光电传感器工作原理

合集下载

光电传感器的原理

光电传感器的原理

光电传感器的原理光电传感器是一种能够将光信号转化为电信号的传感器,它在现代传感技术和自动化控制领域中有着广泛的应用。

光电传感器的原理是利用光电效应将光信号转化为电信号,实现对物质运动、距离、速度、压力以及颜色等物理量的检测和测量。

一、光电效应光电效应是指物质受到光照射后,电子从原子或分子中退出的现象。

这种现象首次被发现于19世纪末,在经过长期的研究和实践之后,人们逐渐确认了光电效应的原理及其应用。

在光电效应中,光子与物质发生作用,将能量转化为电子,如果光子能量足够高,电子就能跳出原子或分子,此时电子能量为光子能量减去吸收能量。

如果将这些从原子或分子中跃出来的电子捕捉到集电极上,就可以测量出光子的能量。

二、光电传感器的工作原理光电传感器是一种将光信号转换为电信号的传感器。

它的工作原理基于直接光电转换和间接光电转换两种机制:1、直接光电转换直接光电转换是指将光信号转换为电信号的过程。

由于光电效应,当光子能量足够大时,它能够激发出可以离开晶体表面的自由电子,从而产生瞬时的光电流。

这种光电流同时也包含着光功率的信息,因此可以用来测量光功率。

2、间接光电转换间接光电转换是指将光信号转换为其他形式的信号,如压电信号、电容信号等,进而得到电信号的过程。

间接光电转换的原理是利用光敏材料的光阻性质,当它受到光照射时,其电阻值会发生变化,进而产生电压或电流。

这种变化的大小取决于照射光强度,因此可以通过测量其信号大小来确定光强度的大小。

三、光电传感器的分类根据测量物理量的不同,光电传感器可以分为以下几种:1、速度传感器速度传感器是一种能够检测物体运动速度和位置的传感器。

它的工作原理是将激光束或者光电二极管照向被测物体,通过测量反射光的时间和回波强度来确定物体的位置和运动速度。

速度传感器广泛应用于装备制造、机械工程、物流管理、交通运输等领域。

2、距离传感器距离传感器是一种能够测量物体与传感器之间距离的传感器。

由于光速是已知的,因此可以根据光传播的时间来计算物体与传感器之间的距离。

光电传感器工作原理

光电传感器工作原理

光电传感器工作原理
光电传感器工作原理利用光电效应,将光能转化为电能。

它由光敏元件和信号处理电路组成。

光敏元件是光电传感器的核心部件,可以是光电二极管、光敏电阻、光敏三极管等。

当光线照射在光敏元件上时,光能激发了光敏元件内的电子,使其跃迁到导带或价带,产生电荷。

这个过程就是光电效应。

光电传感器的灵敏度与光敏元件的特性相关,不同的光敏元件对不同波长、强度的光线具有不同的响应能力。

信号处理电路将由光敏元件产生的微弱电流或电压信号放大,并进行滤波、线性化等处理。

该电路还可以将模拟信号转换为数字信号,便于进一步处理和传输。

信号处理电路的设计与特定应用场景相关,会影响到光电传感器的灵敏度、动态范围和响应速度等性能。

光电传感器可用于检测光照强度、光强变化、物体的光反射特性等。

具体应用包括物体检测、测距、光电开关、光电编码器等。

在工业自动化、安防监控、光通信等领域有广泛应用。

总体来说,光电传感器通过利用光电效应将光能转化为电能,并经过信号处理电路进行处理,实现对光线的探测和测量。

它具有灵敏度高、响应速度快、精度高等优点,为很多应用提供了重要的技术支持。

光电传感器工作原理

光电传感器工作原理

光电传感器工作原理光电传感器是一种能够将光信号转换为电信号的装置,广泛应用于光电检测、自动控制、光通信等领域。

它利用光电效应,通过光电元件将光信号转化为电信号,实现对光信号的检测和测量。

一、光电传感器的基本原理光电传感器的基本原理是光电效应,即光能转化为电能的现象。

光电传感器通常由光源、光电元件和信号处理电路组成。

1. 光源:光源是产生光信号的部分,常见的光源包括发光二极管(LED)、激光二极管(LD)等。

光源的选择需要根据具体应用需求来确定。

2. 光电元件:光电元件是将光信号转换为电信号的核心部分。

常见的光电元件有光敏电阻、光敏二极管、光电二极管、光电三极管等。

光电元件的选择需要考虑光电转换效率、响应速度、灵敏度等因素。

3. 信号处理电路:信号处理电路负责将光电元件输出的微弱电信号放大、滤波、调理,以便于后续的信号处理和分析。

信号处理电路通常包括放大器、滤波器、模数转换器等。

二、光电传感器的工作原理光电传感器的工作原理可以分为两种基本模式:发射模式和接收模式。

1. 发射模式:在发射模式下,光电传感器的光源发出光信号,经过传输介质(如空气、光纤等)照射到目标物体上,然后由光电元件接收反射回来的光信号。

光电元件将接收到的光信号转换为电信号,经过信号处理电路处理后输出。

2. 接收模式:在接收模式下,光电传感器的光源发出光信号,经过传输介质照射到目标物体上,被目标物体吸收或散射后,由光电元件接收到一部分光信号。

光电元件将接收到的光信号转换为电信号,经过信号处理电路处理后输出。

三、光电传感器的应用领域光电传感器广泛应用于各个领域,以下是一些常见的应用领域:1. 工业自动化:光电传感器在工业自动化中起到非常重要的作用。

例如,光电传感器可以用于检测物体的存在与否,实现自动化生产线上的物体检测、计数、定位等功能。

2. 机器人技术:光电传感器在机器人技术中用于实现机器人的视觉感知能力。

通过光电传感器,机器人可以检测周围环境的光线强度、颜色等信息,从而实现目标物体的识别和定位。

光电传感器工作原理

光电传感器工作原理

光电传感器工作原理光电传感器是一种能够将光信号转换为电信号的装置,广泛应用于自动化控制、光电测量、光通信等领域。

它通过感知光的强度、颜色、位置等特征,实现对环境的感知和控制。

本文将详细介绍光电传感器的工作原理。

一、光电传感器的分类根据工作原理的不同,光电传感器可以分为光电开关、光电遥感器、光电编码器等多种类型。

其中,光电开关是最常见的一种,它通过感知物体的存在或缺失,实现对设备的控制。

二、光电传感器的工作原理光电传感器的工作原理基于光电效应和光敏元件的特性。

光电效应是指光照射到物质表面时,会引发物质内部电子的运动,产生电信号。

光敏元件是一种能够感受光信号并产生电信号的器件。

光电传感器通常由光源、光敏元件和信号处理电路组成。

光源发出光线,光线经过物体反射或透过后,被光敏元件接收。

光敏元件将光信号转换为电信号,并经过信号处理电路进行放大、滤波等处理,最终输出一个可用的电信号。

三、光电传感器的工作过程1. 光源发射光线:光电传感器中的光源通常是一种发光二极管(LED),它能够发射可见光或红外光线。

光线的发射方式可以是连续发光或脉冲发光。

2. 光线照射到物体表面:光线从光源发出后,照射到待测物体的表面。

物体可以是固体、液体或气体,光线可以被物体反射、吸收或透过。

3. 光线被光敏元件接收:光线经过物体后,被光敏元件接收。

光敏元件通常是一种光敏电阻、光敏二极管或光敏三极管等,它们能够感受到光信号并产生相应的电信号。

4. 信号处理电路处理电信号:光敏元件产生的电信号经过信号处理电路进行放大、滤波等处理,以确保信号的稳定性和可靠性。

5. 输出电信号:经过信号处理后,光电传感器将最终的电信号输出给控制系统或其他设备。

输出的电信号可以是模拟信号或数字信号,根据具体的应用需求而定。

四、光电传感器的应用光电传感器广泛应用于各个领域,如工业自动化、机器人技术、智能交通、医疗设备等。

以下是一些常见的光电传感器应用场景:1. 物体检测:光电开关可以用于检测物体的存在或缺失。

光电传感器的工作原理及灵敏度改进方法

光电传感器的工作原理及灵敏度改进方法

光电传感器的工作原理及灵敏度改进方法光电传感器是一种利用光电效应进行光电转换的装置,广泛应用于光电测量、图像采集、光学通信等领域。

本文将详细介绍光电传感器的工作原理,并提出几种改善光电传感器灵敏度的方法。

一、光电传感器的工作原理光电传感器主要由光源、光电二极管(或光敏电阻)、信号处理电路以及输出装置等组成。

其工作原理是通过光源发出的光线照射到被测物体上,经过物体的反射、散射等过程后,被光电二极管接收,并产生电信号。

该电信号进入信号处理电路进行放大和过滤等处理,最终输出给外部设备。

1.1 光源光电传感器的光源通常选择发光二极管(LED)或激光二极管(LD)。

LED具有体积小、功耗低以及响应速度快等优点,适用于绝大多数测量场景。

LD的激光特性使其在远距离测量方面具有较大优势。

1.2 光电二极管光电二极管是光电转换的关键组件,具有对光的敏感度,其材料常用硅、锗等。

由于硅光电二极管的响应速度较快,敏感光谱范围较广,因此在大多数光电传感器中被广泛采用。

1.3 信号处理电路信号处理电路主要由放大器、滤波器、模数转换器等组成,用于放大、滤波和数字化光电二极管输出的电信号。

该电路可以根据具体需求进行设计,以提高信号的精确度和稳定性。

二、光电传感器灵敏度的改进方法光电传感器的灵敏度直接影响其测量精度和可靠性。

在实际应用中,有一些方法可以改善光电传感器的灵敏度,下面将介绍其中几种常见的方法。

2.1 光源优化优化光源的选择和驱动电路设计是提高光电传感器灵敏度的重要手段。

可以选择具有较高光强度和较小波长的光源来增加光电二极管的接收光量。

此外,合理设计驱动电路,确保光源的稳定性和可调性,也能有效提高光电传感器的灵敏度。

2.2 信号放大增益调整信号放大增益是影响光电传感器灵敏度的关键参数之一。

通过调整信号放大器的增益,可以提高光电二极管输出信号的幅度,从而增强光电传感器的灵敏度。

但是需要注意的是,过高的放大增益可能会引入噪声,因此在调整增益时需要综合考虑信噪比的问题。

光电式传感器工作原理

光电式传感器工作原理

光电式传感器工作原理
光电式传感器利用光电效应的原理来感知物体的存在或测量物体的位置、距离等信息。

其工作原理如下:
1. 光电效应:光电效应是指当光线照射到某些物质表面时,能够使物质中的电子获得足够的能量从而从原子或分子中脱离出来。

这些脱离的电子称为光电子。

2. 光电传感器结构:光电式传感器通常由光源、探测器和信号处理电路组成。

光源一般为发光二极管(LED)或激光二极管(LD),用来发射光束。

探测器一般为光敏元件,如光敏电阻、光敏二极管、光电二极管等,用来接收光束。

信号处理电路则用来处理探测器接收到的光强信号,并将其转化为电信号输出。

3. 功能原理:光电式传感器的工作原理可以分为两种不同的方式。

- 光电隔离式:光源和探测器分别位于传感器的两侧,通过
光束在两侧之间的遮挡来感知物体的存在。

当物体遮挡了光束,探测器接收到的光强就会减弱,从而触发传感器输出信号。

这种方式常用于物体检测、计数和测量等应用。

- 反射式:光源和探测器位于同一侧,通过物体对光线的反
射来感知物体的存在或测量物体的位置。

当光束照射到物体上并反射回探测器时,探测器接收到的光强会发生变化,从而触发传感器输出信号。

这种方式常用于物体的位置检测和距离测
量等应用。

总的来说,光电式传感器利用光电效应,通过光源和探测器的组合来感知物体的存在或测量物体的位置、距离等信息。

不同的工作方式可以适用于不同的应用场景。

光电传感器工作原理

光电传感器工作原理

光电传感器工作原理光电传感器是一种利用光电效应将光信号转化为电信号的传感器。

它可以将光学信号转换为电信号,从而实现对光学信号进行检测、测量和控制。

光电传感器广泛应用于工业自动化、仪器仪表、环境监测、医疗设备等领域。

光电传感器的工作原理主要是基于光电效应。

光电效应是指当光线照射在半导体材料上时,能激发出电荷,从而产生电流。

根据光电效应的不同方式,光电传感器又分为光电管、光敏二极管、光电三极管、CCD等几种类型。

光电管是最早出现的一种光电传感器,采用真空管中的阴极和阳极,通过在管内添加气体和吸收屏等部件,使其对特定波长的光敏感。

光电管的灵敏度高、应用广泛,但由于其使用真空管构造,价格和体积大,容易受振动等外部环境的干扰。

光敏二极管是一种基于PN结的半导体器件,它结构简单,价格低廉,广泛应用于光电测量、电路控制等领域。

光敏二极管可以将光信号转换为电信号,其输出电流与光信号密度成正比,具有快速、高灵敏度、低功耗等特点。

光电三极管是指在PNP或NPN型晶体管上加上透明的光敏结构,利用光信号调制它的放大倍数。

光电三极管具有快速响应、输出电流大、等待时间短、抗干扰能力强等优点,广泛应用于光电转换、传感控制等领域。

CCD(Charge Coupled Device)是一种基于PN结的光电传感器,具有高速、高分辨率、低噪声等特点。

在CCD图像传感器中,每个像素单元由一个光敏二极管和一个数字信号处理器组成。

当光照射在光敏二极管上时,产生电子,经由像素元件收集后传输到数字信号处理器,最终转换成数字信号输出。

除了以上几种光电传感器,还有其他类型的光电传感器,如光电编码器、红外传感器等。

它们都是利用光电效应完成信号转换的,具有高灵敏度、快速响应、稳定性高等优点,被广泛应用于各个领域中。

总之,光电传感器是一种利用光电效应将光信号转换为电信号的传感器。

不同的光电传感器类型具有不同的工作原理和性能特点,应用范围广泛,给工业自动化、仪器仪表、环境监测、医疗设备等领域带来了很大的便利。

光电传感器的工作原理

光电传感器的工作原理

光电传感器的工作原理
光电传感器利用光电效应的原理来检测光的存在或强度变化。

其工作原理可以分为以下几个步骤:
1. 光电效应:光线照射到光电传感器上的光电极上时,光子能量会激发光电极表面的电子从价带跃迁到导带,形成电子空穴对。

2. 电荷分离:光电极材料的选择使得电子能够在光电极内自由传导,而空穴则往空穴集区移动,这样就形成了电荷分离。

3. 电流产生:由于电子和空穴的运动,光电极上就会形成一个电流。

这个电流的大小与光照强度成正比。

4. 信号放大与处理:由于光电极产生的电流很微弱,为了能够检测和处理这个信号,需要经过放大和处理电路的作用。

5. 输出信号:在经过放大和处理之后,光电传感器会产生一个输出信号,可以是电压信号或者数字信号,用来表示光的存在或强度变化。

总的来说,光电传感器的工作原理是通过光电效应将光的能量转化为电子,然后利用电子的运动产生电流,再经过放大和处理得到输出信号,实现对光的检测和测量。

光电传感器的原理

光电传感器的原理

光电传感器的原理光电传感器是一种利用光电效应来实现物理量探测的器件。

它可以将光信号转换成电信号,从而实现对光线、颜色、位置、距离等物理量的测量和控制。

在工业自动化、机器人、医疗设备、汽车电子、安防监控等领域中,光电传感器得到了广泛的应用和发展。

一、光电效应的基本原理光电效应是指当光线照射到金属表面时,金属中的自由电子被激发出来,形成电子流,从而产生电流。

这种现象被称为外光电效应。

内光电效应则是指光线照射到半导体材料上时,激发出电子-空穴对,从而产生电子流和空穴流。

光电效应的基本原理可以用光子能量和电子结构来解释。

光子能量与光的频率有关,当光子能量达到或超过金属或半导体的电子结构中的某个能级时,就可以激发出电子,使其脱离原子或分子,从而形成电子流。

这个能级被称为电离能级或导带底部能级。

二、光电传感器的基本结构和工作原理光电传感器的基本结构可以分为光源、光电转换器、信号处理电路和输出部分。

光源通常采用LED或激光器,发出光线照射到被测物体上,被测物体反射或散射出的光线再经过光电转换器,被转换成电信号,经过信号处理电路进行放大、滤波、积分等处理后,输出给控制系统或显示器。

光电传感器的工作原理主要是基于光电效应和光散射效应。

当光线照射到被测物体上时,被测物体会反射、散射或吸收部分光线,这些光线经过光电转换器后被转换成电信号,从而实现对被测物体的测量和控制。

光电传感器可以根据测量物理量的不同分为光电开关、光电编码器、光电距离传感器、光电颜色传感器、光电反射式传感器等类型。

其中,光电开关是最常见的一种光电传感器,它可以实现对物体的存在、位置、形状等特征的检测和控制,广泛应用于工业自动化、机器人、安防监控等领域。

三、光电传感器的应用和发展趋势光电传感器具有快速、高精度、无接触、可靠等优点,被广泛应用于工业自动化、机器人、医疗设备、汽车电子、安防监控等领域。

随着科技的不断进步和应用需求的不断增加,光电传感器的应用和发展也呈现出以下几个趋势:1. 多功能化:光电传感器不仅可以实现对物体的测量和控制,还可以实现对物体的识别、分类、定位等功能,将更多的智能化和自主化功能集成在一起,提高系统的效率和可靠性。

光电式传感器工作原理

光电式传感器工作原理

光电式传感器工作原理
光电式传感器是一种常用的传感器,它的工作原理是利用光电效应将光信号转化为电信号,从而实现对物体的检测和测量,广泛应用于工业自动化、机器人、电子设备等领域。

光电式传感器主要由光源、光电二极管、信号放大电路和输出电路等组成。

当光源照射到被测物体上时,被测物体将吸收或反射部分光线,光电二极管接收到光信号后,会产生电信号输出,经过信号放大电路放大后,输出到输出电路中。

光电式传感器有两种常见的工作方式:一种是反射式,一种是穿射式。

反射式光电式传感器光源和光电二极管位于同一侧,当被测物体进入光电束时,反射一部分光线到光电二极管上,从而产生电信号输出;穿射式光电式传感器则是光源和光电二极管分别位于两侧,当被测物体进入光电束时,会挡住部分光线,使光电二极管接收到的光信号发生变化,从而产生电信号输出。

光电式传感器具有检测灵敏度高、响应快、反应时间短、使用寿命长、适用于非接触式检测等优点,因此被广泛应用于各种领域。

例如在工业生产线上,可以用光电式传感器检测物体的位置、尺寸、颜色等参数,从而实现对物体的自动分拣、计数、定位等功能;在机器人领域,可以用光电式传感器实现机器人对环境的感知和定位,从而实现机器人的自主导航和操作。

需要注意的是,光电式传感器的使用受到环境光干扰的影响,因此在实际应用中需要根据具体情况选择合适的滤光片、反光板等附件,以保证传感器的正常工作。

光电式传感器是一种非常重要的传感器,其工作原理简单、效果显著,被广泛应用于各种领域。

未来随着科技的不断进步,相信光电式传感器也会不断升级和完善,为人们的生产和生活带来更多的便利和创新。

光电传感器的原理及应用

光电传感器的原理及应用

光电传感器的原理及应用一、光电传感器的原理光电传感器是一种能将光信号转化为电信号的装置,其原理基于光电效应的作用。

通过光电效应,当光照射到光电传感器的光敏区域时,光子的能量被吸收,产生电子-空穴对。

这些电子-空穴对在光电传感器的材料中移动,产生电信号。

光电传感器的原理可以分为以下几种常见类型:1.光电二极管光电二极管是一种基于半导体材料的光电传感器。

它利用PN结的特性,当光照射到PN结时,会产生光电流。

光电二极管的工作原理简单,响应速度快,并且具有较高的灵敏度。

它被广泛应用于光电开关、光电编码器等领域。

2.光敏电阻光敏电阻是一种基于光敏材料的光电传感器。

它的电阻值会随光照强度的变化而变化。

当光照射到光敏电阻上时,光子能量激发了材料中的载流子,使其导电性发生变化,导致电阻值的变化。

光敏电阻具有价格低廉、结构简单的优势,被广泛应用于光控开关、照度检测等场景。

3.光电二极管阵列光电二极管阵列是一种由多个光电二极管组成的矩阵结构。

它可以分析和处理光信号,用于实现图像捕捉和识别。

光电二极管阵列在摄像头、扫描仪等设备中得到了广泛应用。

二、光电传感器的应用光电传感器作为一种将光信号转化为电信号的装置,其应用领域十分广泛。

下面列举了几个常见的光电传感器应用:1.工业自动化光电传感器在工业自动化中有广泛的应用。

例如,光电开关可以用于物体检测、位置检测等任务;光电编码器可用于测量转速、位置等信息。

通过光电传感器的应用,可以实现生产线上的自动化控制。

2.机器人导航光电传感器可以被用于机器人导航系统中。

通过光电传感器感知环境中的光线强度和方向,机器人可以根据这些信息确定自己的位置和朝向,实现准确的导航。

3.智能家居光电传感器在智能家居中扮演着重要的角色。

光敏电阻可以用于自动调节室内照明,实现智能化的照明控制。

同时,光电传感器还可用于检测窗户、门等是否关闭,提高家居安全性。

4.环境监测光电传感器可以用于环境监测领域。

例如,光电二极管阵列可以用于太阳能光伏系统中,实时监测太阳光线的强度和方向,优化能量收集效率。

光电传感器的工作原理

光电传感器的工作原理

光电传感器的工作原理光电传感器是一种能够将光信号转换为电信号的设备,广泛应用于自动化控制、光电测量、光通信等领域。

它通过感受光线的强度、颜色、位置等参数来实现对物体的检测、测量和识别。

一、光电传感器的分类根据工作原理和应用领域的不同,光电传感器可以分为以下几类:1. 光电开关:主要用于检测物体的有无、位置和运动状态。

它通过发射一束光线并接收反射光线的方式来实现物体的检测,常见的有光电对射、光电对反和光电对射反等类型。

2. 光电测距传感器:用于测量物体与传感器之间的距离。

它通过发射一束光线并测量光线的反射时间或强度来计算物体的距离,常见的有红外线测距传感器和激光测距传感器。

3. 光电编码器:用于测量物体的运动速度和位置。

它通过将物体上的光电信号转换为电信号来实现对物体运动状态的监测,常见的有光电旋转编码器和光电线性编码器。

二、光电传感器的工作原理光电传感器的工作原理基于光电效应和光电二极管的特性。

光电效应是指当光线照射到物质表面时,光子能量被物质吸收后,会激发出电子,从而产生电流。

光电二极管是一种能够将光信号转换为电信号的半导体器件,它的PN结在光照下会产生电流。

光电传感器通常由光源、光电二极管和信号处理电路组成。

光源发射出一束光线,光线经过透镜或反射镜聚焦或反射后,照射到被测物体上。

被测物体反射、散射或吸收光线后,光线经过透镜或反射镜再次聚焦或反射,最后被光电二极管接收。

光电二极管接收到的光信号会被转换为电信号,并经过信号处理电路进行放大、滤波和数字化等处理。

最终,处理后的信号可以被连接到控制系统或显示设备,实现对物体的检测、测量和识别。

三、光电传感器的特点和应用光电传感器具有以下特点:1. 高精度:光电传感器能够实现对物体的高精度检测和测量,可以满足各种精密控制和测量需求。

2. 高速响应:光电传感器的响应速度快,能够实时监测物体的状态变化,并及时反馈给控制系统。

3. 非接触式检测:光电传感器通过光线的反射或吸收来实现对物体的检测,不需要与被测物体直接接触,避免了物体磨损和污染等问题。

光电传感器的工作原理

光电传感器的工作原理

光电传感器的工作原理光电传感器是一种能够将光信号转化为电信号的装置,广泛应用于工业自动化、光电测量、光学通信、无线电通信等领域。

它通过感知光信号的强度、频率、波长等特征,将其转化为电信号,从而实现对光信号的检测和测量。

一、光电传感器的基本原理光电传感器的基本原理是利用光电效应,即光照射到光敏元件上时,会产生电信号。

光电传感器通常由光源、光敏元件和信号处理电路组成。

1. 光源:光源是光电传感器中的发光元件,常用的光源有激光二极管、发光二极管、红外线二极管等。

光源的选择要根据具体的应用需求来确定。

2. 光敏元件:光敏元件是光电传感器中的接收元件,它能够将光信号转化为电信号。

常用的光敏元件有光电二极管、光敏电阻、光电二极管阵列等。

光敏元件的选择要考虑到光源的波长、光强度等因素。

3. 信号处理电路:信号处理电路用于放大、滤波和解调光敏元件输出的电信号,以便进行后续的信号处理和分析。

信号处理电路的设计要根据具体的应用需求来确定。

二、光电传感器的工作原理可以分为直接检测和间接检测两种方式。

1. 直接检测:直接检测是指光电传感器直接接收被测物体反射或透过的光信号。

当被测物体反射或透过的光信号照射到光敏元件上时,光敏元件产生电信号,经过信号处理电路的放大和滤波,最终输出检测结果。

2. 间接检测:间接检测是指光电传感器通过测量光信号与被测物体之间的相互作用来检测被测物体的某些特性。

常见的间接检测方式有光散射、光吸收、光透射等。

三、光电传感器的应用光电传感器在工业自动化中有着广泛的应用。

以下是一些常见的应用领域:1. 物体检测:光电传感器可以用于检测物体的存在、位置和形状等信息。

例如,在生产线上,光电传感器可以用来检测产品的到位、缺陷等。

2. 计数和测量:光电传感器可以用于对物体进行计数和测量。

例如,在包装行业中,光电传感器可以用来计数产品数量,确保包装的准确性。

3. 位置和速度测量:光电传感器可以用于测量物体的位置和速度。

光电式传感器工作原理

光电式传感器工作原理

光电式传感器工作原理
首先,光电式传感器的光源发出一束光线,这个光源可以是LED、激光等光源。

光线穿过透镜,形成一个光斑,这个光斑照射在目标物体上。

当目标物体经过光斑时,光线被遮挡,光斑的亮度发生变化。

其次,光电元件接收到被遮挡后的光线,光电元件可以是光敏电阻、光敏二极
管等。

光电元件将接收到的光信号转换为电信号,其大小与光线的强度成正比。

当目标物体遮挡光线时,光电元件输出的电信号会发生变化。

最后,信号处理电路对光电元件输出的电信号进行放大、滤波、数字化处理,
最终输出一个数字信号。

这个数字信号可以被微处理器、PLC等设备接收并进行
进一步的处理,比如控制执行器的动作、显示检测结果等。

总的来说,光电式传感器的工作原理是利用光源发出光线,目标物体遮挡光线后,光电元件接收到的光信号发生变化,通过信号处理电路进行处理,最终输出一个数字信号。

光电式传感器具有检测速度快、精度高、寿命长等特点,广泛应用于工业自动化控制、物体计数、安全防护等领域。

在实际应用中,我们需要根据具体的检测要求选择合适的光源、光电元件和信
号处理电路,以及合适的安装位置和检测距离,从而确保光电式传感器能够准确可靠地工作。

同时,我们也需要注意保持光源和光电元件的清洁,避免灰尘或污物影响检测效果。

总之,光电式传感器是一种重要的工业自动化检测设备,它的工作原理简单明了,应用广泛。

通过了解光电式传感器的工作原理,我们可以更好地应用和维护这一类传感器,为工业生产和生活提供更好的服务。

光电传感器的工作原理

光电传感器的工作原理

光电传感器的工作原理引言概述:光电传感器是一种常用的传感器类型,它能够将光信号转化为电信号,并通过电信号的变化来感知和测量光的强度、位置和其他相关参数。

本文将详细介绍光电传感器的工作原理及其应用领域。

一、光电传感器的类型1.1 反射型光电传感器反射型光电传感器由发射器和接收器组成,发射器发出光束,光束被目标物体反射后,由接收器接收。

当目标物体接近传感器时,光束被遮挡,接收器接收到的光信号强度减弱,从而触发传感器的输出信号。

这种类型的传感器适合于检测物体的存在、位置和运动等。

1.2 投射型光电传感器投射型光电传感器也由发射器和接收器组成,但是发射器和接收器分别安装在传感器的两侧。

发射器发出光束,光束经过目标物体后,由接收器接收。

当目标物体接近传感器时,光束被遮挡,接收器接收到的光信号强度减弱,从而触发传感器的输出信号。

这种类型的传感器适合于检测物体的存在、位置和运动等。

1.3 散射型光电传感器散射型光电传感器由发射器和接收器组成,发射器发出光束,光束经过目标物体后,部份光被目标物体散射,由接收器接收。

当目标物体接近传感器时,散射的光信号强度增强,接收器接收到的光信号强度增加,从而触发传感器的输出信号。

这种类型的传感器适合于检测物体的存在、位置和运动等。

二、光电传感器的工作原理2.1 发射器光电传感器的发射器通常由发光二极管(LED)组成。

当LED接通电流时,它会发出特定波长的光束,这个波长通常与接收器的光敏元件相匹配。

2.2 接收器光电传感器的接收器通常由光敏元件和信号处理电路组成。

光敏元件可以是光敏二极管(Photodiode)、光敏三极管(Phototransistor)等。

当光束照射到光敏元件上时,光敏元件会产生电流或者电压信号。

信号处理电路会对接收到的光信号进行放大、滤波和解码等处理。

2.3 工作原理当光束照射到目标物体上时,光束的强度会发生变化。

这个变化可以由接收器接收到的光信号强度的变化来体现。

光电传感器工作原理

光电传感器工作原理

光电传感器工作原理光电传感器是一种能够将光信号转化为电信号的器件,广泛应用于光电检测、光电测量、光电通信等领域。

它通过感受光的强度、频率、波长等参数,将光信号转换为电信号,从而实现对光的探测和测量。

一、光电传感器的分类根据工作原理和应用场景的不同,光电传感器可分为以下几类:1. 光敏电阻(光电阻):光敏电阻是一种光电传感器,它的电阻值随光照强度的变化而变化。

在光照强度较弱时,电阻值较大;在光照强度较强时,电阻值较小。

光敏电阻广泛应用于光控开关、光敏电路等领域。

2. 光电二极管(光电管):光电二极管是一种基于光电效应工作的光电传感器。

它的工作原理是当光照射到光电二极管上时,光子的能量被转化为电子能量,从而产生电流。

光电二极管主要用于光电测量、光电通信等领域。

3. 光电三极管(光电晶体管):光电三极管是一种基于光电效应工作的光电传感器。

它的工作原理与光电二极管类似,但光电三极管具有放大功能,可以放大光信号,提高传感器的灵敏度和响应速度。

光电三极管广泛应用于光电测量、光电通信等领域。

4. 光电子器件:光电子器件是一种基于光电效应工作的光电传感器。

它利用光电效应将光信号转化为电信号,并通过电子器件的工作原理进行信号处理和放大。

光电子器件具有高灵敏度、高分辨率等特点,广泛应用于光学成像、光学测量等领域。

二、光电传感器的工作原理光电传感器的工作原理基于光电效应,即光能转化为电能的物理现象。

根据不同的光电传感器类型,其工作原理也有所不同。

1. 光敏电阻的工作原理:光敏电阻是一种半导体器件,其工作原理基于光敏效应。

当光照射到光敏电阻上时,光子的能量被半导体材料吸收,导致电子跃迁,使得电阻值发生变化。

光敏电阻的电阻值与光照强度成反比关系,即光照强度越强,电阻值越小。

2. 光电二极管的工作原理:光电二极管是一种半导体器件,其工作原理基于内光电效应。

当光照射到光电二极管的PN结上时,光子的能量被半导体材料吸收,导致电子与空穴对的产生和挪移,从而产生电流。

光电传感器的工作原理

光电传感器的工作原理

光电传感器的工作原理光电传感器是一种能够将光信号转换为电信号的传感器,广泛应用于自动化控制、测量仪器和光学通信等领域。

它的工作原理主要基于光电效应和光敏元件的特性。

本文将详细介绍光电传感器的工作原理及其应用。

一、光电效应的基本原理光电效应是指当光线照射到某些物质表面时,物质表面上的电子会受到能量激发,从而产生电流或电压的现象。

光电效应主要有三种类型:外光电效应、内光电效应和热电效应。

外光电效应是指在某些物质表面,光子的能量足以激发被照射物质表面的电子,使其脱离原子成为自由电子。

这些自由电子可以通过外电路产生电流。

例如,金属表面的外光电效应常用于光电传感器的工作原理。

内光电效应是指光子的能量足以激发被照射物质内部的电子,使其跃迁到导带带底,从而在晶体内部产生光电效应。

内光电效应常用于固态光电传感器中,如光敏三极管和光电二极管等。

热电效应是指在光线照射下,物质表面因吸收能量而产生温度上升,从而产生热电势差。

这种光电效应通常应用于热电传感器中。

二、光电传感器的工作原理光电传感器通常由光源、传感器和电路组成。

光源发出光线照射到被测物体上,被测物体反射或透射出的光线经过传感器接收并转换成电信号,最后通过电路处理得到最终的测量结果。

1. 光电传感器的光源光电传感器的光源通常采用可见光或红外光。

可见光光源适用于对颜色、形状等方面进行检测和测量,而红外光光源适用于对透明物体或测量距离等方面的应用。

光源的特点是需要具备一定的亮度和光谱特性,以满足各种不同应用场景的需求。

2. 光电传感器的传感器光电传感器的传感器主要包括光敏元件和光电转换装置。

光敏元件是将光信号转换为电信号的核心部件,常用的光敏元件有光敏电阻、光敏二极管和光敏三极管等。

光电转换装置是将光敏元件产生的电信号转换为可以被电路接收和处理的信号。

它通常包括光电二极管和微处理器。

光电二极管将光敏元件产生的电信号转换为电压或电流信号,进而输入到微处理器中进行处理。

光电传感器的工作原理

光电传感器的工作原理

光电传感器的工作原理光电传感器是一种利用光电效应来检测光信号的传感器。

光电效应是指光线照射到物质表面上时,光子会激发电子,使得物质产生电流的现象。

根据光电效应的不同类型以及应用需求的不同,光电传感器可以分为光电二极管、光电三极管、光电二极管阵列、光电管、光敏电阻等多种类型。

下面将详细介绍几种常见的光电传感器的工作原理:1.光电二极管:光电二极管是一种基本的光电传感器,通常由一个半导体材料制成。

当光线照射到光电二极管的正向偏压结上时,会产生光生电流。

光生电流的大小与光源的光强成正比。

通过测量光生电流的变化,可以间接地获取光源的光强信息。

2.光电三极管:光电三极管也是一种光电二极管,但与光电二极管相比,光电三极管引入了一个基极控制电流的引脚,使其灵敏度更高。

当光线照射到光电三极管的发射极和基极之间时,基极会产生电荷,控制电流的大小及方向,从而实现光信号的检测。

3.光电二极管阵列:光电二极管阵列是一种多个光电二极管组成的阵列结构,通常使用在图像传感器、扫描仪等应用中。

每个光电二极管都可以独立地感测到光信号,并转换为电信号。

利用阵列中的光电二极管的空间分布,可以实现对光信号的精准定位。

4.光电管:光电管是一种利用光电效应来产生电流的真空电子器件。

光电管通常由一个光阴极、聚焦电极和收集电极构成。

当光线照射到光阴极上时,光阴极会向外发射电子,通过加速电极的作用,电子会经过聚焦电极的聚焦,最后由收集电极收集电流。

通过测量收集电极上的电流变化,可以获取光源的光强信息。

5.光敏电阻:光敏电阻是一种利用光电效应来改变电阻值的器件。

它通常由一种光敏材料制成,当光线照射到光敏电阻上时,光敏材料的电子能级发生变化,导致电阻值的改变。

通过测量光敏电阻的电阻值变化,可以间接地检测光源的光强信息。

总的来说,光电传感器通过利用光电效应将光信号转换为电信号,实现对光信号的检测和测量。

不同类型的光电传感器具有不同的灵敏度、响应时间和精度等特点,可以应用于不同的场景和需求。

光电式传感器工作原理

光电式传感器工作原理

光电式传感器工作原理一、光电效应光电效应是指当光照射到金属或半导体上时,会使其发生电子的光电发射或电子的能级跃迁等现象。

利用光电效应可以实现光电传感器的灵敏检测和测量。

1.光电发射效应光电发射效应是指当光照射到金属表面时,会使金属发射出电子。

金属中的自由电子受到光的能量激发,从而克服束缚力逸出金属表面。

这些被激发的电子被称为光电子,它们具有动能和电荷,可以被检测和测量。

2.光电吸收效应光电吸收效应是指当光照射到半导体材料上时,会使电子从价带跃迁到导带,产生电荷对。

这种效应可以形成电流或电压信号,从而实现对光信号的检测和测量。

二、光磁效应光磁效应是指当光照射到磁性材料上时,会改变其磁性质,从而实现对光信号的检测和测量。

光磁效应主要包括克尔效应、法拉第效应和泡纳尔效应。

1.克尔效应克尔效应是指当光照射到磁性材料上时,会使其磁性发生变化。

光照射可以改变材料的磁矩方向或大小,从而实现对光信号的检测和测量。

2.法拉第效应法拉第效应是指当光照射到导体上时,会在导体中产生感光电动势。

该电动势与光照强度成正比,并且与导体的材料、形状和温度有关。

3.泡纳尔效应泡纳尔效应是指当光照射到磁性材料上时,会使其产生热稳态,并在材料表面上形成热梯度。

这个热梯度会使磁性材料发生热漂移,从而形成感光磁场或感光电流。

光电式传感器的工作原理实质上是利用光与电磁场之间的相互作用来实现对光信号的检测和测量。

光电效应是光与物质相互作用的基础,光磁效应则是光与磁场相互作用的结果。

通过光电效应和光磁效应,光电式传感器可以将光信号转化为电信号,从而实现对光信号的感知、测量和控制。

这使得光电式传感器在工业、医疗、军事等领域具有广泛的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电传感器工作原理电子电路 2008-05-31 22:27 阅读6004 评论3字号:大中小本文来源网络光电传感器工作原理光电传感器是通过把光强度的变化转换成电信号的变化来实现控制的。

光电传感器在一般情况下,有三部分构成它们分为:发送器、接收器和检测电路。

发送器对准目标发射光束,发射的光束一般来源于半导体光源,发光二极管(LED)、激光二极管及红外发射二极管。

光束不间断地发射,或者改变脉冲宽度。

接收器有光电二极管、光电三极管、光电池组成。

在接收器的前面,装有光学元件如透镜和光圈等。

在其后面是检测电路,它能滤出有效信号和应用该信号。

此外,光电开关的结构元件中还有发射板和光导纤维。

三角反射板是结构牢固的发射装置。

它由很小的三角锥体反射材料组成,能够使光束准确地从反射板中返回,具有实用意义。

它可以在与光轴0到25的范围改变发射角,使光束几乎是从一根发射线,经过反射后,还是从这根反射线返回。

分类和工作方式⑴槽型光电传感器把一个光发射器和一个接收器面对面地装在一个槽的两侧的是槽形光电。

发光器能发出红外光或可见光,在无阻情况下光接收器能收到光。

但当被检测物体从槽中通过时,光被遮挡,光电开关便动作。

输出一个开关控制信号,切断或接通负载电流,从而完成一次控制动作。

槽形开关的检测距离因为受整体结构的限制一般只有几厘米。

⑵对射型光电传感器若把发光器和收光器分离开,就可使检测距离加大。

由一个发光器和一个收光器组成的光电开关就称为对射分离式光电开关,简称对射式光电开关。

它的检测距离可达几米乃至几十米。

使用时把发光器和收光器分别装在检测物通过路径的两侧,检测物通过时阻挡光路,收光器就动作输出一个开关控制信号。

⑶反光板型光电开关把发光器和收光器装入同一个装置内,在它的前方装一块反光板,利用反射原理完成光电控制作用的称为反光板反射式(或反射镜反射式)光电开关。

正常情况下,发光器发出的光被反光板反射回来被收光器收到;一旦光路被检测物挡住,收光器收不到光时,光电开关就动作,输出一个开关控制信号它的检测头里也装有一个发光器和一个收光器,但前方没有反光板。

正常情况下发光器发出的光收光器是找不到的。

当检测物通过时挡住了光,并把光部分反射回来,收光器就收到光信号,输出一个开关信号。

关键词:光电开关光电传感器光电式接近开关光电式传感器红外线光电开关红外线开关红外线光电传感器对射式光电开关对射式光电传感器反射式光电开关反射式光电传感器漫反射光电开关漫反射光电传感器光电式传感器光电传感器是采用光电元件作为检测元件的传感器.它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号.光电传感器一般由光源,光学通路和光电元件三部分组成.光电检测方法具有精度高,反应快,非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛.由光通量对光电元件的作用原理不同所制成的光学测控系统是多种多样的,按光电元件(光学测控系统)输出量性质可分二类,即模拟式光电传感器和脉冲(开关)式光电传感器.模拟式光电传感器是将被测量转换成连续变化的光电流,它与被测量间呈单值关系.模拟式光电传感器按被测量(检测目标物体)方法可分为透射(吸收)式,漫反射式,遮光式(光束阻档)三大类.所谓透射式是指被测物体放在光路中,恒光源发出的光能量穿过被测物,部份被吸收后,透射光投射到光电元件上;所谓漫反射式是指恒光源发出的光投射到被测物上,再从被测物体表面反射后投射到光电元件上;所谓遮光式是指当光源发出的光通量经被测物光遮其中一部份,使投射刭光电元件上的光通量改变,改变的程度与被测物体在光路位置有关.7.1 概述光电传感器是一种小型电子设备,它可以检测出其接收到的光强的变化.早期的用来检测物体有无的光电传感器是一种小的金属圆柱形设备,发射器带一个校准镜头,将光聚焦射向接收器,接收器出电缆将这套装置接到一个真空管放大器上.在金属圆筒内有一个小的白炽灯作为光源.这些小而坚固的白炽灯传感器就是今天光电传感器的雏形.LED(发光二极管)最早出现在19世纪60年代,现在我们可以经常在电气和电子设备上看到这些二极管作为指示灯来用.LED就是一种半导体元件,其电气性能与普通二极管相同,不同之处在于当给LED通电流时,它会发光.由于LED是固态的,所以它能延长传感器的使用寿命.因而使用LED的光电传感器能被做得更小,且比白炽灯传感器更可靠.不像白炽灯那样,LED抗震动抗冲击,并且没有灯丝.另外,LED所发出的光能只相当于同尺寸白炽灯所产生光能的一部分.(激光二极管除外,它与普通LED的原理相同,但能产生几倍的光能,并能达到更远的检测距离).LED能发射人眼看不到的红外光,也能发射可见的绿光,黄光,红光,蓝光,蓝绿光或白光.1970年,人们发现LED还有一个比寿命长更好的优点,就是它能够以非常快的速度来开关,开关速度可达到KHz.将接收器的放大器调制到发射器的调制频率,那么它就只能对以此频率振动的光信号进行放大.我们可以将光波的调制比喻成无线电波的传送和接收.将收音机调到某台,就可以忽略其他的无线电波信号.经过调制的LED发射器就类似于无线电波发射器,其接收器就相当于收音机.人们常常有一个误解:认为由于红外光LED发出的红外光是看不到的,那么红外光的能量肯定会很强.经过调制的光电传感器的能量的大小与LED光波的波长无太大关系.一个LED发出的光能很少,经过调制才将其变得能量很高.一个未经调制的传感器只有通过使用长焦距镜头的机械屏蔽手段,使接收器只能接收到发射器发出的光,才能使其能量变得很高.相比之下,经过调制的接收器能忽略周围的光,只对自己的光或具有相同调制频率的光做出响应.未经调制的传感器用来检测周围的光线或红外光的辐射,如刚出炉的红热瓶子,在这种应用场合如果使用其它的传感器,可能会有误动作.如果一个金属发射出的光比周围的光强很多的话,那么它就可以被周围光源接收器可靠检测到.周围光源接收器也可以用来检测室外光.但是并不是说经调制的传感器就一定不受周围光的干扰,当使用在强光环境下时就会有问题.例如,未经过调制的光电传感器,当把它直接指向阳光时,它能正常动作.我们每个人都知道,用一块有放大作用的玻璃将阳光聚集在一张纸上时,很容易就会把纸点燃.设想将玻璃替换成传感器的镜头,将纸替换成光电三极管,这样我们就很容易理解为什么将调制的接收器指向阳光时它就不能工作了,这是周围光源使其饱和了.调制的LED改进了光电传感器的设计,增大了检测距离,扩展了光束的角度,人们逐渐接受了这种可靠易于对准的光束.到1980年,非调制的光电传感器逐步就退出了历史舞台.红外光LED是效率最高的光束,同时也是在光谱上与光电三极管最匹配的光束.但是有些传感器需要用来区分颜色(如色标检测),这就需要用可见光源.在早期,色标传感器使用白炽灯做光源,使用光电池接收器,直到后来发明了高效的可见光LED.现在,多数的色标传感器都是使用经调制的各种颜色的可见光LED发射器.经调制的传感器往往牺牲了响应速度以获取更长的检测距离,这是因为检测距离是一个非常重要的参数.未经调制的传感器可以用来检测小的物体或动作非常快的物体,这些场合要求的响应速度都非常快.但是,现在高速的调制传感器也可以提供非常快的响应速度,能满足大多数的检测应用.安装空间非常有限或使用环境非常恶劣的情况下,我们可以考虑使用光纤.光纤与传感器配套使用,是无源元件,另外,光纤不受任何电磁信号的干扰,并且能使传感器的电子元件与其他电的干扰相隔离.光纤有一根塑料光芯或玻璃光芯,光芯外面包一层金属外皮.这层金属外皮的密度比光芯要低,因而折射率低.光束照在这两种材料的边界处(入射角在一定范围内,),被全部反射回来.根据光学原理,所有光束都可以由光纤来传输.两条入射光束(入射角在接受角以内)沿光纤长度方向经多次反射后,从另一端射出.另一条入射角超出接受角范围的入射光,损失在金属外皮内.这个接受角比两倍的最大入射角略大,这是因为光纤在从空气射入密度较大的光纤材料中时会有轻微的折射.光在光纤内部的传输不受光纤是否弯曲的影响(弯曲半径要大于最小弯曲半径).大多数光纤是可弯曲的,很容易安装在狭小的空间. 玻璃光纤由一束非常细(直径约50μm)的玻璃纤维丝组成.典型的光缆由几百根单独的带金属外皮玻璃光纤组成,光缆外部有一层护套保护.光缆的端部有各种尺寸和外形,并且浇注了坚固的透明树脂.检测面经过光学打磨,非常平滑.这道精心的打磨工艺能显著提高光纤束之间的光耦合效率.玻璃光纤内的光纤束可以是紧凑布置的,也可随意布置.紧凑布置的玻璃光纤通常用在医疗设备或管道镜上.每一根光纤从一端到另一端都需要精心布置,这样才能在另一端得到非常清晰的图像.由于这种光纤费用非常昂贵并且多数的光纤应用场合并不需要得到一个非常清晰的图像,所以多数的玻璃光纤其光纤束是随意布置的,这种光纤就非常便宜了,当然其所得到的图像也只是一些光.玻璃光纤外部的保护层通常是柔性的不锈钢护套,也有的是PVC 或其他柔性塑料材料.有些特殊的光纤可用于特殊的空间或环境,其检测头做成不同的形状以适用于不同的检测要求.玻璃光纤坚固并且性能可靠,可使用在高温和有化学成分的环境中,它可以传输可见光和红外光.常见的问题就是由于经常弯曲或弯曲半径过小而导致玻璃丝折断,对于这种应用场合,我们推荐使用塑料光纤. 塑料光纤由单根的光纤束(典型光束直径为0.25到1.5mm)构成,通常有PVC外皮.它能安装在狭小的空间并且能弯成很小的角度. 多数的塑料光纤其检测头都做成探针形或带螺纹的圆柱形,另一端未做加工以方便客户根据使用将其剪短.不像玻璃光纤,塑料光纤具有较高的柔性,带防护外皮的塑料光纤适于安装在往复运动的机械结构上.塑料光纤吸收一定波长的光波,包括红外光,因而塑料光纤只能传输可见光.对射式和直反式光纤玻璃光纤和塑料光纤既有"单根的"-对射式,也有"分叉的"-直反式.单根光纤可以将光从发射器传输到检测区域,或从检测区域传输到接收器.分叉式的光纤有两个明显的分支,可分别传输发射光和接收光,使传感器既可以通过一个分支将发射光传输到检测区域,同时又通过另一个分支将反射光传输回接收器由于光纤受使用环境影响小并且抗电磁干扰,因而能被用在一些特殊的场合,如:适用于真空环境下的真空传导光纤(VFT)和适用于爆炸环境下的光纤.7.2 光电元件光电元件是光电传感器中最重要的部件,常见的有真空光电元件和半导体光电元件两大类.它们的工作原理都基于不同形式的光电效应.根据光的波粒二像性,我们可以认为光是一种以光速运动的粒子流,这种粒子称为光子.每个光子具有的能量为(7.1)式中,为光波频率;h为普朗克常数,h=6.63对不同频率的光,其光子能量是不相同的,光波频率越高,光子能量越大.用光照射某一物体,可以看作是一连串能量为Au的光子轰击在这个物体上,此时光子能量就传递给电子,并且是一个光子的全部能量一次性地被一个电子所吸收,电子得到光子传递的能量后其状态就会发生变化,从而使受光照射的物体产生相应的电效应,我们把这种物理现象称为光电效应.通常把光电效应分为三类:1)在光线作用下能使电子逸出物体表面的现象称为外光电效应,基于外光电效应的光电元件有光电管,光电倍增管等.2)在光线作用下能使物体的电阻率改变的现象称为内光电效应.基于内光电效应的光电元件有光敏电阻,光敏晶体管等.3)在光线作用下,物体产生一定方向电动势的现象称为光生伏特效应,基于光生伏特效应的光电元件有光电池等.7.2.1 外光电效应器件7.2.1.1 工作原理光电管是利用外光电效应制成的光电元件,其外形和结构如图7.2.1所示,半圆筒形金属片制成的阴极K和位于阴极轴心的金属丝制成的阳极A封装在抽成真空的玻壳内,当入射光照射在阴极上时,单个光子就把它的全部能量传递给阴极材料中的一个自由电子,从而使自由电子的能量增加h.当电子获得的能量大于阴极材料的逸出功A时,它就可以克服金属表面束缚而逸出,形成电子发射.这种电子称为光电子,光电子逸出金属表面后的初始动能为(1/2)m.根据能量守恒定律有(7.2)式中,m为电子质量;为电子逸出的初速度.由上式可知,要使光电子逸出阴极表面的必要条件是h>A.由于不同材料具有不同的逸出功,因此对每一种阴极材料,入射光都有一个确定的频率限,当入射光的频率低于此频率限时,不论光强多大,都不会产生光电子发射,此频率限称为"红限".相应的波长λK为(7.3)式中,c为光速;A为逸出功.光电管正常工作时,阳极电位高于阴极,如图7.2.2所示.在人射光频率大于"红限"的前提下,从阴极表面逸出的光电子被具有正电位的阳极所吸引,在光电管内形成空间电子流,称为光电流.此时若光强增大,轰击阴极的光子数增多,单位时间内发射的光电子数也就增多,光电流变大.在图7.2.2所示的电路中,电流IФ和电阻只RL上的电压降U0就和光强成函数关系,从而实现光电转换.图7.2.1 光电管结构示意图图7.2.2 光电管测量电路图阴极材料不同的光电管,具有不同的红限,因此适用于不同的光谱范围.此外,即使入射光的频率大于红限,并保持其强度不变,但阴极发射的光电子数量还会随入射光频率的变化而改变,即同一种光电管对不同频率的入射光灵敏度并不相同.光电管的这种光谱特性,要求人们应当根据检测对象是紫外光,可见光还是红外光去选择阴极材料不同的光电管,以便获得满意的灵敏度.由于真空光电管的灵敏度低,因此人们研制了具有放大光电流能力的光电倍增管.图7.2.3是光电倍增管结构示意图.光电倍增管主要由光阴极K,倍增极D和阳极A组成,并根据要求采用不同性能的玻璃壳进行真空封装.依据分装方法,可分成端窗式和侧窗式两大类.端窗式光电倍增管的阴极通常为透射式阴极,通过管壳的端面接受入射光.侧窗式阴极则是通过管壳的侧面接收入射光,它的阴极通常为反射式阴极.图7.2.3 光电倍增管结构示意图光阴极的量子效率是一个重要的参数.波长为λ的光辐射入射到光阴极时,一个入射光子产生的光电子数,定义为光阴极的量子效率.光阴极有很多种,常用的有双碱,S11及S20三种.光阴极通常由脱出功较小的锑铯或钠钾锑铯的薄膜组成,光阴极接负高压,各倍增极的加速电压由直流高压电源经分压电阻分压供给,灵敏检流计或负载电阻接在阳极A处,当有光子入射到光阴极K上,只要光子的能量大于光阴极材料的脱出功,就会有电子从阴极的表面逸出而成为光电子.在K和D1之间的电场作用下,光电子被加速后轰击第一倍增极D1,从而使D1产生二次电子发射.每一个电子的轰击约可产生3~5个二次电子,这样就实现了电子数目的放大.D1产生的二次电子被D2和D1之间的电场加速后轰击D 2,…….这样的过程一直持续到最后一级倍增极Dn,每经过一级倍增极,电子数目便被放大一次,倍增极的数目有8~13个,最后一级倍增极Dn发射的二次电子被阳极A收集.若倍增电极有n 级,各级的倍增率为б,则光电倍增管的倍增率可以认为是бn,因此,光电倍增管有极高的灵敏度.在输出电流小于1mA的情况下,它的光电特性在很宽的范围内具有良好的线性关系.光电倍增管的这个特点,使它多用于微光测量.若将灵敏检流计串接在阳极回路中,则可直接测量阳极输出电流.若在阳极串接电阻RL作为负载,则可测量RL两端的电压,此电压正比于阳极电流.图7.2.4 光电倍增管的基本电路图7.2.5 光敏电阻结构示意图及符号图7.2.4所示为光电倍增管的基本电路.各倍增极的电压是用分压电阻R1,R2,……Rn获得的,阳极电流流经负载电阻RL得到输出电压U0.当用于测量稳定的辐射通量时,图中虚线连接的电容C1,C2,…,Cn和输出隔离电容C0都可以省去.这时电路往往将电源正端接地,并且输出可以直接与放大器输入端连接,从而使它能够响应变化缓慢的入射光通量.但当入射光通量为脉冲通量时,则应将电源的负端接地,因为光电倍增管的阴极接地比阳极接地有更低的噪声,此时输出端应接人隔离电容,同时各倍增极的并联电容亦应接人,以稳定脉冲工作时的各级工作电压,稳定增益并防止饱和.7.2.1.2 与测量有关的两个参数(1) 暗电流光电倍增管接上工作电压后,在没有光照的情况下阳极仍会有一个很小的电流输出,此电流即称为暗电流.光电倍增管在工作时,其阳极输出电流由暗电流和信号电流两部分组成.当信号电流比较大时,暗电流的影响可以忽略,但是当光信号非常弱,以至于阳极信号电流很小甚至和暗电流在同一数量级时,暗电流将严重影响对光信号测量的准确性.所以暗电流的存在决定了光电倍增管可测量光信号的最小值.一只好的光电倍增管,要求其暗电流小并且稳定.(2) 光谱响应特征光电倍增管对不同波长的光入射的响应能力是不相同的,这一特性可用光谱响应率表示.在给定波长的单位辐射功率照射下所产生的阳极电流大小称为光电倍增管的绝对光谱响应率,表示为(7.4)式中,P(λ)为入射到光阴极上的单色辐射功率;I(λ)是在该辐射功率照射下所产生的阳极电流;S(λ)是波长的函数,它与波长的关系曲线称为光电倍增管的绝对光谱响应曲线.测量S(λ)十分复杂,因此在一般测量中都是测量它的相对值.为此,可以把S(λ)中的最大值当作一个单位对所有S(λ)值进行归一化,这时就得到(7.5)s(λ)称为光电倍增管的相对光谱响应率,它与波长的关系曲线称为光电倍增管的相对光谱响应曲线.s(λ)≤1,是一个无量纲的量,只表示光电倍增管的光谱响应特征.7.2.2 内光电效应器件7.2.2.1 工作原理光敏电阻是一种光电效应半导体器件,应用于光存在与否的感应(数字量)以及光强度的测量(模拟量)等领域.它的体电阻系数随照明强度的增强而减小,容许更多的光电流流过.这种阻性特征使得它具有很好的品质:通过调节供应电源就可以从探测器上获得信号流,且有着很宽的范围.光敏电阻是薄膜元件,它是由在陶瓷底衬上覆一层光电半导体材料.金属接触点盖在光电半导体面下部.这种光电半导体材料薄膜元件有很高的电阻.所以在两个接触点之间,做的狭小,交叉,使得在适度的光线时产生较低的阻值.光敏电阻的检测:A 用一黑纸片将光敏电阻的透光窗口遮住,此时万用表的指针基本保持不动,阻值接近无穷大.此值越大说明光敏电阻性能越好.若此值很小或接近为零,说明光敏电阻已烧穿损坏,不能再继续使用.B 将一光源对准光敏电阻的透光窗口,此时万用表的指针应有较大幅度的摆动,阻值明显减小,此值越小说明光敏电阻性能越好.若此值很大甚至无穷大,表明光敏电阻内部电路损坏,也不能再继续使用.C 将光敏电阻透光窗口对准入射光线,用小黑纸片在光敏电阻的遮光窗上部晃动,使其间断受光,此时万用表指针应随黑纸片的晃动而左右摆动.如果万用表指针始终停在某一位置不随纸片晃动而摆动,说明光敏电阻的光敏材料已经损坏.光敏晶体管通常指光敏二极管和光敏三极管,它们的工作原理也是基于内光电效应,和光敏电阻的差别仅在于光线照射在半导体PN结上,PN结参与了光电转换过程.光敏二极管的结构和普通二极管相似,只是它的PN结装在管壳顶部,光线通过透镜制成的窗口,可以集中照射在PN结上,图7.2. 6a是其结构示意图.光敏二极管在电路中通常处于反向偏置状态,如图7.2.6b所示.我们知道,PN结加反向电压时,反向电流的大小取决于P区和N区中少数载流子的浓度,无光照时P区中少数载流子(电子)和N 区中的少数载流子(空穴)都很少,因此反向电流很小.但是当光照PN结时,只要光子能量h大于材料的禁带宽度,就会在PN结及其附近产生光生电子.空穴对,从而使P区和N区少数载流子浓度大大增加,它们在外加反向电压和PN结内电场作用下定向运动,分别在两个方向上渡越PN结,使反向电流明显增大.如果入射光的照度变化,光生电子.空穴对的浓度将相应变动,通过外电路的光电流强度也会随之变动,光敏二极管就把光信号转换成了电信号.图7.2.6 光敏二极管图7.2.7 光敏三极管光敏三极管有两个PN结,因而可以获得电流增益,它比光敏二极管具有更高的灵敏度.其结构如图7.2.7a所示.当光敏三极管按图7.2.7b所示的电路连接时,它的集电结反向偏置,发射结正向偏置.无光照时仅有很小的穿透电流流过,当光线通过透明窗口照射集电结时,和光敏二极管的情况相似,将使流过集电结的反向电流增大,这就造成基区中正电荷的空穴的积累,发射区中的多数载流子(电子)将大量注人基区,由于基区很薄,只有一小部分从发射区注入的电子与基区的空穴复合,而大部分电子将穿过基区流向与电源正极相接的集电极,形成集电极电流IC.这个过程与普通三极管的电流放大作用相似,它使集电极电流IC 是原始光电流的(l+β)倍.这样集电极电流IC将随入射光照度的改变而更加明显地变化.。

相关文档
最新文档