,B ,C ,D 的两两连线.从而这6个点可以确定的直线不少于8条.当这6个点如图所示放置时,恰好可以确定8条直线. 所以,满足条件的6个点可以确定的直线最少有8条.4.已知AB 是半径为1的圆O 的一条弦,且1AB a =<.以AB 为一边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的一点,且DB AB a ==,DC 的延长线交圆O 于点E ,则AE 的长为( ).(A)2 (B )1 (C )2(D )a 【答】(B )解:如图,连接OE ,OA ,OB . 设D α∠=,则 120ECA EAC α∠=︒-=∠.又因为()1160180222ABO ABD α∠=∠=︒+︒-120α=︒-,所以ACE △≌ABO △,于是1AE OA ==. 另解:如图,作直径EF ,连结AF ,以点B 为圆心,AB 作⊙B ,因为AB =BC =BD ,则点A ,C ,D 都在⊙B 上,由11603022F EDA CBA ∠=∠=∠=⨯︒=︒所以2301AE EF sim F sim =⨯∠=⨯︒=5.将1,2,3,4,5三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有( ).(A )2种 (B )3种 (C )4种 (D )5种 【答】(D )解:设12345a a a a a ,,,,是1,2,3,4,5的一个满足要求的排列.首先,对于1234a a a a ,,,,不能有连续的两个都是偶数,否则,这两个之后都是偶数,(第4题)(第8题)与已知条件矛盾.又如果i a (1≤i ≤3)是偶数,1i a +是奇数,则2i a +是奇数,这说明一个偶数后面一定要接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以12345a a a a a ,,,,只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件: 2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3; 4,3,1,2,5; 4,5,3,2,1. 二、填空题(共5小题,每小题6分,满分30分)6.对于实数u ,v ,定义一种运算“*”为:u v uv v *=+.若关于x 的方程1()4x a x **=-有两个不同的实数根,则满足条件的实数a 的取值范围是 .【答】0a >,或1a <-.解:由1()4x a x **=-,得21(1)(1)04a x a x ++++=,依题意有 210(1)(1)0a a a +≠⎧⎨∆=+-+>⎩,, 解得,0a >,或1a <-.7.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是 分钟.【答】4.解:设18路公交车的速度是x 米/分,小王行走的速度是y 米/分,同向行驶的相邻两车的间距为s 米.每隔6分钟从背后开过一辆18路公交车,则 s y x =-66. ① 每隔3分钟从迎面驶来一辆18路公交车,则s y x =+33. ② 由①,②可得 x s 4=,所以4=xs. 即18路公交车总站发车间隔的时间是4分钟.8.如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点, AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为 . 【答】9.解:如图,设点N 是AC 的中点,连接MN ,则MN ∥AB . 又//MF AD ,所以 FMN BAD DAC MFN ∠=∠=∠=∠,(第9题答案)D 所以 12FN MN AB ==. 因此 1122FC FN NC AB AC =+=+=9.另解:如图,过点C 作AD 的平行线交BA 的延长线为E ,延长MF AE 于点N.则E BAD DAC ACE ∠=∠=∠=∠所以11AE AC ==. 又//FN CE ,所以四边形CENF 是等腰梯形, 即11(711)922CF EN BE ===⨯+=9.△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E ,则DE 的长为 .【答】163. 解:如图,设△ABC 的三边长为a ,b ,c ,内切圆I 的半径为r , BC 边上的高为a h ,则11()22a ABC ah S abc r ==++△, 所以a r ah a b c=++. 因为△ADE ∽△ABC ,所以它们对应线段成比例,因此a a h r DEh BC-=, 所以 (1)(1)a a a h r r aDE a a a h h a b c-=⋅=-=-++()a b c a b c +=++, 故 879168793DE ⨯+==++().另解: ABC S rp∆===(这里2a bcp ++=)所以12r == 2ABC a S ha ===△由△ADE ∽△ABC,得23a a h r DE BC h -===,即21633DE BC === 10.关于x ,y 的方程22208()x y x y +=-的所有正整数解为 .【答】481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,, 解:因为208是4的倍数,偶数的平方数除以4所得的余数为0,奇数的平方数除以4所得的余数为1,所以x ,y 都是偶数.设2,2x a y b ==,则22104()a b a b +=-,同上可知,a ,b 都是偶数.设2,2a c b d ==,则2252()c d c d +=-,所以,c ,d 都是偶数.设2,2c s d t ==,则2226()s t s t +=-,于是 22(13)(13)s t -++=2213⨯, 其中s ,t 都是偶数.所以222(13)213(13)s t -=⨯-+≤2222131511⨯-<.所以13s -可能为1,3,5,7,9,进而2(13)t +为337,329,313,289,257,故只能是2(13)t +=289,从而13s -=7.于是62044s s t t ==⎧⎧⎨⎨==⎩⎩,,;,因此 481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,,另解:因为222(104)(104)210421632x y -++=⨯= 则有2(104)21632,y +≤ 又y 正整数,所以 143y ≤≤令22|104|,|104|,21632a x b y a b =-=++= 则 因为任何完全平方数的个位数为:1,4,5,6,9由2221632a b +=知22,a b 的个位数只能是1和1或6和6;当22,a b 的个位数是1和1时,则,a b 的个位数字可以为1或9但个位数为1和9的数的平方数的十位数字为偶数,与22a b +的十位数字为3矛盾。

全国数学竞赛2013年初中数学联赛广东分赛区初赛试卷

全国数学竞赛2013年初中数学联赛广东分赛区初赛试卷

全国数学竞赛2013年初中数学联赛广东分赛区初赛试卷2013年全国初中数学联赛初赛试卷(广州市)时间:2013年3月7日一、选择题(7×4=28分) 1、下列计算准确的是 A 、23622aa a= B 、3629(3)a a= C 、623aa a÷= D 、362()a a--=2、曾两度获得若贝尔(物理、化学)的居里夫人发现了镭这种放射性元素。

已知1kg 镭完全衰变后,放出的热量相当于375000kg 煤燃烧放出的热量。

估计地壳内含有100亿kg 镭,这些镭完全衰变后放出的热量相当于 kg 煤燃烧所放出的热量。

A 、133.7510B 、143.7510C 、153.7510D 、163.75103、直线y=2x -5与2(4)3y x m m =++-(m 为任意实数)的交点不可能在 A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 4、实数b 满足b<3 ,并且有实数a 使a <b 恒成立,则a 的取值范围是A 、小于或等于3的实数B 、小于3的实数C 、小于或等于-3的实数D 、小于-3的实数5、一块手表每小时比准确时间慢3分钟,若在清晨4::30时与准确时间对准,则当天上午该手表时间是10:50时,准确时间应该是A 、 11:10B 、11:09C 、 11:08D 、 11:076、若直角三角形的斜边长为c ,内切圆半径r ,则内切圆的面积与三角形的面积之比是A 、2rc rπ+ B 、rc rπ+ C 、2rc rπ+ D 、22rcrπ+7、我们将1×2×3×…n 记作n !(读作n 的阶乘),如:2!=1×2, 3!=1×2×3, 4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+……+2013×2013!,则S 除以2014的余数是A 、0 B 、1 C 、1007 D 、2013 二、填空题(7×4=28分)8、函数2y x =+ 的自变量x 的取值范围是9、设12,x x 是方程20x k x ++= 的两个实数根,若恰好2211222k x x x x ++= 成立,则k 的值等于10、已知二函数2y bx c x =++ 的图象上有三个点(-1,1y ),(1,2y )(3,3y )。

2010-2013年广东省初中数学竞赛初赛试题及答案

2010-2013年广东省初中数学竞赛初赛试题及答案
2010年广东省初中数学竞赛初赛试题及答案
答案01-10DACDB CADBB 11-20 CBDAB BAADB 21-30 DDDCB DCDAB
2011年广东省初中数学竞赛初赛试题及答案
考试时间:2011年3月6日上午9:30—10:30
题号
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
答案
题号
16
18.若0<x<1,则 、x、x2的大小关系是()
A. B. C. D.
19.甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种冰棒.四人购买的数量及总价如下表所示.若其中一人的总价算错了,则此人是()




红豆冰棒
18
15
24
27
桂圆冰棒(枝)
30
25
40
45
总价(元)
396
330
528
585
A.甲B.乙C.丙D.丁
25.若实数 满足条件 ,则 中()
(A)必有两个数相等(B)必有两个数互为相反的数
(C)必有两个数互为倒数(D)每两个数都不等
26.如图,若正方形OABC的顶点B和正方形ADEF的顶点E都在函数 的图象上,则点E的坐标是()
(A) (B)
(C) (D)
27.等腰三角形的底角为15,腰长 为,则此等腰三角形的底长为()
(A)0.88(B)0.89(C)0.90(D)0.91
18.已知 为实数, 一定等于()
(A) (B) (C) (D)
19.在△ABC中,已知BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,

(7答)2013年全国初中数学联赛广东省试题参考答案

(7答)2013年全国初中数学联赛广东省试题参考答案

2013年全国初中数学联赛广东省试题参考答案一.选择题(5×7'=35')1、【分析】5≥n 时,n !的个位数均为0,只考虑前4个数的个位数之和即可,1+2+6+4=13,故式子的个位数是3. 本题选C .2、【分析】2023235352<<-⇒⎪⎪⎩⎪⎪⎨⎧<-+->-+x t x t x x x ,则5个整数解是15,16,17,18,19=x .注意到15=x 时,只有4个整数解.所以2116152314-≤<-⇒<-≤t t ,本题选C 3、【分析】422222222+-=⇒--=-+-x x a xx x a x x x x ,下面先考虑增根: ⅰ)令0=x ,则4=a ,当4=a 时,0,1,022212===-x x x x (舍);ⅱ)令2=x ,则8=a ,当8=a 时,2,1,0422212=-==--x x x x (舍);再考虑等根:ⅲ)对04222=-+-a x x ,270)4(84=→=--=∆a a ,当21,272,1==x a . 故27,8,4=a ,21,1,1-=x 共3个.本题选C .4、【分析】设ABC ∆底边BC 上的高为h ,则DE CF CF BC h 121244848====,)(2121212121h h DE h DE h DE S S BDE ADE +⋅⋅=⋅⋅+⋅⋅=+∆∆ 本题选D .6122121=⋅⋅=⋅⋅=DE DE h DE5、【分析】9236811291214==+++=C C C P 本题选B .二.填空题(5×7'=35')6、【分析】考虑到33=a ,则33333332292,29,327982,93=+-==<<===b b a 则9)9()2333==+b (7、【分析】对第一次向上面为1时,后面两次所得数字与1的和是3的倍数有111,114,123,126,132,135,141,144,153,156,162,165共12种;对于首次掷得向上的面是2,3,4,5,6的,后面两次与首次的和为3的倍数是轮换对称的,故和为3的倍数共有612⨯,而总次数是666⨯⨯次,则其概率为31666612=⨯⨯⨯=P .8、【分析】先消去c ,再配方估算.24166)8()121(621662222+=-++⇒=-++b a b b a a 观察易知上式中3≤a ,故3,2,1=a ,经试算,2,1=a 时,b 均不是整数;当3=a 时,11,5=b ,于是有)61,11,3(),13,5,3(),,(=c b a ,故201361113max =⨯⨯=abc .9、【分析】由根与系数关系知b cd d ab d b a d c c b a ===⇒=++=++,,0,然后可得(a 、b 、c 、d )=(1,-2,1,-2)10、【分析】设4元的卖x 支,7元的卖y 支,则350,201374<+=+y x y x 4125031820124201374++-=⇒++-=⇒=+y y x y y x y x 令1441-=⇒=+k y k y ,则k k k x 7505)14(2503-=+--=,又350≤+y x ,即523151350147505≥−−→−≥⇒≤-+-∈k k k k N k ,207152414=-⨯≥-=k y 即他至少卖了207支圆珠笔.三.解答题(4×20'=80')11.【分析】易知4)1(3222--=--=x x x y ,)4,1()3,0()0,3(),0,1(---D C B A ,,,作EF ⊥CO 于F ,连CE ,易知△OBC 、△CEF 都是等腰直角三角形,则△CBE 是直角三角形.分别在Rt △OBD 、Rt △BCE 中运用正切定义,即有31232tan 31tan =====BC CE ,OB OD βα,则βα= 从而可得∠DBC -∠CBE=45º.12.【分析】设圆O 半径为r ,则由相似或三角函数或射影定理可知,)10(1022-=⇒⋅=r DE OE CE DE ,又r r DE CE CD 10)10(10102222=-+=+=由相交弦定理(考虑垂径时)或连AC 、BC 用相似或三角函数,易知r CD BD AD 102==⋅①,而r BD AD 2=+②令y BD x AD ==,,①/②即155210-=⇒==+y x y r r y x xy ,显然有x y <<0,则10<<x y ,即1051150<<⇒<-<y y ,y 为正整数,故9,8,7,6=y ,又x 也为正整数,经逐一试算,仅当30,6==x y 这一组是正整数,故30=AD .13. 【分析】281102222a z a z z y z a z y c b a z b a c y +±-=⇒=-+−−−→−==+⇒⎩⎨⎧-+=-+= a 、b 、c 是素数,则z c b a =-+为整数,则1281+=+k a ,k 为正整数.化简整理后,有a k k 2)1(=+⎩⎨⎧=+==+==⇒=+==+=⇒3121,2(121121,1a k k )a a k k 非质数2,332811-=−−→−=+±-=z a a z ⅰ)112,2529,9,3=⇒=-=⇒=-==b b z x x x y z ,c b a b =<=+=+=1720173,17不能围成三角形;ⅱ)是合数9,16,4,2====b x y z综上所述,以a 、b 、c 不能围成三角形.14.【分析】考虑到魔术数均为7的倍数,又a 1,a 2,...,a n 互不相等,不妨设n a a a <<<...21,余数必为1、2、3、4、5、6,0,设t k a i i +=7,(6,5,4,3,2,1,0;,...,3,2,1==t n i ),至少有一个为m 的“魔术数”.因为m a k i +⋅10(k 是m 的位数),是7的倍数,当6≤i 时,而k i a 10⋅除以7的余数都是0,1,2,3,4,5,6中的6个;当7=i 时,而k i a 10⋅除以7的余数都是0,1,2,3,4,5,6这7个数字循环出现,当7=i 时,依抽屉原理,k i a 10⋅与m 二者余数的和至少有一个是7,此时m a k i +⋅10被7整除,即n =7.。

2013年广东省中考数学试卷及答案

2013年广东省中考数学试卷及答案

2013年广东省初中毕业生学业考试数学说明:1. 全卷共4页,考试用时100 分钟.满分为120 分.2.答题前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己准考证号、姓名、试室号、座位号,用2B铅笔把对应号码的标号涂黑.3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 2的相反数是A. B. C.-2 D.2答案:C解析:2的相反数为-2,选C,本题较简单。

2.下列几何体中,俯视图为四边形的是答案:D解析:A、B、C的俯视图分别为五边形、三角形、圆,只有D符合。

3.据报道,2013年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为A. 0.126×1012元B. 1.26×1012元C. 1.26×1011元D. 12.6×1011元答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.1 260 000 000 000=1.26×1012元4.已知实数、,若>,则下列结论正确的是A. B. C. D.答案:D解析:不等式的两边同时加上或减去一个数,不等号的方向不变,不等式的两边同时除以或乘以一个正数,不等号的方向也不变,所以A、B、C错误,选D。

【2013中考真题】广东省初中毕业生学业考试数学试卷及答案

【2013中考真题】广东省初中毕业生学业考试数学试卷及答案

2013年广东省初中毕业生学业考试数 学说明:1. 全卷共4页,考试用时100 分钟.满分为 120 分.2.答题前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己准考证号、姓名、试室号、座位号,用2B 铅笔把对应号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 2的相反数是A.21-B. 21C.-2D.2 2.下列几何体中,俯视图为四边形的是3.据报道,2013年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为A. 0.126×1012元B. 1.26×1012元C. 1.26×1011元D. 12.6×1011元 4.已知实数a 、b ,若a >b ,则下列结论正确的是A.55-<-b aB.b a +<+22C.33ba < D.b a 33> 5.数据1、2、5、3、5、3、3的中位数是A.1B.2C.3D.56.如题6图,AC ∥DF,AB ∥EF,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是 A.30° B.40° C.50° D.60°7.下列等式正确的是A.1)1(3=--B. 1)4(0=-C. 6322)2()2(-=-⨯-D. 2245)5()5(-=-÷- 8.不等式5215+>-x x 的解集在数轴上表示正确的是9.下列图形中,不是轴对称图形的是10.已知210k k <<,则是函数11-=x k y 和xk y 2=的图象大致是二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:92-x =________________.12.若实数a 、b 满足042=-++b a ,则=ba 2________. 13.一个六边形的内角和是__________.14.在R t △ABC 中,∠ABC=90°,AB=3,BC=4,则sinA=________.15.如题15图,将一张直角三角板纸片ABC 沿中位线DE 剪开后,在平面上 将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E ′位置, 则四边形ACE ′E 的形状是________________.16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是__________(结果保留π). 三、解答题(一)(本大题3小题,每小题5分,共15分) 17.解方程组⎩⎨⎧=++=821y x y x18.从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选择两个代数式构造成分式,然后进行化简,并求当3,6==b a 时该分式的值.19.如题19图,已知□ABCD .(1)作图:延长BC,并在BC 的延长线上截取线段CE,使得CE=BC (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,不连结AE,交CD 于点F,求证:△AFD ≌△EFC.四、解答题(二)(本大题3小题,每小题8分,共24分)20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20图所示的不完整统计图表. (1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.21.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.① ②(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?22.如题22图,矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF,使得另一边EF 过原矩形的顶点C. (1)设R t △CBD 的面积为S 1, R t △BFC 的面积为S 2, R t △DCE 的面积为S 3 ,则S 1______ S 2+ S 3(用“>”、“=”、“<”填空);(2)写出题22图中的三对相似三角形,并选择其中一对进行证明.五、解答题(三)(本大题3小题,每小题9分,共27分)23. 已知二次函数1222-+-=m mx x y .(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式; (2)如题23图,当2=m 时,该抛物线与y 轴交于点C,顶点为D, 求C 、D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P,使得PC+PD 最短?若P 点 存在,求出P 点的坐标;若P 点不存在,请说明理由.24.如题24图,⊙O 是Rt △ABC 的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5, BE ⊥DC 交DC 的延长线于点E. (1)求证:∠BCA=∠BAD; (2)求DE 的长;(3)求证:BE 是⊙O 的切线.25.有一副直角三角板,在三角板ABC 中,∠BAC=90°,AB=AC=6,在三角板DEF 中,∠FDE=90°,DF=4,DE=34.将这副直角三角板按如题25图(1)所示位置摆放,点B 与点F 重合,直角边BA 与FD 在同一条直线上.现固定三角板ABC,将三角板DEF 沿射线BA 方向平行移动,当点F 运动到点A 时停止运动.(1)如题25图(2),当三角板DEF 运动到点D 与点A 重合时,设EF 与BC 交于点M, 则∠EMC=______度; (2)如题25图(3),在三角板DEF 运动过程中,当EF 经过点C 时,求FC 的长;(3)在三角板DEF 运动过程中,设BF=x ,两块三角板重叠部分面积为y ,求y 与x 的函数解析式,并求出对应的x 取值范围.FED CBA参考答案一、C D B D C C B A C A二、11.)3)(3(-+x x ;12. 1;13. 720°;14.54;15.平行四边形;16.83π三、17.⎩⎨⎧==23y x ;18.选取①、②得3)(3)(332222ba b a b a b a b ab a -=--=-+-,当3,6==b a 时,原式=1336=-(有6种情况). 19. (1)如图所示,线段CE 为所求;(2)证明:在□ABCD 中,A D ∥BC,AD=BC.∴∠CEF=∠DAF ∵CE=BC,∴AD=CE,又∵∠CFE=∠DFA,∴△AFD ≌△EFC. 20.(1)30%、10、50;图略;(2)276(人). 21.(1)10%;(2)12100×(1+0.1)=13310(元). 22.(1) S 1= S 2+ S 3;(2)△BCF ∽△DBC ∽△CDE; 选△BCF ∽△CDE证明:在矩形ABCD 中,∠BCD=90°且点C 在边EF 上,∴∠BCF+∠DCE=90° 在矩形BDEF 中,∠F=∠E=90°,∴在Rt △BCF 中,∠CBF+∠BCF=90° ∴∠CBF=∠DCE,∴△BCF ∽△CDE.23.(1)m=±1,二次函数关系式为x x y x x y 2222-=+=或;(2)当m=2时,1)2(3422--=+-=x x x y ,∴D(2,-1);当0=x 时,3=y ,∴C(0,3). (3)存在.连结C 、D 交x 轴于点P,则点P 为所求,由C(0,3)、D(2,-1)求得直线CD 为32+-=x y 当0=y 时,23=x ,∴P(23,0). 24.(1)∵AB=DB,∴∠BDA=∠BAD,又∵∠BDA=∠BCA,∴∠BCA=∠BAD. (2)在Rt △ABC 中,AC=135122222=+=+BC AB ,易证△ACB ∽△DBE,得ACBDAB DE =, ∴DE=13144131212=⨯ (3)连结OB,则OB=OC,∴∠OBC=∠OCB,∵四边形ABCD 内接于⊙O,∴∠BAC+∠BCD=180°,又∵∠BCE+∠BCD=180°,∴∠BCE=∠BAC,由(1)知∠BCA=∠BAD,∴∠BCE=∠OBC,∴OB ∥DE ∵BE ⊥DE,∴OB ⊥BE,∴BE 是⊙O 的切线.25. 解:(1)15;(2)在R t △CFA 中,AC=6,∠ACF=∠E=30°,∴FC=30cos AC=6÷3423=(3)如图(4),设过点M 作MN ⊥AB 于点N,则MN ∥DE,∠NMB=∠B=45°,∴NB=NM,NF=NB-FB=MN-x∵MN ∥DEA FA ∴△FMN ∽FED,∴FD FN DE MN =,即434x MN MN -=,∴x MN 233+= ①当20≤≤x 时,如图(4) ,设DE 与BC 相交于点G ,则DG=DB=4+x ∴x x x MN BF DG DB S S y BMF BGD 23321)4(2121212+⋅⋅-+=⋅⋅-⋅⋅=-=∆ 即844312+++-=x x y ; ②当3262-≤<x 时,如图(5), x MN BF AC S S y BMF BCA 23321362121212+⋅-⨯=⋅⋅-⋅=-=∆即184332++-=x y ;③当4326≤<-x 时, 如图(6) 设AC 与EF 交于点H ,∵AF=6-x ,∠AHF =∠E=30° ∴AH=)6(33x AF -=2)6(23)6(3)6(21x x x S y FHA -=-⋅-==∆综上所述,当20≤≤x 时,844312+++-=x x y当3262-≤<x ,184332++-=x y当4326≤<-x 时,2)6(23x y -=。

【精校】2013年广东省初中毕业生学业考试数学(含答案)

【精校】2013年广东省初中毕业生学业考试数学(含答案)

2013年广东省初中毕业生学业考试数学说明:1. 全卷共4页,考试用时100 分钟.满分为 120 分.2.答题前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己准考证号、姓名、试室号、座位号,用2B铅笔把对应号码的标号涂黑.3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 2的相反数是A. B. C.-2 D.22.下列几何体中,俯视图为四边形的是3.据报道,2013年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为A. 0.126×1012元B. 1.26×1012元C. 1.26×1011元D. 12.6×1011元4.已知实数、,若>,则下列结论正确的是A. B. C. D.5.数据1、2、5、3、5、3、3的中位数是A.1B.2C.3D.521-55-<-ba ba+<+2233ba<ba33>6.如题6图,AC ∥DF,AB ∥EF,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是 A.30° B.40° C.50° D.60°7.下列等式正确的是A. B. C. D. 8.不等式的解集在数轴上表示正确的是9.下列图形中,不是..轴对称图形的是10.已知,则是函数和的图象大致是二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:=________________.12.若实数、满足,则________. 13.一个六边形的内角和是__________.14.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,则sinA=________.15.如题15图,将一张直角三角板纸片ABC 沿中位线DE 剪开后,在平面上 将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E ′位置,1)1(3=--1)4(0=-6322)2()2(-=-⨯-2245)5()5(-=-÷-5215+>-xx 210k k <<11-=x k y xk y 2=92-x 042=-++b a =ba 2则四边形ACE ′E 的形状是________________.16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是__________(结果保留). 三、解答题(一)(本大题3小题,每小题5分,共15分)17.解方程组18.从三个代数式:①,②,③中任意选择两个代数式构造成分式,然后进行化简,并求当时该分式的值.19.如题19图,已知□ABCD.(1)作图:延长BC,并在BC 的延长线上截取线段CE,使得CE=BC (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,不连结AE,交CD 于点F,求证:△AFD ≌△EFC.四、解答题(二)(本大题3小题,每小题8分,共24分)20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20图所示的不完整统计图表.(1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.⎩⎨⎧=++=821y x y x 222b ab a +-b a 33-22b a -3,6==b a ① ②21.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率; (2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?22.如题22图,矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF,使得另一边EF 过原矩形的顶点C.(1)设Rt △CBD 的面积为S 1, Rt △BFC 的面积为S 2, Rt △DCE 的面积为S 3 , 则S 1______ S 2+ S 3(用“>”、“=”、“<”填空);(2)写出题22图中的三对相似三角形,并选择其中一对进行证明.五、解答题(三)(本大题3小题,每小题9分,共27分)23. 已知二次函数.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式; (2)如题23图,当时,该抛物线与轴交于点C,顶点为D, 求C 、D 两点的坐标;(3)在(2)的条件下,轴上是否存在一点P,使得PC+PD 最短?若P 点 存在,求出P 点的坐标;若P 点不存在,请说明理由.24.如题24图,⊙O 是Rt △ABC 的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5, BE ⊥DC 交DC 的延长线于点E. (1)求证:∠BCA=∠BAD; (2)求DE 的长;(3)求证:BE 是⊙O 的切线.1222-+-=m mx x y 2=m25.有一副直角三角板,在三角板ABC 中,∠BAC=90°,AB=AC=6,在三角板DEF 中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如题25图(1)所示位置摆放,点B 与点F 重合,直角边BA 与FD 在同一条直线上.现固定三角板ABC,将三角板DEF 沿射线BA 方向平行移动,当点F 运动到点A 时停止运动.(1)如题25图(2),当三角板DEF 运动到点D 与点A 重合时,设EF 与BC 交于点M, 则∠EMC=______度;(2)如题25图(3),在三角板DEF 运动过程中,当EF 经过点C 时,求FC 的长;(3)在三角板DEF 运动过程中,设BF=,两块三角板重叠部分面积为,求与的函数解析式,并求出对应的取值范围.34FEDCBA参考答案一、C D B D C C B A C A二、11.;12. 1;13. 720°;14.;15.平行四边形;16. 三、17.;18.选取①、②得,当时,原式=(有6种情况).19. (1)如图所示,线段CE 为所求;(2)证明:在□ABCD 中,AD ∥BC,AD=BC.∴∠CEF=∠DAF ∵CE=BC,∴AD=CE,又∵∠CFE=∠DFA,∴△AFD ≌△EFC.20.(1)30%、10、50;图略;(2)276(人). 21.(1)10%;(2)12100×(1+0.1)=13310(元). 22.(1) S 1= S 2+ S 3;(2)△BCF ∽△DBC ∽△CDE; 选△BCF ∽△CDE证明:在矩形ABCD 中,∠BCD=90°且点C 在边EF 上,∴∠BCF+∠DCE=90° 在矩形BDEF 中,∠F=∠E=90°,∴在Rt △BCF 中,∠CBF+∠BCF=90° ∴∠CBF=∠DCE,∴△BCF ∽△CDE.23.(1)m=±1,二次函数关系式为;(2)当m=2时,,∴D(2,-1);当时,,∴C(0,3).(3)存在.连结C 、D 交轴于点P,则点P 为所求,由C(0,3)、D(2,-1)求得直线CD 为)3)(3(-+x x 83π⎩⎨⎧==23y x 3)(3)(332222b a b a b a b a b ab a -=--=-+-3,6==b a 1336=-x x y x x y 2222-=+=或1)2(3422--=+-=x x x y 0=x 3=y 32+-=x yFNMEDC BAGFN MEDCB AF当时,,∴P(,0). 24.(1)∵AB=DB,∴∠BDA=∠BAD,又∵∠BDA=∠BCA,∴∠BCA=∠BAD.(2)在Rt △ABC 中,AC=,易证△ACB ∽△DBE,得, ∴DE=(3)连结OB,则OB=OC,∴∠OBC=∠OCB,∵四边形ABCD 内接于⊙O,∴∠BAC+∠BCD=180°,又∵∠BCE+∠BCD=180°,∴∠BCE=∠BAC,由(1)知∠BCA=∠BAD,∴∠BCE=∠OBC,∴OB ∥DE ∵BE ⊥DE,∴OB ⊥BE,∴BE 是⊙O 的切线.25. 解:(1)15;(2)在Rt △CFA 中,AC=6,∠ACF=∠E=30°,∴FC==6÷ (3)如图(4),设过点M 作MN ⊥AB 于点N,则MN ∥DE,∠NMB=∠B=45°,∴NB=NM,NF=NB-FB=MN-x ∵MN ∥DE ∴△FMN ∽FED,∴,即,∴ ①当时,如图(4) ,设DE 与BC 相交于点G ,则DG=DB=4+x ∴ 即; ②当时,如图(5),即; ③当时, 如图(6) 设AC 与EF 交于点H , ∵AF=6-x ,∠AHF=∠E=30° ∴AH=0=y 23=x 135122222=+=+BC AB ACBDAB DE =13144131212=⨯ο30cos AC3423=FD FNDE MN =434x MN MN -=x MN 233+=20≤≤x x x x MN BF DG DB S S y BMF BGD 23321)4(2121212+⋅⋅-+=⋅⋅-⋅⋅=-=∆844312+++-=x x y 3262-≤<x x x MN BF AC S S y BMFBCA 23321362121212+⋅-⨯=⋅⋅-⋅=-=∆184332++-=x y 4326≤<-x )6(33x AF -=题25图(4)题25图(5)综上所述,当时, 当, 当时,考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

2013年全国初中数学竞赛试题参考答案

2013年全国初中数学竞赛试题参考答案

2013年全国初中数学竞赛试题参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0(C )12(D )1【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--= (D )2222(2)0c x b ac x a ---=【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12bx x a+=-,12c x x a =,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b ac x x x x c +--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c--+=,即2222(2)0c x b ac x a --+=.3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ).(A )OD (B )OE (C )DE(D )AC【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2OD OE OC =,·DC DODE OC=都是有理数,而AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6(D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC . 连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF . 因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6.(第3题答题)(第4题答题)(第3题)(第4题)5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****L 的值为( ).(A )607967 (B )1821967 (C )5463967 (D )16389967【答案】C【解答】设201320124m ***=L ,则()20132012433m ****=*L 32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*L 3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.二、填空题6.设a =b 是2a 的小数部分,则3(2)b +的值为 . 【答案】9【解答】由于2123a a <<<<,故222b a =-=,因此33(2)9b +==. 7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .【答案】20413【解答】如图,连接AF ,则有:(第7题)45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413.8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=;(ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数)(第7题答题)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=. 若0b d =≠,则1==d a b ,1==bc d ,进而2b d a c ==--=-.若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件.10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+,所以204y >,故y 的最小值为207,此时141x =.三、解答题11.如图,抛物线y =23ax bx +-,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113y x =-+与y 轴交于点D .求∠DBC -∠CBE .【解答】将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B .将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.…………5分抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC=CE,BE=因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.…………10分因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,则∠DBO =CBE ∠.…………15分所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.…………20分(第11题答题)(第11题)12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.【解答】分三种情况讨论. (i )若△ABC 为锐角三角形.因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.…………5分(ii )若△ABC 为钝角三角形. 当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年广东省初中数学竞赛初赛试题(考试时间:2013年3月3日上午9:30—10:30)说明:1.本卷考试时间为60分钟,共30小题,每小题4分,满分120分。

以下每题均给出了代号为A, B, C, D 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填入答题栏里。

不填、多填或错填都得0分。

2. 答卷前,考生必须将自己的姓名、考号、学校要求填写在密封线左边的空格内。

3. 答题可用黑色或蓝色钢笔、 圆珠笔按各题要求答在试卷上, 但不能用铅笔或红笔,解答书写时不要超过装订线。

4. 考试结束时,将试卷交回,草稿纸不用上交。

1、已知ca 、、b 都是实数,并且>b>c a ,那么下列式子中,正确的是( ) A .>bc ab B.c >b ++b a C.b-c>b a - D.cb>c a 2、化简aba b a +-222的结果为( )。

A.ab - B.a ba - C.ab a + D.b -3、下列函数中,自变量x 的取值范围是﹥2x 的函数是( )A .2-=x y B.21-=x y C.12-=x y D.121-=x y 4、若一次函数b kx y +=的函数值y 随x 的增大而减小,且图象与y 轴的正半轴相交,那么k 和b 的符号判断正确的是( )。

A .k >0, b >0B .k >0.b <0C .k <0,b >0D .k <0,b <05、由于干旱,某水库的蓄水量随时间的增加而直线下降。

若该水库的蓄水量V (万米3)与干旱的时间t (天)的关系如图所示,则下列说法正确的是( )。

A.干旱开始后,蓄水量每天减少20万米3B.干旱开始后,蓄水量每天增加20万米3C.干旱开始时,蓄水量为200万米3D.干旱第50天时,蓄水量为1200万米3题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案 B B B C A D D C D D A A B B C 题号 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 答案 D A C B D D B C B D D C D C D第8题DCBA第12题D C B A6、把1枚质地均匀的普通硬币重复掷两次,落地后两次都在正面朝上的概率是( )。

A .1 B.21 C.31 D.417、关于x 的方程02)2(2=++-x a ax 只有一解(相同解算一解),则a 的值为( )。

A .0=a B.2=a C.1=a D. 20==a a 或 8、如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )。

A .CB=CDB .∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90º 9、二次函数 cbx ax y ++=2的图像如图所示,则下列关系中错误的是( )。

A .a <0 B .c >0 C.ac b 42-0> D.>0c b a++10、如图,把直线x y 2-=向上平移后得到直线AB,直线AB经过点(a,b),且2a+b=6,则直线AB的解析式是( )。

A 、32--=x y B.62--=x y C.32+-=x y D. 62+-=x y 11、某天小明骑自行车上学,途中因自行车故障,修车耽误了一段时间后继续骑行按时赶到了学校。

如图描述了他上学的情景,下列说法错误的是( )。

A.修车时间为15分钟B.学校离家的距离为2000米 C.到达学校时共用时间20分钟D.自行车发生故障时离家为1000米12、如图,等腰梯形ABCD中,AD∥BC,AB=AD=a,∠B=60º,则BC 的长为( )。

A .2aB .3a C.4a D .a 213、不透明的盒子中装有8个白球,若干个颜色黄球,它们除颜色不同外,其余均相同。

若从中随机摸出一个球,它是白球的概率为32,则黄球的个数为( )。

A .2 B.4 C.12 D.1第15题PF ED CBA第17题E DCB A第18题C BAo第19题123O E D C BA第21题EDCBA第22题GFDCBA14、若a,b,c 均为整数且满足1)()(1010=-+-c a b a ,则=-+-+-a c c b b a ( )A .1 B.2 C.3 D.415、如图,梯形ABCD 中,∠ABC 和∠DCB 的平分线相交于梯形中位线 EF 上的一点P ,若EF=3,则梯形ABCD 的周长为( ) 。

A.9 B.10.5 C.12 D.15 16、如图,直线b kx y +=经过A(—2,—1)和B (—3,0)两点, 利用函数图象判断不等式b kx x+<1的解集为( )。

A.21332133+->--<x x 或 B.253253+-<<--x C.21332133+-<<--x D.0253-253<<+--<x x 或 17、如图, ABCD 中,AE ⊥BC 于E ,AE=EB=EC=a,且a 是一元一次方程0322=-+x x 的根,则 ABCD 的周长为( ). A.224+ B. C.222+ D. 222+或2612+18、如图,在以O 为2612+圆心的两个同心圆中,大圆的弦AB 于小圆 相切于点C ,若AB 的长为8cm ,则图中的影部分的面积为( )cm 2 A..π12 B.π14 C.π16 D.π18 19、如图,21//l l ,∠1=120°,∠2=100°,则∠3=( )。

A .20° B.40° C.50° D.60°20、如图,AB 是⊙O 的直径,⊙O 交BC 于点D ,D 是BC 的中点, DE ⊥AC 于E,连接AD ,则下列结论正确的个数是( )。

①AD ⊥BC; ②∠EDA=∠B; ③OA=21AC; ④DE 是⊙O 的切线。

A .1个B .2个C .3个D .4个 21、如图,在矩形ABCD 中,AB=3,BC=2,以BC 为直径在矩形 内作半圆,自点A 作半圆的切线AE ,则sin ∠CBE=﹙ ﹚。

A.36 B. 32 C. 31 D. 1010 22、 矩形纸片ABCD 的边长AB=4,AD=2。

将矩形纸片沿EF 折叠,使点A 与点C 重合,折叠后在其一面着色(如图),则着色部分的面积 为( )A .8B .211C .4D .25第26题F E D C B A第27题O N M D C B A23、已知实数x ,y 满足方程组⎩⎨⎧=+=+11933y x y x ,则=+22y x ( )。

A .10B .19C .13D .124、现有价格相同的5种不同商品,从今天开始每天分别降价10﹪或20﹪,若干后天,这5种商品的价格互不相同,设最高价格和最低价格的比值为r ,则r 的最小值为( )。

A .389⎪⎭⎫⎝⎛ B .489⎪⎭⎫ ⎝⎛ C .589⎪⎭⎫ ⎝⎛ D .8925、如图,已知AB 为⊙Ο的直径,C 为⊙Ο上一点,CD ⊥AB 于D 。

AD=9、BD=4,以C 为圆心,CD 为半径的圆与⊙Ο相交于P 、Q 两点,弦PQ 交CD 于E 。

则PE ·EQ 的值是( )。

A .24 B .9 C. .36 D .2726、如图,设AD,BE,CF 为三角形ABC 的三条高,若AB=6,BC=5,EF=3,则线段BE 的长为( )。

A .518 B .4 C .521 D .52427、如图,正方形ABCD 的边长为1,M,N 为BD 所在直线上的两点,且AM=5,∠MAN=135︒,则四边形AMCN 的面积为( )。

A .1 B .2 C .25D .0.5 28、已知a ,b 是正整数,且满足2(ba 1515+)是整数,则这样的有序数对(a ,b )共有( )。

A .1对 B .3对 C .5对 D . 7对29、将若干个红、黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球。

按这种要求摆放,最多可以摆放( )个球。

A .10 B .5 C .15 D .730、依次将正整数1,2,3,…的平方数排成一串:149162536496481100121144…,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2013个位置的数字是( )。

A .1B .2C .3D .42013年广东省初中数学竞赛初赛试题参考答案。

相关文档
最新文档